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Abstract. In this paper we give a formula for the classes (in the
Grothendieck ring of complex quasi-projective varieties) of irre-
ducible components of (1, k)-quasi-homogeneous Hilbert schemes
of points on the plane. We find a new simple geometric inter-
pretation of the q, t-Catalan numbers. Finally, we investigate a
connection between (1, k)-quasi-homogeneous Hilbert schemes and
homogeneous nested Hilbert schemes.

1. Introduction

The Hilbert scheme (C2)[n] of n points in the plane C2 parametrizes
the ideals I ⊂ C[x, y] of colength n: dimCC[x, y]/I = n. There is
an open dense subset of (C2)[n] that parametrizes the ideals associated
with configurations of n distinct points. The Hilbert scheme of n points
in the plane is a nonsingular, irreducible, quasiprojective algebraic va-
riety of dimension 2n with a rich and much studied geometry, see [9, 18]
for an introduction.

The cohomology groups of (C2)[n] were computed in [6] and we refer
the reader to the papers [5, 14, 15, 16, 19] for the description of the ring
structure in the cohomology H∗((C2)[n]). Let n = (n1, . . . , nk). The
nested Hilbert scheme (C2)[n] parametrizes k-tuples (I1, I2, . . . , Ik) of
ideals Ij ⊂ C[x, y] such that Ij ⊂ Ih for j < h and dimCC[x, y]/Ij = nj .
In [4] J. Cheah studied smoothness and the homology groups of the
nested Hilbert schemes (C2)[n].

There is a (C∗)2-action on (C2)[n] that plays a central role in this
subject. The algebraic torus T = (C∗)2 acts on C2 by scaling the
coordinates, (t1, t2)(x, y) = (t1x, t2y). This action lifts to the T -action
on the Hilbert scheme (C2)[n].

Let Ta,b = {(ta, tb) ∈ T |t ∈ C∗}, where a, b ≥ 1 and gcd(a, b) = 1, be

a one dimensional subtorus of T . Let (C2)
[n]
a,b be the set of fixed points

of the Ta,b-action on the Hilbert scheme (C2)[n]. The variety (C2)
[n]
a,b

is smooth and parameterizes quasi-homogeneous ideals of colength n
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2 A. BURYAK

in the ring C[x, y]. Irreducible components of (C2)
[n]
1,1 were described

in [11] and a description of the irreducible components of (C2)
[n]
a,b for

arbitrary a and b was obtained in [7].
We denote by K0(νC) the Grothendieck ring of complex quasiprojec-

tive varieties. The classes of the irreducible components of the Hilbert

scheme (C2)
[n]
1,1 in K0(νC) were computed in [12].

Let (C2)
[n]
a,b be the set of fixed points of the Ta,b-action on the nested

Hilbert scheme (C2)[n]. The dimensions of the irreducible components

of (C2)
[(n,n+1)]
1,1 were computed in [4].

In this paper we generalize the result of [12] and give a formula for the

classes in K0(νC) of the irreducible components of the variety (C2)
[n]
1,k

for an arbitrary positive k. As an application, we find an interesting
combinatorial identity. We formulate a conjectural formula for the

generating series of the classes
[

(C2)
[n]
a,b

]

. The combinatorics related to

the action of the torus T1,k is very similar to the combinatorics of the
k-parameter q, t-Catalan numbers and we find a new simple geometric
interpretation of these numbers.

We also investigate a connection between (1, k)-quasi-homogeneous
Hilbert schemes and homogeneous nested Hilbert schemes. We con-

struct a natural map π : (C2)
[n]
1,k → (C2)

[n]
1,1. We find a sufficient condi-

tion for the restriction of this map to an irreducible component to
be an isomorphism. In particular, this condition is satisfied when
n = (n + 1, n). Hence, we generalize the result from [4], where the
dimensions of the irreducible components in this case were computed.

1.1. Grothendieck ring of quasi-projective varieties. Here we
recall a definition of the Grothendieck ring K0(νC) of complex quasi-
projective varieties. It is the abelian group generated by the classes
[X ] of all complex quasi-projective varieties X modulo the relations:

(1) if varieties X and Y are isomorphic, then [X ] = [Y ];
(2) if Y is a Zariski closed subvariety of X , then [X ] = [Y ]+[X\Y ].

The multiplication in K0(νC) is defined by the Cartesian product of
varieties: [X1] · [X2] = [X1 × X2]. The class [A1

C] ∈ K0(νC) of the
complex affine line is denoted by L.

1.2. Description of the irreducible components of (C2)
[n]
a,b. Let us

recall a description of the irreducible components of the variety (C2)
[n]
a,b.

Let C[x, y]da,b ⊂ C[x, y] be the subspace of quasihomogeneous polynomi-
als of degree d with respect to the action of Ta,b. Let H = (d0, d1, . . .)
be a sequence of non-negative integers such that

∑

i≥0 di = n. Let

(C2)
[n]
a,b(H) ⊂ (C2)

[n]
a,b be the set of points corresponding to quasihomo-

geneous ideals I ⊂ C[x, y] such that dim(C[x, y]ia,b/(I∩C[x, y]
i
a,b)) = di.
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Proposition 1.1 ([7]). If (C2)
[n]
a,b(H) 6= ∅, then (C2)

[n]
a,b(H) is an irre-

ducible component of (C2)
[n]
a,b.

1.3. Classes of the irreducible components of (C2)
[n]
1,k. In this sec-

tion we fix k ≥ 1. For numbersM,N ≥ 0 letG(M,N)q =
∏M+N
i=1 (1−qi)

∏M
i=1(1−q

i)
∏N
i=1(1−q

i)
.

