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Abstract. The double ramification hierarchy is a new integrable hierarchy of hamiltonian
PDEs introduced recently by the first author. It is associated to an arbitrary given cohomo-
logical field theory. In this paper we study the double ramification hierarchy associated to
the cohomological field theory formed by Witten’s r-spin classes. Using the formula for the
product of the top Chern class of the Hodge bundle with Witten’s class, found by the second
author, we present an effective method for a computation of the double ramification hierarchy.
We do explicit computations for r = 3, 4, 5 and prove that the double ramification hierarchy
is Miura equivalent to the corresponding Dubrovin–Zhang hierarchy. As an application, this
result together with a recent work of the first author with Paolo Rossi gives a quantization of
the r-th Gelfand–Dickey hierarchy for r = 3, 4, 5.
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1. Introduction

Integrable hierarchies play a major role in the study of cohomological field theories, such as
Gromov–Witten theory of a projective variety or Fan–Jarvis–Ruan–Witten theory of an isolated
singularity. A striking example is a conjecture of Witten [46], proved by Kontsevich [31],
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claiming that the partition function of the so-called trivial cohomological field theory (i.e. the
Gromov–Witten theory of a point) is a τ -function of the KdV hierarchy. This gives recursion
formulas to compute any intersection numbers involving psi-classes on the moduli space of
stable algebraic curves Mg,n.

In a recent paper [2], a new integrable hierarchy of partial differential equations associated
to a given cohomological field theory was introduced. The construction was inspired by ideas
from Symplectic Field Theory [14] and it makes use of the intersection numbers of the given
cohomological field theory with the double ramification cycle, the top Chern class of the Hodge
bundle and the psi-classes on the moduli space Mg,n.

In [2] the author conjectured, guided by the examples of the trivial and the Hodge coho-
mological field theories (which give the KdV hierarchy and the hierarchy of the Intermediate
Long Wave equation respectively) that the double ramification hierarchy is Miura equivalent
to the Dubrovin–Zhang hierarchy associated to the same cohomological field theory via the
construction described, for instance, in [13] (see also [3, 4]). In [5] the authors proved that the
conjecture is true in the case of the cohomological field theory associated to the Gromov–Witten
theory of the complex projective line.

In this paper we focus on the cohomological field theory formed by Witten’s r-spin classes, the
so-called r-spin theory. Originally, it was introduced in the context of the generalized Witten
conjecture [47], claiming that its partition function is a τ -function of the r-th Gelfand–Dickey
hierarchy. The r-spin theory was then developed by several authors [1, 28, 27, 29, 38, 40] and
the generalized Witten conjecture was at last proved by Faber, Shadrin, and Zvonkine [16] after
many other contributions [41, 33, 34, 35, 36, 20, 15, 44].

Interestingly, the generalized Witten conjecture inspired the development of the quantum
singularity theory by Fan, Jarvis, and Ruan [18, 17], also called Fan–Jarvis–Ruan–Witten
(FJRW) theory. The r-spin theory corresponds to the singularity xr which is one particular
example of the simple singularities:

xr+1, Ar − case,
x2y + yr−1, Dr − case,
x3 + y4, E6 − case,
x3y + y3, E7 − case,
x3 + y5, E8 − case.

For each simple singularity there is a corresponding integrable hierarchy. These hierarchies
are called the ADE-hierarchies. The Ar-hierarchy coincides with the r-th Gelfand–Dickey
hierarchy. For simple singularities of type D and E these hierarchies were constructed by
Drinfeld–Sokolov [12] and later by Kac–Wakimoto [30] (these two constructions are equivalent
by [26]). Fan, Jarvis, and Ruan [18, 17] generalized the result of [16] proving that the partition
functions of all simple singularities are τ -functions of the corresponding integrable hierarchies.

Fan–Jarvis–Ruan–Witten theory is defined for any Landau–Ginzburg model (W,G), that is
the data of a quasi-homogeneous polynomial W with an isolated singularity at the origin and
of a group G of diagonal matrices under which W is invariant and which contains a matrix
generated by the weights of the polynomial. Fan, Jarvis, and Ruan introduced a moduli space
associated to the Landau–Ginzburg model (W,G) and constructed a virtual fundamental class
on it, leading to a cohomological field theory.

FJRW theory is largely unknown in genus greater than zero and, in most cases, even the
genus-zero invariants are hard to obtain. The situation is in fact very similar to Gromov–
Witten theory; for instance, the main obstruction called non-concavity in FJRW theory is just
as non-convexity in Gromov–Witten theory.

In a recent paper [22], the second author computed all genus-zero invariants of the quantum
singularity theory of (W,Gmax) for chain polynomials

W = xa11 x2 + . . .+ x
aN−1

N−1 xN + xaNN
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and the maximal group Gmax. It involved to overcome non-concavity and it went through the
Polishchuk–Vaintrob construction [42] of the virtual class by means of matrix factorizations.
The second author explained how to get a two-periodic complex from these matrix factoriza-
tions and he introduced a new notion of a recursive complex to highlight their nice vanishing
properties in cohomology. The main result is an explicit computation of the cohomology of
a recursive complex, under some additional assumptions satisfied by the Polishchuk–Vaintrob
construction in genus-zero for chain polynomials.

Interestingly, the same method provides some invariants for chain polynomials in an arbitrary
genus as well. In [23] (see also [24]), the second author proves an explicit formula for the cup
product of the virtual class with the top Chern class of the Hodge bundle. Here we present
this result in the case of the r-spin theory (see Theorem 3.1). Combining it with Chiodo’s
formula [9] and Hain’s formula for the double ramification cycle [25] we obtain an effective
algorithm for a computation of the Hamiltonians of the double ramification hierarchy for the
r-spin theory. In [5] the first author with P. Rossi found a simple recursion that allows to
reconstruct the whole double ramification hierarchy starting from the Hamiltonian g1,1. As a
result, our method gives an effective way to reconstruct the double ramification hierarchy for
the r-spin theory for an arbitrary fixed r.

Another goal of the present paper is to compare the double ramification and the Dubrovin–
Zhang hierarchies associated to the r-spin theory. It is known that, after certain rescalings,
the Dubrovin–Zhang hierarchy coincides with the r-th Gelfand–Dickey hierarchy ([47, 16, 13]).
In the 2-spin case the associated double ramification hierarchy coincides with the Dubrovin–
Zhang hierarchy that is the KdV hierarchy (see [2]). In this paper, using our general method, we
explicitly compute the Hamiltonian g1,1 for the 3, 4 and 5-spin theories and prove the following
result.

Theorem 1.1. For the 3-spin theory the double ramification hierarchy coincides with the
Dubrovin–Zhang hierarchy. For the 4 and 5-spin theories the double ramification hierarchy
is related to the Dubrovin–Zhang hierarchy by the following Miura transformation:

w1 = u1 +
ε2

96
u3xx,

w2 = u2,

w3 = u3,

for r = 4;



w1 = u1 +
ε2

60
u3xx,

w2 = u2 +
ε2

60
u4xx,

w3 = u3,

w4 = u4,

for r = 5.

The theorem has several important consequences. Since the Dubrovin–Zhang hierarchy for
the r-spin theory is closely related to the r-th Gelfand–Dickey hierarchy, the recursion formulas
from [5] give recursion formulas for the Hamiltonians of the r-th Gelfand–Dickey hierarchy
for r = 3, 4, 5. As far as we know, these recursion formulas never appeared in the literature
before. Another application of Theorem 1.1 comes from the work [6] where the first author
together with P. Rossi constructed a natural quantization of the double ramification hierarchy.
Using this construction and Theorem 1.1 we obtain a quantization of the r-th Gelfand–Dickey
hierarchy for r = 3, 4, 5. As far as we know, this result is also new.

We would like to say a few words about the way we prove Theorem 1.1. Both the dou-
ble ramification hierarchy and the Dubrovin–Zhang hierarchy consist of an infinite number
of Hamiltonians and it seems to be difficult to prove directly that they are related by some
Miura transformation. As we already said, there are simple recursions (see [5]) that allow to
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reconstruct the whole double ramification hierarchy starting from just one Hamiltonian g1,1.
The problem is that on the Dubrovin–Zhang side we don’t know such recursions. Moreover,
even in the concrete example of the r-spin theory it seems to be difficult to prove that the
associated Dubrovin–Zhang hierarchy, after some Miura transformation, satisfies the same re-
cursions as were found in [5]. In order to overcome this difficulty we obtain a general result
that, we believe, can have an independent interest. We prove that a hamiltonian hierarchy of
certain type can be uniquely reconstructed from just one Hamiltonian using also the string and
the dilaton equations for a specific solution (see Proposition 5.2). This result together with
an explicit computation of the Hamiltonian g1,1 of the double ramification hierarchy and the
known description of the Dubrovin–Zhang hierarchy allows us to prove Theorem 1.1.

Remark 1.2. As we were informed by B. Dubrovin and S. Shadrin, Proposition 5.2 is known
to experts, but it seems that it didn’t appear in the literature before.

1.1. Organization of the paper. In Section 2 we recall the construction of the double ram-
ification hierarchy.

In Section 3 we review the construction of Witten’s r-spin class and present the formula
from [23, 24] for its product with the the top Chern class of the Hodge bundle. We show
how to apply it to a computation of the Hamiltonians of the double ramification hierarchy for
the r-spin theory and compute explicitly the Hamiltonian g1,1 for the 3, 4 and 5-spin theory.

In Section 4 we recall the construction of the r-th Gelfand–Dickey hierarchy and its relation
to the Dubrovin–Zhang hierarchy for the r-spin theory.

