RECURSION RELATIONS FOR DOUBLE RAMIFICATION HIERARCHIES

ALEXANDR BURYAK AND PAOLO ROSSI

ABSTRACT. In this paper we study various properties of the double ramification hierarchy, an inte-
grable hierarchy of hamiltonian PDEs introduced in [Burl5al using intersection theory of the double
ramification cycle in the moduli space of stable curves. In particular, we prove a recursion formula
that recovers the full hierarchy starting from just one of the Hamiltonians, the one associated to the
first descendant of the unit of a cohomological field theory. Moreover, we introduce analogues of the
topological recursion relations and the divisor equation both for the hamiltonian densities and for the
string solution of the double ramification hierarchy. This machinery is very efficient and we apply it
to various computations for the trivial and Hodge cohomological field theories, and for the r-spin Wit-
ten’s classes. Moreover we prove the Miura equivalence between the double ramification hierarchy and
the Dubrovin-Zhang hierarchy for the Gromov-Witten theory of the complex projective line (extended
Toda hierarchy).
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2 A. Buryak, P. Rossi

1. INTRODUCTION

In a recent paper, [Burlbal, one of the authors, inspired by ideas from symplectic field the-
ory [EGHO0Q], has introduced a new integrable hierarchy of PDEs associated to a given cohomological
field theory. The construction makes use of the intersection numbers of the given cohomological field
theory with the double ramification cycle, the top Chern class of the Hodge bundle and psi-classes on
the moduli space of stable Riemann surfaces M, ,,. Since the top Chern class of the Hodge bundle van-
ishes outside of the moduli space of stable curves of compact type, one can use Hain’s formula [Hail3]
to express the double ramification cycle in computations and, in particular, the consequent polynomi-
ality of the double ramification cycle with respect to ramification numbers.

In [Burlb5a] the author further conjectures, guided by the examples of the trivial and the Hodge co-
homological field theories (which give the KAV and the ILW hierarchies, respectively) that the double
ramification hierarchy is Miura equivalent to the Dubrovin-Zhang hierarchy associated to the same
cohomological field theory via the construction described, for instance, in [DZ05].

In this paper, after defining some natural hamiltonian densities for the double ramification hier-
archy, using results from [BSSZ12] we derive a series of equations for such densities. Some of these
equations are reminiscent of the topological recursion relations and the divisor equation in Gromov-
Witten theory [KM94l |Get98], but also of their analogues from symplectic field theory [FR11, Ros12].
The dilaton recursion of Theorem in pariticular, is sufficient to recover the full hierarchy of the
hamiltonian densities, starting just from one Hamiltonian (the one associated with the first descendant
of the unit of the cohomological field theory). We apply this technique to compute explicit formulae
for the double ramification hierarchy of the r-spin Witten’s classes for r = 3,4 and, in particular,
we conjecture explicit formulae for the Miura transformations that should link such hierarchy to the
Dubrovin-Zhang hierarchy.

In the second part we focus instead on the string solution of the double ramification hierarchy
(see [Burl5al) and prove that the divisor equation for the Hamiltonians implies the divisor equation
for the string solution. Our main application of this fact is a proof of the Miura equivalence described
above in the case of the Gromov-Witten theory of the complex projective line. Consider the Gromov-
Witten theory of CP! and the corresponding cohomological field theory. We use u® as the variables
of the double ramification hierarchy for CP' and w® as the variables of the ancestor Dubrovin-Zhang
hierarchy for CP!.

Theorem 1.1. The double ramification hierarchy for CP' is related to the ancestor Dubrovin-Zhang
hierarchy for CP' by the Miura transformation
e%az 7%&5

(1.1) ut(w) = ———w“.
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2. THE DOUBLE RAMIFICATION HIERARCHY

In this section we briefly recall the main definitions in [Burl5al. The double ramification hierarchy is
a system of commuting Hamiltonians on an infinite dimensional phase space that can be heuristically
thought of as the loop space of a fixed vector space. The entry datum for this construction is a
cohomological field theory in the sense of Kontsevich and Manin [KM94]. Denote by cg,: V" —
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H®*" (M, ,; C) the system of linear maps defining the cohomological field theory, V its underlying
N-dimensional vector space, n its metric tensor and e; the unit of the cohomological field theory.

2.1. The formal loop space. The loop space of V' will be defined somewhat formally by describ-
ing its ring of functions. Following [DZ05| (see also [Rosl0]), let us consider formal variables uy,

a=1,...,N,p=20,1,2,..., associated to a basis e1,...,en for V. Always just at a heuristic level,
the variable u® := u$ can be thought of as the component u®(z) along e, of a formal loop u : ST — V|
where z the coordinate on S', and the variables u¢ = uf,ud, = ug,... as its z-derivatives. We

then define the ring A of differential polynomials as the ring of polynomials f(u;uz, Uz, ...) in the
variables u$*,7 > 0, with coefficients in the ring of formal power series in the variables u* = ug§. We can
differentiate a differential polynomial with respect to & by applying the operator d, := Zizo uf‘H%
(in general, we use the convention of sum over repeated greek indices, but not over repeated latin
indices). Finally, we consider the quotient A of the ring of differential polynomials first by constants
and then by the image of 0,, and we call its elements local functionals. A local functional which is the
equivalence class of f = f(u; Uz, Ugs, . . .) Will be denoted by f = [ fdz. Strictly speaking, in order to
obtain the ring of functions for our formal loop space, we must consider a completion of the symmet-
ric tensor algebra of the space of local functionals whose elements correspond to multiple integrals on
multiple copies of the variable x of differential polynomials of multiple copies of the variables uS*, but
we will not really use this in the paper.

Differential polynomials and local functionals can also be described using another set of formal
variables, corresponding heuristically to the Fourier components pf, k € Z, of the functions u® =
u®(z). Let us, hence, define a change of variables

uf§ = Z(ik:)jp%eikw,
keZ

which allows us to express a differential polynomial f as a formal Fourier series in x where the coeffi-
cient of e*** is a power series in the variables p;?‘ (where the sum of the subscripts in each monomial

in p} equals k). Moreover, the local functional f corresponds to the constant term of the Fourier series

of f.

Let us describe a natural class of Poisson brackets on the space of local functionals. Given a matrix
of differential operators of the form K" = 3., K0z, where the coefficients K} are differential
polynomials and the sum is finite, we define

7 Of rouw 09
gtk = K* d
{f7g}K /<5'U,M (5u"> X,
where we have used the variational derivative 5% = Zizo(—&)i%.

satisfies the anti-symmetry and the Jacobi identity will translate, of course, into conditions for the
coefficients K ]“ Y. An operator that satisfies such conditions will be called hamiltonian. We will also
define a Poisson bracket between a differential polynomial and a local functional as

of 0g
Gaii= X s (5055 )

>0 v

Imposing that such bracket

A standard example of a hamiltonian operator is given by nd,. The corresponding Poisson bracket,
heavily used in what follows, also has a nice expression in terms of the variables pf:

{07, no. = 0 ko j0-

Finally, we will need to consider extensions of the spaces A and A of differential polynomials and
local functionals. First, let us introduce a grading deg u$® = ¢ and a new variable € with dege = —1.

Then A and AlF) are defined, respectively, as the subspaces of degree k of A := A ® C[[¢]] and
of A := A®C[[¢]]. Their elements will still be called differential polynomials and local functionals. We
can also define Poisson brackets as above, starting from hamiltonian operators K*¥ = EZ >0 K Zf‘j’jei%,
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where Kf‘j’/ are differential polynomials of degree i — 5 + 1. The corresponding Poisson bracket will
then have degree 1.

A hamiltonian system of PDEs is a system of the form
ou® _ o 5%1
or; Jur’

where h; € A9 are local functionals with the compatibility condition {h;, h;}x =0 for i,j > 1.

(2.1) a=1,...,N, i=1,2,...,

2.2. The double ramification hierarchy. Given a cohomological field theory
cgn: VE" — H (M, ; C),
we define hamiltonian densities of the double ramification hierarchy as the following generating series:
(=€)
Joud *= Z n! X

9>0,n>1

X Z </ )‘gwilcg,n—&-l(ea ®ea; ®...0 eom)) pgll - ~p3:€ixzai7
DRg(fzaiyalvnyan

a,...,an€Z

fora=1,...,Nand d=0,1,2,.... Here DRy (ay,...,a,) € H*9(Mgy,;Q) is the double ramification
cycle, \g is the g-th Chern class of the Hodge bundle and ; is the first Chern class of the tautological
bundle at the i-th marked point.

The above expression can be uniquely written as a differential polynomial in u! in the following
way. In genus 0 we have

(2.3) DRy (a1, ..., a,) = [Mon).
In higher genera g > 0 Hain’s formula [Hail3] together with the result of [MW13] imply that
(2.4)

g
R ! 1 !
J 2 ¢J
e 1 DOE =D DI (D DIRT ) LIS S DR Sr A I
g: Jj=1 Jc{1,..n} \i,j€Ji<j Jc{1,....,n} h=1
[J]>2

where ./\/lf]fn is the moduli space of curves of compact type, @ZJJT denotes the 1)-class that is pulled back

from ﬂg,l, the integer ay is the sum Zje ja; and the class 5,{ represents the divisor whose generic
point is a nodal curve made of one smooth component of genus h with the marked points labeled by
the list J and of another smooth component of genus g — h with the remaining marked points, joined
at a separating node. From formulae (2.3), (2.4) and the fact that A, vanishes on M, \ M, it
follows that the integral

d
(2.5) / Ag¥icgnt1(€a ® e, ® ... ®eq,)
DRg(— > ai,a1,....an)
is a polynomial in ay, ..., a, homogeneous of degree 2¢g. Denote it by
— b17"'7b bl bn
Pa7d7g;a17"'7an (a17 e 7an) - : : Pa,d,g;aq,.‘.,anal T an .
b1seeesb >0
bi+...+bn=2g
Then we have
529 2 : b1,...,b «a «
- _ yeeUn 1 n
ga7d - Z n' Pa7dvg;alv~-wanubl U ubn :
9>0m>1 ' b, bn>0

2g—1+n>0 bi+...+bn=2g
In particular, g, 4 = [ ga.adx, expressed in terms of the p-variables, coincides with the definition
given in [Burlba]. The system of local functionals g, 4, for @ = 1,...,N, d = 0,1,2,..., and the
corresponding system of hamiltonian PDEs with respect to the standard Poisson bracket {-,-},, is
called the double ramification hierarchy. The fact that the Hamiltonians g, ; mutually commute with
respect to the standard bracket is proved in [Burl5al. Finally, we add by hand N more commuting
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hamiltonian densities go,—1 := nauu for a =1,..., N. The corresponding local functionals g, _; are
Casimirs of the standard Poisson bracket.

