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Abstract. In a recent work, R. Pandharipande, J. P. Solomon and the second author have ini-
tiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary.
They conjectured that the generating series of the intersection numbers satisfies the open KdV
equations. In this paper we prove this conjecture. Our proof goes through a matrix model and is
based on a Kontsevich type combinatorial formula for the intersection numbers that was found by
the second author.
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1. Introduction

The study of the intersection theory on the moduli space of Riemann surfaces with boundary
(often viewed, with the boundary removed, as open Riemann surfaces) was recently initiated
in [PST14]. The authors constructed a descendent theory in genus 0 and obtained a complete
description of it. In all genera, they conjectured that the generating series of the descendent
integrals satisfies the open KdV equations. This conjecture can be considered as an open analog
of the famous Witten’s conjecture [Wit91]. The construction of the higher genus moduli and
intersection theory was found by J. Solomon and R.T. in [STa]. The details of these constructions
also appear in [Tes15], Section 2. A combinatorial formula for the open intersection numbers in
all genera was found in [Tes15].

In this paper, using the combinatorial formula from [Tes15], we present a matrix integral for the
generating series of the open intersection numbers. Then applying some analytical tools to this
matrix integral, we prove the main conjecture from [PST14].

The introduction is organized as follows. In Section 1.1 we briefly recall the original conjecture of
E. Witten from [Wit91]. In Section 1.2 we recall Kontsevich’s combinatorial formula and Kontse-
vich’s proof ([Kon92]) of Witten’s conjecture. Section 1.3 contains a short account of the main con-
structions and conjectures in the open intersection theory from [PST14, STa, Bur15, Bur14, STb].
Section 1.4 describes the combinatorial formula of [Tes15] for the open intersection numbers of
[PST14, STa].

1.1. Witten’s conjecture.

Notation 1.1. Throughout this text [n] will denote the set {1, 2, . . . , n}.

1.1.1. Intersection numbers. A compact Riemann surface is a compact connected smooth complex
curve. Given a fixed genus g and a non-negative integer l, the moduli space of all compact Riemann
surfaces of genus g with l marked points is denoted by Mg,l. P. Deligne and D. Mumford defined
a natural compactification of it via stable curves in [DM69] in 1969. Given g, l as above, a stable
curve is a compact connected complex curve with l marked points and finitely many singularities,
all of which are simple nodes. The collection of marked points and nodes is the set of special
points of the curve. We require that all the special points are distinct and that the automorphism
group of the curve is finite. The moduli of stable marked curves of genus g with l marked points
is denoted byMg,l and is a compactification ofMg,l. It is known that this space is a non-singular
complex orbifold of complex dimension 3g − 3 + l. For the basic theory the reader is referred
to [DM69, HM98].

In his seminal paper [Wit91], E. Witten, motivated by theories of 2-dimensional quantum grav-
ity, initiated new directions in the study of Mg,l. For each marking index i he considered the
tautological line bundles

Li →Mg,l

whose fiber over a point

[Σ, z1, . . . , zl] ∈Mg,l
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is the complex cotangent space T ∗ziΣ of Σ at zi. Let

ψi ∈ H2(Mg,l;Q)

denote the first Chern class of Li, and write

(1.1)
〈
τa1τa2 · · · τal

〉c
g

:=

∫
Mg,l

ψa11 ψ
a2
2 · · ·ψ

al
l .

The integral on the right-hand side of (1.1) is well-defined, when the stability condition

2g − 2 + l > 0

is satisfied, all the ai’s are non-negative integers, and the dimension constraint

3g − 3 + l =
∑
i

ai

holds. In all other cases
〈∏l

i=1 τai
〉c
g

is defined to be zero. The intersection products (1.1) are often

called descendent integrals or intersection numbers. Note that the genus is uniquely determined
by the exponents {ai}.

Let ti (for i ≥ 0) and u be formal variables, and put

γ :=
∞∑
i=0

tiτi.

Let

F c
g (t0, t1, . . .) :=

∞∑
n=0

〈
γn
〉c
g

n!

be the generating function of the genus g descendent integrals (1.1). The bracket
〈
γn
〉c
g

is defined

by the monomial expansion and the multilinearity in the variables ti. Concretely,

F c
g (t0, t1, ...) =

∑
{ni}

〈
τn0

0 τn1
1 τn2

2 · · ·
〉c
g

∞∏
i=0

tnii
ni!
,

where the sum is over all sequences of non-negative integers {ni} with finitely many non-zero
terms. The generating series

(1.2) F c :=
∞∑
g=0

u2g−2F c
g

is called the (closed) free energy. The exponent τ c := exp(F c) is called the (closed) partition
function.

1.1.2. KdV equations. Put
〈〈
τa1τa2 · · · τal

〉〉c
:= ∂lF c

∂ta1∂ta2 ···∂tal
. Witten’s conjecture ([Wit91]) says

that the closed partition function τ c becomes a tau-function of the KdV hierarchy after the change
of variables tn = (2n + 1)!!T2n+1. In particular, it implies that the closed free energy F c satisfies
the following system of partial differential equations:

(2n+ 1)u−2
〈〈
τnτ

2
0

〉〉c
=
〈〈
τn−1τ0

〉〉c〈〈
τ 3

0

〉〉c
+ 2
〈〈
τn−1τ

2
0

〉〉c〈〈
τ 2

0

〉〉c
+

1

4

〈〈
τn−1τ

4
0

〉〉c
, n ≥ 1.

(1.3)



4 ALEXANDR BURYAK AND RAN J. TESSLER

These equations are known in mathematical physics as the KdV equations. E. Witten ([Wit91])
proved that the intersection numbers (1.1) satisfy the string equation〈

τ0

l∏
i=1

τai

〉c

g

=
l∑

j=1

〈
τaj−1

∏
i 6=j

τai

〉c

g

,

for 2g − 2 + l > 0. This equation can be rewritten as the following differential equation:

∂F c

∂t0
=
∑
i≥0

ti+1
∂F c

∂ti
+

t20
2u2

.(1.4)

E. Witten also showed that the KdV equations (1.3) together with the string equation (1.4) actually
determine the closed free energy F c completely.

1.1.3. Virasoro equations. There was a later reformulation of Witten’s conjecture due to R. Dijk-
graaf, E. Verlinde and H. Verlinde ([DVV91]) in terms of the Virasoro algebra. Define differential
operators Ln, n ≥ −1, by

L−1 :=− ∂

∂t0
+
∞∑
i=0

ti+1
∂

∂ti
+
u−2

2
t20,(1.5)

L0 :=− 3

2

∂

∂t1
+
∞∑
i=0

2i+ 1

2
ti
∂

∂ti
+

1

16
,

while for n ≥ 1,

Ln :=− 3 · 5 · 7 · · · (2n+ 3)

2n+1

∂

∂tn+1

+
∞∑
i=0

(2i+ 1)(2i+ 3) · · · (2i+ 2n+ 1)

2n+1
ti

∂

∂ti+n

+
u2

2

n−1∑
i=0

(−1)i+1 (−2i− 1)(−2i+ 1) · · · (−2i+ 2n− 1)

2n+1

∂2

∂ti∂tn−1−i
.

The Virasoro equations say that the operators Ln, n ≥ −1, annihilate the closed partition func-
tion τ c:

(1.6) Lnτ
c = 0, n ≥ −1.

It is easy to see that the Virasoro equations completely determine all intersection numbers. R. Di-
jkgraaf, E. Verlinde and H. Verlinde ([DVV91]) proved that this description is equivalent to the
one given by the KdV equations and the string equation.

Witten’s conjecture was proven by M. Kontsevich [Kon92]. See [KL07, Mir07, OP05] for other
proofs.

1.2. Kontsevich’s Proof. Kontsevich’s proof [Kon92] of Witten’s conjecture consisted of two
parts. The first part was to prove a combinatorial formula for the gravitational descendents.
Let Gg,n be the set of isomorphism classes of trivalent ribbon graphs of genus g with n faces and
together with a numbering Faces(G) ' [n]. Denote by V (G) the set of vertices of a graph G ∈ Gg,n.
Let us introduce formal variables λi, i ∈ [n]. For an edge e ∈ Edges(G), let λ(e) := 1

λi+λj
, where i

and j are the numbers of faces adjacent to e. Then we have∑
a1,...,an≥0

〈
n∏
i=1

τai

〉c

g

n∏
i=1

(2ai − 1)!!

λ2ai+1
i

=
∑

G∈Gg,n

2|Edges(G)|−|V (G)|

|Aut(G)|
∏

e∈Edges(G)

λ(e).(1.7)

The second step of Kontsevich’s proof was to translate the combinatorial formula into a matrix
integral. Then, by using non-trivial analytical tools and the theory of tau-functions of the KdV
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hierarchy, he was able to prove that τ c is a tau-function of the KdV hierarchy and, hence, the free
energy F c satisfies the KdV equations (1.3).

