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Abstract. In this paper we develop a differential-geometric ap-
proach to the characteristic numbers of singular varieties. In par-
ticular we generalize Bott’s residue formula for singular varieties.

1. Introduction

Characteristic numbers of compact smooth manifolds are important
topological invariants. In [5] W. Ebeling and S. M. Gusein-Zade offered
a definition of characteristic numbers of singular compact complex an-
alytic varieties. In [4] the author proved that there exists a singular
projective variety with an arbitrary given set of characteristic numbers.
It is well known that this fact is not true for smooth varieties (see e.g.
[7]).

There is the well known construction of characteristic classes using
the curvature tensor. Hence we can compute characteristic numbers by
integration of certain differential forms. In this paper we generalize this
approach to singular varieties. We prove that characteristic numbers
of a singular variety are equal to integrals of certain differential forms
over the smooth part of the variety.

In [3] R. Bott gave a method for a computation of characteristic
numbers using holomorphic vector fields. We give a generalization of
this result for singular varieties. As a byproduct of his construction
R. Bott defined new invariants of a holomorphic vector field near its
singular point and proved that the sum of these invariants over all
singular points of a holomorphic vector field on a smooth compact
analytic manifold is equal to zero. In this paper we also give a partial
generalization of this result.
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2. Main results

2.1. Characteristic numbers of singular varieties. For a singular

analytic variety X of dimension n, let νX : X̂ → X be its Nash trans-

form and let T̂X be the tautological bundle over X̂ (see, e.g, [6]). If
X is embedded into a smooth complex analytic manifold M , then over
the nonsingular part Xreg of X there is a section of Grn(TM) given

by the tangent space to X. The Nash transform X̂ is the closure in
Grn(TM) of the image of this section and the map νX is the restriction

of the projection Grn(TM)→M to X̂. The bundle T̂X is the restric-

tion to X̂ of the tautological bundle over Grn(TM). Let the variety X
be compact. For a partition I = i1, . . . , ir, i1 + . . . + ir = n of n the
corresponding characteristic number cI [X] of the variety X is defined
by

cI [X] :=

〈
r∏
j=1

cij(T̂X),
[
X̂
]〉

,

where
[
X̂
]

is the fundamental class of the variety X̂.

2.2. Differential-geometric construction. Let X ⊂ M be an n-
dimensional compact complex analytic subvariety of a smooth complex
manifold M . Let us choose a hermitian structure on M and restrict
it to Xreg. Let ∇ be the canonical connection in TXreg and K its
curvature. Consider differential forms c̃r ∈ Ω2r(Xreg) defined as follows∑

i

λic̃i = det

(
1 +

i

2π
λK

)
.

Let I = i1, . . . , ik be a partition of n. The first result of this paper is
the following theorem.

Theorem 2.1. cI [X] =
∫
Xreg

∏k
j=1 c̃ij .

Proof. Let X̂ ⊂ Grn(TM) be the Nash transform of X. The hermitian
structure on M defines the hermitian structure in the tautological bun-
dle τn over Grn(TM). Let ∇ be the canonical connection in τn and K

its curvature. Consider differential forms c̃r ∈ Ω2r(Grn(TM)) defined
as follows ∑

i

λic̃i = det

(
1 +

i

2π
λK

)
.

It is clear that c̃r|ν−1
X (Xreg)

= c̃r. The form c̃r represents the class

cr(τn) ∈ H2r(Grn(TM)). The variety X̂ is analytic, so〈
ci1(τn) . . . cik(τn),

[
X̂
]〉

=

∫
X̂

c̃i1 . . . c̃ik .