3. RECURSION RELATIONS FOR THE HAMILTONIAN DENSITIES

The results of this section are based on the following two splitting formulae from [BSSZ12] for the

intersection of a ¢-class with the double ramification cycle. Let /U J = {1,...,n} and let us denote
by DRy, (ar, —k1,...,—kp) ¥ DRy, (as, ki,...,kp) the cycle in Mg, 4 g4,4p—1,n Obtained by gluing the
two double ramification cycles at the marked points labeled by k1, ..., k.

Theorem 3.1 ([BSSZ12]). Let ay,...,ay be a list of integers with vanishing sum. Assume that as # 0.
Then we have

pl

P
=Yy ¥ _’;+nnl 1k2DRgl(a1,—k1,...,—k,,)&DR92(QJ,k1,...,kp).

Here the first sum is taken over all IUJ = {1,...,n} such that ), a; > 0; the third sum is over all
non-negative genera g1, g2 satisfying g1 + g2 + p — 1 = g; the fourth sum is over p-uplets of positive
integers with total sum ), ;a; = — EjeJ a;j. The number p is defined by

_ 290 =2+ |J|+p, if sel;
P —(2g1 — 2+ |I| +p), if s€J

Theorem 3.2 ([BSSZ12)). Let aq,...,a, be a list of integers with vanishing sum. Assume that as # 0
and a; = 0. Then we have

aspDRy(a1, .. an) =D > Y Z HZ ! ZDRgl(aI, —Fki,...,—ky) " DRy, (as, k1,. .., kp).

1,J p>1 91,92 k1,...,

Here the first sum is taken over all I J = {1, ...,n} such that Y, a; > 0; the third sum is over all
non-negative genera g1, g2 satisfying g1 + g2 + p — 1 = g; the fourth sum is over p-uplets of positive
integers with total sum ), ;a; = — EjeJ aj. The number € is defined by

1, ifsel andl € J;
e=< -1, ifseJandl e l;
0, otherwise.

3.1. Dilaton recursion. In this section we prove the most powerful of our recursion relations for the
hamiltonian densities (2.2). It allows to reconstruct the full hierarchy of densities, starting from g ;.

Theorem 3.3. We have the following recursion:

99a og
B (D Ngwar) = 3 (Letot L) as 1N 421
k>0 k

where D =} ;o (k + 1)ug%

Proof. Given the polynomiality of the integral (2.5)), it is sufficient to focus on the case, where a; >
0,7=1,...,n. Using Theorem we obtain

(32) (29—2+n+1) (Z%) o d o giaencon (A1« « 3 @) =

= Z Z 2(292 =2+ |J|+ k- Pa,d,gl;al,,u(ala k)nWsz;alw(aJa —k),

IuJ={1,...,n} g1+g2=g k>0
[J]>1 2g2—1+|J|>0

_ b1,...,b b1 bn _
where Py.o,, an(@1,--,0n) =D by, bn>0 Pgaillanar .. a = fDRg(a1,...,an) AgCgn(€a; ®.. . ®eq,).

b1+...+bn=2g
Notice that the right-hand side of the above formula is nonzero, only if k = jeg ;- Let us introduce
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an auxiliary functional

. (=)
9= Z | Z Pg;oq,...,an (ah e 7an)pgll . 'pg: =

.
g>0,n>2 aly...,an€Z
2g—2+n>0 > a;=0

529 b b @ «
— 1y:+4y0n 1 n
= DS D S Ty P
g>0n>2 " by,.,bp>0
2g—24+n>0 bi1+...+bn=2g

Then equation (3.2 translates to

9ad g _
(3:3) O (D = Do) = 3 (audn O S (D 2>g>) .
k>0 k

Using the formula for the push-forward of the class 11 along the map 7: My,11 — Mg, which
forgets the first marked point, w11 = 29 — 2+ n, it’s easy to prove the following version of the dilaton
equation (compare also with [FR11]):

(3.4) (D—2)g =711,

which, together with formula 1) proves the theorem for all d > 0. For the case d = —1, equa-

tion (3.1) gives (D — 1)ga,0 = %, which is again an immediate consequence of the dilaton equation
above and the definition of g. O

Remark 3.4. Notice how, in equation , the right-hand side can be written as

_ 09,
{ga,d791,1}n6z = —=°

ot ’
where t' is the time associated with the evolution along the hamiltonian flow generated by g, ;. Since

we know that {4,911}, = 0, we are sure that the above expression is Oy-evact and, hence, such is
the right-hand side of equation , so that it makes sense to write

8goz,d
ot

(D - 1)ga,d+1 = 351

3.2. Topological recursion. In this section we prove an equation for the hamiltonian densities that
is reminiscent of the topological recursion relation in rational Gromov-Witten theory.

Theorem 3.5. We have

99a 99a 59
(3.5) B, g@;ﬁjl = (it,fnwa’;ﬂgjf) : 1<a,8<N, d>—1.
k>0 k

Proof. The proof is completely analogous to the proof of Theorem 3.3 but uses the second splitting
formula, Theorem [3.2l We leave the details to the reader. O

Remark 3.6. As for Theorem we can express Theorem[3.9 too in a more suggestive form

aga,d—l—l . 871 8goz,d

ouP v 8tg '
As a special case, for f =1, given that 8,5(1) = 0,, we get the following string-type equation:

aga,d—i—l .
8U1 - ga,d7

which was already proved in [Burlbal.
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3.3. Divisor equation. In this section we derive another type of recursion that is based on the divisor
equation in Gromov-Witten theory. We can recommend the papers [Get99] and [KM94] as a good
introduction to Gromov-Witten theory.

Let V be a smooth projective variety and suppose that H°(V;C) = 0. Denote by E C Ho(V;Z)
the semigroup of effective classes and let N' be the Novikov ring of V. Let e1,...,eny be a basis
in H*(V;C). We assume that the elements e; are homogeneous in the cohomology H*(V; C). Consider
the Gromov-Witten theory of V' and the corresponding cohomological field theory. Recall that the
metric 7 = (1a8), Mag = (€a,€s), is induced by the Poincaré pairing in the cohomology H*(V;C).
Denote by

Cg’"vﬁ(eal X eay ®...Q eOén) € Heven(mgm; C)
the classes of our cohomological field theory. Note that they depend now on a class 5 € E. Let

Cogn(€a; @...Qeq,) = Z qﬁcg,mg(ea1 ®...Qeq,) € H'"(Myn;C) @ N.
BEE

Denote by (74, (€q;) - - .Tdn(ean))f]ligc the Gromov-Witten invariants of V.. For any indices 1 < ay, ag, g <

N let
Caragag = Z qﬁ <TO(ea1)7—0(6&2)70(6013»3,656 and Catas =N Carasp-
BEE

We want to consider the double ramification hierarchy associated to our cohomological field theory.
Note that our situation is slightly different from [Burl5al] because of the presence of the Novikov ring.
However, it is easy to see that all the constructions from [Burlba] still work. Ome should only keep

in mind that now the Hamiltonians g, 4 are elements of the space Al A and the coefficients of the
Hamiltonian operator K belong to the space ARN.

There is a natural operator qa% N > NQE, qa%(qﬁ) .= ¢® ® . The differential polynomial Ja,d 18
an element of the space Al N, so q%gmd is an element of A @ N’ ® E. Let €y1s - -5 €y, DE a basis

in H?(V;C). Using the pairing (-, ): H>(V;C) x E — C, we define elements <e%, qa%ga7d> e AVQN,

Theorem 3.7. Foranyi=1,...,r and d > —1, we have
9 ~1990,d
(36) <e%‘7qaqga,d+1> = ax ! a:gi - Cg’}’igu,d-

Proof. We begin by recalling the divisor equation in Gromov-Witten theory. Suppose that 2g—2+n > 0
and let mp41: My pnp1 — My, be the forgetful morphism that forgets the last marked point. The
divisor equation says that (see e.g. [KM94])

(3.7) (Tn+1)x(cgnt1,8(€a; ® ... ® €a, ®ey,)) = (e, B) cgn,p(€a; @ ... @ €qy,).

Let us formulate the following simple lemma.