1.3. Open intersection numbers and the open KdV equations.

1.3.1. Open intersection numbers. In [PST14] R. Pandharipande, J. Solomon and R.T. constructed
an intersection theory on the moduli space of stable marked disks. LetM0,k,l be the moduli space
of stable marked disks with k boundary marked points and l internal marked points. This space
carries a natural structure of a compact smooth oriented manifold with corners. One can easily
define the tautological line bundles Li, for i ∈ [l], as in the closed case.

In order to define gravitational descendents, as in (1.1), we must specify boundary conditions.
Indeed, given a smooth compact connected oriented orbifold with boundary, (M,∂M) of dimen-
sion n, the Poincaré-Lefschetz duality shows that

Hn(M,∂M ;Q) ∼= H0(M ;Q) ∼= Q.

Thus, given a vector bundle on a manifold with boundary, only relative Euler class, relative to
nowhere vanishing boundary conditions, can be integrated to give a number. The main construction
in [PST14] is a construction of boundary conditions for Li → M0,k,l. In [PST14], vector spaces
Si = Si,0,k,l of multisections of Li → ∂M0,k,l, which satisfy the following requirements, were defined.
Suppose a1, . . . , al are non-negative integers with 2

∑
i ai = dimRM0,k,l = k + 2l − 3, then

(a) For any generic choice of multisections sij ∈ Si, for 1 ≤ j ≤ ai, the multisection

s =
⊕
i∈[l]

1≤j≤ai

sij

vanishes nowhere on ∂M0,k,l.
(b) For any two such choices s and s′ we have∫

M0,k,l

e(E, s) =

∫
M0,k,l

e(E, s′),

where E :=
⊕

i L
ai
i , and e(E, s) is the relative Euler class.

The multisections sij, as above, are called canonical. With this construction the open gravitational
descendents in genus 0 are defined by

(1.8)
〈
τa1τa2 · · · τalσk

〉o
0

:= 2−
k−1
2

∫
M0,k,l

e(E, s),

where E is as above and s is canonical.
In a forthcoming paper [STa], J. Solomon and R.T. define a generalization for all genera. In [STa]

a moduli space Mg,k,l which classifies stable genus g Riemann surfaces with boundary, together
with some additional structure, is constructed. By the genus of a surface with boundary we mean
the genus of the doubled surface. The moduli space Mg,k,l is a smooth oriented compact orbifold
with corners, of real dimension

3g − 3 + k + 2l.(1.9)

The stability condition is 2g−2+k+2l > 0. Note that naively, without adding an extra structure,
the moduli of stable surfaces with boundary is non-orientable for g > 0. The construction of the
moduli space, the definition of open descendents and an alternative proof of orientability also
appear in [Tes15], Section 2.
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On Mg,k,l one defines vector spaces Si = Si,g,k,l, for i ∈ [l], for which the genus g analogs of
requirements (a),(b) from above hold. Write

(1.10)
〈
τa1τa2 · · · τalσk

〉o
g

:= 2−
g+k−1

2

∫
Mg,k,l

e(E, s),

for the corresponding higher genus descendents. Introduce one more formal variable s. The open
free energy is the generating function

(1.11) F o(s, t0, t1, . . . ;u) :=
∞∑
g=0

ug−1

∞∑
n=0

〈
γnδk

〉o
g

n!k!
,

where γ :=
∑

i≥0 tiτi, δ := sσ, and again we use the monomial expansion and the multilinearity in
the variables ti, s.

1.3.2. Open KdV and open Virasoro equations. The following initial condition follows easily from
the definitions ([PST14]):

F o|t≥1=0 = u−1 s
3

6
+ u−1t0s.(1.12)

In [PST14] the authors conjectured the following equations:

∂F o

∂t0
=
∞∑
i=0

ti+1
∂F o

∂ti
+ u−1s,(1.13)

∂F o

∂t1
=
∞∑
i=0

2i+ 1

3
ti
∂F o

∂ti
+

2

3
s
∂F o

∂s
+

1

2
.(1.14)

They were called the open string and the open dilaton equation correspondingly.

Put
〈〈
τa1τa2 · · · τalσk

〉〉o
:= ∂l+kF o

∂ta1∂ta2 ···∂tal∂sk
. The main conjectures in [PST14] are

Conjecture 1 (Open analog of Witten’s conjecture). The following system of equations is satisfied:

(1.15) (2n+ 1)u−1
〈〈
τn
〉〉o

= u
〈〈
τn−1τ0

〉〉c〈〈
τ0

〉〉o − u

2

〈〈
τn−1τ

2
0

〉〉c
+

+ 2
〈〈
τn−1

〉〉o〈〈
σ
〉〉o

+ 2
〈〈
τn−1σ

〉〉o
, n ≥ 1.

In [PST14] equations (1.15) were called the open KdV equations. It is easy to see that F o is
fully determined by the open KdV equations (1.15), the initial condition (1.12) and the closed free
energy F c.

Let τ o := exp(F c + F o) be the open partition function. In [PST14] the authors introduced the
following modified operators:

Ln := Ln + uns
∂n+1

∂sn+1
+

3n+ 3

4
un

∂n

∂sn
, n ≥ −1,(1.16)

where the operators Ln were defined in Section 1.1.3.

Conjecture 2 (Open Virasoro conjecture). The operators Ln, n ≥ −1, annihilate the open parti-
tion function:

Lnτ o = 0, n ≥ −1.(1.17)
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In [PST14] equations (1.17) were called the open Virasoro equations. Again it is easy to see that
the open free energy F o is fully determined by the open Virasoro equations (1.15), the initial
condition

F o|t≥0=0 = u−1 s
3

6
and the closed free energy F c.

From the closed string equation (1.4) it immediately follows that the open string equation (1.13)
is equivalent to (1.17), for n = −1. Moreover, from the equation L0τ

c = 0 it follows that the open
dilaton equation (1.14) is equivalent to (1.17), for n = 0.

Remark 1.2. More precisely, in [PST14] it was conjectured that there exists a definition of open
intersection numbers for g > 0, for which the open KdV and open Virasoro equations hold. The
definition was later given in [STa].

Although it was not clear at all that the open KdV and the open Virasoro equations are com-
patible, in [Bur15] it was proved that they indeed have a common solution.

For g = 0 the conjectures were proved in [PST14]. In [STa] the conjectures are proved for g = 1
and the open string (1.13) and the open dilaton (1.14) equations are proved for all g.

The main result of this paper is the following theorem.

Theorem 1.3. Conjectures 1 and 2 are true.

1.3.3. Burgers-KdV hierarchy. Let F be a power series in the variables s, t0, t1, . . . with the coef-
ficients from C[u, u−1]. In [Bur15] the following system of equations was introduced:

2n+ 1

2u2
Ftn =

(
1

2

∂2

∂t20
+ Ft0

∂

∂t0
+

1

2
F 2
t0

+
1

2
Ft0,t0 + F c

t0,t0

)
Ftn−1 +

1

2
Ft0F

c
t0,tn−1

+
3

4
F c
t0,t0,tn−1

,(1.18)

Fs = u

(
1

2
F 2
t0

+
1

2
Ft0,t0 + F c

t0,t0

)
.(1.19)

It was called the half of the Burgers-KdV hierarchy. This system is obviously stronger than the
system of the open KdV equations (1.15). In [Bur15] it was actually shown that the half of the
Burgers-KdV hierarchy is equivalent to the open KdV equations together with equation (1.19).

Denote by F̃ o a unique solution of system (1.18)-(1.19) specified by the initial condition

F̃ o|t≥1=0,s=0 = 0.

In [Bur15] it was shown that F̃ o satisfies the open KdV equations, the initial condition (1.12)
and the open Virasoro equations. This proved the equivalence of the open analog of Witten’s
conjecture and the open Virasoro conjecture. This also shows that Theorem 1.3 immediately
implies the following corollary.

Corollary 1.4. The open free energy F o satisfies the half of the Burgers-KdV hierarchy.

Consider more variables s1, s2, . . . and let s0 := s. Let F be a power series in the variables
s0, s1, . . . , , t0, t1, . . . with the coefficients from C[u, u−1]. Let us extend the half of the Burgers-
KdV hierarchy by the following equations:

n+ 1

u2
Fsn =

(
1

2

∂2

∂t20
+ Ft0

∂

∂t0
+

1

2
F 2
t0

+
1

2
Ft0,t0 + F c

t0,t0

)
Fsn−1 , n ≥ 1.(1.20)

In [Bur15] the extended system (1.18)-(1.20) was called the (full) Burgers-KdV hierarchy. Let F̃ o,ext

be a unique solution of it specified by the initial condition

F̃ o,ext|t≥1=0,s≥0=0 = 0.
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We obviously have F̃ o,ext|s≥1=0 = F̃ o. In [Bur14] it was proved that the function

τ̃ o,ext := exp(F̃ o,ext + F c)

satisfies the following extended Virasoro equations:

Lextn τ̃ o,ext = 0, n ≥ −1,(1.21)

where

Lextn := Ln +
∑
i≥0

(i+ n+ 1)!

i!
si

∂

∂sn+i

+ u
3(n+ 1)!