Let η(H) be the largest i, such that di =
[

i
k

]

+1. We adopt the follow-
ing conventions, η(H) = −1, if H = (0, 0, . . .); d−1 = 0. We introduce
an auxiliary function τ defined by the following rule, τ(i) = 1, if k | i+1
and τ(i) = 0, if k ∤ i+ 1. We will prove the following statement.

Theorem 1.2. Let H = (d0, d1, . . .), n =
∑

i≥0

di. If (C2)
[n]
1,k(H) 6= ∅,

then
[

(C2)
[n]
1,k(H)

]

=
∏

i≥η

G(di − di+1 + τ(i), di+1 − di+1+k)L.

Remark 1.3. We see that the classes of the irreducible components of

(C2)
[n]
1,k are polynomials in L. Moreover, all roots of these polynomials

are the roots of unity. In the case of an arbitrary pair (a, b), this is not
true. For example, it is easy to compute that

[

(C2)
[12]
2,3 (1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1)

]

= 1 + 3L+ L2.

1.4. Conjecture. The following conjectural formula for the generating

series of the classes
[

(C2)
[n]
a,b

]

is based on computer calculations.

Conjecture 1.4.

∑

n≥0

[

(C2)
[n]
a,b

]

tn =
∏

i≥1
(a+b)∤i

1

1− ti

∏

i≥1

1

1− Lt(a+b)i
.

Similar conjectural formulas for the generating series of the classes
of some equivariant Hilbert schemes can be found in [8].

1.5. Definition of the (q, t)-Catalan numbers. A k-Dyck path is a
lattice path from (0, 0) to (kn, n) consisting of (0, 1) and (1, 0) steps,
never going below the line x = ky (see Figure 2). Let L+

kn,n denote the
set of these paths. For a k-path π let D′

π be the set of squares which
are above π and contained in the rectangle with vertices (0, 0), (kn, 0),
(kn, n) and (0, n). The set D′

π reflected with respect to the horizontal
line is a Young diagram. We denote it by Dπ.

For a Young diagram D and a box s ∈ D let a(s) denote the number
of boxes in D in the same column and strictly above s and let l(s)
denote the number of boxes in D in the same row and strictly right of
s (see Figure 1).
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♠ ♠
♥
♥
♥

s

l(s) = number of ♠
a(s) = number of ♥

Figure 1

For a k-path π let area(π) be the number of full squares below π
and above the line ky = x, and let

bk(π) = |{s ∈ Dπ|ka(s) ≤ l(s) ≤ k(a(s) + 1)}|.

An example is on Figure 2.

Dπ

⋆ ⋆

⋆

⋆

⋆

⋆

⋆

⋆ ⋆ ⋆

⋆ ⋆

⋆ ⋆ ⋆

⋄
⋄

⋄

⋄ ⋄ ⋄
⋄ ⋄ ⋄

⋄

Figure 2. A 2-path π with area(π) = 15 and bk(π) =
10 (contributors to bk(π) are marked by ⋄, and those to
area(π) by ⋆).

The combinatorial k-parameter (q, t)-Catalan number is defined by
the formula

C(k)
n (q, t) =

∑

π∈L+
kn,n

qbk(π)tarea(π).

We refer the reader to the book [10] for another equivalent beautiful
definitions of the q, t-Catalan numbers.

1.6. (q, t)-Catalan numbers and the Hilbert schemes. Let Vk,n be
the vector subspace of C[x, y] generated by the monomials xiyj with
i + kj ≤ kn − k − 1. Let (C2)[N ](k,n) be the subset of (C2)[N ] that
parametrizes ideals I ⊂ C[x, y] such that I + Vk,n = C[x, y]. It is easy
to see that (C2)[N ](k,n) is an open subset of the variety (C2)[N ].

Theorem 1.5.
∑

N≥0

[

(C2)[N ](k,n)
]

tN = (Lt)
kn(n−1)

2 C(k)
n (L,L−1t−1).
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1.7. Combinatorial identity. We say that a sequence H = (d0, d1, . . .)
is good if for any i ≥ η(H) we have di − di+1 + τ(i) ≥ 0 and di+1 ≤
di+1−k.

Theorem 1.6.

∑

{good H}

∏

i≥η

G(di − di+1 + τ(i), di+1 − di+1+k)qq
χ(H)t

∑
di =

∏

i≥1

1

1− qti
,

where

χ(H) =
∑

i≥η

(di − di+1 + τ(i))×

×

(

k

2
(di − di+1 + τ(i)− 1) +

k−1
∑

j=1

(k − j)(di+j − di+j+1 + τ(i+ j))

)

.

In the case k = 1 this identity was proved in [13].

1.8. Homogeneous nested Hilbert schemes. Let n = (n1, n2, . . . , nk),
where n1, . . . , nk are non-negative integers such that n1 ≥ n2 ≥ . . . ≥
nk. LetH = (H1, H2, . . . , Hk), whereHi = (di,0, di,1, . . .) and

∑

j≥0 di,j =

ni. Let (C2)
[n]
a,b(H) = {(Z1, . . . , Zk) ∈ (C2)[n]|Zi ∈ (C2)

[ni]
a,b (Hi)}. Let

E(H) = {i ∈ Z≥0|d1,i = d2,i = . . . = dk,i}, n =
∑k

i=1 ni and H =
(d0, d1, . . .), where di+kj = di+1,j, 0 ≤ i < k, j ≥ 0. We will prove the
following statement.

Theorem 1.7. Suppose that for any two numbers i, j ∈ Z≥0\E(H), i <

j, we have j − i ≥ 2. Then the variety (C2)
[n]
1,1(H) is isomorphic to

(C2)
[n]
1,k(H).