In Section 5 we prove that the string solution of the double ramification hierarchy satisfies
the dilaton equation. Then we prove Proposition 5.2 and Theorem 1.1.

In Section 6 we obtain a quantization of the r-spin Dubrovin–Zhang hierarchy for r = 3, 4, 5.

1.2. Acknowledgments. We are grateful to A. Chiodo who organized the conference “Mirror
symmetry and spin curves” in Cortona, the present work was started there. We also thank
B. Dubrovin, P. Rossi, S. Shadrin, R. Pandharipande and D. Zvonkine for discussions related
to the work presented here.

The first author was supported by grant ERC-2012-AdG-320368-MCSK in the group of R.
Pandharipande at ETH Zurich, by grants RFFI 13-01-00755 and NSh-4850.2012.1. The second
author was supported by the Einstein Stiftung.

2. Double ramification hierarchy

In this section we briefly recall the main definitions from [2] (see also [5]). The double
ramification hierarchy is a system of commuting Hamiltonians on an infinite dimensional phase
space that can be heuristically thought of as the loop space of a fixed vector space. The entry
datum for this construction is a cohomological field theory in the sense of Kontsevich and
Manin [32]. Denote by cg,n : V ⊗n → Heven(Mg,n;C) the system of linear maps defining the
cohomological field theory, V its underlying N -dimensional vector space, η its metric tensor
and e1 ∈ V the unit of the cohomological field theory.

2.1. The formal loop space. The loop space of V will be defined somewhat formally by
describing its ring of functions. Following [13] (see also [43]), let us consider formal variables uαi ,
α = 1, . . . , N , i = 0, 1, . . ., associated to a basis e1, . . . , eN of V . Always just at a heuristic
level, the variable uα := uα0 can be thought of as the component uα(x) along eα of a formal
loop u : S1 → V , where x is the coordinate on S1, and the variables uαx := uα1 , u

α
xx := uα2 , . . .

as its x-derivatives. We then define the ring AN of differential polynomials as the ring of
polynomials f(u;ux, uxx, . . .) in the variables uαi , i > 0, with coefficients in the ring of formal
power series in the variables uα = uα0 . We can differentiate a differential polynomial with
respect to x by applying the operator ∂x :=

∑
i≥0 u

α
i+1

∂
∂uαi

(in general, we use the convention

of sum over repeated greek indices, but not over repeated latin indices). Finally, we consider
the quotient ΛN of the ring of differential polynomials first by constants and then by the image
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of ∂x, and we call its elements local functionals. A local functional, that is the equivalence class
of a differential polynomial f = f(u;ux, uxx, . . .), will be denoted by f =

∫
fdx.

Differential polynomials and local functionals can also be decribed using another set of formal
variables, corresponding heuristically to the Fourier components pαk , k ∈ Z, of the functions
uα = uα(x). Let us, hence, define a change of variables

uαj =
∑
k∈Z

(ik)jpαke
ikx,(2.1)

which allows us to express a differential polynomial f(u;ux, uxx, . . .) as a formal Fourier series
in x where the coefficient of eikx is a power series in the variables pαj (where the sum of the

subscripts in each monomial in pαj equals k). Moreover, the local functional f corresponds to
the constant term of the Fourier series of f .

Let us describe a natural class of Poisson brackets on the space of local functionals. Given
an N × N matrix K = (Kµν) of differential operators of the form Kµν =

∑
j≥0K

µν
j ∂jx, where

the coefficients Kµν
j are differential polynomials and the sum is finite, we define

{f, g}K :=

∫ (
δf

δuµ
Kµν δg

δuν

)
dx,

where we have used the variational derivative δf
δuµ

:=
∑

i≥0(−∂x)i
∂f
∂uµi

. Imposing that such

bracket satisfies the anti-symmetry and the Jacobi identity will translate, of course, into con-
ditions for the coefficients Kµν

j . An operator that satisfies such conditions will be called hamil-
tonian. A standard example of a hamiltonian operator is given by η∂x. The corresponding
Poisson bracket also has a nice expression in terms of the variables pαk :

{pαk , p
β
j }η∂x = ikηαβδk+j,0.

Finally, we will need to consider extensions ÂN and Λ̂N of the spaces of differential polyno-
mials and local functionals. First, let us introduce a grading deg uαi = i and a new variable ε

with deg ε = −1. Then Â[k]
N and Λ̂

[k]
N are defined, respectively, as the subspaces of degree k

of ÂN := AN ⊗ C[[ε]] and of Λ̂N := ΛN ⊗ C[[ε]]. Their elements will still be called differen-
tial polynomials and local functionals. We can also define Poisson brackets as above, starting
from a hamiltonian operator K = (Kµν), Kµν =

∑
i,j≥0K

µν
ij ε

i∂jx, where Kµν
ij are differential

polynomials of degree i− j + 1. The corresponding Poisson bracket will then have degree 1.
Note that to any local functional h =

∑
i≥0 hi, deg hi = i, from ΛN we can naturally associate

a local functional h
′

from Λ̂
[0]
N by h

′
:=
∑

i≥0 ε
ihi. We can do the same procedure with any

hamiltonian operatorK = (Kµν), Kµν =
∑

i≥0K
µν
i ∂ix, K

µν
i ∈ AN . LetKµν

i =
∑

j≥0K
µν
ij , where

degKµν
ij = j. From the anti-symmetry property of the bracket {·, ·}K it follows that Kµν

00 = 0.

Then, we define an operator K ′ = ((K ′)µν) by (K ′)µν =
∑

i,j≥0K
µν
ij ε

i+j−1∂ix. Therefore, we

can naturally consider the space ΛN as a subspace of Λ̂
[0]
N and the set of hamiltonian operators

for ΛN as a subset of hamiltonian operators for Λ̂N .
A hamiltonian system of PDEs is a system of the form

∂uα

∂τi
= Kαµ δhi

δuµ
, α = 1, . . . , N, i = 1, 2, . . . ,(2.2)

where hi ∈ Λ̂
[0]
N are local functionals with the compatibility condition {hi, hj}K = 0, for i, j ≥ 1.

The local functionals hi are called the Hamiltonians of the system (2.2).

2.2. The double ramification hierarchy. Consider an arbitrary cohomological field theory
cg,n : V ⊗n → Heven(Mg,n;C). As usual, we denote by ψi the first Chern class of the line
bundle over Mg,n formed by the cotangent lines at the i-th marked point. Denote by E the
rank g Hodge vector bundle over Mg,n whose fibers are the spaces of holomorphic one-forms.
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Let λj := cj(E) ∈ H2j(Mg,n;C). The Hamiltonians of the double ramification hierarchy are
defined as follows:

gα,d :=
∑

g≥0,n≥2

(−ε2)g

n!

∑
a1,...,an∈Z∑

ai=0

(∫
DRg(0,a1,...,an)

λgψ
d
1cg,n+1

(
eα ⊗

n⊗
i=1

eαi

))
n∏
i=1

pαiai ,(2.3)

for α = 1, . . . , N and d = 0, 1, 2, . . .. Here DRg(a1, . . . , an) ∈ H2g(Mg,n;Q) is the double
ramification cycle. On Mg,n it can be defined as the Poincaré dual to the locus of pointed
smooth curves [C, p1, . . . , pn] satisfying

OC

(
n∑
i=1

aipi

)
∼= OC ,

and we refer the reader, for example, to [2] for the definition of the double ramification cycle
on the whole moduli space Mg,n.

The expression on the right-hand side of (2.3) can be uniquely written as a local functional

from Λ̂
[0]
N using the change of variables (2.1). Concretely it can be done in the following way.

The integral ∫
DRg(0,a1,...,an)

λgψ
d
1cg,n+1

(
eα ⊗

n⊗
i=1

eαi

)
(2.4)

is a polynomial in a1, . . . , an homogeneous of degree 2g. It follows from Hain’s formula [25], the
result of [37] and the fact that λg vanishes onMg,n \Mct

g,n, whereMct
g,n is the moduli space of

stable curves of compact type. Thus, the integral (2.4) can be written as a polynomial

Pα,d,g;α1,...,αn(a1, . . . , an) =
∑

b1,...,bn≥0
b1+...+bn=2g

P b1,...,bn
α,d,g;α1,...,αn

ab11 . . . a
bn
n .

Then we have

gα,d =

∫ ∑
g≥0,n≥2

ε2g

n!

∑
b1,...,bn≥0

b1+...+bn=2g

P b1,...,bn
α,d,g;α1,...,αn

uα1
b1
. . . uαnbn dx.

Note that the integral (2.4) is defined only when a1 + . . . + an = 0. Therefore, a polyno-

mial Pα,d,g;α1,...,αn is actually not unique. However, the resulting local functional gα,d ∈ Λ̂
[0]
N

doesn’t depend on this ambiguity (see [2]).
The fact that the local functionals gα,d mutually commute with respect to the standard

bracket η∂x was proved in [2]. The system of local functionals gα,d, for α = 1, . . . , N , d =
0, 1, 2, . . ., and the corresponding system of hamiltonian PDEs with respect to the standard
Poisson bracket {·, ·}η∂x ,

∂uα

∂tβq
= ηαµ∂x

δgβ,q
δuµ

,

is called the double ramification hierarchy.