4

∂

∂sn−1

+ δn,−1u
−1s+ δn,0

3

4
.

Here we, by definition, put ∂
∂s−2

:= ∂
∂s−1

:= 0.

In [Bur15] it was conjectured that, by adding descendents for boundary marked points, one

can geometrically define intersection numbers which will be the coefficients of F̃ o,ext. In [STb]
J. Solomon an R.T. give a complete proposal for the construction in all genera, and it is proved
to produce the correct intersection numbers in genus 0. Moreover, with this proposal the extended
open free energy F o,ext is defined, as well as the extended open partition function

τ o,ext := exp(F c + F o,ext).

It is proved in [STb] that the following equations hold

∂

∂sn
τ o,ext =

un

(n+ 1)!

∂n+1

∂sn+1
0

τ o,ext, n ≥ 1.

In [Bur14], Section 5.2, it is shown that τ̃ o,ext satisfies these equations as well. Thus, Theorem 1.3
implies that τ o,ext = τ̃ o,ext and we immediately obtain the following generalization of Theorem 1.3.

Theorem 1.5. The extended open free energy F o,ext is a solution of the full Burgers-KdV hierarchy.

Remark 1.6. From the recent result of A. Alexandrov [Ale15] it also follows that the extended open
partition function τ o,ext becomes a tau-function of the KP hierarchy after the change of variables
tn = (2n+ 1)!!T2n+1 and sn = 2n+1(n+ 1)!T2n+2.

1.4. Combinatorial formula for the open intersection numbers. In [Tes15] R.T. proved a
combinatorial formula for the geometric models which were defined in [PST14, STa]. He showed
that all these intersection numbers can be calculated as sums of amplitudes of diagrams which will
be described below. In this paper a matrix model is constructed out of this combinatorial formula.
Using this matrix model we prove our main Theorem 1.3. R.T. also derived an extended formula
for the intersection numbers of [STb], and it will appear in a future paper.

A topological (g, k, l)-surface with boundary Σ, is a topological connected oriented surface with
non-empty boundary, genus g, k boundary marked points {xi}i∈[k], and l internal marked points
{zi}i∈[l]. By genus we mean, as usual in the open theory, the doubled genus, that is, the genus of
the doubled surface obtained by gluing two copies of Σ along ∂Σ. We require the stability condition

2g − 2 + k + 2l > 0.

Definition 1.7. Let g, k, l be non-negative integers such that 2g−2 +k+ 2l > 0, A be a finite set
and α : [l]→ A a map. α,A will be implicit in the definition. A (g, k, l)-ribbon graph with boundary
is an embedding ι : G → Σ of a connected graph G into a (g, k, l)-surface with boundary Σ such
that

• {xi}i∈[k] ⊆ ι(V (G)), where V (G) is the set of vertices of G. We henceforth consider {xi}
as vertices.
• The degree of any vertex v ∈ V (G) \ {xi} is at least 3.
• ∂Σ ⊆ ι(G).



PROOF OF THE OPEN ANALOG OF WITTEN’S CONJECTURE 9

1
2

3
4

-

x1

x2

x3

x1 x2

x3

Figure 1. Critical ribbon graphs.

• If l ≥ 1, then

Σ \ ι(G) =
∐
i∈[l]

Di,

where each Di is a topological open disk, with zi ∈ Di. We call the disks Di faces.
• If l = 0, then ι(G) = ∂Σ.

The genus g(G) of the graph G is the genus of Σ. The number of the boundary components of G
or Σ is denoted by b(G) and vI(G) stands for the number of the internal vertices. We denote
by Faces(G) the set of faces of the graph G, and we consider α as a map

α : Faces(G)→ A,

by defining for f ∈ Faces(G), α(f) := α(i), where zi is the unique internal marked point in f. The
map α is called the labeling of G. Denote by VBM(G) the set of boundary marked points {xi}i∈[k].

Two ribbon graphs with boundary ι : G → Σ, ι′ : G′ → Σ′ are isomorphic, if there is an ori-
entation preserving homeomorphism Φ: (Σ, {zi}, {xi}) → (Σ′, {z′i}, {x′i}), and an isomorphism of
graphs φ : G→ G′, such that

(a) ι′ ◦ φ = Φ ◦ ι.
(b) φ(xi) = x′i, for all i ∈ [k].
(c) α′(φ(f)) = α(f), where α, α′ are the labelings of G,G′ respectively and f ∈ Faces(G) is

any face of the graph G.

Note that in this definition we do not require the map Φ to preserve the numbering of the internal
marked points.

A ribbon graph is critical, if

• Boundary marked points have degree 2.
• All other vertices have degree 3.
• If l = 0, then g = 0 and k = 3.

A (0, 3, 0)−ribbon graph with boundary is called a ghost.

In Figure 1 two critical ribbon graphs are shown, the right one is a ghost. We draw internal
edges as thick (ribbon) lines, while boundary edges are usual lines. Note that not all boundary
vertices are boundary marked points. We draw parallel lines inside the ghost, to emphasize that
the face bounded by the boundary is a special face, without a marked point inside.

Definition 1.8. A nodal ribbon graph with boundary is G = (
∐

iGi) /N , where
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Figure 2. A critical nodal ribbon graph.

• ιi : Gi → Σi are ribbon graphs with boundary.
• N ⊂ (∪iV (Gi))× (∪iV (Gi)) is a set of ordered pairs of boundary marked points (v1, v2) of

the Gi’s which we identify.

We require that

• G is a connected graph,
• Elements of N are disjoint as sets (without ordering).

After the identification of the vertices v1 and v2 the corresponding point in the graph is called a
node. The vertex v1 is called the legal side of the node and the vertex v2 is called the illegal side
of the node.

The set of edges Edges(G) is composed of the internal edges of the Gi’s and of the boundary
edges. The boundary edges are the boundary segments between successive vertices which are not
the illegal sides of nodes. For any boundary edge e we denote by m(e) the number of the illegal
sides of nodes lying on it. The boundary marked points of G are the boundary marked points
of Gi’s, which are not nodes. The set of boundary marked points of G will be denoted by VBM(G)
also in the nodal case.

A nodal graph G = (
∐

iGi) /N is critical, if

• All of its components Gi are critical.
• Any boundary component of Gi has an odd number of points that are the boundary marked

points or the legal sides of nodes.
• Ghost components do not contain the illegal sides of nodes.

A nodal ribbon graph with boundary is naturally embedded into the nodal surface Σ = (
∐

i Σi) /N .
The (doubled) genus of Σ is called the genus of the graph. The notion of an isomorphism is also
as in the non-nodal case.

Remark 1.9. The genus of a closed, and in particular doubled, nodal surface Σ is the genus of the
smooth surface obtained by smoothing all nodes of Σ.

In Figure 2 there is a critical nodal graph of genus 0, with 5 boundary marked points, 6 internal
marked points, three components, one of them is a ghost, two nodes, where a plus sign is drawn
next to the legal side of a node and a minus sign is drawn next to the illegal side.

In Figure 3 a non-critical nodal graph is shown. Here there is some vertex of degree 4, the
components do not satisfy the parity condition and the ghost component has an illegal node.
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Figure 3. A non-critical nodal ribbon graph.

Denote by Gg,k,l the set of isomorphism classes of critical nodal ribbon graphs with boundary
of genus g, with k boundary marked points, l faces and together with a bijective labeling α :
Faces(G)

∼→ [l], The combinatorial formula in [Tes15] is

Theorem 1.10. Fix g, k, l ≥ 0 such that 2g − 2 + k + 2l > 0. Let λ1, . . . , λl be formal variables.
Then we have

(1.22) 2
g+k−1

2

∑
a1,...,al≥0

〈
τa1τa2 · · · τalσk

〉o
g

l∏
i=1

2ai(2ai − 1)!!

λ2ai+1
i

=

=
∑

G=(
∐
iGi)/N∈Gg,k,l

∏
i 2

vI(Gi)+g(Gi)+b(Gi)−1

|Aut(G)|
∏

e∈Edges(G)

λ(e),

where

λ(e) :=


1

λi+λj
, if e is an internal edge between faces i and j;

1
(m+1)

(
2m
m

)
λ−2m−1
i , if e is a boundary edge of face i and m(e) = m;

1, if e is a boundary edge of a ghost.
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A. Okounkov, R. Pandharipande, P. Rossi, S. Shadrin, J. P. Solomon and D. Zvonkine for discus-
sions related to the work presented here.

A. B. was supported by grant ERC-2012-AdG-320368-MCSK in the group of R. Pandharipande
at ETH Zurich and grant RFFI-16-01-00409. R.T. was supported by ISF Grant 1747/13 and ERC
Starting Grant 337560 in the group of J. P. Solomon at the Hebrew university of Jerusalem.