1.9. Organization of the paper. In section 2 we construct a cellu-
lar decomposition of the quasihomogeneous Hilbert scheme and reduce
Theorem 1.2 to a combinatorial identity. In section 3 we construct a
bijection that is a generalization of the hook code from [12]. The main
result of this section is Proposition 3.7. Finally, in section 4 we apply
it to conclude the proof of Theorem 1.2. The proof of Theorem 1.5 is
in section 5. We prove Theorem 1.6 in section 6. Section 7 contains
the proof of Theorem 1.7.

1.10. Acknowledgments. The author is grateful to S. M. Gusein-
Zade for suggesting the area of research. The author is grateful to B.
L. Feigin and A. N. Kirillov who noticed that the main result from [12]
can be generalized to the (1, k)-case and suggested the author to work
on this problem. The author is grateful to S. Shadrin, M. Kazarian, S.
Lando and A. Oblomkov for useful discussions.
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2. Cellular decomposition of (C2)
[n]
1,k

In this section we reduce Theorem 1.2 to the combinatorial iden-
tity (4) using a cellular decomposition of (C2)

[n]
1,k.

Consider the T -action on (C2)[n]. Fixed points of this action corre-
spond to monomial ideals in C[x, y]. Let I ⊂ C[x, y] be a monomial
ideal of colength n. Let DI = {(i, j) ∈ Z2

≥0|x
iyj /∈ I} be the corre-

sponding Young diagram. We will use the following notations. For a
Young diagram D let

rl(D) = |{(i, j) ∈ D|j = l}|,

cl(D) = |{(i, j) ∈ D|i = l}|,

diaga,bl (D) = |{(i, j) ∈ D|ai+ bj = l}|,

diaga,b(D) = (diaga,b0 (D), diaga,b1 (D), diaga,b2 (D), . . .).

Let p ∈ (C2)[n] be the fixed point corresponding to a Young diagram
D. Let R(T ) = Z[t1, t2] be the representation ring of T . Then the
weight decomposition of Tp(C

2)[n] is given by (see [6])

Tp(C
2)[n] =

∑

s∈D

(

t
l(s)+1
1 t

−a(s)
2 + t

−l(s)
1 t

a(s)+1
2

)

.(1)

Obviously, the variety (C2)
[n]
1,k is invariant under the T -action and con-

tains all fixed points of the T -action on (C2)[n]. Hence, the weight

decomposition of Tp(C
2)

[n]
1,k is given by

Tp(C
2)

[n]
1,k =

∑

s∈D
l(s)+1=ka(s)

t
l(s)+1
1 t

−a(s)
2 +

∑

s∈D
l(s)=k(a(s)+1)

t
−l(s)
1 t

a(s)+1
2 .

Consider the T1,α-action on (C2)
[n]
1,k, where α is a positive integer. If

α is big enough then the set of fixed points of the T1,α-action coincides

with the set of fixed points of the T -action. For a fixed point p ∈ (C2)
[n]
1,k

let Cp = {z ∈ (C2)
[n]
1,k| limt→0,t∈T1,α tz = p}. The variety (C2)

[n]
1,k has a

cellular decomposition with the cells Cp (see [2, 3]). Therefore, the cells
Cp are isomorphic to affine spaces. It is easy to compute that if a point
p corresponds to a Young diagram D, then dim(Cp) = |{s ∈ D|l(s) =

k(a(s) + 1)}|. Moreover, p ∈ (C2)
[n]
1,k(H) ⇔ diag1,k(D) = H , where

H = (d0, d1, . . .) is an arbitrary sequence of non-negative integers.
Let D be the set of Young diagrams. We see that

[

(C2)
[n]
1,k(H)

]

=
∑

D∈D
diag1,k(D)=H

L|{s∈D|l(s)=k(a(s)+1)}|.(2)
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Therefore, Theorem 1.2 follows from the combinatorial identity:

∑

D∈D
diag1,k(D)=H

q|{s∈D|l(s)=k(a(s)+1)}| =
∏

i≥η

G(di − di+1 + τ(i), di+1 − di+1+k)q.

(3)

It is not hard to check that this identity is equivalent to the following
identity

(4)
∑

D∈D
diag1,k(D)=H

q|{s∈D|l(s)=k(a(s)+1)}| =

=
1− q

1− qdη−k+1+1−dη+1

∏

i≥η+1

G(di − di+1 + τ(i), di−k − di)q.

Here we adopt the following conventions, di = 0, if −k ≤ i ≤ −1 and
d−k−1 = −1.

Remark 2.1. Combinatorial constructions from the paper [17] can be
used to prove (3). However, our constructions are different from them.

3. Bijection

In this section we show how to encode an element of the set {D ∈
D|diag1,k(D) = H} as a sequence of partitions. The main result of this
section is Proposition 3.7. In section 3.1 we define a map F from the
set {D ∈ D|diag1,k(D) = H} to the set of sequences (P0, P1, . . .), where
Pi are Young diagrams. In section 3.2 we prove the main properties of
the map F . In section 3.3 we prove an injectivity of the map F and in
section 3.4 we describe the image of F .

In this section we fix an arbitrary sequence H = (d0, d1, . . .) of non-
negative integers.

3.1. The definition of the map F . For a Young diagram D let

Bm(D) = {j ∈ Z≥0|rj(D) 6= 0, kj + rj(D)− 1 = m},

hm(D) = |{s = (i, j) ∈ D|j = m, l(s) = k(a(s) + 1)}|.

Let Bm(D) = {j1, j2, . . .}, where j1 ≤ j2 ≤ . . .. Then hj1(D) ≥
hj2(D) ≥ . . ., and we denote the partition (hj1(D), hj2(D), . . .) by
λ(D,m).