3. Computation of the double ramification hierarchy for the r-spin theory

In this section, we first recall the construction of the r-spin cohomological field theory. Then
we present the formula from [23, 24] for the cup product of Witten’s class with the top Chern
class of the Hodge bundle, see Theorem 3.1. Finally, we show how to apply this result to a
computation of the Hamiltonians of the double ramification hierarchy and compute explicitly
the Hamiltonian g1,1 for the r-spin theory, with r ≤ 5.
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3.1. r-spin theory. The r-spin theory is the cohomological field theory corresponding to the
quantum singularity theory, or Fan–Jarvis–Ruan–Witten theory, of the polynomial xr. The
state space of this theory is

H :=
r−1⊕
k=1

C · ek

with the pairing (ek, el) = δk+l,r and with the grading

deg(ek) = 2
k − 1

r
.

The linear maps cg,n : H⊗n → Heven(Mg,n;C) defining the cohomological field theory factorize
through the cohomology of another moduli space, called the moduli space of r-spin curves. Let
us briefly recall it.

Definitions 3.1. A genus-g orbifold (or twisted) curve C with marked points is a connected,
proper, one-dimensional Deligne–Mumford stack whose coarse space C is a genus-g nodal curve,
such that the morphism ρ : C → C is an isomorphism away from the nodes and the marked
points. Any marked point or node has a non-trivial stabilizer equal to a finite cyclic group. An
orbifold curve is called smoothable if its local picture at the node is {xy = 0} /U(k) for some
k ∈ Z, where the action of the group U(k) of k-th roots of unity is defined by

ζk · (x, y) := (ζkx, ζ
−1
k y), ζk := e

2πi
k .

An r-stable curve is a smoothable orbifold curve whose stabilizers (at the nodes and at the
markings) have the same fixed order r and whose coarse nodal pointed curve is stable. An
r-spin curve of genus g is the data

(C;σ1, . . . , σn;L;φ)

of an r-stable genus-g orbifold curve C with marked points σ1, . . . , σn and of a line bundle L on
the curve C satisfying the condition

(3.1) φ : L⊗r ' ωC,log := ωC(σ1 + . . .+ σn),

where ωC is the canonical line bundle on C. The moduli space of r-spin curves is the stack
classifying all r-spin curves of genus g with n marked points. We denote it by Srg,n.

The moduli space Srg,n is a smooth and proper Deligne–Mumford stack of complex dimen-

sion 3g−3+n and it is a finite cover of the moduli spaceMg,n of stable curves. The projection
o: Srg,n →Mg,n is obtained by forgetting the line bundle and the stack structure.

Locally at the marked point σi of an r-spin curve, the group U(r) of r-th roots of unity acts
on the line bundle L as

(3.2) ζr · (x, ξ) = (ζrx, ζ
mi
r ξ),

where mi ∈ {0, . . . , r − 1} is called the multiplicity of the line bundle L at the marked point σi.
Hence we have a decomposition

Srg,n =
⊔

mi∈{0,1,...,r−1}

Srg,n(m1, . . . ,mn)

of the moduli space of r-spin curves into the moduli spaces Srg,n(m1, . . . ,mn) of r-spin curves
with fixed multiplicities (m1, . . . ,mn) at the marked points. For the space Srg,n(m1, . . . ,mn) to
be non-empty, the following selection rule [18, Proposition 2.2.8] must hold:

ζm1
r · · · ζmnr = ζ2g−2+nr ,

or, equivalently,

m1 + . . .+mn = 2g − 2 + n (mod r).(3.3)
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Remark 3.2. There is an alternative description of the moduli space of r-spin curves with
multiplicities (m1, . . . ,mn), where a curve C has no orbifold structure at the marked points
(but one still has orbifold structures at the nodes) and where the condition (3.1) on the line
bundle L is replaced by

φ : L⊗r ' ωC

( n∑
i=1

(1−mi)σi

)
.

Both definitions lead to the same moduli space and the same theory.

Each component Srg,n(m1, . . . ,mn) possesses an important homology cycle whose Poincaré
dual cohomology class has degree

2 · degvir = deg(em1) + · · ·+ deg(emn) + 2
(

1− 2

r

)
(g − 1).

This cohomology class is called Witten’s virtual class

cvir(m1, . . . ,mn)g,n ∈ H2·degvir(Srg,n(m1, . . . ,mn);C)

and it is the main ingredient of the r-spin cohomological field theory. Witten’s virtual class
has the property to vanish when at least one multiplicity mi is zero, and we define a linear
map cr-sping,n : H⊗n → Heven(Mg,n;C) by

cr-sping,n (em1 ⊗ . . .⊗ emn) := (−1)degvir r1−g o∗cvir(m1, . . . ,mn)g,n, mi ∈ {1, 2, . . . , r − 1}.(3.4)

The rescaling coefficient (−1)degvir r1−g occurs since we have to divide by the degree r2g−1 of
the projection o and to multiply by the order of the group Ur. We explain the sign (−1)degvir

in the remark below. The collection of maps cr-sping,n has all the properties of cohomological field
theory and is called the r-spin theory.

Remark 3.3. There are two different conventions on the sign of the virtual class. In [8, 10,
22], the virtual class in the concave situation is given by the top Chern class of the vector
bundle R1π∗L (see equation (3.7)), whereas in [18, 42] they choose the dual of this vector
bundle. Even without concavity, the two conventions only differ by the sign (−1)degvir, where
the integer degvir is the half of the cohomological degree of the virtual class. We follow in this
paper the convention of [8, 10, 22] for the virtual class, as we find it more natural. Nevertheless,
when dealing with the cohomological field theory, we have to incorporate this sign, as shown in
equation (3.4), for the potential of the r-spin theory to be a tau-function of the r-th Gelfand–
Dickey hierarchy.

Remark 3.4. The quantum singularity theory is defined for more general polynomial singular-
ities W and there are two constructions of the virtual class. One uses analytic methods and has
been provided by Fan, Jarvis, and Ruan [18, 17]. The other construction, by Polishchuk and
Vaintrob [42], is algebraic and uses a general set-up of matrix factorizations. It is not known
in general whether these two constructions give the same cohomological class, but it is proved
to be true for W = xr (see [7, Theorem 1.2], or the more general result [22, Theorem 3.25]).

3.2. Hodge integrals for the r-spin theory. The goal of this section is to present the
formula from [23, 24] for the product

λgcvir(m1, . . . ,mn)g,n,(3.5)

where, abusing our notations a little bit, we denote by the same letter λg the top Chern class
of the Hodge bundle over Srg,n(m1, . . . ,mn). Actually, the result from [23, 24] works in a much
more general situation. Here we apply it to the particular case of the r-spin theory.

Although we are not going to define the Witten’s r-spin class cvir, we are going to discuss its
product (3.5) with the class λg. Indeed, only this product will be used in the rest of the paper.
As a consequence, Theorem 3.1 can be seen here as a definition, compatible with the original
definitions [18, 17] and [42, 8] of Witten’s r-spin class.
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Consider a family of orbifold curves π : C → S over a smooth and proper base S, together
with a universal line bundle L satisfying the algebraic relation

(3.6) L⊗r ' ωC/S(σ1 + · · ·+ σn),

where ωC/S = ωπ is the relative canonical bundle of the morphism π : C → S. First, there is an
ideal situation where the push-forward R0π∗L vanishes and where the sheaf R1π∗L is a vector
bundle; it is the so-called concave situation and it happens exactly when the genus of the curves
is zero. In this case, we define the virtual class as the top Chern class of the vector bundle
R1π∗L, that is

(3.7) cvir := ctop(R1π∗L) in genus zero.

Without concavity, we have to deal with the higher push-forward R•π∗L, that we represent
as a complex of two vector bundles:

R•π∗L =
[
A

d−→ B
]
.

Over a geometric point s ∈ S, the kernel of the map d is the vector space H0(Cs,Ls) and
its cokernel is H1(Cs,Ls). There is no natural extension of the top Chern class to a general
K-theoretic element such as R•π∗L. Indeed, to respect multiplicativity of the top Chern class,
we would need such an extension to be invertible and in particular to be possibly of negative
cohomological degree.

Remarkably, the algebraic relation (3.6) gives us the opportunity to extend the definition of
the top Chern class to the K-theoretic element

B + E∨ − A,

where E is the Hodge bundle over S with fiber H0(Cs, ωCs) over a geometric point s ∈ S.
More precisely, we use Polishchuk–Vaintrob’s construction [42], revisited as the cohomology of
a recursive complex as in [22] and we end up with a specific characteristic class, that we now
describe.

For a vector bundle V on S and a parameter t ∈ C, let us define the class

(3.8) ct(V ) := Ch(λ−tV
∨)Td(V ) ∈ H∗(S) [t] .

Here Ch denotes the Chern character, Td is the Todd class and λ−t denotes the λ-ring structure
of K-theory according to [19, Ch V], that is

λtV :=
∑
k≥0

(ΛkV )tk ∈ K0(S) [t] .

By [19, Ch. I, Prop. 5.3], we have

lim
t→1

ct(V ) = ctop(V ).

The classes λtV and ct(V ) are invertible in K0(S)[[t]] and H∗(S)[[t]] respectively. Therefore, the
function ct can be defined for an arbitrary element from K0(S) as follows:

(3.9) ct(B − A) :=
ct(B)

ct(A)
= Ch

(
λ−tB

∨

λ−tA∨

)
TdB

TdA
∈ H∗(S)[[t]],

where A and B are two vector bundles. Since the class ctop is not invertible, in general the
radius of convergence of ct as a function of t is equal to 1 and the limit t→ 1 doesn’t exist.