Part of the work was completed during the visit of A.B to the Einstein Institute of Mathematics of
the Hebrew University of Jerusalem in 2014 and during the visits of R.T. to the Forschungsinstitut
für Mathematik at ETH Zürich in 2013 and 2014.

2. Matrix model

In this section we present a matrix integral that is a starting point in our proof of Theorem 1.3.
Instead of deriving a matrix integral for the open partition function τ o directly from the com-
binatorial formula (1.22), we write a matrix model for an auxiliary function f oN that is a sum
over non-nodal ribbon graphs with boundary with some additional structure. We then relate the
function f oN to the open partition function τ o by an action of the exponent of some quadratic
differential operator.
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The section is organized as follows. In Section 2.1 we give a slight reformulation of the com-
binatorial formula (1.22). In Section 2.2 we introduce an auxiliary function f oN and relate it to
the open partition function τ o. This relation is given by Lemma 2.2. Section 2.3 contains a brief
review of basic facts about the integration over the space of Hermitian matrices. In Section 2.4
we give a matrix integral for the function f oN . This is the subject of Proposition 2.4. The matrix
integral in this proposition is understood in the sense of formal matrix integration. In Section 2.5
we discuss how to make sense of it as a convergent integral.

We fix an integer N ≥ 1 throughout this section and we set the genus parameter u to be equal
to 1.

2.1. Reformulation of the combinatorial formula. Here we reformulate the combinatorial
formula (1.22). This step is completely analogous to what M. Kontsevich did in [Kon92] (see the
proof of Theorem 1.1 there).

Denote by Gcr
N the set of isomorphism classes of critical nodal ribbon graphs with boundary

together with a labeling α : Faces(G)→ [N ] (a coloring of faces in N colors). For a graph G ∈ Gcr
N

and an edge e ∈ Edges(G), let

λ̃(e) :=


− 1
λα(f1)+λα(f2)

, if e is an internal edge between faces f1 and f2;

− 1
(m+1)

(
2m
m

)
λ−2m−1
α(f) , if e is a boundary edge of face f and m(e) = m;

1, if e a boundary edge of a ghost.

Introduce formal variables λ1, . . . , λN and consider the diagonal N ×N matrix

Λ := diag(λ1, . . . , λN).

From the combinatorial formula (1.22) it follows that

F o|ti=−(2i−1)!! tr Λ−2i−1 =
∑

G=(
∐
iGi)/N∈GcrN

c(G)

|Aut(G)|

 ∏
e∈Edges(G)

λ̃(e)

 s|VBM (G)|

|VBM(G)|!
,(2.1)

where c(G) :=
∏

i c(Gi) and

c(Gi) :=

{
1
2
, if Gi is a ghost;

2−eI(Gi)+2vI(Gi)−|VBM (Gi)|+b(Gi), otherwise.

Here eI(Gi) stands for the number of the internal edges of the graph Gi.

2.2. Sum over non-nodal graphs. Here we introduce an auxiliary function f oN and relate it to
the open partition function τ o.

We denote by RN the ring of formal series of the form

f(λ1, . . . , λN) =
∑
m≥0

fm(λ1, . . . , λN),

where fm is a rational function in λ1, . . . , λN homogeneous of degree −m. We denote byR−dN ⊂ RN

the subspace that consists of series of the form f =
∑

m≥d fm, where fm is a rational function

in λ1, . . . , λN homogeneous of degree −m. Note that the ring C[[λ−1
1 , . . . , λ−1

N ]] can be naturally
considered as a subring of RN .

Let us introduce the following auxiliary set of graphs. Denote by Gcr,nn
N the set of isomorphism

classes of critical non-nodal ribbon graphs with boundary, that are not ghosts, together with

• a labeling α : Faces(G)→ [N ],
• a map β : VBM(G)→ {±1};
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such that on each boundary component of G the number of the boundary marked points v ∈
VBM(G) with β(v) = 1 is odd. Vertices v ∈ VBM(G) with β(v) = 1 will be called legal and vertices
v ∈ VBM(G) with β(v) = −1 will be called illegal. The boundary edges of G are, by definition, the
boundary segments between successive vertices of G which are not the illegal boundary marked
points. We will use the following notations:

vBM+(G) := |{v ∈ VBM(G)|β(v) = 1}|,
vBM−(G) := |{v ∈ VBM(G)|β(v) = −1}|.

Let

τ cN(Λ) := τ c|ti=−(2i−1)!! tr Λ−2i−1 .

Introduce an auxiliary formal variable s− and define the following series of rational functions:

f oN(Λ, s, s−) := τ cN exp

 ∑
G∈Gcr,nnN

c̃(G)

|Aut(G)|

 ∏
e∈Edges(G)

λ̃(e)

 svBM+(G)

vBM+(G)!

s
vBM−(G)
−

vBM−(G)!

 ,(2.2)

where

c̃(G) := 2−eI(G)+2vI(G)−vBM+(G)+b(G).(2.3)

By definition, f oN is an element of RN [[s, s−]].

Remark 2.1. We do not know if f oN belongs to C[[λ−1
1 , . . . , λ−1

N ]][[s, s−]] or not. Several computa-
tions in low degrees motivate us to conjecture that f oN ∈ C[[λ−1

1 , . . . , λ−1
N ]][[s, s−]]. Moreover, we

conjecture that there exists a power series f o(t0, t1, . . . , s, s−) ∈ C[[t0, t1, . . .]][[s, s−]] such that for
any N ≥ 1 we have

f o|ti=−(2i−1)!! tr Λ−2i−1 = f oN .

However, we do not need this statement in the paper.

Let

τ oN(Λ, s) := τ o|ti=−(2i−1)!! tr Λ−2i−1 .

Lemma 2.2. We have

τ oN = e
1
2

∂2

∂s∂s−

(
e
s3

6 f oN

)∣∣∣∣
s−=0

.(2.4)

Proof. The lemma easily follows from equation (2.1), the definition (2.2) of f oN and the standard
result about the graphical representation of the action of the exponent of a quadratic differential

operator. Note that the factor e
s3

6 corresponds to ghost components in critical nodal ribbon
graphs. �

2.3. Brief recall of the matrix integration. We recommend the book [LZ04, Sections 3, 4] as
a good introduction to this subject.

2.3.1. Gaussian measure on the space of Hermitian matrices. Denote by HN the space of Hermit-
ian N ×N matrices. For H = (hi,j) ∈ HN let xi,i := hi,i and xi,j := Re(hi,j), yi,j := Im(hi,j), i < j.
Introduce a volume form dH by

dH :=
N∏
i=1

dxi,i
∏

1≤i<j≤N

dxi,jdyi,j.
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Consider positive real numbers λ1, λ2, . . . , λN ∈ R>0. Recall that Λ := diag(λ1, . . . , λN). Introduce
a Gaussian measure dµΛ,N(H) on the space HN by

dµΛ,N(H) := cΛ,Ne
− 1

2
trH2ΛdH,

where the normalization

cΛ,N := (2π)−N
2/2

N∏
i=1

λ
1/2
i

∏
1≤i<j≤N

(λi + λj)

is determined by the constraint ∫
HN

dµΛ,N(H) = 1.

2.3.2. Wick formula. For any polynomial f(H) ∈ C[hi,j]1≤i,j≤N let

〈f(H)〉Λ,N :=

∫
HN

f(H)dµΛ,N(H).

The integrals 〈f〉Λ,N are described by the following result (see e.g. [LZ04, Section 3.2.3]).

Lemma 2.3 (Wick formula). 1. If f(H) is homogeneous of odd degree, then 〈f〉Λ,N = 0.
2. For any indices 1 ≤ i1, . . . , i2k, j1, . . . , j2k ≤ N , we have

〈hi1,j1hi2,j2 . . . hi2k,j2k〉Λ,N =
∑〈

hip1 ,jp1hiq1 ,jq1
〉

Λ,N

〈
hip2 ,jp2hiq2 ,jq2

〉
Λ,N

. . .
〈
hipk ,jpkhiqk ,jqk

〉
Λ,N

,

where the sum is taken over all permutations p1q1p2q2 . . . pkqk of the set of indices 1, 2, . . . , 2k such
that p1 < p2 < . . . < pk and pi < qi.
3. We have

〈hi,jhk,l〉Λ,N =

{
2

λi+λj
, if j = k and i = l;

0, otherwise.

2.4. Matrix integral for f oN . In this section we present a matrix integral representation for the
function f oN .

Let

G(Λ, s−) :=
∑
m≥0

1

m+ 1

(
2m

m

)
sm−Λ−2m−1,

IB(H,Λ, s, s−) := tr

[∑
m≥1

1

m

((
iH − s

2
G(Λ, s−)

)m
−
(
iH + s

2
G(Λ, s−)

)m)]
.

Note that

G(Λ, s−) =
2

Λ +
√

Λ2 − 4s−
.