For a partition λ = λ0, . . . , λr, λ0 ≥ . . . ≥ λr let Dλ = {(i, j) ∈
Z2
≥0|i ≤ r, j ≤ λi − 1} be the corresponding Young diagram. Let θ(H)

be the largest i ≤ η(H) such that i ≡ k − 1 mod k.
Let D be a Young diagram such that diag1,k(D) = H . We denote

by F (D) a sequence of Young diagrams (F (D)0, F (D)1, . . .) such that
F (D)i = Dλ(D,i+θ).

We give an example in Figure 3. We write the number i + kj into
the box (i, j) ∈ D for the reader’s convenience.
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5
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6

6
6

7
7

7
7

8
8

8
8

8

9
9

9
9

9

10
10

10
10

10

11
11

11

12

12

D

F

k = 2
H = (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 3, 2, 0, 0, . . .)
θ(H) = 9

B9(D) = ∅
B10(D) = {2, 3}
B11(D) = {1}
B12(D) = {0, 4}

•

F (D)0 F (D)1 F (D)2 F (D)3

Figure 3

3.2. The main properties of F . We use the following notations:

wi(H) = di−k+θ − di+θ + 1,

fi(H) =

{

di+θ − di+1+θ, if k ∤ i,

di+θ − di+1+θ + 1, if k | i.

We denote by R(M,N) the rectangle in the integral lattice defined
by R(M,N) = {(i, j) ∈ Z2

≥0|i ≤ M − 1, j ≤ N − 1}. We denote by
D(M,N) the set {D ∈ D|D ⊂ R(M,N)}.

Lemma 3.1. The Young diagram F (D)i lies in the rectangle R(fi, wi).

Proof. Consider a point (i, j) ∈ D. Let i+ kj = l. Suppose k ∤ l, then
(i− 1, j) ∈ D and j /∈ Bl−1(D). Hence, |Bl−1(D)| = dl−1− dl. Suppose
k | l. If i 6= 0, then (i−1, j) ∈ D and j /∈ Bl−1(D). Hence, |Bl−1(D)| ≤
dl−1 − dl + 1. Thus, we have proved that r0(F (D)l−1−θ) ≤ fl−1−θ.

Consider a number a ∈ Bl(D). Let d′m = |{(i, j) ∈ D|j ≥ a, i+ kj =
m}|. Clearly, ha = d′l−k − d′l + 1 ≤ dl−k − dl + 1. This proves that
c0(F (D)l−θ) ≤ wl−θ. �

The following statement describes an important property of the num-
bers wi(H) and fi(H).

Lemma 3.2. The set {D ∈ D|diag1,k(D) = H} is not empty if and
only if for any i > η − θ the following condition holds: fi ≥ 0, wi ≥ 1.

Proof. It is easy to check that the set {D ∈ D|diag1,k(D) = H} is not
empty if and only if for any i > η the following three conditions hold:
1) di ≤ di−k; 2) if k ∤ i, then di ≤ di−1; 3) if k | i, then di ≤ di−1 + 1.
These conditions are equivalent to the condition of the lemma. �

Consider a sequence of Young diagrams P = (P0, P1, . . .) such that
Pi ∈ D(fi, wi) (a short notation for that will be P ∈

∏

i≥0D(fi, wi)).
Let ν(P ) be the largest i such that c0(Pi) = wi. The number ν(P ) is
well-defined since w0 = 0, but it can be equal to ∞. It is easy to see
that if P = F (D), then ν(P ) <∞.
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Lemma 3.3. Let D be a Young diagram such that diag1,k(D) = H.
Then r0(D) = θ(H) + ν(F (D)) + 1.

Proof. Consider a number a ∈ Bl(D). Suppose that ha(D) = dl−k −
dl + 1. Then for any 0 ≤ j ≤ a we have (ra(D) − 1 + kj, a − j) ∈ D.
In particular, (0, l) ∈ D. Hence r0(D) ≥ l + 1. On the other hand,
h0(D) = dr0(D)−1−k − dr0(D)−1 + 1. This completes the proof of the
lemma. �

For a Young diagram D let D(a, b) = {(i, j) ∈ Z2
≥0|(i + a, j + b) ∈

D}. Consider an arbitrary Young diagram D such that diag1,k(D) =
H . Let D′ = D(0, 1), H ′ = diag1,k(D′), F (D) = (P0, P1, . . .), F (D

′) =
(P ′

0, P
′
1, . . .), f

′
i = fi(H

′), w′
i = wi(H

′), θ′ = θ(H ′), ν = ν(P ), ν ′ =
ν(P ′).

Lemma 3.4.

d′i =

{

di+k − 1, if i+ k ≤ ν + θ,

di+k, if i+ k > ν + θ.

1) If ν ≥ k or wk ≥ 2, then

θ′ = θ − k; P ′
i =

{

Pi, if i 6= ν,

Pi(1, 0), if i = ν;

f ′
i =

{

fi, if i 6= ν,

fi − 1, if i = ν;
w′
i =

{

wi, if i /∈ [ν + 1, ν + k],

wi − 1, if i ∈ [ν + 1, ν + k];

2) If ν ≤ k − 1 and wk = 1, then

θ′ = θ; P ′
i = Pi + k;

f ′
i = fi+k; w′

i =

{

wi, if i > ν,

wi − 1, if i ≤ ν.

Proof. The proof is clear from Lemma 3.3 and the definition of the map
F . �

3.3. Injectivity of F .

Lemma 3.5. The map F : {D ∈ D|diag1,k(D) = H} →
∏

i≥0D(fi, wi)
is injective.