In [22] it was observed that the characteristic class ct can be extended to every t 6= 1 by
taking

(3.10) ct(B − A) = exp

(∑
l≥0

sl(t)Chl(A−B)

)
,
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with the functions

(3.11) sl(t) =


− ln(1− t), if l = 0;

Bl

l
+ (−1)l

l∑
k=1

(k − 1)!

(
t

1− t

)k
γ(l, k), if l ≥ 1.

Here Bl is the Bernoulli number and the number γ(l, k) is defined by the generating function∑
l≥0

γ(l, k)
zl

l!
:=

(ez − 1)k

k!
.

We notice that γ(l, k) vanishes for k > l and that the sum over l in (3.10) is finite because the
l-th Chern character Chl vanishes for l > dim(S). By [22, Lemma 3.18], the definition (3.10)
coincides with (3.9) when |t| < 1. We see that the function t 7→ ct is a meromorphic function
with coefficients in H∗(S) and with a unique pole at t = 1.

Now we can state the main theorem of [23, 24] in the case of the r-spin theory.

Theorem 3.1. For any genus g and any numbers m1, . . . ,mn ∈ {1, . . . , r − 1}, the limit
limt→1 ct(−R•π∗(L))ct−r(E∨) exists and we have

(3.12) (−1)g λg cvir(m1, . . . ,mn)g,n = lim
t→1

ct(−R•π∗(L))ct−r(E∨),

where E is the Hodge vector bundle over Srg,n(m1, . . . ,mn).

Mumford’s formula [39] expresses the Chern character of the Hodge bundle over Mg,n

in terms of tautological classes. Chiodo’s formula [9, Theorem 1.1.1] is a generalization of
it and computes the Chern character of the higher push-forward R•π∗(L) over the moduli
space Srg,n(m1, . . . ,mn). Together with Theorem 3.1 and definitions (3.10) and (3.11), we are
then able to compute explicitly the class (3.5) in terms of tautological classes.

Remark 3.5. An alternative way to compute the push-forward of the left-hand side of equa-
tion (3.12) to the moduli space of stable curves is to use Teleman’s classification of semi-simple
cohomological field theories [45]. Our method has nevertheless the advantage to be easier to
implement into a computer (see [21, 24]). Moreover, we notice that equation (3.12) is more
general, since it is valid even in the Chow ring of the moduli space Srg,n, and that our approach
does not use any semi-simplicity condition.

In particular, the second author has developed a computer program [21, 24] evaluating any
Hodge integrals, i.e. intersection numbers involving ψ-classes, the class λg and Witten’s class.
All the numerical results in this paper have been obtained with it. We give an example of such
computations in the next section, without providing all the details. However, it is useful to
write Chiodo’s formula

(3.13) Ch(R•π∗L) =
∑
l≥0

(
Bl+1(

1
r
)

(l + 1)!
κl −

n∑
i=1

Bl+1(
m(i)
r

)

(l + 1)!
ψli +

r

2

r−1∑
m=1

Bl+1(
m
r

)

(l + 1)!
(jm)∗(δl−1)

)
.

Here Bd(x) is the Bernoulli polynomial defined by the generating series∑
d≥0

Bd(x)
td

d!
=

text

et − 1
(with Bl := Bl(0)).

The morphism jm goes from ∆̃m to the moduli space Srg,n(m1, . . . ,mn), where the divisor ∆m

corresponds to the nodal r-spin curves with a node of multiplicity m and ∆̃m is the covering
of ∆m corresponding to the extra choice of a node together with a branch with multiplicity m
at the node. Note that the multiplicity at the node on the other branch is r −m. The class δl
is defined by

δl =

{∑
a+a′=l ψ

a(−ψ̂)a
′
, if l ≥ 0,

0, otherwise,
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where ψ is the first Chern class of the line bundle on ∆̃m corresponding to the cotangent line
bundle at the given node and on the chosen branch (the one with multiplicity m), and ψ̂ is the

first Chern class of the line bundle on ∆̃m corresponding to the cotangent line bundle at the
given node on the other branch (the one with multiplicity r −m).

3.3. Double ramification hierarchy for the r-spin theory. In order to compute the Hamil-
tonians (2.3) of the double ramification hierarchy, we have to compute the integrals

(3.14)

∫
DRg(0,a1,...,an)

λgψ
d
1c
r-spin
g,n+1

(
eα ⊗

n⊗
i=1

eαi

)
.

By checking the degree, this integral can be non-zero only if

3g − 3 + n+ 1 = 2g + d+ degvir

= 2g + d+

∑n
i=1 αi + α− n− 1 + 2− 2g

r
+ g − 1,

or, equivalently,
n∑
i=1

αi = (r + 1)n+ (2g − 1− α)− r(d+ 1).(3.15)

Using the inequality αi ≤ r − 1, we obtain

2n+ 2g ≤ α + 1 + r(d+ 1).(3.16)

Thus, for any fixed r, α and d we have a finite number of choices for g, n and, thus, for αi’s.
Consider now the integral (3.14) with fixed r, α, d and α1, . . . , αn that satisfy equation (3.15).

Hain’s formula [25] together with the result of [37] implies that

DRg(b1, . . . , bn)|Mct
g,n

=
1

g!

 n∑
j=1

b2jψ
†
j

2
−

∑
J⊂{1,...,n}
|J |≥2

( ∑
i,j∈J,i<j

bibj

)
δJ0 −

1

4

∑
J⊂{1,...,n}

g−1∑
h=1

b2Jδ
J
h


g

,

(3.17)

where ψ†j denotes the ψ-class that is pulled back from Mg,1, the integer bJ is the sum
∑

j∈J bj
and the class δJh represents the divisor whose generic point is a nodal curve made of one smooth
component of genus h with the marked points labeled by the list J and of another smooth
component of genus g− h with the remaining marked points, joined at a separating node. It is
often more convenient to rewrite formula (3.17) using the usual ψ-classes:

DRg(b1, . . . , bn)|Mct
g,n

=
1

g!

 n∑
j=1

b2jψj

2
− 1

2

∑
J⊂{1,...,n}
|J |≥2

b2Jδ
J
0 −

1

4

∑
J⊂{1,...,n}

g−1∑
h=1

b2Jδ
J
h


g

,(3.18)

Since the class λg vanishes on the complement of Mct
g,n in Mg,n, we have∫

DRg(0,a1,...,an)

λgψ
d
1c
r-spin
g,n+1

(
eα ⊗

n⊗
i=1

eαi

)
=

=
1

g!

∫
Mg,n+1

λgψ
d
1c
r-spin
g,n+1

(
eα ⊗

n⊗
i=1

eαi

) n∑
j=1

a2jψj

2
− 1

2

∑
J⊂{0,1,...,n}
|J |≥2

a2Jδ
J
0 −

1

4

∑
J⊂{0,1,...,n}

g−1∑
h=1

a2Jδ
J
h


g

,

where on the right-hand side we, by definition, put a0 := 0. Applying the procedure, described
in the previous section, we are then able to compute this integral. As a result, we obtain an
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algorithm for the computation of an arbitrary fixed Hamiltonian of the double ramification
hierarchy for the r-spin theory.

3.4. Computation of the Hamiltonian g1,1. For the Hamiltonian g1,1, the inequality (3.16)
becomes

g + n ≤ r + 1.

Since we require n ≥ 2 in the definition of the Hamiltonian (2.3), we must have

g ≤ r − 1.

Note that the case g = r − 1 happens exactly for n = 2 and α1 = α2 = r − 1.
Denote by nk the cardinal of the set {1 ≤ i ≤ n | αi = k}, so that equation (3.15) becomes

(3.19) 2g − 2 +
r−1∑
k=1

(r + 1− k)nk = 2r.

In particular, for r ≤ 5, the only solutions to (3.19) with n =
∑r−1

k=1 nk ≥ 2 are

r = 3 :

 g = 0 and (n1, n2) ∈ {(0, 4), (2, 1)} ,
g = 1 and (n1, n2) ∈ {(0, 3), (2, 0)} ,
g = 2 and (n1, n2) ∈ {(0, 2)} ;

r = 4 :


g = 0 and (n1, n2, n3) ∈ {(0, 0, 5), (0, 2, 2), (1, 0, 3), (1, 2, 0), (2, 0, 1)} ,
g = 1 and (n1, n2, n3) ∈ {(0, 0, 4), (0, 2, 1), (1, 0, 2), (2, 0, 0)} ,
g = 2 and (n1, n2, n3) ∈ {(0, 0, 3), (0, 2, 0), (1, 0, 1)} ,
g = 3 and (n1, n2, n3) ∈ {(0, 0, 2)} ;

r = 5 :



g = 0 and (n1, n2, n3, n4) ∈ {(0, 0, 0, 6), (0, 0, 2, 3), (0, 0, 4, 0), (0, 1, 0, 4), (0, 1, 2, 1),
(0, 2, 0, 2), (0, 3, 0, 0), (1, 0, 1, 2), (1, 1, 1, 0), (2, 0, 0, 1)} ,

g = 1 and (n1, n2, n3, n4) ∈ {(0, 0, 0, 5), (0, 0, 2, 2), (0, 1, 0, 3), (0, 1, 2, 0), (0, 2, 0, 1),
(1, 0, 1, 1), (2, 0, 0, 0)} ,

g = 2 and (n1, n2, n3, n4) ∈ {(0, 0, 0, 4), (0, 0, 2, 1), (0, 1, 0, 2), (0, 2, 0, 0), (1, 0, 1, 0)} ,
g = 3 and (n1, n2, n3, n4) ∈ {(0, 0, 0, 3), (0, 0, 2, 0), (0, 1, 0, 1)} ,
g = 4 and (n1, n2, n3, n4) ∈ {(0, 0, 0, 2)} .