Therefore, the exponent eIB can be represented in the following way

eIB = det

(
Λ +

√
Λ2 − 4s− − iH − s

Λ +
√

Λ2 − 4s− − iH + s

)
.

Proposition 2.4. We have

f oN(Λ, s, s−) = cΛ,N

∫ form

HN
e
i
6

trH3+IB− 1
2

trH2ΛdH.(2.5)
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Figure 4. Internal vertex

Here the integral is understood in the sense of formal matrix integration. It means the following.
We express e

i
6

trH3+IB as a series of the form

e
i
6

trH3+IB =
∑

a,b,m≥0

sasb−Pa,b,m,

where Pa,b,m is a polynomial of degree m in trH3 and expressions of the form

tr(HΛ−d1HΛ−d2 . . . HΛ−dr), where d1, . . . , dr ≥ 1.

Here the degree is introduced by putting

deg(trH3) := 3, deg(tr(HΛ−d1HΛ−d2 . . . HΛ−dr)) := r + 2
r∑
i=1

di.

From Lemma 2.3 it follows that

cΛ,N

∫
HN

Pa,b,me
− 1

2
trH2ΛdH = 〈Pa,b,m〉Λ,N

is zero, if m is odd, and is a rational function in λ1, . . . , λN of degree −m
2

, if m is even. Then the
integral on the right-hand side of (2.5) is defined by

cΛ,N

∫ form

HN
e
i
6

trH3− 1
2

trH2Λ+IBdH :=
∑

a,b,m≥0

sasb− 〈Pa,b,2m〉Λ,N .

Proof of Proposition 2.4. We begin by recalling the derivation of the matrix integral for τ cN from
Kontsevich’s combinatorial formula (1.7) ([Kon92]). Consider an arbitrary trivalent ribbon graph
without boundary with a coloring of faces in N colors. It can be obtained by gluing trivalent stars
(see Fig. 4) in such a way that corresponding indices on glued edges coincide. To a trivalent star we
associate the polynomial 1

3
trH3 ∈ C[hi,j]. Then the Wick formula (Lemma 2.3) and Kontsevich’s

formula (1.7) imply that

τ cN = cΛ,N

∫ form

HN
e
i
6

trH3− 1
2

trH2ΛdH.

This is the famous Kontsevich integral ([Kon92]). We recommend the reader the book [LZ04,
Sections 3 and 4] for a more detailed explanation of this technique.

Consider now a non-nodal critical ribbon graph with boundary G ∈ Gcr,nn
N . Each boundary

component is a circle with a configuration of vertices of degrees 2 and 3. Vertices of degree 2 are
boundary marked points and they are of two types: legal and illegal. In Fig. 5 we draw an example
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•
+

•
+

•−•+•−
tr ((HΛ−1)(sΛ−1)2(Hs−Λ−3)(HΛ−1)(ss−Λ−3)(HΛ−1))

Figure 5. Boundary component

of a boundary component. Legal boundary marked points are marked by + and illegal ones by −.
Each graph from Gcr,nn

N can be obtained by gluing trivalent stars and some number of boundary
components.

Consider a boundary component of some non-nodal critical ribbon graph with boundary G ∈
Gcr,nn
N . Recall that, by definition, the boundary edges are the boundary segments between suc-

cessive vertices which are not illegal boundary marked points. Let e1, e2, . . . , ep be the edges of
the boundary component, ordered in the clockwise direction. Moreover we orient each edge in the
clockwise direction, so that any boundary edge points from a source vertex to a target vertex. Let

bp(ei) :=

{
H, if the source of ei is of degree 3,

s, if the source of ei is of degree 2.

The combinatorial formula (2.2) suggests that to the boundary component we should assign the
following expression:

1

|Aut |
tr

[
p∏
i=1

(
bp(ei)

1

m(ei) + 1

(
2m(ei)

m(ei)

)
s
m(ei)
− Λ−2m(ei)−1

)]
∈ C[hi,j],(2.6)

where Aut denotes the automorphism group of the boundary component. An example is shown
in Fig. 5. For a moment we ignore the combinatorial coefficient (2.3). If we sum expressions (2.6)
over all possible choices of a boundary component, we get

1

2
tr

[∑
k≥1

1

k
((H + s)G(Λ, s−))k −

∑
k≥1

1

k
((H − s)G(Λ, s−))k

]
.(2.7)

Let us deal more carefully with the combinatorial coefficient (2.3). Denote by vB3(G) the number
of the boundary vertices of degree 3 of the graph G and by eB(G) the number of the boundary
edges. Since 3vI(G) + vB3(G) = 2eI(G), we have

c̃(G) =2−eI(G)+2vI(G)−vBM+(G)+b(G) = 2eI(G)−vI(G)−vB3(G)−vBM+(G)+b(G),

(−1)|Edges(G)| =(−1)eI(G)(−1)eB(G) = i3vI(G)+vB3(G)(−1)vB3(G)+vBM+(G) = ivI(G)+vB3(G)(−1)vBM+(G).

Therefore, we have to rescale expression (2.7) in the following way:

tr

[∑
k≥1

1

k

(
iH − s

2
G(Λ, s−)

)k
−
∑
k≥1

1

k

(
iH + s

2
G(Λ, s−)

)k]
.
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We immediately recognize here the function IB(H,Λ, s, s−). Again, the Wick formula together
with Kontsevich’s formula (1.7) and the combinatorial formula (2.2) imply that

f oN = cΛ,N

∫ form

HN
e
i
6

trH3+IB− 1
2

trH2ΛdH.

The proposition is proved. �

2.5. Convergent matrix integral. One can show that the integral

cΛ,N

∫
HN

e
i
6

trH3− 1
2

trH2ΛdH

is absolutely convergent and determines a well-defined function of (λ1, . . . , λN) ∈ RN
>0. It is not

hard to show that the asymptotic expansion of it, when λi →∞, is given by τ cN ([Kon92]).
In our case we can also make sense of the integral in (2.5) as a convergent integral. Suppose

that λi are positive real numbers, s− is a real number such that s− <
λ2i
4

, i = 1, . . . , N , and s is a
purely imaginary complex number. Then the integral

cΛ,N

∫
HN

e
i
6

trH3− 1
2

trH2Λ+IBdH = cΛ,N

∫
HN

e
i
6

trH3− 1
2

trH2Λ det

(
Λ +

√
Λ2 − 4s− − iH − s

Λ +
√

Λ2 − 4s− − iH + s

)
dH

is absolutely convergent and determines a well-defined function of λ1, . . . , λN , s and s−.

3. Formal Fourier transform of τ o

In this section we introduce a certain version of the Fourier transform. It happens that af-
ter this transformation formula (2.4) becomes much simpler. The main result of this section is
Proposition 3.5.

We again fix an integer N ≥ 1 throughout this section and set the genus parameter u to be
equal to 1.

3.1. Formal Fourier transform. Here we define our version of the Fourier transform and de-
scribe its main properties. Section 3.1.1 is preliminary. The main definition is contained in
Section 3.1.2. In Section 3.1.3 there is a slightly different version of it that will also be useful.
Section 3.1.4 is devoted to the properties of our Fourier transform.

3.1.1. Fourier transform for C[[s]]. For an arbitrary positive real z ∈ R>0 and a non-negative
integer m ∈ Z≥0, we have the following classical formula:√

z

2π

∫
R
sme−

1
2
s2zds =

{
0, if m is odd;
(m−1)!!

zm/2
, if m is even.

A power series f ∈ C[[s]] is called admissible if it has the form f = e
s3

6 f̃(s), where f̃(s) ∈ C[s].
The space of admissible power series is denoted by C[[s]]adm ⊂ C[[s]]. For an admissible power

series f ∈ C[[s]]adm, f = e
s3

6 f̃ , the formal Fourier transform Φform
s [f ](z) ∈ C[[z−1, z] is defined by

Φform
s [f ](z) :=

√
z

2π

∫ form

R
f̃(−is+ z)e

i
6
s3− 1

2
s2zds :=

=
∑
k≥0

√
z

2π

∫
R

f̃(−is+ z)

k!

(
i

6
s3

)k
e−

1
2
s2zds ∈ C[[z−1, z].
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The reader can see that the formal Fourier transform of f is the asymptotic expansion of the
integral √

z

2π

∫
R
f̃(−is+ z)e

i
6
s3− 1

2
s2zds,

when z goes to +∞.

3.1.2. Fourier transform for RN [[s]]. An element f(Λ, s) ∈ RN [[s]] will be called admissible, if the

series f̃ = fe−
s3

6 =
∑

i≥0 s
if̃i, f̃i ∈ RN , satisfies the following property. There exists a sequence di,

i ≥ 0, of positive integers such that di → ∞, when i → ∞, and f̃i ∈ R−diN . The space of all
admissible elements will be denoted by RN [[s]]adm.