Proof. The proof is by induction on |D|. For |D| = 0, there is nothing
to prove. Assume that |D| > 0. Using Lemma 3.4, we can reconstruct
F (D′). By the inductive assumption, we can reconstruct D′. From
Lemma 3.3 it follows that F (D) determines r0(D). The diagram D′

and the number r0(D) determines D. This completes the proof of the
lemma. �
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3.4. The image of F . Consider a sequence P ∈
∏

i≥0D(fi, wi). For
a number i ≥ 0 let ΦP (i) be the minimal j > i such that r0(Pj) < fj .
If for any j > i we have r0(Pj) = fj , then we put ΦP (i) = ∞.

Lemma 3.6. Let D be a Young diagram such that diag1,k(D) = H,
then for any i ≥ 0 we have ΦF (D)(i)− i ≤ k.

Proof. The proof is by induction on |D|. For |D| = 0, there is nothing
to prove. Assume that |D| > 0. We use the notations of Lemma 3.4.
Suppose that ν > η − θ or ν = η − θ, fη−θ ≥ 2. From Lemma 3.4
it follows that for any i ≥ 0 we have r0(Pi) < fi ⇔ r0(P

′
i ) < f ′

i .
Thus, Lemma 3.6 follows from the inductive assumption. Assume that
ν = η− θ and fη−θ = 1. From Lemma 3.4 it follows that we must only
prove that ΦP (η − θ) − (η − θ) ≤ k. Assume the converse. Clearly,
wη−θ+1 = 1. From the definition of the number ν and the assumption
ΦP (η − θ) − (η − θ) > k it follows that fη−θ+1 = 0. Continuing in
the same way, we see that wη−θ+1 = wη−θ+2 = . . . = wη−θ+k = 1 and
fη−θ+1 = fη−θ+2 = . . . = fη−θ+k = 0. Clearly, wη−θ+k+1 = 0, but this
contradicts Lemma 3.2. �

Proposition 3.7. Suppose {D ∈ D|diag1,k(D) = H} 6= ∅, then the
map

F : {D ∈ D|diag1,k(D) = H} →

{

P ∈
∏

i≥0

D(fi, wi)

∣

∣

∣

∣

∣

∀i≥0:
ΦP (i)−i≤k

}

.

is a bijection such that |{s ∈ D|l(s) = k(a(s) + 1)}| =
∑

i≥0 |F (D)i|.

Proof. The second statement of the proposition is clear from the defini-
tion of the map F . Let us prove that F is a bijection. We have already
proved the injectivity. Let us prove the surjectivity of the map F . The
proof is by induction on n =

∑

i≥0 di. For n = 0, there is nothing to
prove. Assume that n ≥ 1. Consider a sequence P ∈

∏

i≥0D(fi, wi)
such that for any i ≥ 0 we have ΦP (i) − i ≤ k. Define H ′ and P ′ by
formulas from Lemma 3.4.

We want to apply the inductive assumption to the sequence H ′, so
we need to check that the set {D ∈ D|diag1,k(D) = H ′} is not empty.
If ν = η − θ, then it easily follows from Lemma 3.2. Assume that
ν > η − θ. By Lemmas 3.4 and 3.2, we must only prove that for
any ν < i ≤ ν + k we have wi ≥ 2. Assume the converse. Hence,
there exists a number ν < i ≤ ν + k such that wi = 1. Therefore,
∑k

j=1 fi−j = 1. Hence, ΦP (i−k−1) = i. This contradicts the condition

ΦP (i − k − 1) − (i − k − 1) ≤ k. Thus, we have prove that {D ∈
D|diag1,k = H ′} 6= ∅.

By the inductive assumption, there exists a Young diagram D′ such
that diag1,k(D′) = H ′ and F (D′) = P ′. Let us prove that r0(D

′) ≤
ν + θ + 1. By Lemma 3.3, it is equivalent to ν ′ + θ′ ≤ ν + θ and it
follows from Lemma 3.4.
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Let D be the diagram obtained from D′ by adding the row of length
ν + θ + 1. Clearly, F (D) = P . �

4. Proof of Theorem 1.2

In this section we prove (4) using Proposition 3.7.
We fix a sequence H = (d0, d1, . . .) such that the set {D ∈ D|diag1,k(D) =

H} is not empty. We will use the following well known fact (see e.g. [1])
∑

D∈D(M,N)

q|D| = G(M,N).

Let S(H) = {P ∈
∏

i≥0D(fi, wi)|∀i ≥ 0 : ΦP (i) − i ≤ k}. Using
Proposition 3.7 and our notations we see that (4) is equivalent to the
following formula

∑

P∈S(H)

q|P | =
1− q

1− qwη−θ+1

∏

i≥η−θ+1

G(fi, wi − 1),(5)

where |P | =
∑

i≥0 |Pi|. Let σ(H) be the minimal i ≥ 0 such that for
any j > θ+ i we have dj = 0. Let ψ(H) be the maximal i ≤ σ(H) such
that k | i. For a sequence P ∈ S(H) let φP (i) be the maximal j < i
such that r0(Pj) < fj . We claim that

∑

P∈S(H)
φP (ψ+k)=p

q|P | = q
∑ψ+k−1
i=p+1 fi

1− qfp

1− qwψ+k





∑

P∈S(H)

q|P |



 ,(6)

where ψ ≤ p < ψ + k.
Let us prove (5) and (6) by induction on σ. Suppose σ < k, then

∑

P∈S(H)

q|P | =
k−1
∏

i=η−θ+1

G(fi, wi) =
1− q

1− qwη−θ+1

∏

i≥η−θ+1

G(fi, wi − 1).

Hence, (5) is proved. It is clear that

∑

P∈S(H)
φP (k)=p

q|P | =

p
∏

i=η−θ+1

G(fi − δpi , wi)

k−1
∏

i=p+1

qfiG(fi, wi − 1) =

= q
∑k−1
i=p+1 fi

1− qfp

1− qwk

(

1− q

1− qwη−θ+1

∏

i≥η−θ+1

G(fi, wi − 1)

)

.