Once we have found all the non-trivially-zero contributions to the Hamiltonian g1,1, we have
to compute the integrals ∫

DRg(0,a1,...,an)

λgψ1c
r-spin
g,n+1

(
e1 ⊗

r−1⊗
k=1

e⊗nkk

)
.

Note that comparing to the general case (3.14) this integral can be simplified a little bit using
the dilaton equation. We get∫

DRg(0,a1,...,an)

λgψ1c
r-spin
g,n+1

(
e1 ⊗

r−1⊗
k=1

e⊗nkk

)
= (2g − 2 + n)

∫
DRg(a1,...,an)

λgc
r-spin
g,n

(
r−1⊗
k=1

e⊗nkk

)
=

=
2g − 2 + n

g!

∫
Mg,n

λgc
r-spin
g,n

(
r−1⊗
k=1

e⊗nkk

) n∑
j=1

a2jψj

2
− 1

2

∑
J⊂{1,...,n}
|J |≥2

a2Jδ
J
0 −

1

4

∑
J⊂{1,...,n}

g−1∑
h=1

a2Jδ
J
h


g

.

As an example, we consider the contribution to the Hamiltonian g1,1 corresponding to (g, n1, n2) =
(2, 0, 2) for the 3-spin theory:

T 3-spin
(2,0,2) := 2ε4

∑
a∈Z

(∫
DR2(a,−a)

λ2c
3-spin
2,2

(
e⊗22

))
p2ap

2
−a.
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We get

T 3-spin
(2,0,2) = ε4

∑
a∈Z

a4p2ap
2
−a

∫
M2,2

λ2c
3-spin
2,2

(
e⊗22

)(ψ1 + ψ2

2
− 1

2
δ
{1}
1

)2

.

Using the factorization property and the selection rule (3.3) we can easily see that

c3-spin2,2

(
e⊗22

)
· δ{1}1 = 0.

Therefore, we get

T 3-spin
(2,0,2) =

ε4

4

∑
a∈Z

a4p2ap
2
−a

∫
M2,2

λ2c
3-spin
2,2

(
e⊗22

)
(ψ1 + ψ2)

2 =

=
ε4

2

∑
a∈Z

a4p2ap
2
−a

∫
M2,2

λ2c
3-spin
2,2

(
e⊗22

) (
ψ2
1 + ψ1ψ2

)
.

Now, we use Theorem 3.1 and, with a lot of help from the computer program [21, 24], we get
the following values for the Hodge integrals:∫

M2,2

ψ2
2λ2c

3-spin
2,2

(
e⊗22

)
=

7

4320
,

∫
M2,2

ψ2ψ3λ2c
3-spin
2,2

(
e⊗22

)
=

13

4320
.

As a consequence, we obtain

T 3-spin
(2,0,2) = ε4

∑
a∈Z

a4

432
p2ap

2
−a =

∫
ε4

432
u2u24dx.

Proposition 3.6. The Hamiltonian g3-spin1,1 for the 3-spin theory equals

g3-spin1,1 =

∫ (
(u1)2u2

2
+

(u2)4

36
+ ε2

(
(u2)2u22

48
+
u1u12
12

)
+

ε4

432
u2u24

)
dx.

Proof. It is a direct computation using the computer program [21, 24]. �

With the same method, we compute the Hamiltonians g4-spin1,1 and g5-spin1,1 for the 4 and 5-spin
theories.

Proposition 3.7. The Hamiltonian g4-spin1,1 for the 4-spin theory equals

g4-spin1,1 =

∫ [
(u1)2u3

2
+
u1(u2)2

2
+

(u2)2(u3)2

8
+

(u3)5

320
+

ε2
(

1

8
u1u12 +

1

64
u32(u

2)2 +
1

16
u3u2u22 +

1

64
u12(u

3)2 +
1

192
(u3)3u32

)
+

ε4
(

1

160
u2u24 +

5

4096
(u3)2u34 +

3

640
u1u34

)
+

ε6
1

8192
u3u36

]
dx.

Remark 3.8. Above Hamiltonians g3-spin1,1 and g4-spin1,1 are equal to the computations done in [5,
Examples 4.3 and 4.4]. The approach there is different and uses recursion properties of the
double ramification hierarchy. Our computation can be seen as a second check. However, the
Hamiltonian g5-spin1,1 of the following proposition is new.
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Proposition 3.9. The Hamiltonian g5-spin1,1 for the 5-spin theory equals

g5-spin1,1 =

∫ [
(u1)2u4

2
+ u1u2u3 +

(u2)3

6
+

(u3)4

30
+
u2(u3)2u4

5
+

(u2)2(u4)2

10
+

(u3)2(u4)3

50
+

(u4)6

3750
+

ε2
(

1

6
u1u12 +

3

20
u2u3u32 +

1

10
u2(u31)

2 +
1

20
u12u

3u4 +
1

10
u2u22u

4 +
1

40
(u21)

2u4

+
1

50
u2u4(u41)

2 +
1

75
u2(u4)2u42 +

1

75
(u3)2u4u42 +

1

50
u3u32(u

4)2 +
1

1200
(u4)4u42

)
+

ε4
(

7

600
u2u24 +

11

900
u1u34 +

7

1200
u2u4u44 +

17

1200
u2u41u

4
3 +

71

7200
u2(u42)

2 +
31

3600
u3u34u

4

+
7

450
u31u

3
3u

4 +
91

7200
(u32)

2u4 +
13

12000
(u42)

2(u4)2 +
3

4000
u42(u

4
1)

2u4
)

+

ε6
(

53

108000
u3u36 +

11

18000
u2u46 +

1397

6480000
(u43)

2u4 +
617

1620000
u44u

4
2u

4

)
+

ε8
107

10800000
u4u48

]
dx.

4. Dubrovin–Zhang hierarchy for the r-spin theory

In this section we review the description of the Dubrovin–Zhang hierarchy for the r-spin
theory ([47, 16, 13]). In Section 4.1 we discuss Miura transformations of hamiltonian hierarchies
and fix some notations. In Section 4.2 we recall basic facts about pseudo-differential operators.
In Section 4.3 we review the construction of the r-th Gelfand–Dickey hierarchy. In Section 4.4 we
describe the Dubrovin–Zhang hierarchy for the r-spin theory and do some explicit computations
for r = 2, 3, 4, 5.

4.1. Miura transformations in the theory of hamiltonian hierarchies. Here we want to
discuss changes of variables in the theory of hamiltonian hierarchies and introduce appropriate
notations. We recommend the reader the paper [13] for a more detailed introduction to this
subject.

First of all, let us modify our notations a little bit. Recall that by AN we denoted the ring
of differential polynomials in the variables u1, . . . , uN . Since we are going to consider rings
of differential polynomials in different variables, we want to see the variables in the notation.
So for the rest of the paper we denote by Au1,...,uN the ring of differential polynomials in

variables u1, . . . , uN . The same notation is adopted for the extension Âu1,...,uN and for the

spaces of local functionals Λu1,...,uN and Λ̂u1,...,uN .
Consider changes of variables of the form

ũα(u;ux, uxx, . . . ; ε) = uα +
∑
k≥1

εkfαk (u;ux, . . . , uk), α = 1, . . . , N,(4.1)

fαk ∈ Au1,...,uN , deg fαk = k.(4.2)

They are called Miura transformations. It is not hard to see that they are invertible.

Any differential polynomial f(u) ∈ Âu1,...,uN can be rewritten as a differential polynomial
in the new variables ũα. The resulting differential polynomial is denoted by f(ũ). The last

equation in line (4.2) garanties that, if f(u) ∈ Â[d]

u1,...,uN
, then f(ũ) ∈ Â[d]

ũ1,...,ũN
. In other words,

a Miura transformation defines an isomorphism Â[d]

u1,...,uN
' Â[d]

ũ1,...,ũN
. In the same way any

Miura transformation identifies the spaces of local functionals Λ̂
[d]

u1,...,uN
and Λ̂

[d]

ũ1,...,ũN
. For any

local functional h[u] ∈ Λ̂
[d]

u1,...,uN
the image of it under the isomorphism Λ̂

[d]

u1,...,uN
∼→ Λ̂

[d]

ũ1,...,ũN
is

denoted by h[ũ] ∈ Λ̂
[d]

ũ1,...,ũN
.
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Let us describe the action of Miura transformations on hamiltonian hierarchies. Suppose we
have a hamiltonian system

∂uα

∂τi
= Kαµ δhi[u]

δuµ
, α = 1, . . . , N, i ≥ 1,(4.3)

defined by a hamiltonian operator K and a sequence of pairwise commuting local functionals

hi[u] ∈ Λ̂
[0]

u1,...,uN
, {hi[u], hj[u]}K = 0. Consider a Miura transformation (4.1). Then in the new

variables ũα, the system (4.3) looks as follows:

∂ũα

∂τi
= Kαµ

ũ

δhi[ũ]

δũµ
, where

Kαβ
ũ =

∑
p,q≥0

∂ũα(u)

∂uµp
∂px ◦Kµν ◦ (−∂x)q ◦

∂ũβ(u)

∂uνq
.(4.4)

4.2. Pseudo-differential operators. The material of this and the next sections is borrowed
from the book [11].

Let us fix r ≥ 2 and consider variables f0, f1, . . . , fr−2. A pseudo-differential operator A is a
Laurent series

A =
m∑

n=−∞

an∂
n
x ,

where m is an arbitrary integer and an ∈ Af0,f1,...,fr−2 are differential polynomials. Let

A+ :=
m∑
n=0

an∂
n
x , resA := a−1.