For an admissible element f ∈ RN [[s]]adm, it can be seen that the element f̃ = e−
s3

6 f can be
expressed in the following way:

f̃(Λ, s) =
∑
m

gm(Λ)Pm(s),

where gm ∈ C(λ1, . . . λN) are homogeneous linearly independent rational functions and Pm(s) ∈
C[s] are polynomials in s. The formal Fourier transform Φform

s [f ](Λ, z) ∈ RN [[z−1, z]] is defined
by

Φform
s [f ](Λ, z) :=

∑
m

gm(Λ)

√
z

2π

∫ form

R
e
is3

6
− 1

2
s2zPm(−is+ z)ds ∈ RN [[z−1, z]].

We again see that the formal Fourier transform can be considered as the asymptotic expansion of
the integral √

z

2π

∫
R
f̃(Λ,−is+ z)e

i
6
s3− 1

2
s2zds,

when z goes to +∞.

3.1.3. Fourier transform for C[[t0, t1, t2, . . .]][[s]]. A formal Fourier transform for power series from
C[[t0, t1, . . .]][[s]] is introduced completely analogously. We introduce a grading in the ring C[[t0, t1, . . .]]
assigning to ti the degree 2i+ 1. For d ≥ 0 let C[[t0, t1, . . .]]

d be the subspace of C[[t0, t1, . . .]] that

consists of power series of the form f =
∑

m≥d fm, where fm ∈ C
[
t0, t1, . . . , tbm−1

2
c

]
is a homo-

geneous polynomial of degree m. The subspace C[[t0, t1, . . .]][[s]]
adm ⊂ C[[t0, t1, . . .]][[s]] is defined

similarly to the previous section, using the filtration

C[[t0, t1, . . .]] = C[[t0, t1, . . .]]
0 ⊃ C[[t0, t1, . . .]]

1 ⊃ C[[t0, t1, . . .]]
2 ⊃ . . . .

It is easy to see that if f ∈ C[[t0, t1, . . .]][[s]] is admissible, then

f |ti=−(2i−1)!! tr Λ−2i−1 ∈ C[[λ−1
1 , . . . , λ−1

N ]]

is also admissible.
For an admissible element f ∈ C[[t0, t1, . . .]][[s]]

adm the formal Fourier transform is defined by

Φform
s [f ](t∗, z) :=

√
z

2π

∫ form

R
e
is3

6
− 1

2
s2zf̃(t∗,−is+ z)ds ∈ C[[t0, t1, . . .]][[z

−1, z]],

where f̃ := e−
s3

6 f .
The relation to the Fourier transform from the previous section is given by

Φform
s [f ]

∣∣
ti=−(2i−1)!! tr Λ−2i−1 = Φform

s

[
f |ti=−(2i−1)!! tr Λ−2i−1

]
.(3.1)
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3.1.4. Properties. Let us describe three basic properties of our formal Fourier transform. The
symbol A will stand for RN or C[[t0, t1, . . .]].

Lemma 3.1. The map Φform
s : A[[s]]adm → A[[z−1, z]] is injective.

Proof. Suppose that A = RN . The proof for A = C[[t0, t1, . . .]] is the same. Suppose we have

Φform
s [f ] = 0 for some admissible f ∈ RN [[s]]adm. Let f̃ = e−

s3

6 f . We have

f̃ =
∑
m

gm(Λ)Pm(s),

where gm(Λ) ∈ C(λ1, . . . , λN) are linearly independent homogeneous rational functions and Pm(s) ∈
C[s] are polynomials in s. Since Φform

s [f ] = 0, we get√
z

2π

∫ form

R
e
is3

6
− 1

2
s2zPm(−is+ z)ds = 0,

for all m. Let us choose a non-zero Pm and let Pm =
∑k

i=0 ais
i, where ak 6= 0. A direct calculation

shows that √
z

2π

∫ form

R
e
is3

6
− 1

2
s2zPm(−is+ z)ds = akz

k +
∑
i<k

biz
i.

Therefore this integral is non-zero. This contradiction proves the lemma. �

Lemma 3.2. For any admissible element f ∈ A[[s]]adm, the derivative ∂f
∂s

is also admissible and

Φform
s

[
∂f
∂s

]
= z2

2
Φform
s [f ].

Proof. The proof is again presented in the case A = RN . If f = e
s3

6 f̃ , then ∂f
∂s

= e
s3

6

(
s2

2
f̃ + ∂f̃

∂s

)
.

Therefore, ∂f
∂s

is also admissible. Now we compute

Φform
s [fs](Λ, z) =

√
z

2π

∫ form

R
e
is3

6
− 1

2
s2z

(
(−is+ z)2

2
f̃(Λ,−is+ z) + i

∂

∂s
f̃(Λ,−is+ z)

)
ds =

=
z2

2
Φform
s [f ](Λ, z).

The last equality follows from integration by parts. The lemma is proved. �

Lemma 3.3. For any admissible element f ∈ A[[s]]adm, the product sf is also admissible and

Φform
s [sf ] = −

(
1

z

∂

∂z
− 1

2z2
− z
)

Φform
s [f ].

Proof. The admissibility of the product sf is obvious. We compute(
1

z

∂

∂z
− 1

2z2

)
Φform
s [f ] =

√
z

2π

1

z

∫ form

R

[(
i
∂

∂s
− s2

2

)
f̃(−is+ z)

]
e
i
6
s3− 1

2
s2zds =

=

√
z

2π

∫ form

R
isf̃(−is+ z)e

i
6
s3− 1

2
s2zds.

Therefore,(
1

z

∂

∂z
− 1

2z2
− z
)

Φform
s [f ] =

√
z

2π

∫ form

R
(is− z)f̃(−is+ z)e

i
6
s3− 1

2
s2zds = Φform

s [sf ].

The lemma is proved. �
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3.2. Fourier transform of τ o. Recall that

τ oN(Λ, s) := τ o|ti=−(2i−1)!! tr Λ−2i−1 ∈ C[[λ−1
1 , . . . , λ−1

N ]][[s]].

From formula (2.1) it is easy to see that the series τ oN is admissible. It is also easy to see that

f oN =
∑

i,j≥0 s
isj−f

o
N,i,j, where f oN,i,j ∈ R

−i−2j
N . Thus, for any j ≥ 0, the series e

s3

6

∑
i≥0 s

if oN,i,j is

admissible. We conclude that the Fourier transform Φform
s

[
e
s3

6 f oN

]
(Λ, z, s−) with respect to the

variable s is well-defined.

Proposition 3.4. We have

Φform
s [τ oN ](Λ, z) = Φform

s

[
e
s3

6 f oN

](
Λ, z,

z2

4

)
.

Proof. By Lemma 2.2, we have

τ oN = e
1
2

∂2

∂s∂s−

(
f oNe

s3

6

)∣∣∣∣
s−=0

.

From Lemma 3.2 it follows that

Φform
s

[
e

1
2

∂2

∂s∂s−

(
f oNe

s3

6

)]
(Λ, z, s−) = e

z2

4
∂
∂s−

(
Φform
s

[
f oNe

s3

6

]
(Λ, z, s−)

)
=

= Φform
s

[
f oNe

s3

6

](
Λ, z, s− +

z2

4

)
.

Setting s− = 0, we get the statement of the proposition. �

Propositions 3.4 and 2.4 together with Section 2.5 imply the following proposition.

Proposition 3.5. The series Φform
s [τ oN ](Λ, z) is the asymptotic expansion of the integral

cΛ,N

√
z

2π

∫
R
e
i
6
s3− 1

2
s2zds

∫
HN

e
i
6

trH3− 1
2

trH2Λ det

(
Λ +
√

Λ2 − z2 − iH + is− z
Λ +
√

Λ2 − z2 − iH − is+ z

)
dH,

when 0 < z < λi and z, λi → +∞.

4. Analytical computations with the matrix integral

Let N be an arbitrary positive integer. Recall that the series τ cN(Λ) ∈ C[[λ−1
1 , . . . , λ−1

N ]] is defined
by

τ cN(Λ) := τ c|ti=−(2i−1)!! tr Λ−2i−1 .

Let Λz := diag(λ1, . . . , λN , z). We set the genus parameter u to be equal to 1. The following
proposition is the key step in the proof of Theorem 1.3.

Proposition 4.1. We have

Φform
s [τ oN ] (Λ, z) = τ cN+1(Λz)

√
det

(
1− zΛ−1

1 + zΛ−1

)
.(4.1)

Before proving the proposition let us make a remark about the right-hand side of equation (4.1).

We see that τ cN+1(Λz) ∈ C[[λ−1
1 , . . . , λ−1

N ]][[z−1]] and
√

det
(

1−zΛ−1

1+zΛ−1

)
∈ C[[λ−1

1 , . . . , λ−1
N ]][[z]]. So, on

the right-hand side of (4.1) we multiply a power series in z−1 and a power series in z. In general,
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the multiplication of two such series may not be well-defined. In our case, the issue is resolved as
follows. We have √

det

(
1− zΛ−1

1 + zΛ−1

)
= e−

∑
k≥0

1
2k+1

z2k+1 tr Λ−2k−1

.