Therefore, (6) is proved.
Suppose σ ≥ k. For p > η(H) let

H(p) = (d0(p), d1(p), d2(p), . . .),where

di(p) =

{

dkdp+1+i − dp+1, if kdp+1 + i ≤ p,

0, if kdp+1 + i > p.
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If dp ≥ dp+1, then {D ∈ D|diag1,k(D) = H(p)} 6= ∅. We adopt the
following convention, S(H(p)) = ∅, if dp < dp+1. Note that if dp < dp+1,
then k | p+ 1. Let H ′ = H(θ + σ − 1) and H ′′ = H(θ + ψ − 1).

Suppose ψ = σ, then obviously

∑

P∈S(H)

q|P | =





∑

P ′∈S(H′)

q|P
′|



G(fψ − 1, wψ).

By the inductive assumption, the right-hand side is equal to
1−q

1−q
wη−θ+1

∏

i>η−θ G(fi, wi − 1). Suppose ψ < σ, then

∑

P∈S(H)

q|P | =





∑

P ′∈S(H′)

q|P
′|



G(fσ, wσ)+

+

ψ−1
∑

p=σ−k









∑

P ′′∈S(H′′)
φP ′′(ψ)=p

q|P
′′|









(

σ−1
∏

i=ψ

qfiG(fi, wi − 1)

)

G(fσ − 1, wσ).

By the inductive assumption, the right-hand side is equal to

1− q

1− qwη−θ+1

[

σ−1
∏

i=η−θ+1

G(fi, wi − 1)

]

×

×

(

1− q
∑σ−1
i=ψ fi

1− q
G(fσ, wσ) +

1− q
∑ψ−1
i=σ−k fi

1− q
q
∑σ−1
i=ψ fiG(fσ − 1, wσ)

)

.

It is easy to check that it is equal to 1−q
1−q

wη−θ+1

∏

i>η−θ G(fi, wi − 1).

Hence, (5) is proved.
Let us prove (6). Suppose p > σ, then (6) is trivial because both

sides are equal to zero. Suppose p < σ, then we have

∑

P∈S(H)
φP (ψ+k)=p

q|P | =









∑

P ′∈S(H′)
φP ′ (ψ+k)=p

q|P
′|









qfσG(fσ, wσ − 1).

By the inductive assumption, the right-hand side is equal to

q
∑ψ+k−1
i=p+1 fi 1−qfp

1−q
wψ+k

(

∑

P∈S(H) q
|P |
)

.
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Suppose p = σ, then we have

∑

P∈S(H)
φ(ψ+k)=σ

q|P | =





∑

P ′∈S(H′)

q|P
′|



G(fσ − 1, wσ)+

+

ψ−1
∑

u=σ−k









∑

P ′′∈S(H′′)
φP ′′ (ψ)=u

q|P
′′|









(

σ−1
∏

i=ψ

qfiG(fi, wi − 1)

)

G(fσ − 1, wσ).

By the inductive assumption, the right-hand side is equal to

1− q

1− qwη−θ+1

[

σ−1
∏

i=η−θ+1

G(fi, wi − 1)

]

G(fσ − 1, wσ)×

×

(

1− q
∑σ−1
i=ψ fi

1− q
+

1− q
∑ψ−1
i=σ−k fi

1− q
q
∑σ−1
i=ψ fi

)

.

It is easy to check that it is equal to 1−qfσ

1−q
wψ+k

(

∑

P∈S(H) q
|P |
)

. Thus, (6)

is proved. This completes the proof of the theorem.

5. Proof of Theorem 1.5

We need another description of the varieties (C2)[N ](k,n). We define

the discontinuous map ρ : (C2)[N ] → (C2)
[N ]
1,k by the following formula

ρ(p) = limt→0 tp, where p ∈ (C2)[N ] and t ∈ T1,k. It is easy to see that

(C2)[N ](k,n) = ρ−1









∐

H=(d0,d1,...)∑
di=N,d≥kn−k=0

(C2)
[N ]
1,k (H)









.

Clearly, the map ρ−1
(

(C2)
[N ]
1,k (H)

)

ρ
−→ (C2)

[N ]
1,k (H) is a locally trivial

bundle with an affine space as the fiber. We denote by d+1,k(H) the
dimension of the fiber. Therefore, we have

[

(C2)[N ](k,n)
]

=
∑

H=(d0,d1,...)∑
di=N,d≥kn−k=0

[

(C2)
[N ]
1,k (H)

]

Ld
+
1,k(H).

Consider the point p ⊂ (C2)
[N ]
1,k (H) corresponding to a monomial ideal

I. From (1) it follows that

d+1,k(H) = |{s ∈ DI |l(s)+1 > ka(s)}|+|{s ∈ DI |k(a(s)+1) > l(s)}| =

= |DI |+ |{s ∈ DI |ka(s) ≤ l(s) < k(a(s) + 1)}|.
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Obviously, the map π 7→ Dπ is a bijection between the sets L+
kn,n and

{D ∈ D|diag1,k≥kn−k(D) = 0}. Hence, from (2) it follows that

∑

N≥0

[

(C2)[N ](k,n)
]

tN =
∑

D∈D
diag

1,k
≥kn−k

(D)=0

L|D|+|{s∈D|ka(s)≤l(s)≤k(a(s)+1)}|t|D| =

= (Lt)
kn(n−1)

2

∑

π∈L+
kn,n

Lbk(π)(Lt)−area(π) = (Lt)
kn(n−1)

2 C(k)
n (L,L−1t−1).

This completes the proof of the theorem.