This concludes the proof of the theorem. �
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2.3. Bott’s residue formula for singular varieties. Let X ⊂ M
be an n-dimensional complex analytic subvariety of a smooth complex
manifold M . Let Z ⊂ X be a compact analytic subset such that
Xsing ⊂ Z. Let V be a holomorphic vector field on X\Z such that
for any p ∈ X\Z we have V (p) 6= 0. Let φ(c1, . . . , cn) be a homoge-
neous polynomial of degree n, where the degree of ci is equal to i. We
construct a residue Resφ(Z) of the field V near the set Z. In fact we
show that Bott’s construction from [3] works in our situation. Suppose

X is compact. Let φ[X] =
〈
φ(c(T̂X)),

[
X̂
]〉

. We prove the following

theorem.

Theorem 2.2. φ[X] = Resφ(Z).

We show a few examples of a computation of these residues.

2.4. The residue Res1 for singular varieties. Let X ⊂M be an n-
dimensional complex analytic subvariety of a smooth complex manifold
M . Let V be a holomorphic vector field on Xreg. We say that V is
holomorphic on X if for any point p ∈ Xsing there exists an open set
U ⊂M, p ∈ U and a holomorphic vector field W on U such that W is
tangent to Xreg ∩U and W |Xreg∩U = V . We say that the field V is not

equal to zero at a point p ∈ Xsing if W (p) 6= 0.
Let Z ⊂ X be a compact complex analytic subset and V be a holo-

morphic vector field on X\Z such that for any point p ∈ X\Z we have
V (p) 6= 0. We construct a residue Res1(Z) of the field V near the set
Z. Suppose X is compact. We prove the following theorem.

Theorem 2.3. Res1(Z) = 0.

We obtain a simple formula for this residue in the following situation.
Consider the vector field V =

∑N
i=1 λiz

i ∂
∂zi

in CN , where λi 6= 0. Let
(X, 0) ⊂ (CN , 0) be a germ of an n-dimensional variety such that the
field V is tangent to it. Consider a subset A ⊂ {1, . . . , N}, |A| = n. Let
ΠA ⊂ CN be the coordinate vector subspace. Suppose the projection
pA : (X, 0) → (ΠA, 0) is a branched covering of degree dA. We obtain
the following theorem.

Theorem 2.4. Res1(0) = dA∏
i∈A λi

.

3. Constructions and proofs

3.1. The residue Resφ. We follow the notations of Section 2.3. We
have the decomposition TCM = T ′CM ⊕ T

′′

CM , where TCM is the com-
plexified tangent bundle of M , T ′CM is in duality with the forms of
type (1, 0) and T ′′CM is in duality with the forms of type (0, 1). Let
U = X\Z. Consider an arbitrary hermitian metric in the bundle T ′CM
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and its restriction to T ′CU . Let ∇ be the canonical connection in the
bundle T ′CU . Consider a section L ∈ Γ(End(T ′CU)) defined as follows

Ls = [V, s]−∇V s,

where s ∈ Γ(T ′CU). Let π be an arbitrary differential (1, 0)-form on U
such that π(V ) = 1. Let K be the curvature of ∇. For an arbitrary
n × n matrix A let φ(A) = φ(σ1(A), . . . , σn(A)), where σi(A) is the
i-th symmetric function of the eigenvalues of the matrix A. Let η(k)

be the coefficient of tk in the series η = φ(L+tK)π

1−t∂π . Let Zε ⊂ X be an

ε-neighbourhood of Z. Define the residue Resφ(Z) by the following
formula

Resφ(Z) =

(
i

2π

)n
lim
ε→0

∫
∂Zε

η(n−1).(1)

Let us prove the existence of the limit on the right hand side of (1).
From [2] we know that

φ(K) + dη(n−1) = 0.(2)

From the proof of Theorem 2.1 it follows that the integral
∫
Zδ
φ(K)

is well defined. Using (2) and Stokes’ theorem, we get
∫
Zδ
φ(K) +∫

∂Zδ
η(n−1) = limε→0

∫
∂Zε

η(n−1). This equation proves the existence of

the limit. It is easy to show that the residue Resφ(Z) doesn’t depend
on the metric on M , on the form π and on the embedding of X into
M . Let the variety X be compact. Theorem 2.2 immediately follows
from Theorem 2.1 and the equation (2).