Lemma 3.8. Foranyi=1,...,r, we have
_ L, 9 _
(3.8) Jy0 = | FCumutu dx + e%,qa—qg .
Proof. The proof is a simple consequence of the divisor equation (3.7)). O

Let us take the variational derivative 5%& of the both sides of equation (3.8)). Since 5‘% = Ga,0, WE
get exactly equation (3.6) for d = —1.
Suppose d > 0. From the divisor equation (3.7)) it follows that

0
<€’Yi’ qaiqpavd'i‘lvg;ah---,@én (al’ Y an)> - 7T:L+2(1[)il+1))\gcg7n+2(ea ® ®?:1604j ® e%’)'

/DRg(_ Z aj7a17"'7an70)

* d+1
We now express 7, o (1] ) as

Tt (W) = gt = 8T ().
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By Theorem the first summand gives

(—e2)9 / d+1 | | & iz 3 aj
E E Y1 AgCgmt2(ea @ (®7_ e ®el pJ“” aj —
n! DRy (=2 aj,a1,-..,an,0) Lo : ( = !

g>0 al,...,an€Z
n>1

P 8%;7‘1
T 7 )
o0

which coincides with the first term on the right-hand side of (3.6)). For the second summand, we have
(see [BSSZ12])

551’"+2}‘DRQ(—Zajval"“’am ) DR0< Za],o Za])ﬁDR (al,...,an,—Zaj>7

from which we get

1,n+2 n
/ . I A hanralca ® (2r6e) O e2) =
g\ ™ Aj,a1;-.+,0n,

d
= cho, / ViAgCgnt1(en ® (®F_1€a;)) = chy Pudgon,..an (@1, an).
DRQ( Za]aalv )

This corresponds to the second term on the right-hand side of equation (3.6). The theorem is proved.
O

4. EXAMPLES AND APPLICATIONS

The recursion formulae we proved in the previous section are computationally very efficient and
allow us to produce a number of calculations in concrete examples. Beside the case of the complex
projective line, which we leave for the next section, we focus here on computing various relevant
quantities for one-dimensional cohomological field theories and for some of Witten’s r-spin theories,
which are ultimately sufficient to determine the full double ramification hierarchy in these cases.

4.1. KdV hierarchy. The simplest cohomological field theory, V = {e1), nmi1 = 1, cgpn(ef") = 1 for
all stable (g, n), corresponding to the Gromov-Witten theory of a point, gives as the double ramification
hierarchy the Korteweg-de Vries hierarchy: the equivalence conjecture between the Dubrovin-Zhang
hierarchy and the double ramification hierarchy holds in this case with the trivial Miura transforma-
tion, as proved in [Burl5al. However, our recursion formulae give a specific choice of hamiltonian
densities gg which was previously unknown and is non-standard. In fact, such hamiltonian densities

do not satisfy the tau-symmetry property {h,_1,hq}a, = {hq—1,hp}s,. However, the standard tau-

9Gpt1
ou

symmetric hamiltonian densities h,, for the Dubrovin-Zhang hierarchy can be recovered as h, =
We will see in the examples below that this is a quite general fact (see also remark |4.5)).

Example 4.1. For the trivial cohomological field theory we have

u3 52

which determines the following hamiltonian densities for the double ramification hierarchy:

g-1=1u,
u? g2
=5 Tt
B 3 2 2,_:4
n=7 ﬂ ETIT A
ut g2 o2 T(ug)?  wug\ 4 eb
9= T ggh et < 5760 1152> = 320440
u® g2 Tu(ug)?  wlug) 4 (u3)? U U4 UUG 6 8
95 = 1 T 1ag" U2 ( 5760 2304) e <362880 T 15360 82944) &t 7962624 "
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and so on. These hamiltonian densities, as remarked above, integrate to the usual KdV local func-
tionals g, = hy, for the Dubrovin-Zhang hierarchy. In particular, if

is a solution to the Riccati equation
€

Ex’ X =u—A
then
9p+2
Ip = —W/X2p+3d$7
and the hamiltonian densities h; := 65(;“;1 = (Qiljg Em [ Xok+sdz, for k > —1, are the tau-symmetric
densities of the Dubrovin-Zhang hierarchy, with h_; = g_1 = u (see also [DZ05]). A

4.2. Intermediate Long Wave hierarchy. In [Burl5al one finds a proof of the Miura equivalence
between the Dubrovin-Zhang and the double ramification hierarchy for the case of the cohomological
field theory (depending on a parameter ¢) consisting of the full Hodge class cg (") = 1+ A +... +
fg)\g, with V = <61>, mi= 1.

Example 4.2. For the cohomological field theory given by the full Hodge class we have

g1 :/ f JrZngfg_l | Bg| uug, | dx
6 = 2(2g)! Y '

where By, are Bernoulli numbers: By = 1, By = %, By = —%, .... This Hamiltonian, by our recursion,
determines the full double ramification hierarchy. In [Burl5b] this hierarchy was called the deformed
KdV hierarchy. The Miura transformation

229-1 _1|B
u'—>U*u+Z 525 1 | 2‘()7’ 2909y
g>1

transforms this hierarchy to the Dubrovin-Zhang hierarchy. In particular, the standard hamiltonian
operator 0, is transformed to the hamiltonian operator

K=0,+ Zggggwazgﬂ'
i (29)!

In [Burl5b] it is explained how the deformed KdV hierarchy is related to the hierarchy of the conserved
quantities of the Intermediate Long Wave (ILW) equation (see e.g. [SAKT9]):

el m(z —§)
wr + 20wy + T(wee) =0,  T(f) = p.v./ sgn(x — &) — coth ———== | f(&)d¢.
oo 26 26
The ILW equation can be transformed to the first equation of the deformed KdV hierarchy by setting
w = iu T = —77t1, d= 5\[ (indeed T'(f) = >, §2n—lig2n ‘gfg,' 02n=1f see [Burl5hb| for further
detalls). This means that our recursion formula gives a way, alternative to [SAK79], to determine the
symmetries of the ILW equation. A
4.3. Higher spin / Gelfand-Dickey hierarchies. Recall that, for every r > 2 and an (r — 1)-
dimensional vector space V with a basis ey, ..., e,—1, Witten’s r-spin classes
Wy(€ay41s -y €ant1) = Wyla, ... an) € HV" (Mg ; Q)

are cohomology classes of degree

—2)(g—1 Y a
degWg(al,...,an):2<(T )y )+ZZ:16L@>’
r

when a; € {0,...,r—2} are such that the expression in the brackets on the right-hand side is an integer,
and vanish otherwise. They form a cohomological field theory and were introduced by Witten [Wi93]

in genus 0 and then extended to higher genus by Polishchuck and Vaintrob [PV01] (see also [Ch06]). As
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proved in [PPZ15], this cohomological field theory is completely determined, thanks to semisimplicity,
by the initial conditions:

1, ifai+as+a3=r—2;

0, otherwise;

Wo(ai, a2, as) :{

! [point] € Hz(ﬂ(m; Q).

r

Wo(1,1,r —2,r —2)

In particular, the metric n takes the form 7,3 = da44,,-

Using our recursion formulae together with the selection rules from the degree formula for the r-spin
classes, it is possible to completely determine the Hamiltonian g; ; and, hence, the full hierarchy. In
particular, from dimension counting and the definition , we obtain that g; 1 is a homogeneous
polynomial of degree 2r 4+ 2 with respect to the following grading:

’uzﬂ‘:r—a, a=0,....,7r—2, k=0,1,...; le| = 1.

This gives a finite number of summands involving intersection numbers only up to genus r for g; 1,
and up to genus r — 1 for J1,1, as the top genus term is Oy-exact. At this point, one can start applying
the recursion of Theorem starting from go,—1 = Nouut and impose, at each step, that the new
Hamiltonians thus obtained still commute with all the others. In the cases r = 3,4 this determines
all the coefficients of the Hamiltonian g; ; up to a rescaling of the form e — 0, § € Q. This
ambiguity can be fixed by the following computation. For any cohomological field theory c¢g,,: V& —

Hev" (Mg p; C) we have

.
Coef2,) < glf) _Coefa2/ hrAiers(el?) = QCoefaz/ Arcro(e?) by @4
T ou DR1(0,—a,a) DR (—a,a)

1,2 1 dimV

=2 / 5é })\161’2(6?2) = 2/ )\10171(61) = E / 5880171(61) = 12 .
Mi 2 M Mina

Here 63° represents the divisor whose generic point is a nodal curve with a non-separating node and

we also used that on ﬂu we have \1 = wir = ié{}s.

Example 4.3. For Witten’s 3-spin cohomological field theory we have

— 1122(“2)4 Loy Lo av9) 2 L o ovaa
= [ (B B0+ (< )= ot 7)o 0%
which determines the following hamiltonian densities for the double ramification hierarchy:
{ g1—1 = u?, { g0 = u'u? + Fyuge?,

1. 1 2)3
g2,—1 = U, G20 = (“2) + (“18) + (%2 (u%)2+ %u%%) 2 + ﬁugfl%

4
2 2)2 2.2 2_6
2 (u ) 2 7(“2) Tuiu uge
_1(1)2,,2 1200220 Lo 11y 1 (22)2,2) 2 13, 1,2 2| 4, %
gri=5(u')"u 36 +<72“ (ui)*+zu'ud+ 55 (uv?) u2>5 +< 3760 T 260 T3z Y Y4 )€ T i5ma

1

2

( 1)3 2,1 1.6

w 3 2 uju uge
— 1.1 2 1.1 2\2 1 2 1, 1,.1,,2, 2 2 1 1,2 173 1 2,1 1 1,2 4 6 .
921="—g—+1gu' (u?) +<72" (ul)?+75 (u®) ugtggulu “2)5 +(432“2“2+ 1080 7864 % Yatg61Y ”4)5 + 31104

gi1,2 = (é (ul)au2 + 3—1611,1 (u2)4> + (%uluz (u?) 2 + i (u1)2 u; + % (u2)3u§ + %ul (u2)2ug> &2
7

+ (“%) 2"% + 1 wlulu? + Tu! (ug)z UZ“?“é 7“1“%“3 1 (u2)2u1+ 1 wru2u? | et
4320 180 272 2160 1080 2160 864 47 432 4
+ uéug 7’[14;’&411 u%ui u?ué + ’U.2’U.(15 ulug 6 uéss
7776 | 25920 4032 | 12960 @ 15552 @ 15552 746496