6. Proof of Theorem 1.6

We use the map ρ : (C2)[N ] → (C2)
[N ]
1,k and the numbers d+1,k(H) from

the proof of Theorem 1.5. We have
[

(C2)[N ]
]

=
∑

H=(d0,d1,...)∑
di=N

[

(C2)
[N ]
1,k (H)

]

Ld
+
1,k(H).

It is well known (see e.g.[18]) that
∑

N≥0

[

(C2)[N ]
]

tN =
∏

i≥1

1

1− Li+1ti
.

We know that a sequence H is good if and only if (C2)
[N ]
1,k (H) 6= ∅.

The class
[

(C2)
[N ]
1,k (H)

]

is computed in Theorem 1.2, so we only need

to prove that if (C2)
[N ]
1,k (H) 6= ∅, then

d+1,k(H) =
∑

i≥0

di +
∑

i≥η

ei

(

k

2
(ei − 1) +

k−1
∑

j=1

(k − j)ei+j

)

,(7)

where ei = di− di+1+ τ(i). We prove (7) by induction on N . It is true

for N = 0. Suppose N ≥ 1. Consider a point p ⊂
(

(C2)
[N ]
1,k (H)

)T

. Let

D be the corresponding Young diagram. We have

d+1,k(H) = |D|+ |{s ∈ D|ka(s) ≤ l(s) < k(a(s) + 1)}|.

There exists a unique point p ∈
(

(C2)
[N ]
1,k (H)

)T

such that the cor-

responding Young diagram D satisfies the condition |{s ∈ D|l(s) =
k(a(s)+1)}| = 0. It is equivalent to the fact that for any i ≥ 1 we have
|{j ∈ Z≥0|cj(D) = i}| ≤ k. Let D′ = D(0, 1) and H ′ = diag1,k(D′). It
is easy to see that

|{s = (i, j) ∈ D|j = 0, ka(s) ≤ l(s) < k(a(s) + 1)}| =

k−1
∑

i=0

(dη−i − dη−i+k) =
k−1
∑

i=0

(k − i)eη+i − k.
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Therefore, we have

|{s ∈ D|ka(s) ≤ l(s) < k(a(s) + 1)}| =

|{s ∈ D′|ka(s) ≤ l(s) < k(a(s) + 1)}|+
k−1
∑

i=0

(k − i)eη+i − k.

By the inductive assumption, the right-hand side is equal to

∑

i≥η

(ei − δi,η)

(

k

2
(ei − δi,η − 1) +

k−1
∑

j=1

(k − j)ei+j

)

+

k−1
∑

i=0

(k − i)eη+i − k =

∑

i≥η

ei

(

k

2
(ei − 1) +

k−1
∑

j=1

(k − j)ei+j

)

.

This completes the proof of the theorem.

7. Homogeneous nested Hilbert schemes

In this section we prove Theorem 1.7. In section 7.1 we recall the

quiver descriptions of the varieties (C2)
[n]
1,k(H) and (C2)

[n]
1,1(H). In sec-

tion 7.2 we apply this description to conclude the proof of the theorem.

7.1. A quiver description. The variety (C2)[n] has the following de-
scription (see e.g.[18]).

(C2)[n] ∼=

{

(B1, B2, i)

∣

∣

∣

∣

∣

1)[B1,B2]=0
2)(stability) There is no subspace

S ( Cn such that Bα(S) ⊂ S (α = 1, 2)
and im(i) ⊂ S

}/

GLn(C),

where Bα ∈ End(Cn) and i ∈ Hom(C,Cn) with the action given by
g · (B1, B2, i) = (gB1g

−1, gB2g
−1, gi), for g ∈ GLn(C).

Let H = (d0, d1, . . .). Let Vi = Cdi . It is easy to see that the variety

(C2)
[n]
1,k(H) has the following description (see Figure 4).

(C2)
[n]
1,k(H) ∼=

∼=

{

((B1,j, B2,j)j≥0, i)

∣

∣

∣

∣

∣

1)B1,j+kB2,j−B2,j+1B1,j=0

2)There is no graded subspace
S (

⊕
j≥0 Vj such that Bα(S) ⊂ S

(α = 1, 2) and im(i) ⊂ S

}/

∏

j≥0

GLdj (C),

where B1,j ∈ Hom(Vj, Vj+1), B2,j ∈ Hom(Vj, Vj+k) and i ∈ Hom(C, V0).
Let H = (H1, . . . , Hk), where Hi = (di,0, di,1, . . .). Let Vi,j = Cdi,j . It

is easy to see that the variety (C2)
[n]
1,1(H) has the following description
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C
i

V0
B2

B1

Vk
B2

B1

V2k
B2

B1

V1
B2

B1

Vk+1
B2

B1

V2k+1
B2

B1

B1 B1 B1

Vk−1
B2

B1

V2k−1
B2

B1

V3k−1
B2

B1

Figure 4. The quiver description of (C2)
[n]
1,k(H)

C
i

V1,0
C1

C2

p1

V1,1
C1

C2

p1

V1,2
C1

C2

p1

V2,0
C1

C2

p2

V2,1
C1

C2

p2

V2,2
C1

C2

p2

pk−1 pk−1 pk−1

Vk,0
C1

C2

Vk,1
C1

C2

Vk,2
C1

C2

Figure 5. The quiver description of (C2)
[n]
1,1(H)

(see Figure 5).