The product of pseudo-differential operators is defined by the following commutation rule:

∂kx ◦ a :=
∞∑
l=0

k(k − 1) . . . (k − l + 1)

l!
(∂lxa)∂k−lx ,

where k ∈ Z and a ∈ Af0,f1,...,fr−2 . For any m ≥ 2 and a pseudo-differential operator A of the
form

A = ∂mx +
∞∑
n=1

an∂
m−n
x ,

there exists a unique pseudo-differential operator A
1
m of the form

A
1
m = ∂x +

∞∑
n=0

ãn∂
−n
x ,

such that
(
A

1
m

)m
= A.

4.3. Gelfand–Dickey hierarchy. Let

L := ∂rx + fr−2∂
r−2
x + . . .+ f1∂x + f0.

The r-th Gelfand–Dickey hierarchy is the following system of partial differential equations:

∂L

∂Tm
= [(Lm/r)+, L], m ≥ 1.(4.5)

We immediately see that ∂L
∂Trk

= 0, so we can omit the times Trk. Since (L1/r)+ = ∂x, we have
∂fi
∂T1

= (fi)x.
The Gelfand–Dickey hierarchy has two compatible hamiltonian structures. The second one

is not needed in this paper, so we recall only the first one. Let X0, X1, . . . , Xr−2 ∈ Af0,...,fr−2

be some differential polynomials. Consider a pseudo-differential operator

X := ∂−(r−1)x ◦Xr−2 + . . .+ ∂−1x ◦X0.
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It is easy to see that the positive part [X,L]+ of the commutator has the following form:

[X,L]+ =
∑

0≤α,β≤r−2

((KGD)αβXβ)∂αx ,

where

(KGD)αβ =
∑
i≥0

(KGD)αβi ∂ix, (KGD)αβi ∈ Af0,...,fr−2 ,

are differential operators and the sum is finite. The operator KGD = ((KGD)αβ)0≤α,β≤r−2 is
hamiltonian. Consider local functionals

h
GD

m := − r

m+ r

∫
resL(m+r)/rdx, m ≥ 1.

We have {
h
GD

m , h
GD

n

}
KGD

= 0.

For a local functional h ∈ Λf0,f1,...,fr−2 define a pseudo-differential operator δh
δL

by

δh

δL
:= ∂−(r−1)x ◦ δh

δfr−2
+ . . .+ ∂−1x ◦

δh

δf0
.

Then the right-hand side of (4.5) can be written in the following way:

[(Lm/r)+, L] =

[
δh

GD

m

δL
, L

]
+

=
∑

0≤α,β≤r−2

(
(KGD)αβ

δh
GD

m

δfβ

)
∂αx .

Therefore, the sequence of local functionals h
GD

m together with the hamiltonian operator KGD

define a hamiltonian structure of the Gelfand–Dickey hierarchy (4.5).

4.4. Dubrovin–Zhang hierarchy for the r-spin theory. Introduce new variables w1, . . . , wr−1

by

wα =
1

(r − α)(−r) r−α−1
2

resL(r−α)/r.

Define a hamiltonian operator Kr-spin = ((Kr-spin)αβ)1≤α,β≤r−1 and local functionals h
r-spin

α,d ∈
Λw1,...,wr−1 , 1 ≤ α ≤ r − 1, d ≥ 0, by

Kr-spin := (−r)
r
2KGD

w ,

h
r-spin

α,d :=
1

(−r) r+k−1
2
−dk!r

h
GD

k [w],

where k := α + rd and k!r :=
∏d

i=0(α + ri). Recall that KGD
w denotes the Miura transform

of the operator KGD that is described by formula (4.4). Then the Dubrovin–Zhang hierarchy

for the r-spin theory is given by the sequence of local functionals h
r-spin

α,d and the hamiltonian

operator Kr-spin.

4.5. Examples. Here we compute the Hamiltonian h
r-spin

1,1 and the operator Kr-spin for r =
2, 3, 4, 5. When we present the final answer in these cases, just for convenience, we recover the
parameter ε.
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4.5.1. 2-spin theory. Denote f0 by f and w1 by w. We compute

L =∂2x + f,

resL5/2 =
5

16
f 3 +

5

32
f 2
x +

5

16
ffxx +

1

32
fxxxx,

h
GD

3 =

∫ (
−1

8
f 3 − 1

16
ffxx

)
dx,

KGD =− 2∂x.

The variable w is related to the variable f by w = f
2
. As a result, for the Dubrovin–Zhang

hierarchy we get

K2-spin =∂x,

h
2-spin

1,1 =

∫ (
w3

6
+ ε2

wwxx
24

)
dx.

4.5.2. 3-spin theory. We have

L =∂3x + f1∂x + f0,

KGD =

(
0 −3∂x
−3∂x 0

)
,

h
GD

4 =

∫ (
−2

9
f 2
0 f1 +

1

81
f 4
1 −

1

9
f0(f0)xx +

2

9
f0f1(f1)x +

1

18
f 2
1 (f1)xx +

1

9
f0(f1)xxx

+
1

27
f1(f1)xxxx

)
dx.

The relation between the variables w1, w2 and f0, f1 looks as follows:
w1 =

1

2
√
−3

(
2

3
f0 −

1

3
(f1)x

)
,

w2 =
f1
3
.

For the Dubrovin–Zhang hierarchy we obtain

K3-spin =

(
0 ∂x
∂x 0

)
,

h
3-spin

1,1 =

∫ [
(w2)4

36
+
w2(w1)2

2
+ ε2

(
(w2)2w2

xx

48
+
w1w1

xx

12

)
+ ε4

w2w2
xxxx

432

]
dx.

4.5.3. 4-spin theory. For the Dubrovin–Zhang hierarchy we get

K4-spin =

 1
48
ε2∂3x 0 ∂x
0 ∂x 0
∂x 0 0

 ,

h
4-spin

1,1 =

∫ [
w1(w2)2

2
+

(w1)2w3

2
+

(w2)2(w3)2

8
+

(w3)5

320
+

ε2
(
w1w1

2

8
+
w1w3w3

2

48
+
w1(w3

1)
2

32
+
w2w3w2

2

12
+
w3(w2

1)
2

48
+

(w3)3w3
2

64
+

(w3)2(w3
1)

2

32

)
+

ε4
(
w2w2

4

160
+
w1w3

4

480
+

5

4608
(w3)2w3

4

)
+

ε6
w3w3

6

11520

]
dx.
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4.5.4. 5-spin theory. For the Dubrovin–Zhang hierarchy we have

K5-spin =


0 1

30
ε2∂3x 0 ∂x

1
30
ε2∂3x 0 ∂x 0
0 ∂x 0 0
∂x 0 0 0

 ,

h
5-spin

1,1 =

∫ [
(w1)

2
w4

2
+ w1w2w3 +

(w2)
3

6
+

(w2)
2

(w4)
2

10
+
w2 (w3)

2
w4

5
+

(w3)
4

30
+

(w3)
2

(w4)
3

50

+
(w4)

6

3750
+

ε2

(
w4

2 (w4)
4

1200
+
w4

2w
2 (w4)

2

100
+
w3

2w
3 (w4)

2

50
+

(w2
1)

2
w4

120
+
w4

2 (w3)
2
w4

100
+

(w4
1)

2
w2w4

50

+
w2

2w
2w4

12
+
w1

2w
3w4

30
+
w1

2w
1

6
+
w3

1w
4
1w

1

30
+

(w3
1)

2
w2

10
+

2

15
w3

2w
2w3

)
+

ε4

(
w4

4 (w4)
3

14400
+

49 (w4
2)

2
(w4)

2

72000
+

13 (w3
2)

2
w4

1800
+

7

900
w3

1w
3
3w

4 +
1

300
w4

4w
2w4

+
1

180
w3

4w
3w4 +

1

150
w3

4w
1 +

1

120

(
w4

2

)2
w2 +

7

600
w2

4w
2 +

7

600
w4

1w
4
3w

2

)
+

ε6

(
178w4 (w4

3)
2

10125
− 589w4

6 (w4)
2

135000
+
w4

6w
2

4500
+
w3

6w
3

3000
+

1069w4
2w

4
4w

4

40500

)
+

ε8
(
w4

8w
4

337500

)]
dx.

5. Proof of Theorem 1.1

Before proving Theorem 1.1 we present two simple general results that, we believe, have an
independent interest. In Section 5.1 we prove that the string solution of an arbitrary double
ramification hierarchy satisfies the dilaton equation. In Section 5.2 we prove that under some
assumptions a hamiltonian hierarchy can be reconstructed from its dispersionless part and only
one Hamiltonian. Finally, in Section 5.3 we prove Theorem 1.1.

5.1. Dilaton equation for the string solution. Consider an arbitrary cohomological field
theory, cg,n : V ⊗n → Heven(Mg,n;C), and the associated double ramification hierarchy. As
usual, we denote by gα,d its Hamiltonians. Let (ustr)α(x, t∗∗; ε) be the string solution of the
double ramification hierarchy (see [2]). Recall that it is defined as a unique solution that
satisfies the initial condition (ustr)α|t∗∗=0 = δα,1x.