24 1620 144 1296

a2 = u')’ n % u1>2 (u2)3+ (u?)° N ( 1 (u1)2 (u?)er (u*)* (u?)? N %ul (u2)2u§ L (u1)2u2u§ + L <u2)4u§) 2

I T O R T ) e N 4 Rt N e i W 0 W S O T A
51840 4320 12960 432 6480 1080 12960 864 1728 3888

n 11 (ug) 3 (ué) 2 13u?u§u§ 41u? (ug) 2 11u;u}L 17 (uf) 2ui uzugui uQu?ug ulu(1S (u2)2 ug 6
116640 34020 77760 466560 72576 311040 4320 17280 31104 46656

i 47(ui)2 61luiu? 11udul 11ulu2 u?ul 5 u el .
5598720 5598720 1399680 = 5598720 1119744 67184640
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and so on (we have explicit formulae up to go,7). We remark that, by taking the covariant derivative

p
with respect to u! of the local functionals associated to the densities we computed here, hy, p = gg’pl“ ,

one finds precisely the tau-symmetric hamiltonian densities for the Gelfand-Dickey hlerarchy IGD176]
associated with the Ay Coxeter group [Dub96] (the so-called Boussinesq hierarchy) which coincide with
the densities in the normal coordinates for the Dubrovin-Zhang hierarchy for the 3-spin classes. This
gives a strong evidence for the Miura equivalence of the Dubrovin-Zhang and the double ramification
hierarchy, with the trivial Miura tranformation, for the 3-spin classes. A

Example 4.4. For Witten’s 4-spin cohomological field theory we have
_— 0 L U O W ( ()2 20D a8 oy, (u3)3u3> P

2 2 320 6 32
5(u3)2

1 3 ui) 4 (u3) 2"
+ b= - dz,
<160 (u3)* + 202" T 4006 > © s192 |

which determines the following hamiltonian densities for the double ramification hierarchy:

2\2 1 3_4
3
g1,0 = ((UQ) +u1u3) + (% (uif) 2 + "‘?2 + %u?)u%) 82 + 2”54650 ,
1 2 1 1 1 1
g1,-1 = ud g20 = (vl + fu? (w)?) + (Fgudud + gruud + 272“2“%) e+ gypuieh,
92:_1 = u?, 93,0 = (UI)Q +1(u2)2u3+7(1p)4 + ( : ( ) +fu (u3)2+ ! —udu +fu2u2
951 = ul; ’ 2 8 192 96 1 128 1 96 2 32 2
1 3\2 .3\ _2 3(“%)2 3“4 u3u2 4 “256 .
+ 15 () “2) + | Soas T 523 2560 T 1024 ) € T 215760

1
g1,1 = <u1 ()% + = () ud + =

8

3\5
(u2)2 (u3)2+ (u ) > + (%u?’ (u%)z + iqﬁu%u:{, + 9716711 (u%)g L b (u3)2 (u‘;’ 2

111i32 723272237133 3 3 22L323
+ uu2+96(u) 2+ uuu2+ ( )u2+96uuu2+128(u) u2)5 +(512(u2) +256(u1) Uy

U
8 32
2
+iu%u% N 9u? (uf) 2 . iu1u3 " iulug " 23ududud 19w} 13uu?  3ulud 7 (u?)”ud A
320 2048 480 640 4608 7680 2560 2560 4608
27 (u3) 2 93udui  101ufud  Buf 11wl 4 59uied
€ )
57344 114688 286720 20480 81920 13107200
1 1 1 1 1
g2.1 = (5 (u1)2u2 + = (u2)3u3 + 8“ 1,2 (u3)2 + @uQ (u3)4> + ( w2 (u2) + —u Ulul + 93 ( 3)2u%u? + %uzug (uila‘) 2
+— 1 w2ulul + ( ) u1u3u2+ (u3)3u2 + iu1u2u3 + £u2 (u3)2u3) 24 ( 1 (u3) 2,2 4 iu1u2
24 2 27 192 2732 27 768 480 VY 2 160 22
1u?udud  23u u2u% 29u? (u3) 2 1 1 3 13uduul w2l 1 45
+ — —wlufud 4 — 13 —uuy + —uu
3840 3840 10240 180" Ch 320" "1 T 5760 320" Ch 320" " 30" M
29 (u3)2ui iu2u3u3 oy (3u§ug 47ugu4 3u2u2 n udug n u%ug n udug n ung ) 6 4 ugsg
23040 480 4 4480 71680 5120 3584 5120 7680 = 10240 204800’
1
1 1 1 1 1
o1 = (“‘ S L@ s L @y s L <u3>4) (gt ()2 + ot + 1k () (o)
1 3 1 7
+@ulu3 (ul) + ( )46(()21) a (uz) u + 96u1u3u% + — 381 ( 3) u2 + u1u2u§ + %uQ (u3)2 u% + 763 (u2)2 ugug
4
YR (@) w3\ o (D)t 7(ud) ey, 11(ug)? 23u1ﬂ11€ 1610 (u3) 2 | 13 (uf) *uj
128 2 4608 40960 9216 7680 11520 92160 23040
13u? (u?) 2u3 19u3u%ug 31u’u u‘;’ 3ul (ug) 2 19 (u3)2 (u‘;’) 2 u3u§u§ 17u3u%u§ 7u2u‘;’u§ 7u2u%u§
20480 9216 7680 2048 40960 1152 23040 3840 3840
PRI U 7 (u3)2 uduf  3ulu} 5 (u3)2 ui  49u?ulu? 13 (u2)2 uf  wluBud 13 (u3)3 ud\ 7 (ud) 3
17 15360 2560 9216 30720 20480 1024 122880 61440
33 (u2)?  wludud  wlud 21w (ud)?  wdul  TTwdu? 33 (wd)%ud  1lwdud  19uSudud Suful 11wl
286720 2560 7680 163840 5120 245760 327680 81920 81920 35840 122880
3ududuld  13wduf  19uud ulud 19 (u3)2 ud 6 11 (uf) 2 Tujud 379udud 6ludus TTud
32768 245760 245760 = 24576 983040 655360 262144 23592960 11796480 = 39321600

10

37udu ) 8 4 u3ge
23592960 20971520
and so on (we have explicit formulae up to go,4). We want to remark that in this case, as opposed to

. . . . dg .
the 3-spin case, if one defines the tau-symmetric densities hq j := %, then the coordinates u® are

not normal in Dubrovin and Zhang’s sense anymore, i.e the starting hamiltonian densities ho 1 take
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the non-standard form
hi—1 =u,
ha,—1 = u?,
h3’_1 =ul + %u%e?

One can then perform a Miura transformation w® = n**h, _1 to pass to the appropriate normal coor-
dinates and in these coordinates the Poisson structure changes to the one associated to the hamiltonian
operator
ﬁ&ag 0 O,
0 0 O
O0x 0 0

When expressed in these new coordinates, both the Poisson structure and the hamiltonian densi-
ties hqp coincide with the ones for the Gelfand-Dickey [GD76] hierarchy associated with the As
Coxeter group [Dub96], or the dispersive Poisson structure and the hamiltonian densities in the nor-
mal coordinates for the Dubrovin-Zhang hierarchy for the 4-spin classes. As above, this gives a strong
evidence for the Miura equivalence of the Dubrovin-Zhang and the double ramification hierarchy for
the 4-spin classes, with respect to the Miura transformation w® = n**h, 1. A

Remark 4.5. The same technique of this section can actually be applied to any polynomial Frobenius
manifold (in particular, to all Frobenius manifolds associated to the Coxeter groups) and one obtains
similar conjectures about an explicit form of a Miura transformation connecting the double ramifica-
tion hierarchy to the Dubrovin-Zhang hierarchy. We plan to address the problem of understanding a
connection between the tau-symmetric hamiltonian densities for the double ramification hierarchy, the
normal coordinates and an equivalence to the Dubrovin-Zhang hierarchy in a forthcoming paper.

5. DIVISOR EQUATION FOR THE DR HIERARCHIES

In this section we derive a certain equation for the string solution of the double ramification hierar-
chy. This equation is very similar to the divisor equation in Gromov-Witten theory. In Section [5.1] we
derive a useful property of the string solution. In Sections and we consider the cohomological
field theory accociated with the Gromov-Witten theory of some target variety V. In Section we
prove a divisor equation for the Hamiltonians of the double ramification hierarchy. Section [5.3|is
devoted to the proof of a divisor equation for the string solution.

5.1. Property of the string solution. Consider an arbitrary cohomological field theory and the
corresponding double ramification hierarchy. Recall that the string solution (u®")*(xz,t};¢) is a unique

solution of the double ramification hierarchy that satisfies the initial condition (u5")* . 5% ly.

str)a

Lemma 5.1. We have (u v o=t T doly.
>17

Proof. Consider formal variables v, 1 < a < N,d > 0, and let u§ = vg+1. Consider the following
system of evolutionary PDEs:
ava (a7} 5557‘1 .

(5'1) 8755 = out

From the compatibility of the flows of the double ramification hierarchy it easily follows that the
system ([5.1)) is also compatible. It means that it has a unique solution for an arbitrary polynomial
initial condition v®|,._, = P*(z). Let (v*")%(z,t};¢) be a unique solution that satisfies the initial

condition (v*!")« g = 50"1%. We claim that we have the following equation:
8(Ustr)a 8(,03157*)04

5.2 —_ = ] e =ty 4 6%

( ) Gt(l) n+1 315% 0ot

n>0

It can be proved in a way very similar to the proof of Lemma 4.7 in [Burl5a]. We obviously have

(ustr)® = a(%s%. If we set t2; = 0 in equation (5.2)), we get the statement of the lemma. O
I >
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5.2. Divisor equation for the Hamiltonians. In this section we consider the cohomological field
theory associated to the Gromov-Witten theory of some target variety V' with vanishing odd coho-
mology, H°(V;C) = 0. Consider the associated double ramification hierarchy. We will use the same
notations as in Section Recall that we denoted by e,,. .., e, a basis in H*(V;C).