(C2)
[n]
1,1(H) ∼=

∼=

{(

(C1,j,h, C2,j,h)1≤j≤k
0≤h

, (pj,h)1≤j≤k−1
0≤h

, i

)∣

∣

∣

∣

1)C1,j,h+1C2,j,h−C2,j,h+1C1,j,h=0

2)Cα,j+1,hpj,h−pj,h+1Cα,j,h=0

3)There is no graded subspace S (
⊕
j,h Vj,h

such that Bα(S) ⊂ S, p(S) ⊂ S and im(i) ⊂ S

}/

∏

j,h

GLdj,h(C),

where Cα,j,h ∈ Hom(Vj,h, Vj,h+1), pj,h ∈ Hom(Vj,h, Vj+1,h) and i ∈
Hom(C, V1,0).

7.2. Proof of Theorem 1.7. We use the notations from section 1.8.

Proposition 7.1. There is a natural map π : (C2)
[n]
1,k(H) → (C2)

[n]
1,1(H).

Proof. Clearly, we have Vj,h = Vj−1+kh, for 1 ≤ j ≤ k, 0 ≤ h. We
define the map π by the following formula π : (B1, B2, i) 7→ (C1, C2, p, i),
where C1 = Bk

1 , C2 = B2, p = B1. �
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Proposition 7.2. Under the conditions of Theorem 1.7, the map π is
an isomorphism.

Proof. From the stability condition and the commutation relations it
follows that the map pj,h is an isomorphism if dj,h = dj+1,h. Let us

define a map φ : (C2)
[n]
1,1(H) → (C2)

[n]
1,k(H) by the following formula

φ : (C1, C2, p, i) 7→ (B1, B2, i), where B2 = C2 and

B1,j−1+kh =











pj,h, if 1 ≤ j ≤ k − 1,

C1,1,hp
−1
1,h . . . p

−1
k−2,hp

−1
k−1,h, if j = k and h ∈ E(H),

p−1
1,h+1 . . . p

−1
k−2,h+1p

−1
k−1,h+1C1,j,h, if j = k and h+ 1 ∈ E(H).

Clearly, the map φ is inverse to π. �

Theorem 1.7 follows from these two propositions.

References

[1] G. E. Andrews. The theory of partitions. Encyclopedia of Mathematics and its
Applications, Vol. 2. Addison-Wesley Publishing Co., Reading, Mass.-London-
Amsterdam, 1976, 255 pp.

[2] A. Bialynicki-Birula. Some theorems on actions of algebraic groups. Ann.
Math. 98, 480-497 (1973).

[3] A. Bialynicki-Birula. Some properties of the decompositions of algebraic va-
rieties determined by actions of a torus. Bull. Acad. Pol. Sci. S6r. Sci. Math.
astron. Phys. 24, (No. 9) 667-674 (1976).

[4] J. Cheah. Cellular decompositions for nested Hilbert schemes of points. Pacific
J. Math. 183 (1998), no. 1, 39-90.

[5] K. Costello and I. Grojnowski. Hilbert schemes, Hecke algebras and the
Calogero-Sutherland system. math.AG/0310189.

[6] G. Ellingsrud, S. A. Stromme. On the homology of the Hilbert scheme of points
in the plane. Invent. math. 87, 343-352 (1987).

[7] L. Evain. Irreducible components of the equivariant punctual Hilbert schemes.
Adv. Math. 185 (2004), no. 2, 328-346.

[8] S. M. Gusein-Zade, I. Luengo, A. Melle Hernandez. On generating series of
classes of equivariant Hilbert schemes of fat points. Mosc. Math. J. 10 (2010),
no. 3.

[9] L. Gottsche. Hilbert schemes of points on surfaces. ICM Proceedings, Vol. II
(Beijing, 2002), 483-494.

[10] J. Haglund. The q, t-Catalan Numbers and the Space of Diagonal Harmonics:
With an Appendix on the Combinatorics of Macdonald Polynomials. Univer-
sity of Pennsylvania, Philadelphia - AMS, 2008, 167 pp.

[11] A. Iarrobino. Punctual Hilbert schemes. Mem. Am. Math. Soc., (188), 1977.
[12] A. Iarrobino, J. Yameogo. The family GT of graded artinian quotients of k[x, y]

of given Hilbert function. Special issue in honor of Steven L. Kleiman. Comm.
Algebra 31 (2003), no. 8, 3863-3916.

[13] A. N. Kirillov. Combinatorics of Young tableaux and configurations. Proceed-
ings of the St. Petersburg Mathematical Society, Vol. 7, 1798, Amer. Math.
Soc. Transl. Ser. 2, 203, Amer. Math. Soc., Providence, RI, 2001.

[14] M. Lehn. Chern classes of tautological sheaves on Hilbert schemes of points on
surfaces. Invent. Math. 136 (1999), no. 1, 157-207.



18 A. BURYAK

[15] M. Lehn and C. Sorger. Symmetric groups and the cup product on the coho-
mology of Hilbert schemes. Duke Math. J. 110 (2001), no. 2, 345-357.

[16] W.-P. Li, Z. Qin, W. Wang, Vertex algebras and the cohomology ring structure
of Hilbert schemes of points on surfaces. Math. Ann. 324 (2002), no. 1, 105-133.

[17] N. A. Loehr. Conjectured statistics for the higher q, t-Catalan sequences. Elec-
tron. J. Combin. 12 (2005), Research Paper 9, 54 pp.

[18] H. Nakajima. Lectures on Hilbert schemes of points on surfaces. AMS, Provi-
dence, RI, 1999.

[19] E. Vasserot, Sur lanneau de cohomologie du schema de Hilbert de C2, C. R.
Acad. Sci. Paris Ser. I Math. 332 (2001), no. 1, 7-12.

Faculty of Mechanics and Mathematics, Moscow State University,

119991 Moscow, Russia and

Department of Mathematics, University of Amsterdam, P. O. Box

94248, 1090 GE Amsterdam, The Netherlands

E-mail address : buryaksh@mail.ru, a.y.buryak@uva.nl