Therefore,
√

det
(

1−zΛ−1

1+zΛ−1

)
has the form

∑
m≥0 fmz

m, where fm ∈ C[λ−1
1 , . . . , λ−1

N ] is homogeneous

of degree −m. Thus, the product on the right-hand side of (4.1) is well-defined.
Our proof of Proposition 4.1 uses a famous technique, that is sometimes called the averaging

procedure over the unitary group. We recall it in Section 4.1. After that, in Section 4.2, we prove
Proposition 4.1.

4.1. Averaging procedure over the unitary group.

4.1.1. Polar decomposition. It is well-known that an arbitrary Hermitian matrix H admits a polar
decomposition, H = UMU−1, where U is a unitary matrix and M is a diagonal matrix with real
entries. Denote by UN the group of unitary N ×N matrices. Given a vector m = (m1, . . . ,mN) ∈
RN , define a map πm : UN → HN by

πm(U) := U diag(m1, . . . ,mN)U−1.

For a Hermitian matrix H, let m(H) = (m1(H), . . . ,mN(H)) be the vector of its eigenvalues. It
is defined up to a permutation of the coordinates. For a subset D ⊂ RN , that is invariant under
permutations of the coordinates, let

HD
N := {H ∈ HN |m(H) ∈ D} ⊂ HN .

Suppose moreover that D ⊂ RN is compact and measurable. Let f : HN → C be an arbitrary
smooth function. We denote by dU the Haar probability measure on UN . We have the following
result (see e.g. [LZ04, Sections 3 and 4]).

Lemma 4.2. We have∫
HDN

f(H)dH =
π
N2−N

2∏N
i=1 i!

∫
D

∏
1≤i<j≤N

(mj −mi)
2dm1 . . . dmN

∫
UN

(π∗mf)dU.

4.1.2. Harish-Chandra-Itzykson-Zuber formula. Let a1, . . . , aN , b1, . . . , bN be arbitrary real num-
bers such that ai 6= aj and bi 6= bj, for i 6= j. Let A := diag(a1, . . . , aN) and B := diag(b1, . . . , bN).
Let t be an arbitrary non-zero complex parameter. The Harish-Chandra-Itzykson-Zuber (HCIZ)
formula says that ∫

UN

et tr(AUBU−1)dU =

∏N−1
i=1 i!

t
N2−N

2

det(etaibj)∏
1≤i<j≤N(aj − ai)(bj − bi)

.(4.2)

The right-hand has no poles on the diagonals {ai = aj} or {bi = bj}, and so it defines a smooth
function of 2N real parameters a1, . . . , aN , b1, . . . , bN . Formula (4.2) was originally found in [H-C57]
and then was rediscovered in [IZ80].

We will apply the HCIZ formula in the following way. Again, let D be a compact measurable
subset of RN , invariant under permutations of the coordinates. Let f : HN → C be a smooth
unitary invariant function: f(UHU−1) = f(H), for any U ∈ UN . Finally, consider pairwise
distinct purely imaginary complex numbers a1, . . . , aN and set A := diag(a1, . . . , aN).

Lemma 4.3. We have∫
HDN

f(H)e
1
2

trH2AdH =
(2π)

N2−N
2

N !
∏

1≤i<j≤N(aj − ai)

∫
D

f(M) det
(
e

1
2
m2
i aj
) ∏

1≤i<j≤N

mj −mi

mj +mi

dM,(4.3)



22 ALEXANDR BURYAK AND RAN J. TESSLER

where M := diag(m1, . . . ,mN) and dM := dm1 . . . dmN .

Proof. The lemma follows from combining Lemma 4.2 and the HCIZ formula (4.2). �

4.2. Proof of Proposition 4.1. Suppose that λ1, . . . , λN and z are positive real numbers. Con-
sider Kontsevich’s integral

cΛz ,N+1

∫
HN+1

e
i
6

trH3− 1
2

trH2ΛzdH.(4.4)

As we already recalled in Section 2.5, the integral (4.4) is absolutely convergent and its asymptotic
expansion, when λi, z → +∞, is given by the series τ cN+1(Λz) (see [Kon92]). Suppose moreover
that z < λi. Using Proposition 3.5 we see that equation (4.1) is a consequence of the following
equation:

(4.5) cΛz ,N+1

∫
HN+1

e
i
6

trH3− 1
2

trH2ΛzdH =

= cΛ,N

√
det

(
Λ + z

Λ− z

)√
z

2π

∫
R
e
i
6
s3− 1

2
s2zds

∫
HN

e
i
6

trH3− 1
2

trH2Λ det

(
Λ +
√

Λ2 − z2 − iH + is− z
Λ +
√

Λ2 − z2 − iH − is+ z

)
dH.

The integral (4.4) is still absolutely convergent, when λi’s and z are complex numbers with
positive real parts. Moreover, the integral (4.4) is semi-convergent, if λi, z are purely imaginary
non-zero complex numbers, and the asymptotic expansion of it, when λi, z → ∞ is still given by
the power series τ cN+1(Λz). See the discussion of these subtle questions in [DIZ93, page 208].

Let λi and z be purely imaginary complex numbers with positive imaginary parts. Assume
moreover that |z| < |λi|. Consider the diagonal matrix

A :=
√

Λ2 − z2,

where we choose a particular value of the square root, such that all entries of the matrix A have
positive imaginary parts. Let a1, . . . , aN be the diagonal elements of A. Let

Az :=
√

Λ2
z − z2 = diag(a1, . . . , aN , 0).

Let us perform the change of variables H 7→ H− i(Λz +Az) on the left-hand side of equation (4.5).
It occurs that this kind of shifts is very useful in the study of Hermitian matrix models (see
e.g. [IZ92, page 5668] or [DIZ93, page 208]). We get

cΛz ,N+1e
trBz

∫
HN+1

e
i
6

trH3+ 1
2

trH2Az+i z
2

2
trHdH,

where Bz := (Az+Λz)2(2Λz−Az)
6

. Define aN+1 to be equal to 0. By Lemma 4.3, the last integral is
equal to

(2π)
(N+1)2−N−1

2 cΛz ,N+1e
trBz

(N + 1)!
∏

1≤i<j≤N+1(aj − ai)

∫
RN+1

e
i
6

trM3+i z
2

2
trM det

(
e

1
2
m2
i aj
)

1≤i,j≤N+1

∏
1≤i<j≤N+1

mj −mi

mj +mi

dM,

(4.6)

where M := diag(m1, . . . ,mN+1) and dM := dm1 . . . dmN+1. Note that

cΛz ,N+1 = cΛ,N(2π)−N
√

z

2π

N∏
i=1

(z + λi) and trBz = trB +
z3

3
,
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where B = (A+Λ)2(2Λ−A)
6

. Expanding the determinant along the last column, we get

det
(
e

1
2
m2
i aj
)

1≤i,j≤N+1

∏
1≤i<j≤N+1

mj −mi

mj +mi

=

=
N+1∑
k=1

(−1)N+1−k det
(
e

1
2
m2
i aj
)

1≤i≤N+1, i 6=k
1≤j≤N

∏
1≤i<j≤N+1

mj −mi

mj +mi

=

=
N+1∑
k=1

det
(
e

1
2
m2
i aj
)

1≤i≤N+1, i 6=k
1≤j≤N

∏
1≤i<j≤N+1

i,j 6=k

mj −mi

mj +mi

∏
1≤i≤N+1

i 6=k

mk −mi

mk +mi

.

When we substitute this sum in expression (4.6), we see that all the N + 1 summands give the
same contribution to the integral. Therefore, we can rewrite (4.6) as follows:√

z

2π

N∏
i=1

z + λi
ai

e
z3

3

∫
R
e
i
6
m3
N+1+ i

2
mN+1z

2

dmN+1×(4.7)

×

[
(2π)

N2−N
2 cΛ,Ne

trB

N !
∏

1≤i<j≤N(aj − ai)

∫
RN
e
i
6

tr(M ′)3+i z
2

2
trM ′ det

(
e

1
2
m2
i aj
)

1≤i,j≤N
×

×
∏

1≤i<j≤N

mj −mi

mj +mi

det

(
M ′ −mN+1

M ′ +mN+1

)
dM ′

]
,

where M ′ := diag(m1, . . . ,mN) and dM ′ := dm1 . . . dmN . By Lemma 4.3, the expression in the
square brackets is equal to

cΛ,Ne
trB

∫
HN

e
i
6

trH3+i z
2

2
trH+ 1

2
trH2A det

H −mN+1

H +mN+1

dH.