. ag _ _
Lemma 5.2. Foranyi=1,...,r and d > 0, we have a%v’id = cgnﬂg%d,l + <e%., qa%ga,d>.

Proof. By Theorem [3.7, we have <e%,q8@qga,d> = 0 1395;;1 — Chyi9ud—1- Using Theorem we
0

obtain

0 o 8goz,d m
e’yiaqaiqga,d - 8uaﬁ - Cafyigu,d—l-

Projecting the both sides of this equation to the space of local functionals we get the statement of the
lemma. |

5.3. Divisor equation for the string solution. Here we work under the same assumptions, as in

the previous section. Consider the string solution (u*")® of the double ramification hierarchy.
Lemma 5.3. For anyi=1,2,...,r, we have
o strya o strya o strya ‘
(O <%q<U>> B R A G T
oty 0q oty

d>0

Proof. Introduce an operator O,, by O, := atigi - <e%., qa%> =2 450 cﬁ%tZH%. From Lemma|5.1]it
follows that
(5.3) On (u")*

— Sy
— oM,

Let fg, :==n"0s 6555‘;‘7. For any d > 0, we have

a(ustr)a a(ustr)oa
strya _ v
(5:4) o5 (026" = =y =+ O e

= —Cgyfoa1+ Ovfga=

0154

n stryy
au’y 810'%(11’ ) ’
n>0 "

0
= _Cg%fid—l - <e%7q8qfﬁa7d> +

where we, by definition, put % := 0. The resulting system of equations can be considered as a
~1

system of evolutionary partial differential equations for the power series O., (u*'")®. Together with the
initial condition ([5.3)), it uniquely determines the power series O, (u**")*. Lemma implies that, if
we substitute O., (us")® = §*7 on the right-hand side of (5.4)), we get zero. The lemma is proved. [

6. DUBROVIN-ZHANG HIERARCHY FOR CP!

The main goal of this section is to recall the explicit description of the Dubrovin-Zhang hierarchy
for CP! obtained in [DZ04]. In Sectionwe say a few words about the general theory of the Dubrovin-
Zhang hierarchies. We recall the notion of a Miura transformation and also write an explicit formula
that relates the descendant and the ancestor Dubrovin-Zhang hierarchies for CP!. In Section we
review the construction of the extended Toda hierarchy and its relation to the descendant Dubrovin-
Zhang hierarchy for CP'. In Section we list some explicit formulae for the ancestor hierarchy that
we will use in Section [7

6.1. Brief recall of the Dubrovin-Zhang theory.

6.1.1. General theory. The main reference for the Dubrovin-Zhang theory is the paper [DZ05]. The
theory was later generalized in [BPS12b]. In this section we follow the approach from [BPS12b] (see
also [BPS12a]).

The Dubrovin-Zhang hierarchies form a certain subclass in the class of hamiltonian hierarchies of
PDEs (2.1). They are associated to semisimple potentials of Gromov-Witten type. Let us describe
the family of these potentials. First of all, there is a family of all cohomological field theories. To any
cohomological field theory one can associate the so-called ancestor potential, that is defined as the gen-
erating series of the correlators of the cohomological field theory. The semisimplicity condition means
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that a certain associative commutative algebra, associated to the cohomological field theory, doesn’t
have nilpotents. Ancestor potentials form a subfamily in the family of all potentials of Gromov-Witten
type. Given an ancestor potential, there is so-called Givental’s s-action (or the action of the lower
triangular Givental group, see e.g. [FSZ10]) that produces a family of potentials that correspond to
this ancestor potential. These potentials are sometimes called the descendant potentials corresponding
to the given ancestor potential. The resulting family of potentials is called the family of potentials of
Gromov-Witten type.

The Dubrovin-Zhang hierarchy corresponding to an ancestor potential will be called the ancestor
hierarchy, while the hierarchy corresponding to a descendant potential will be called the descendant
hierarchy. It is not hard to write explicitly a relation between them. This was done in [BPS12b] (see
also [BPS12a]). We will write this relation in the case of CP!, see Lemma |6.1| below.

6.1.2. The descendant and the ancestor potentials of CP'. Let us describe some details and also fix
notations in the case of CP*. We use the notations from Section [3.3l

Let V := H*(CP};C). The semigroup E C Hy(CP!;Z) is generated by the fundamental class [CP?],
so it is naturally isomorphic to Z>g. The Novikov ring N is isomorphic to C[[g]]. Consider the
Gromov-Witten theory of CP!. Let Cond: ven 5 H *(ﬂgm; C) be the associated cohomological field
theory. Let 1,w € H*(CP';C) be the unit and the class dual to a point. The matrix of the metric in
this basis will be denoted by 17 = (7as)a,8e{1,0}-

The ancestor correlators are defined by

(le (Oél)Td2 (ag) - Tdy, (an))g,d = /M cgm,d(@?:lai) H ”(b:lz, Q4 € V, d, di > 0.

g,n =1
Introduce variables th 1%, d > 0. The ancestor potential of CP! is defined by

F(t;q;e ZeQQF t;q), where
920

d n n
o= Y X4 S (M) Tl
i=1

n>0  d>0  oq,..,ane{lw} g,d =1
29—24n>0 di,eydn >0

As we said, there is the family of descendant potentials corresponding to the ancestor potential F'.
All these potentials are related by Givental’s s-action. Among these descendant potentials there is a
particular one that also has a simple geometric description. This potential is defined by

Fdesc(t; q;€) = 2529}7;6“(75;(]), where
g=>0

n desc o,
Fdesc t q Z q Z <H Tdi(()di)> Hts;
=1

n d>0 ! at,...,an€{l,w} g, d =1
d1yeesd >0
Recall that by ([T, Tdi(ai»;le(jc we denote the Gromov-Witten invariants of CP!.
Let us list several properties of the descendant potential F%*¢, First of all, we have (see e.g. [Dub96])

(6.1) Fdesc

The following two equations are called the string and the divisor equations (see e.g. [Hor95|):

0 0 o
(6.2) e Zt%—l-l@ Fee — 1515,
0 n>0
t1)2 62
6.3 t pese — (o) &
(6.3) oty 9g 2" ”+1atw 2 24

n>0
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Let us write the relation between the potentials F and F%5¢ in terms of Givental’s s-action. The
general formula is given in [Giv01]. Here we adapt it for the case of CP!. Introduce matrices S,k > 0,
by

S = Id, (S5 =Y (mia(a)mo(w)is n* e, i>1,
>0

z): =1+ Z Spz™ ™.

n>1

Using formulae (6.1), (6.2]), (6.3) and the so-called topological recursion relation in genus 0 (see
g. [Get99]), one can quickly compute that, for £ > 1, we have

(6.4)
1 k e — 2H, e B —1-
. W(] ) . ?fa =1, 8 =w; . ((k})2 - k!(k_kl)!> qk’ fa=p=1;
(SQIC—I)B = _Wq 717 lf o = w, ﬁ = 17 (S2I€)ﬁ = (k})qu’ lf a = B = w;
0, otherwise. 0, otherwise.

Here H, := 1+ % 4+ ...+ %, if &k > 1, and Hyp := 0. Introduce matrices si, k > 1, by s(z) =
D ons1 802 " i=10g S(2). Let (s)ap = (sk)amus- Then the potentials Fds¢ and F are related by
exp (Fdesc> = exp <S/(\Z)) exp (F'), where
— 1 1 0
s(2) = —5(s3)11 + > (sas2)anty + 5 D ()" (Say syt )t 2+ > ()t 2w o

d>0 dy,d2>0 >1
d>0

6.1.3. Miura transformations in the theory of hamiltonian hierarchies. Here we want to discuss changes
of variables in the theory of hamiltonian hierarchies. We recommend the reader the paper [DZ05] for
a more detailed introduction to this subject.

First of all, let us modify our notations a little bit. Recall that by A we denoted the ring of
differential polynomials in the variables u', ..., u”. Since we are going to consider rings of differential
polynomials in different variables, we want to see the variables in the notation. So for the rest of
the paper we denote by A1~ the ring of differential polynomials in the variables ul, ..., uN. The

same notation is adopted for the extension ./Zt\ulw"uN and for the spaces of local functionals A1

and A T
Cons1der changes of variables of the form

(6.5) (U Uy, Uggsy - - - 5€) = u® —l—Zskf,?(u;ux,...,uk), a=1,...,N,
k>1

(6.6) f]? € .Aulw"uN, deg f]? = k.

N
yeeeyU

N .