Proposition 5.1. We have

∂(ustr)α

∂t11
− ε∂(ustr)α

∂ε
− x∂(ustr)α

∂x
−
∑
n≥0

tγn
∂(ustr)α

∂tγn
= 0.(5.1)

Proof. Let O := ∂
∂t11
− ε ∂

∂ε
− x ∂

∂x
−
∑

n≥0 t
γ
n
∂
∂tγn

. First of all, let us check that

(O(ustr)α)
∣∣
t∗∗=0

= 0.(5.2)

We have

(O(ustr)α)
∣∣
t∗∗=0

=

(
∂(ustr)α

∂t11
− x∂(ustr)α

∂x

)∣∣∣∣
t∗∗=0

=

(
∂(ustr)α

∂t11

)∣∣∣∣
t∗∗=0

− δα,1x.(5.3)
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In order to proceed, we do the same trick, as in the proof of Lemma 5.1 in [5]. We consider new
variables vαd , 1 ≤ α ≤ N, d ≥ 0, such that uαd = vαd+1. Then we consider the following system of
evolutionary PDEs:

∂vα

∂tβq
= ηαµ

δgβ,q
δuµ

.

From the compatibility of the flows of the double ramification hierarchy it easily follows that
this system is also compatible. Let (vstr)α(x, t∗∗; ε) be a unique solution that satisfies the initial

condition (vstr)α|t∗∗=0 = δα,1 x
2

2
. It satisfies the following equation (see [5, Eq. (5.2)]):

∂(vstr)α

∂t10
−
∑
n≥0

tγn+1

∂(vstr)α

∂tγn
= tα0 + δα,1x.

Differentiating this equation by t11 and using the fact that ∂(vstr)α

∂t10
= ∂x(v

str)α = (ustr)α, we get(
∂(ustr)α

∂t11

)∣∣∣∣
t∗∗=0

= δα,1x.

Together with (5.3) it proves (5.2).

Let fαβ,q := ηαµ∂x
δgβ,q
δuµ

. We have

(5.4)
∂

∂tβq
O(ustr)α = Ofαβ,q − fαβ,q =

∑
n≥0

∂fαβ,q
∂uγn

O∂nx (ustr)γ − ε
∂fαβ,q
∂ε
− fαβ,q =

=
∑
n≥0

∂fαβ,q
∂uγn

(
∂nxO(ustr)γ + n∂nx (ustr)γ

)
− ε

∂fαβ,q
∂ε
− fαβ,q.

Since fαβ,q ∈ Â
[1]
N , we have ∑

n≥0

nuγn
∂fαβ,q
∂uγn

− ε
∂fαβ,q
∂ε
− fαβ,q = 0.

Therefore, from (5.4) we obtain

∂

∂tβq
O(ustr)α =

∑
n≥0

∂fαβ,q
∂uγn

∂nxO(ustr)γ, 1 ≤ α, β ≤ N, q ≥ 0.

This system can be considered as a system of evolutionary partial differential equations for
the power series O(ustr)α. Since the initial condition (5.2) is zero, we get O(ustr)α = 0. The
proposition is proved. �

5.2. Dilaton equation and the reconstruction of the hierarchy. Suppose we have an
arbitrary cohomological field theory in genus 0: c0,n : V ⊗n → Heven(M0,n;C), with a phase
space V of dimension N . Let F0(t

∗
∗) be its potential:

F0(t
∗
∗) :=

∑
n≥3

1

n!

∑
d1,...,dn≥0

(∫
M0,n

c0,n

(
n⊗
i=1

eαi

)
n∏
i=1

ψdii

)
n∏
i=1

tαidi .

Let

Ω
[0]
α,p;β,q(u) :=

∂2F0

∂tαp∂t
β
q

∣∣∣∣∣t∗≥1=0

tγ0=u
γ

∈ Au1,...,uN .

Consider the genus-zero Dubrovin–Zhang hierarchy associated to our cohomological field theory.
It is also called the principal hierarchy. Recall that it is the hamiltonian hierarchy defined by
the sequence of local functionals

h
[0]

α,p :=

∫
Ω

[0]
α,p+1;1,0dx, 1 ≤ α ≤ N, p ≥ 0,
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and the hamiltonian operator η∂x.

Consider now an arbitrary sequence of local functionals hα,p ∈ Λ̂
[0]
N , 1 ≤ α ≤ N, p ≥ 0, such

that

{hα,p, hβ,q}η∂x = 0,

hα,p
∣∣
ε=0

= h
[0]

α,p,

h1,0 = h
[0]

1,0.

The local functionals hα,p and the hamiltonian operator η∂x define a hamiltonian hierarchy of
PDEs that can be considered as a deformation of the principal hierarchy. The equations of this
hierarchy are

∂uα

∂tβq
= ηαµ∂x

δhβ,q
δuµ

.(5.5)

Let (usp)α(x, t∗∗; ε) be a unique solution of the system (5.5) specified by the initial condition

(usp)α|t∗∗=0 = δα,1x.

We call this solution the special solution.

Proposition 5.2. Suppose the special solution (usp)α(x, t∗∗; ε) satisfies the following equations:

∂(usp)α

∂t10
−
∑
n≥0

tγn+1

∂(usp)α

∂tγn
= δα,1, (string equation),(5.6)

∂(usp)α

∂t11
− ε∂(usp)α

∂ε
− x∂(usp)α

∂x
−
∑
n≥0

tγn
∂(usp)α

∂tγn
= 0, (dilaton equation).(5.7)

Then all Hamiltonians hα,p are uniquely determined by the Hamiltonian h1,1 and the disper-

sionless parts hβ,q
∣∣
ε=0

= h
[0]

β,q.

Proof. First of all, let us recall several properties of the functions Ω
[0]
α,p;β,q (see e.g. [3, 4]):

∂Ω
[0]
α,p+1;1,0

∂uβ
= Ω

[0]
α,p;β,0, p ≥ 0,

∂Ω
[0]
α,p+1;β,q

∂uγ
= Ω

[0]
α,p;µ,0η

µν
∂Ω

[0]
ν,0;β,q

∂uγ
, p ≥ 0.(5.8)

Therefore, we have

ηαµ∂x
δh

[0]

α,p

δuµ
= ηαµ∂x

∂Ω
[0]
α,p+1;1,0

∂uµ
= ηαµ

∂Ω
[0]
α,p;µ,0

∂uγ
uγx.

Since the integral
∫
M0,3

ψp1c0,3(eα ⊗ eµ ⊗ eγ) obviously vanishes when p ≥ 1, we get

∂Ω
[0]
α,p;µ,0

∂uγ

∣∣∣∣∣
u∗=0

= 0, if p ≥ 1.(5.9)

Let us prove now that the special solution (usp)α is uniquely determined by the Hamilton-

ian h1,1 and the Hamiltonians h
[0]

β,q of the principal hierarchy. Since,

h1,0 = h
[0]

1,0 =

∫
1

2
ηαβu

αuβdx,

we have ∂x(u
sp)α = ∂(usp)α

∂t10
. Therefore, it is enough to determine only the coefficients of tα1

d1
. . . tαndn ε

i

in (usp)α. We will denote these coefficients by cd1,...,dn;αα1,...,αn;i
. The principal hierarchy determines
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the coefficients cd1,...,dn;αα1,...,αn;0
. Let

ηαµ∂x
δh1,1
δuµ

=
∑
i≥0

Pα
i (u, ux, . . .)ε

i, Pα
i ∈ AN , degPα

i = i+ 1.

The dilaton equation (5.7) and equation (5.5) for β = 1 and q = 1 imply that

ε
∂(usp)α

∂ε
+ x

∂(usp)α

∂x
+
∑
n≥0

tγn
∂(usp)α

∂tγn
=
∑
i≥0

Pα
i (usp, uspx , . . .)ε

i.(5.10)

Let us prove that this equation allows to compute all the coefficients cd1,...,dn;αα1,...,αn;i
starting from

the coefficients cl1,...,lm;γ
β1,...,βm;0. To be precise, we are going to prove that equation (5.10) allows to

express any coefficient cd1,...,dn;αα1,...,αn;i
, i > 0, in terms of the coefficients

ck1,...,km;γ
β1,...,βm;j ,(5.11)

where one of the following two conditions holds:

1. j < i,(5.12)

2. j ≤ i and m < n.(5.13)

The coefficient of tα1
d1
. . . tαndn ε

i on the left-hand side of (5.10) is equal to (i+ n)cd1,...,dn;αα1,...,αn;i
. Let us

look at the coefficient of tα1
d1
. . . tαndn ε

i on the right-hand side of (5.10). The string equation (5.6)
implies that

∂dx(usp)α
∣∣
x=0
t∗∗=0

= δα,1δd,1

and that the coefficient of tβ1l1 . . . t
βm
lm
εj,m ≥ 1, in ∂dx(usp)γ is a linear combination of the coeffi-

cients ck1,...,km;γ
β1,...,βm;j . Therefore, the coefficient of tα1

d1
. . . tαndn ε

i in∑
r≥1

Pα
r (usp, uspx , . . .)ε

r

can be expressed in terms of coefficients (5.11) with condition (5.12).
We have

Pα
0 = ηαµ

∂Ω
[0]
1,1;µ,0

∂uγ
uγx.

From (5.9) it follows that the coefficient of tα1
d1
. . . tαndn ε

i in

ηαµ
∂Ω

[0]
1,1;µ,0

∂uγ
((usp)γx − δγ,1)

can be expressed in terms of coefficients (5.11) with condition (5.13). Finally, we compute

ηαµ
∂Ω

[0]
1,1;µ,0

∂u1
by (5.8)

= ηαµ Ω
[0]
1,0;ν,0︸ ︷︷ ︸

=ηνθuθ

ηνρ
∂Ω

[0]
ρ,0;µ,0

∂u1︸ ︷︷ ︸
=ηρµ

= uα.