Example 3.1. For a smooth subvariety X ⊂ CPN of dimension n
let CX ⊂ CN+1 be the cone over X. Consider the vector field V =∑N+1

i=1 zi ∂
∂zi

in CN+1. The field V is tangent to CX. Let O be the
vertex of the cone CX. We can compute all residues Resφ(O) by the
following procedure. Let CX be the closure of CX in CPN+1. From
[4] we know how to compute all characteristic numbers of CX. On the
other hand the field V can be extended to the holomorphic field on
CX\O with a zero of order 1 along the divisor D = CX\CX. In [1]
there are formulas for all residues Resφ(D). Hence using Theorem 2.2
we can compute all residues Resφ(O). Let us show a few examples.
Let d be the degree of X. Let H ⊂ CPN be a general hyperplane.

dimX = 1, Resc2(O) = c1[X]− d,
Resc21(O) = 4c1[X]− 4d,

dimX = 2, Resc3(O) = c2[X]− c1[X ∩H],

Resc1c2(O) = 3c2[X] + 2c21[X]− 9c1[X ∩H],

Resc31(O) = 9c21[X]− 27c1[X ∩H].
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If X is a hypersurface then we have the following

dimX = 1, Resc2(O) = 2d− d2,
Resc21(O) = 8d− 4d2,

dimX = 2, Resc3(O) = d3 − 3d2 + 3d,

Resc1c2(O) = 5d3 − 19d2 + 23d,

Resc31(O) = 9d3 − 45d2 + 63d.

3.2. The residue Res1. Again we follow the notations of Section 2.4
Let h(·, ·) be an arbitrary hermitian form in the bundle T ′CM such that
for any point p ∈ X\Z we have h(Vp, Vp) 6= 0. Consider the differen-

tial (1, 0)-form πh,V on (X\Z)reg defined as follows πh,V (A) = h(A,V )
h(V,V )

,

where A ∈ Γ(T ′C(X\Z)reg). For any point p ∈ X\Z there exist
a neighbourhood U ⊂ M, p ∈ U and a (1, 0)-form πU on U such
that πh,V |U∩(X\Z)reg = πU |U∩(X\Z)reg , so we can integrate the form

πh,V (∂πh,V )n−1 over an arbitrary cycle in X\Z. The inner product
of a form θ by a vector field W is denoted by iW θ. It is easy to see
that iV ∂πh,V = 0, hence iV (∂πh,V )n = 0 and (∂πh,V )n = 0. We see that

an integral of the form πh,V (∂πh,V )n−1 over a cycle doesn’t depend on
its homology class. Let Zε ⊂ X be an ε-neighbourhood of Z. Now we
shall give the following definition.

Res1(Z) =

(
i

2π

)n ∫
∂Zε

πh,V (∂πh,V )n−1.

Theorem 2.3 immediately follows from this definition. This residue
doesn’t depend on a choice of the form h and on an embedding of X
into M .
Proof of Theorem 2.4. Consider the form h =

∑
i∈A

dzidzi in space CN

and the form πh,V . By definition

Res1(0) =

(
i

2π

)n ∫
S2N−1
ε ∩X

πh,V (∂πh,V )n−1.

Consider the vector field VA =
∑

i∈A λiz
i ∂
∂zi

and the form hA =
∑

i∈A dz
idzi

on the space ΠA. It is clear that p∗AπhA,VA = πh,V , hence(
i

2π

)n ∫
S2N−1
ε ∩X

πh,V (∂πh,V )n−1 =

(
i

2π

)n ∫
pA∗(S

2N−1
ε ∩X)

πhA,VA(∂πhA,VA)n−1 =

= dA

( i

2π

)n ∫
S2n−1
ε

πhA,VA(∂πhA,VA)n−1

 .
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The expression in the brackets was computed in [3] and is equal to
1∏

i∈A
λi

. This completes the proof of the theorem. �
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