They are called Miura transformations (see e.g. [DZ05]). It is not hard to see that they are invertible.
Any differential polynomial f(u) € A1~ can be rewritten as a differential polynomial in the new
variables u®. The resulting differential polynomial is denoted by f(@). The last equation in line

garanties that, if f(u) € ./11[:11] o then f(u) € A[d] -v- In other words, a Miura transformation

cey

defines an isomorphism le\fl] A[d] v In the same way any Miura transformation identifies

the spaces of local functionals A[ ]“ N and /AX[fll] LN For any local functional hlu] € /A\Efl} v the

A S A denoted by T € B

Let us describe the action of Mlura ffansformatlons on hamiltonian hlerarchles Suppose we have
a hamiltonian system

image of it under the isomorphism A ;

ou® % Oh;[ul

(6.7) Gn N out ’

defined by a hamiltonian operator K and a sequence of pairwise commuting local functionals h;[u] €
Al W {hi[u], hj[u]} k = 0. Consider a Miura transformation (6.5). Then in the new variables @'

1
ul ..
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system (6.7) looks as follows (see e.g. [DZ05]):

O _ o, Ml

o S where

= Ou(u) v 0u” (u)

K = Z b Op o KM o (=0;)% 0 our
p,q>0 a

6.1.4. The descendant and the ancestor Dubrovin-Zhang hierarchies for CP'. The variables of the
Dubrovin-Zhang hierarchies will be denoted by w®. Denote by hq p[w] € AE(U)]I wo @Clal, @ € {Lw},p >
0, the Hamiltonians of the ancestor Dubrovin-Zhang hierarchy for CP! and by K the hamiltonian

operator. The Hamiltonians and the hamiltonian operator of the descendant hierarchy will be denoted
—d . . . . —d
by h;;c [w] and K¢ correspondingly. For convenience, let us also introduce local functionals hoficl [w]

—desc

by h, —j[w] = [ Napwtdz. For the operator S;, denote by S; the adjoint operator.

desc

Lemma 6.1. We have i plw] = 3000 (= 1) (Sf)ahy o s[w] and K9°5¢ = K.

Proof. The lemma easily follows from Theorems 9, 16 in [BPSI12b] and also from the fact that
S(z)S*(—z) = Id (see e.g. |Giv01]). The reader should also keep in mind that (S1)§ = (s1)§ =0. O

6.2. Extended Toda hierarchy. In this section we recall the construction of the extended Toda
hierarchy and the Miura transformation that relates it to the descendant Dubrovin-Zhang hierarchy
for CPL. We follow the paper [DZ04].

6.2.1. Construction. Consider formal variables v',v?, the ring of differential polynomials ./zl\v1,v2 and
the tensor product .,Zl\v1702 ® C[q,q~']. For a formal series

a= Zak(v;e; q)eked= ay € ﬁy17v2 ® Clg,q ],
kEZ

let ay =3 ;5 are"% and Res(a) := ap. Consider the operator
L — 6581 _|_ ,Ul + qeq)Qe—Eaz.

The equations of the extended Toda hierarchy look as follows:

oL 12

8711, =€ ﬁ[(LP(IOgL — Hp))+, L],
oL 1

— =l [(LPTh,, 1)

We refer the reader to [DZ04] for the precise definition of the logarithm log L. The hamiltonian
structure of the extended Toda hierarchy is given by the operator

—1/ €0,
Td 0 e (6 T — 1)
(6.8) K% = <€1(1 _ 67681) 0 )
and the Hamiltonians
—Td 2
(6.9) ool = [ (g R log L = Hyoa)) ) o

(6.10) Bt [v] :/<(pi2)!Res(Lp+2)> dz.

So the equations of the extended Toda hierarchy can be written as follows:

—Td
h’ﬁ,p [7}]

ov™
vy KTd ap
(K™ —5

ots
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6.2.2. Descendant Dubrovin-Zhang hierarchy for CP'. In [DZ04] B. Dubrovin and Y. Zhang proved
the following theorem.

Theorem 6.2. The descendant hierarchy for CP! is related to the extended Toda hierarchy by the
Miura transformation

€dy 1 £20? 02

(6.11) wh(v) = 00 1" w(v) = s | ¢—0: _ 2"

Remark 6.3. The construction of the Dubrovin-Zhang hierarchy (see [BPS12b]) immediately implies
that the Hamiltonians Ei?;c[w] contain only nonnegative powers of q. The fact that Egi[v] € Kg)l] b2 ®
Clq] easily follows from formula (6.10). The fact that El [v] € AH ® Clq| is not so trivial, since

the coefficients of the logarithm log L contain negative powers of q. We will show how to derive it

from in Section .

6.3. Several computations for the ancestor hierarchy. The ancestor Dubrovin-Zhang hierarchy
for CP! comes with a specific solution (see e.g. [BPS12H]):

0*F
Othoth | o

d D—}tg—l-(;a’l(sd’ol'

(W' P)* (2, t; 85 q) == 0™

It is called the topological solution.
Now for the rest of the paper we fix Miura transformation (1.1). Let

£9 _
e29%" —
(utOp)a(:L“,t; £; q) = ua(w)|w§’:8§:(wt°p)" = T(wt(m)a‘

6.3.1. The string and the divisor equations for the topological solution. We have the following equations
for the ancestor potential F' (see e.g. [KM94]):

_ Lw
(612) ato ;)tn+l 8t0‘ tO 0

(6.13) @_q Zd“aw qztd“atl F==u

The second equation is an analog of the divisor equation (6.3)) for the descendant potential F9¢5¢, In
order to derive it, one should use the following formula:

1, fa=p4=1;
(6.14) Cwa =% ¢q, ifa=p=uw;

0, otherwise.

It can be easily checked using (6.1]).
From equation ((6.12)) it immediately follows that

t sl
(6.15) (U op)a pm0 = §ola
Equations (6.12)) and (6.13)) also imply that
0 0
(6.16) Fni thtz+1% (utop)a _ 50(,1’
0 n>0 n

0 0 0 0
6.17 T tl v oo topya Sow
(6.17) ot q@q dzzo d+1 ot ngo d+1 ot} (u™P)
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—e
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6.3.2. Some Hamiltonians of the ancestor hierarchy. Let S(z) := ¢
will be crucial for the proof of Theorem

. The following properties

- (ul)p+2
(618) hw’p[qu:O :/Mdﬂf,
- p+1 w
(6.19) hl,p[u]‘qzo :/ p+ 1 + ;5 p.g(u dx, rp4€ Ay, degr,, = 2g,
9=
(620) El’l[u”q—o :/ (ul)ZuW n ZsQQ@UIU% dl?,
- 2 T gt

(6.21) T olu] = / <(“;)2 +q (es<€31>““ - uw)) dz.

We will prove these formulae in Appendix [A]

7. DOUBLE RAMIFICATION HIERARCHY FOR CP!

In this section we prove Theorem First of all, let us consider the hamiltonian structures.
By Lemma we have K = K9%35¢. The fact, that Miura transformation . ) transforms the
operator K¢ to 1n0,, was observed in [DZO5] This is actually an easy computation. By and
Theorem ., Miura transformation (1.1 transforms the operator K¢ to the operator K where

= 3 MWy o (oo (10 20D g,

ovY
p,q>0 q

We conclude that Miura transformation (1.1)) transforms the hamiltonian operator of the ancestor
hierarchy for CP' to the hamiltonian operator of the double ramification hierarchy for CP'.
It remains to prove that g, ,[u] = hap[u]. The proof is splitted in three steps. First, in Section

we prove this equation in degree zero: g, ,[ullg=0 = hap[u]lg=0. Then in Section we prove that
Guwolu] = huolu]. Finally, in Section we show that this information, together with the string and
the divisor equations, is enough to prove that u'?(x,t;e;q) = us"(z,t;¢;q). After that it is very easy
to show that g, ,[u] = ha p[ul.

7.1. Degree 0 parts. In this section we prove that
(7.1) Faaltl],_y = Favaltl] o -
The degree zero part of our cohomological field theory can be described very explicitly. For any
g,a,b>0,29 —2+a+b> 0, we have (see e.g. [GPIg|)
2(—=1)97 1,1, ifb=0,
(7.2) Cgatbo(1%* @w®) = { (=1)9A,, ifh=1,
0, otherwise.
Recall the following fact (see e.g. [Burlbal).
Lemma 7.1. We have ga,d[u”g:o = Emd[u]‘azo.

In Section we prove equation ([7.1)) for & = w and in Section we prove it for a = 1.

7.1.1. Hamiltonians gw,d[uﬂqzo and Ew7d[u]‘ . Here we prove that g, 4[u H = hy.qlu ]|q:0.

Lemma 7.2. We have gw,d[“]‘q:o =/ %

Proof. For any g > 1, we have )\3 = 0. Therefore, from (|7.2)) we can immediately conclude that

by Lemm a
(7.3) g g oL / Dy

gw,d[u] ‘q:O = gw,d[u] ‘q:s:O d+ 2

dz.

By ‘ , We get gw,d[qu:O - Ew,d[qu:()'
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7.1.2. Hamiltonians gy 4[] ‘q:O and hy gl ‘q:O' The goal of this section is to prove that
(7.4) ralull,_o = haalul| -
The proof of this fact is not so direct, as in the previous section. We begin with the following lemma.

Lemma 7.3. The local functionals §17d[u]‘q:0 have the following form

( cH-l u® )
malillo = [ | S # gl |

for some differential polynomials f44 € A1, deg fa 4 = 29,

1 d+1

Proof. By Lemmaand equation (6.19), we have g d[qu:a . f u d+1 " dz. Using (7.2) and the
fact that, for g > 1, )\3 = 0, we obtain

~ y B (u )d—i—l w 4 n L
(75) gl,d[ ”q:() _/ (d Z n Z <\/])Rg(0,a1,“,,an) wlAg)\g—1> Hpai.

al,...,an€Z

Note that the sum on the right-hand side of this equation contains only monomials with the vari-
ables p}. The lemma is now clear. O

Lemma 7.4. We have gl,l[qu:o = (M + 2921 % (g;glulu%g) dzx.