We see that the coefficient of tα1
d1
. . . tαndn ε

i of the left-hand side of (5.10) is equal to (i+n)cd1,...,dn;αα1,...,αn;i
,

while the coefficient of this monomial on the right-hand side of (5.10) is equal to 1 plus a
combination of coefficients (5.11) with condition (5.12) or (5.13). We conclude that the special

solution (usp)α is uniquely determined by the Hamiltonians h1,1 and h
[0]

α,p.

Since the dispersionless part hα,p
∣∣
ε=0

coincides with the Hamiltonian h
[0]

α,p of the principal
hierarchy, we have (see e.g. [3])

(usp)α|ε=0 = ηαµ
∂2F0

∂t10∂t
µ
0

∣∣∣∣
t10 7→t10+x

.
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Then from the string equation for the potential F0 it follows that

∂dx(usp)α
∣∣
x=0

= tαd + δα,1δd,1 +O(t2) +O(ε).

This equation implies that any power series in the variables tνi and ε can be written as a power
series in

(
∂dx(usp)α

∣∣
x=0
− δα,1δd,1

)
and ε in a unique way. Thus, the special solution determines

the differential polynomials ηαµ∂x
δhα,p
δuµ

. Since δhα,p
δuµ

∣∣∣
u∗∗=0

= 0, the Hamiltonians hα,p are also

uniquely determined. The proposition is proved. �

Let us show now how to use this proposition in order to relate the Dubrovin–Zhang hierarchy
to the double ramification hierarchy. Consider an arbitrary semisimple cohomological field
theory and the associated Dubrovin–Zhang and the double ramification hierarchies. We denote
by wα the dependant variables of the Dubrovin–Zhang hierarchy, by hα,p the Hamiltonians and
by K the hamiltonian operator. Consider some Miura transformation uα 7→ wα(u;ux, . . . ; ε).

Proposition 5.3. Suppose that the Miura transformation uα 7→ wα(u;ux, . . . ; ε) satisfies the
following conditions:

(1) ∂wα

∂u1
= δα,1;

(2) The Miura transform of the standard operator η∂x coincides with the operator K;
(3) The Miura transform of the Hamiltonian g1,1 coincides with the Hamiltonian h1,1: g1,1[w] =

h1,1.

Then the Miura transform of the double ramification hierarchy coincides with the Dubrovin–
Zhang hierarchy.

Proof. The Dubrovin–Zhang hierarchy has the so-called topological solution that is defined by
(see [13])

(wtop)α(x, t∗∗; ε) := ηαµ
∂2F

∂t10∂t
µ
0

∣∣∣∣
t10 7→t10+x

,

where F (t∗∗; ε) is the potential of the cohomological field theory. From the string and the dilaton
equations for F it is easy to see that the topological solution satisfies the string and the dilaton
equations (5.6) and (5.7), and also the initial condition

(wtop)α
∣∣
t∗∗=0

= δα,1x.

Consider the inverse Miura transformation wα 7→ uα(w;wx, . . . ; ε). Let

(utop)α(x, t∗∗; ε) := uα|wγn=∂nx (wtop)γ .

It is easy to see that the power series (utop)α satisfies the dilaton equation (5.7). Note that
condition (1) is equivalent to the condition ∂uα

∂w1 = δα,1, which easily implies that the power
series (utop)α satisfies the string equation (5.6). From condition (2) it follows that the inverse
Miura transform of the Dubrovin–Zhang hierarchy satisfies the assumptions of Proposition 5.2.

On the other hand, by [2, Lemma 4.4] the genus-zero part of the double ramification hierarchy
coincides with the genus-zero part of the Dubrovin–Zhang hierarchy, and, by [2, Lemma 4.7]
and Proposition 5.1 the string solution (ustr)α satisfies the string and the dilaton equations (5.6)
and (5.7). Therefore, the double ramification hierarchy also satisfies the assumptions of Propo-
sition 5.2. As a result, condition (3) and Proposition 5.2 imply that the Dubrovin–Zhang and
the double ramification hierarchy are equivalent by our Miura transformation. �

5.3. Proof of Theorem 1.1. We just check all the conditions from Proposition 5.3. Con-
dition (1) is obvious. For condition (2) we use the formulas for the operator Kr-spin from

Section 4.5. In order to check condition (3) we use our computations of the Hamiltonian gr-spin1,1

from Propositions 3.6, 3.7 and 3.9 and the formulas for the Hamiltonian h
r-spin

1,1 from Section 4.5.
Then the theorem follows from Proposition 5.3.
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6. Quantization of the r-spin Dubrovin–Zhang hierarchy for r = 3, 4, 5

A quantization of the 2-spin Dubrovin–Zhang hierarchy was constructed in [6]. In this
section we obtain a quantization of the r-spin Dubrovin–Zhang hierarchy for r = 3, 4, 5. This
is a consequence of Theorem 1.1 and the construction of [6].

6.1. Quantization of the double ramification hierarchy. Consider an arbitrary cohomo-
logical field theory cg,n : V ⊗n → Heven(Mg,n;C). In [6] a natural quantization of the associated
double ramification hierarchy was constructed. Let us briefly recall it.

First of all, we have to introduce the Weyl algebra WN . It is formed by (power series in ~
with coefficients that are) power series in pαk , k ≤ 0, with coefficients that are polynomials in pαk ,
k > 0, with α = 1, . . . , N . The product rule is described as follows: representing two power
series in the “normal form”, i.e. with all variables with negative or zero subscripts appearing
on the left of all variables with positive subscripts,

f =
∑
g≥0

∑
n≥0

∑
k1,...,kn≤0

pα1
k1
. . . pαnkn f

α1,...,αn
k1,...,kn;g

(pk>0)~g,

g =
∑
g≥0

∑
n≥0

∑
k1,...,kn≤0

pα1
k1
. . . pαnkn g

α1,...,αn
k1,...,kn;g

(pk>0)~g,

where fα1,...,αn
k1,...,kn;g

(p>0) and gα1,...,αn
k1,...,kn;g

(p>0) are polynomials, one obtains the product f ? g by

commuting the p≤0 variables of g with the pk>0 variables of f using [pαk , p
β
j ] = i~kηαβδk+j,0.

Thanks to polynomiality of the coefficients, this process is well-defined and produces another
element of the same Weyl algebra WN .

For 1 ≤ α ≤ N and d ≥ 0 define the following elements of the algebra WN [[ε]]:

Gα,d :=
∑

g≥0,n≥0
2g−1+n>0

(i~)g

n!

∑
a1+...+an=0

(∫
DRg(0,a1,...,an)

Λ

(
−ε2

i~

)
ψd1cg,n+1

(
eα ⊗

n⊗
i=1

eαi

))
pα1
a1
. . . pαnan ,

(6.1)

where Λ
(
−ε2
i~

)
:= 1 +

(
−ε2
i~

)
λ1 + . . .+

(
−ε2
i~

)g
λg. It is easy to see that

Gα,d

∣∣
~=0

= gα,d.

In [6] it is proved that the elements Gα,d mutually commute. Therefore, the construction (6.1)
gives a quantization of the double ramification hierarchy.

6.2. r-spin theory for r = 3, 4, 5. Consider now the r-spin theory. In the 3-spin case, by
Theorem 1.1, the Dubrovin–Zhang hierarchy coincides with the double ramification hierarchy.
Therefore, the construction of [6] immediately gives a quantization of the 3-spin Dubrovin–
Zhang hierarchy.

Suppose now that r is equal to 4 or 5. Quantization of the Dubrovin–Zhang hierarchy in these
cases is slightly different because the hamiltonian structure doesn’t coincide with the standard
one. However, this is easy to handle. Note that the hamiltonian operator Kr-spin = ((Kr-spin)αβ)
has the form

(Kr-spin)αβ =
∑
i≥0

(Kr-spin)αβi εi∂i+1
x ,(6.2)

where (Kr-spin)αβi are constants. It is very easy to quantize the Poisson structure corresponding
to this operator. Let p̃αn be the Fourier components of the fields wα(x):

wα(x) =
∑
n∈Z

p̃αne
inx.
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Introduce a deformed algebra W̃N [[ε]]Kr-spin as follows. As a vector space it coincides with the

space WN [[ε]], but with the variables pαn replaced by p̃αn. We endow the space W̃N [[ε]]Kr-spin

with a product rule using the following deformed commutation relation:

[p̃αm, p̃
β
n]Kr-spin := ~δm+n,0

∑
j≥0

εj(im)j+1(Kr-spin)αβj .

It is clear that this gives a quantization of the Poisson structure on Λ̂
[0]

w1,...,wr−1 defined by

the operator Kr-spin. The Miura transformation from Theorem 1.1 induces an isomorphism

fr : W̃N [[ε]]Kr-spin →WN [[ε]] that is given by

r = 4:


f4(p̃

1
n) =p1n −

ε2

96
n2p3n,

f4(p̃
2
n) =p2n,

f4(p̃
3
n) =p3n;

r = 5:



f5(p̃
1
n) =p1n −

ε2

60
n2p3n,

f5(p̃
2
n) =p2n −

ε2

60
n2p4n,

f5(p̃
3
n) =p3n,

f5(p̃
4
n) =p4n.

We see that that for the 4 and 5-spin theories the elements f−1r (Gα,d) ∈ W̃[[ε]]Kr-spin define a
quantization of the Dubrovin–Zhang hierarchy.
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