Proof. By (7.5), we have

91,1[U]|q:0 =

29 1.1
- € V1AgAg—1 | PaP—q-
Sy ([ o)

g>1 a€Z

For g > 1, we have fDRg(o a—a) V1AgAg—1 = 29 fDRg(a _ay AgAg—1 = a® |£;31\ where the computation of

the last integral can be found, for example, in [CMW12]. We obtain

_ “ B
91,1[UH(F0 2/ +Z€2g(2 ;‘ Ll | da.
g=>1
The lemma, is proved. O
After this preparation we are ready for proving equation . Let
falulse) =3 e fay(u eAO]
g>1

Let us expand the relation {g; 4[u], gy 1[u]}ya, = 0 using Lemmas [7.3| and We get

0fd (u')? (u' d+1 2
(7.6) / W@( 5 )+ d+1 o 2259 u2g dz.
Introduce a local functional 54[u'] € A[ ) by 8q[u'] := [ fa(u';e)dz. Equation (7.6) can be rewritten

as follows:

- (U1)3 / ( d+1 2 B2g ul
d 2 9 d
{Sda/ 6 €T o + (d—|- 1 Z g)| U2g+1 T =

From [Burl5b, Lemma 2.5] it follows that this equation uniquely determines the local functional 34[u!]
and, therefore, the Hamiltonian gy 4[u][;=0. Observe that the same argument works for the Dubrovin-
Zhang Hamiltonians hy 4[u]. Equation says that the Hamiltonian h1 4u]|;—o has the same form
as the Hamiltonian g 4[u]|q—o. Moreover, by (6.20), we have g, ;[u]lq—0 = h1,1[u]lg=0. Since Miura
transformation transforms the hamiltonian operator of the ancestor Dubrovin-Zhang hierarchy
to the operator nd,, we have {hy g[u], h11[u]}na, = 0. We conclude that g; 4[u]lq—0 = h1.q[u]|q=o.
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7.2. Hamiltonian g, ,[u]. The goal of this section is to prove that

(7.7) Fu0lu] = / (W;)Q +q (es@az)u“ - uw)) dz.

We start with the following lemma.
Lemma 7.5. The Hamiltonian g, has the form g, o[u] = [ (# + qf (u®; 5)) dx, for a differential
=0.

W —
u¥=0

polynomial f € A i such that 51—]:

Proof. Denote by deg the cohomological degree. We have the following formula ([KM94]):

(7.8) deg Cgna(Nn ®... @ 7)) =2(g—1—2d)+ Y _degvi, 7 € {l,w}.

In order to compute the Hamiltonian g ,,, we have to compute the integrals

/ AgCynt1,d(W M ® ... ®Vn).
DRQ (O at, 7an)

From ([7.8) it follows that this integral can be nonzero, only if

1 n
(7.9) QZ;deg%- =n—2+2d.
1=
Since deg~y; < 2, we get d < 1. The case d = 0 is described by Lemma Suppose d = 1. Then
equation ([7.9)) immediately implies that vy = v = ... =y, = w. We get
st = [T EF 5 (] i) .
9>0 a1, ancZ \’PRg(0:a1,...an)
n>2 Zai:O
Note that the sum on the right-hand side of this equation contains only monomials with the vari-
ables p¥. The lemma is now clear. O
Let us prove (7.7). By Lemma we have
_ (u')? w
(7.10) Juwolu] = 5 Taf(uie) | du.

From Lemmaand formula ([6.14) it follows that glu] —glu]|q=0 = [ ¢ ( f- (u;)2> dx. By the dilaton
equation (3.4]), we have

(711) goafu] = (D — 2)g(u] = G [l go + / (D —2)fdz

[

Recall that the operator D is defined by D := 3 ,(n+ 1)u28u—a. We have the equation {g,, 0,911} =
0. Let us write the coefficient of ¢ in this equation using formulae (7.10) and (7.11]). We get

5 5
/ 186—w( —2)f—<8$51£) 1“+2Z lzg dz = 0.

g>1

by Lemma

u u29 +q(D—-2)f | dx.

229

g>1

Let us apply the variational derivative % to the left-hand side of this expression. We obtain

O p_ — o S Bag o911 0f _
(7.12) Oas (D —2)f =u“0p = H; (29)!(% o =0.

We need to prove that [ f(u®)dz = [ (eS (€0)u® _ u“’) dx. It is sufficient to prove that

(7.13) of 2 0 (eS@aw)““ - u‘”) = S(£0,)e¥ P — 1.

ouw ouw
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Let r(u“;e) := 5‘;—];. Since | 5u""D] 67‘1 and [0y, D] = —0,, equation (7.12)) implies that
B
(7.14) (D = 2)0pr = u0pr + 2 2920920ty
= (29)!

Let us introduce another grading deg,,, in Ay~ putting deg,,,u’ = 1. Let us decompose the dif-
ferential polynomial r into the sum of components that are homogeneous with respect to both the
differential degree deg and the new degree deg,, ;:

Tdg = Zrd,ggg, rdg € Ayw, deg,. 749 =4d, degryy=2g.
920
a>1
Let us, by definition, put 794 := 0. Then equation (7.14) implies that, for any d > 1 and g > 0, we
have

g
B
(7.15) (d+29 = 1)8srag = u“Bsri—14+2 ) (2;;3391“%,9—%
g1=1 '

Recall that the operator 0,: Ayw — Auw vanishes only on constants. Then it is easy to see that
equation allows to reconstruct all differential polynomials 74, starting from r1 9. From
it follows that ri g = u®.

We see that, in order to prove (7.13), it remains to check that r = S(e8,)e® (£02)u* _ 1 satisfies
equation . So we have to prove the following identity:

(D — 2)0,5(e0,)e5 L 4, §(0,)e5E0 e 4 o Z52952;339+15(sax)65<581>““
g>1 )

In order to shorten the computations a little bit, let us make the rescaling x — ex and denote u*
by w. Thus, we have to prove the identity

B
(7.16) (D — 2)8,5(9,)e5@) L 40,8(8,)e5 @) + 2 Z 29 020 (8,) 5,
g>1
We have 3 -, gzg, 229 = %Zg_: 2 Therefore, is equivalent to
Oz + _ 9z
2 2
(7.17) D0,5(0,)e5 @) L 40,5(8,)e5 @) + 9,5 " 5,5(9,)e5 @),
e2 —e 2

It is easy to see that the right-hand side is equal to
w(% %) S0m 4 g, (5 4 o) oSO
Let us transform the left-hand side of (7.17)). Since [D, 0,] = 0., we get
o
+ 6_7) ,
o

DO,8(0,)e5® = (% — = F ) DeSE 4 % (% +e%) es

Oz

[D,0,5(0:)] = [D,e%z — 6_7] = % (ea

w[S

We conclude that ([7.17) is equivalent to
(7.18) (e%m - e_%x> DeS@)u Ly (e%x - e_%x) eS@a)u 4 % (e%m + e_%> e5(0a)u,

Oz 9,

We have DeS(02)t = % (67 + 67733) u - €%2)% Therefore, the left-hand side of (7.18) is equal to

o i ]. i i ]. eai 1 —e 0
(e% - e*%) [2 (e% —f—e*%) U - es(az)“] =3 (eaﬂ” + 1) u-e O e B (1 —i—e*az) u‘e1 o
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On the other hand, the right-hand side of ([7.18) is equal to

X 1 xZ T €T X
" (632 _ G ) S@)u . (e% +€,%> |:(662 g ) u_es(az)u] _
— 0z

Oz _ _e— Oz 1 Oz _ 1 .
(7'20) =Uu (6 O e 61 O u) + 5 (68”” — 1) u - eTlu + 5 (1 — e_81> u - elTu.

It is easy to see that ((7.19) is equal to (7.20)). Equation ([7.7) is finally proved.

7.3. Final step. In this section we prove that g, 4[u] = haa[u]. Recall that by (u*")*(z,t;€;q)
(see Section we denote the string solution of the double ramification hierarchy for CP' and

by (u!°P)¥(x, t; £; q) we denote the Miura transform of the topological solution of the ancestor Dubrovin-
Zhang hierarchy for CP! (see Section .

Lemma 7.6. We have (u'?)*(z,t,e;q) = (us")*(x,t;€;q).

Proof. By the definition of the string solution and equation (6.15), the initial conditions agree:
(uloP)e bmp = (ustry = 6®lz. Since GoalUllg=0 = ha,alu]lq=0, We get

(7.21) (W' P)] g = @) -

From ({6.21]) it follows that the power series (u!°P)< is a solution of the following system:

Ou g (S(eon)esem _1)),

tx=0

ot¥
7.22 0
( ) ou® 1
o Uy

The argument, very similar to the one from the paper [Pan00] (see the proof of Proposition 2 there),

shows that the string equation (6.16[), the divisor equation (6.17) and the system (7.22)) uniquely
determine the power series (u'°?)* starting from the degree 0 part (u'?)*|,—o. On the other hand, we

can apply the same arguments to the string solution (u*")“ of the double ramification hierarchy. The
string equation for (u®")® was derived in [Burl5a] and it coincides with ((6.16). By Lemma and
formulae (6.14)), we have the divisor equation for (u*")®:

6? - thﬂa 2 qzthrl ot (utr)> = 6.

It coincides with (6.17)). Since g, o[u] = heo[u], the power series (u")* is a solution of system (7.22)).

In the same way as (u'?), we can now uniquely reconstruct (u*")* from the degree 0 part (u*")*|,—o.
From ([7.21]) it follows that (u*")® = (u!°P)¥. The lemma is proved. 0

Consider the ancestor Dubrovin-Zhang hierarchy for CP! in the variables u®:

ou® ang Shg.alu] .

7.23 — = -
( ) atg " ouH
Using the string equation (6.12)) it is easy to check that
(7.24) ((ut"p)ﬂxzo =15+ 6541 + O(?) + O(e%).

From this equation it follows that any power series in the variables ¢}, and ¢ can be written as a
power series in ((um”)g‘xzo — (50"1(5(“), ¢ and ¢ in a unique way. Since ( topye g a solution of (7.23] -,

we conclude that the differential polynomials n**d, 6h§£{u] can be uniquely reconstructed from the

. .. . . oh . .
power series (u'°?)®. Therefore, the variational derivatives gﬁ‘f}u] are uniquely determined up to a

constant. From the construction of the Dubrovin-Zhang hierarchy (see [BPS12b]) it is easy to see that

éﬁg’d [u]
duk

0= 0. We conclude that the local functionals h, 4[u] are uniquely determined by (ufP)?.
ur=
We can apply the same arguments to the double ramification hierarchy and the string solution.

Since (us™)* = (u!°P)* the string solution satisfies the same property (7.24). Note that from the
93,qlul

. . . . s 0
construction of the double ramification hierarchy it is easy to see that —5:i— 0= 0. Then we
uf=
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can repeat our arguments and conclude that the local functionals g, 4[u] are uniquely determined
by (uS*")* and, therefore, g, 4[u] = ha,q[u]. Theorem H is proved.

APPENDIX A. COMPUTATIONS WITH THE EXTENDED TODA HIERARCHY

In this section we prove equatlons (6.18]), (6.19), 6 20 and ((6.21)).
), i 6.19)

For the proofs of equations 1 and , let us note that from Lemma and for-
mulae it follows that the degree zero parts of the ancestor and the descendant Dubrovm Zhang

hierarchies for CP* coincide ap[ llg=0 = hdesc[ ]g=0. Theorem ﬁ says that h, esc[ | = ﬁgi[fw].
Recall that, by (1.1)) and , the variables u!, u* and v',v? are related in the following way:
£0,  —Z0,
(A.1) v (u) = 2%, v (u) = el
€0y

A.1. Proof of (6.18]). We have

7Td I € | o 1\p+2 _ / (v!)r+?
by, plv]lg=0 = / 1) Res ((e +vh) ) dx = it 2)!d1:
From (A.1)) it follows that

_ £0z,,1\p+2 . 1\p+2 1\p+2
Feoepltllg=0 = /(62 v) dxz/e?a’”(u) dx:/(“) dz

(p+2)! (p+2)! (p+2)!
Equation (/6.18)) is proved.

A.2. Proofof (6.19)). First of all, let us briefly recall the definition of the logarithm log L from [CDZ04].
The dressing operators P and Q:

P=1+> pre %, Q=> g

E>1 k>0

are defined by the following identities in the ring of Laurent series in e~¢% and e%% respectively:
I = Poeaaz oP—l _ Qoe—aaz OQ_l_

Note that the coeflicients pr and g, of the dressing operators do not belong to the ring ./T,Ul,vz ®Clg, ¢ Y]
but to a certain extension of it. The logarithm log L is defined by

log L := % (PoeagcoP_1 —Qoe@on_l) = % (eQon_l —ePIoP_l).

Here P, := Zk21(8xpk)e*kgaf and Q, := Zkzo(&ch)ekf‘%. In [CDZ04] (see Theorem 2.1) it is proved
that the coefficients of log L belong to .%TLOI} b2 ® Clg,q71].

. . o . =—Td
Actually, we are going to prove a precise formula for the Hamiltonian h ,[v][=0. From the proof

of Theorem 2.1 in [CDZ04] it follows that the coefficients of the operator S := —eP, o P~1 belong
to ALOJ’UQ ®Clg]. Let SV := S|,—0. From [CDZ04] it is also easy to see that the coefficients of S° belong
to ,ZLOE

For a differential polynomial f(v'ie) € Ay, let f<(vle) = 2 (f(v'se) + f(v';—€)). Follow-
ing [CDZ04] let us introduce operators By and B_ by
€0y €0,
Be=o—1 BT i

Lemma A.1. We have

7Td _ Cia 2 2 R 1yp+1 0 v

hy plv]lg=0 = / ((p—i— 1)!3_1) + P 1) Res <(e +v )P o (S —Hp+1)) dx.
Proof. We have

—Td

hy plv] = /<(pj D Res(LP™ (log L — Hp+1))> dz.

Since the coefficients of LP*! belong to .Aq[jl} 2 @ Clg], we obviously have

(A.2) Res(Lp'H)|q:0 = Res ((658”” + vl)p“) .



24 A. Buryak, P. Rossi

Let us compute the residue Res(LP™!log L)|,—0. We have log L = % (st 0oQ ' —¢eP, 0 P_l). As we
have already said, the coefficients of e P, o P~! belong to le\LOl} ,2 @ Clg]. Therefore,

(A.3) — Res (Lerl oelP;o P_l) ‘qZO = Res ((e‘saz + 1Pl o SO> .

Let us consider the residue Res (LP*! 0 £Q, 0 Q1). From the proof of Theorem 2.1 in [CDZ04)] it fol-
lows that the coefficients of the operator eQ, 0@ ! belong to .,Zﬂvol} ,2@Clg, q~']. Note that they contain
inverse powers of ¢, so we have to be careful while computing the residue Res (Lp+1 0e@g o Q_l) ’

Introduce an operator CNQ by @ =1+ 4 gpehede = qo_lQ. We have

q=0"

@ 0e % o é_l =L, where L= qalL o qp.

The operator €9z can be interpreted as a shift operator, so, following [CDZ04], we will sometimes
denote €¥% f by f(z + ke). We have the following identity (see [CDZ04, eq. 2.21]):

x 2
(A4) L]o(ggf(—)é) =qe”".
It implies that L=c%0% 4l 4 qe”Q(‘”*E) e?9r . 'We can compute that
(A.5) eQroQ " =eqo(@0) " +q0eQr o Qo gy
We have ([CDZ04, eq. 2.21]) (qgg““ — (qso)&(f;)g) = v2. Therefore, eqo(qo) ! = 1728_’;330 v? = B_v?. We
see that Res(LP*! o eqoqyt) € A\Lol}ﬂjg ® Clq] and
(A.6) Res(LP™ 0 egogy ) |4=0 = Res ((eaaf +ol)Ptlo 5q0q0_1> = (;}:)_pf)ll B_v?.

It remains to compute Res(LPH! o G0eQz0Q L o qal). We have
Res (Lp+1 o qOEQVw o @_1 o qal> = Res (E’H‘l o stx o @_1) .
It is easy to relate the operator 5@5,; ) @_1 to the operator S = —eP, o P~1. Note that

L= L|02(m)r—>1)2(zf€) :
E—>—¢€
Therefore,

5@1‘ 0 ©_1 = S|v2(:r)r—>v2(zf€) :

e——e
We immediately see that the coefficients of aéx ) @*1 belong to ./Zl[jol] ,2 ® Clg]. We get
(A.7) Res (ZPH 0eQy o @_1>‘ = Res ((e_aaz + 0Pl o <£C§m o @_1)‘ 0> =
q:

= Res <(e—581 + 1Pl o SOLH_E) = Res ((eaa”” +oh)PFlo SO)

q=0

E——€

Collecting equations (A.2)), (A.3)), (A.6)) and (A.7) we get the statement of the lemma. O

Let us prove equation (6.19)). Using the proof of Theorem 2.1 in [CDZ04] it is easy to compute that
- (v))* 4+ O(e). Therefore, we have

S0 = Zk21 fke_kaa‘”, where f = %
+1 .
= pz: p+ 1 & (Ul)p+1_
e=0 . 7 7

=1

Res ((esa”” +o1)Ptlo SO)

Let us denote the sum on the right-hand side by Cp41. For k > 1, we have

G- =3 () o5 (e [wr= [0 wpa= L

i=0 =0

Since C7 = 1, we obtain Cp1 = H,11. We get

Res ((eeaﬂ” + 1Pl o (89 — Hp+1> =0.

e=0
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Using Lemma [A 1] we can conclude that

thd[U]‘ _ / (Q}l)PJrl 5 U n 252gr 1) dz
Y q:0 (p+ 1) >1 .9 ?

where 7, , € A1, degg; ¢ 7p g = 2g. Finally, equation (A.1]) implies that

1
it~ (0o )
1,p 4=0 Pg .

Equation (6.19) is proved.

A.3. Proof of ([6.20). Let us use Lemma It is not hard to compute the first two coefficients of
the operator SY:

1
S0 = B vte % 4 <2B+(U1)2 —vl(z — €)B+v1> e 2% 4
Therefore, we have
1
Res ((egax +o1)%o SO) = %% <28+(v1)2 —vl(z - 5)B+v1> + (0l(z) + vl (z 4 €))% Bvl.

Taking the integral we get

/Res ((658” +o1)%o0 SO> dx = / <(Ul)2 — oz —e)Bro' + (v + vl (x + 5))658’“8+U1> dx =

2
1\2
= / <(1}2) + le+vl> dz.
Let us take the even part:

(01)2 ev 1 1 e%az +€*%8z
/ <2 + ’U18+U1 dl‘ = 5('01)2 =+ ivlfaxmvl dflf =
_/ —1—25291)

We get hid[v]| = @) g 42 + g29y! B2g,v dx and, therefore,
1,1 q=0 2 g>1 (29)! "29

|29

h{cf[u]‘qzoz/ ——u” —I—ZEQQU g'uég dz.

g>1
Equation (/6.20)) is proved.

A.4. Proof of (6.21). We have

- 1 2 1\2
hfﬁl)[v] = / 5Res ((eaaf + ot + qe”Qe_‘faz) > dx = / ((U2> + qe”Q) dx.

Using (A.1]) we get ngé [u) = [ ((ul)Z +qe Gﬁx)““) dz. Finally, if we apply Lemma we obtain

Polu] = / <(“;)2 +q (eSE0 uw)> da.

>

Equation (/6.21]) is proved.
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