Redenoting mN+1 by s, expression (4.7) is equal to√
z

2π
det

(
z + Λ

A

)
e
z3

3

∫
R
e
i
6
s3+ i

2
sz2ds

[
cΛ,Ne

trB

∫
HN

e
i
6

trH3+ 1
2

trH2A+i z
2

2
trH det

H − s
H + s

dH

]
.(4.8)

Now we make the shift H 7→ H + i(Λ +A) in the integral in the square brackets. Using also that

A =
√

Λ2 − z2 =
√

(Λ− z)(Λ + z), we get that (4.8) is equal to√
z

2π

√
det

(
Λ + z

Λ− z

)
e
z3

3

∫
R
e
i
6
s3+ i

2
sz2ds

[
cΛ,N

∫
HN

e
i
6

trH3− 1
2

trH2Λ det

(
Λ + A− iH + is

Λ + A− iH − is

)
dH

]
.

Finally, making the shift s 7→ s+ iz, we come to

cΛ,N

√
det

(
Λ + z

Λ− z

)√
z

2π

∫
R
e
i
6
s3− 1

2
s2zds

∫
HN

e
i
6

trH3− 1
2

trH2Λ det

(
Λ + A− iH + is− z
Λ + A− iH − is+ z

)
dH.

Equation (4.5) is proved, and, thus, also Proposition 4.1.

5. Proof of Theorem 1.3

From the dimension constraint (1.9) it follows that, if an open intersection number (1.10) is
non-zero, then the genus g is uniquely determined by ai’s and k. Using this observation, it is easy
to show that, if the open KdV equations hold for u = 1, then they are also true for an arbitrary u.
The same is true for the open Virasoro equations. Therefore, without loss of generality, we can
assume that u = 1.
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Let Gz be the shift operator which acts on a series f(t0, t1, . . .) ∈ C[[t0, t1, . . .]] by

Gz[f ](t0, t1, . . .) := f

(
t0 −

k0

z
, t1 −

k1

z3
, t2 −

k2

z5
, . . .

)
,

where kn := (2n− 1)!! and, by definition, (−1)!! := 1. Let ξc :=
∑

i≥0
tiz

2i+1

(2i+1)!!
.

Proposition 4.1 implies the following corollary.

Corollary 5.1. We have

Φform
s [τ o] = Gz[τ

c]eξ
c

.(5.1)

Proof. It is easy to check that for an arbitrary N ≥ 1 we have

Gz[τ
c]|ti=−(2i−1)!! tr Λ−2i−1 = τ cN+1(Λz) and eξ

c∣∣
ti=−(2i−1)!! tr Λ−2i−1 =

√
det

(
1− zΛ−1

1 + zΛ−1
.

)
.

Therefore, by Proposition 4.1 and equation (3.1), we have(
Φform
s [τ o]

)∣∣
ti=−(2i−1)!! tr Λ−2i−1 =

(
Gz[τ

c]eξ
c)∣∣

ti=−(2i−1)!! tr Λ−2i−1 .(5.2)

For an arbitrary m ≥ 0 the functions tr Λ−1, tr Λ−3, . . . , tr Λ−2m−1 become algebraically indepen-
dent, when N is sufficiently large. Therefore, equation (5.2) implies that Φform

s [τ o] = Gz[τ
c]eξ

c
.

The corollary is proved. �

Let us prove that the open free energy F o satisfies the half of the Burgers-KdV hierarchy (1.18)-
(1.19). In [Bur14] it was obtained that the half of the Burgers-KdV hierarchy can be written in a
very convenient form using the Lax formalism. Let us briefly recall this result. A pseudo-differential
operator A is a Laurent series

A =
m∑

n=−∞

an(t)∂nx ,

wherem is an arbitrary integer and an are formal power series in t0, t1, . . .. We will always identify t0
with x. Let

A+ :=
m∑
n=0

an∂
n
x .

The product of pseudo-differential operators is defined by the following commutation rule:

∂kx ◦ f :=
∞∑
l=0

k(k − 1) . . . (k − l + 1)

l!

∂lf

∂xl
∂k−lx ,

where k ∈ Z and f ∈ C[[t0, t1, . . .]]. For any m ≥ 2 and a pseudo-differential operator A of the
form

A = ∂mx +
∞∑
n=1

an∂
m−n
x ,

there exists a unique pseudo-differential operator A
1
m of the form

A
1
m = ∂x +

∞∑
n=0

ãn∂
−n
x ,

such that
(
A

1
m

)m
= A.
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Consider the pseudo-differential operator L := ∂2
x + 2F c

t0,t0
. In [Bur14] it was proved that the

half of the Burgers-KdV system (1.18)-(1.19) is equivalent to the following system:

∂

∂tn
eF =

1

(2n+ 1)!!

(
Ln+ 1

2

)
+
eF ,(5.3)

∂

∂s
eF =

1

2
LeF .(5.4)

Let us prove that the open free energy F o satisfies equations (5.3) and (5.4). Let

ξ(t∗, s∗, z) := ξc +
∑
n≥0

snz
2n+2

(2n+ 2)!!
, and ψ(t∗, s∗, z) :=

Gz(τ
c)

τ c
eξ.

From the fact that the closed partition function τ c is a tau-function of the KdV hierarchy it follows
that the series ψ is the wave function of the KdV hierarchy (see e.g. [Dic03]), that is, it satisfies
the following equations:

∂

∂tn
ψ =

1

(2n+ 1)!!

(
Ln+ 1

2

)
+
ψ,(5.5)

∂

∂sn
ψ =

1

2n+1(n+ 1)!
Ln+1ψ.(5.6)

From Corollary 5.1 it follows that

Φform
s

[
eF

o]
= ψ|s∗=0.(5.7)

Let us prove (5.3). Let Otn := ∂
∂tn
− 1

(2n+1)!!

(
Ln+ 1

2

)
+

. We have

Φform
s

[
Otne

F o
]

= OtnΦform
s

[
eF

o] by (5.7)
= Otn (ψ|s∗=0) = (Otnψ) |s∗=0

by (5.5)
= 0.

By Lemma 3.1, we get Otne
F o = 0 and equation (5.3) is proved.

Let us prove (5.4). Let Os := ∂
∂s
− 1

2
L. We have

Φform
s

[
Ose

F o
] by Lemma 3.2

=

(
z2

2
− 1

2
L

)
Φform
s

[
eF

o] by (5.7)
=

(
z2

2
− 1

2
L

)
(ψ|s∗=0) = (Osψ) |s∗=0

by (5.6)
= 0.

By Lemma 3.1, we get Ose
F o = 0 and equation (5.4) is proved.

In [Bur15] it was shown that the open KdV equations follow from the half of the Burgers-KdV
hierarchy. Therefore, Conjecture 1 is proved. We also see that the open free energy F o satisfies
the initial condition F o|t≥1=0,s=0 = 0. In [Bur15] it was proved that such a solution of the half
of the Burgers-KdV hierarchy satisfies the open Virasoro equations (1.17). Thus, Conjecture 2 is
also proved.

6. Virasoro equations

The derivation of the open Virasoro equations (1.17) from the open KdV equations (1.15) was
given in [Bur15]. Another derivation was obtained in [Bur14]. In this section we want to show
that the open Virasoro equations can be very easily obtained from Corollary 5.1. Again we can
assume that u = 1.

By Corollary 5.1,
Φform
s [τ o] = Gz[τ

c]eξ
c

.

From the closed Virasoro equations (1.6) it is easy to derive that (see e.g. [Bur14])

Ln
(
Gz[τ

c]eξ
c)

=

(
z2n+2

2n+1

(
1

z

∂

∂z
− 1

2z2
− z
)

+
n+ 1

2n+2
z2n

)(
Gz[τ

c]eξ
c)
.
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By Lemmas 3.2 and 3.3, we have(
z2n+2

2n+1

(
1

z

∂

∂z
− 1

2z2
− z
)

+
n+ 1

2n+2
z2n

)
Φform
s [τ o] = Φform

s

[(
− ∂n+1

∂sn+1
◦ s+

n+ 1

4

∂n

∂sn

)
τ o
]

=

= −Φform
s

[(
s
∂n+1

∂sn+1
+

3n+ 3

4

∂n

∂sn

)
τ o
]
.

Here, as above, the circle ◦ means the composition of operators. In the last operator inside the
Fourier transform we immediately recognize the difference between the open Virasoro operator Ln
and the closed Virasoro operator Ln (see (1.16)). Therefore, we get

Φform
s [Lnτ o] = 0.

Lemma 3.1 implies that Lnτ o = 0. The open Virasoro equations are proved.
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mathématiques de l’I.H.É.S. 36 (1969), 75-109.
[DVV91] R. Dijkgraaf, H. Verlinde, E. Verlinde. Loop equations and Virasoro constraints in non-perturbative two-

dimensional quantum gravity. Nuclear Physics B 348 (1991), no. 3, 435-456.
[HM98] J. Harris, I. Morrison. Moduli of curves. Graduate Texts in Mathematics, 187. Springer-Verlag, New

York, 1998.
[H-C57] Harish-Chandra. Differential operators on a semisimple Lie algebra. Americal Journal of Mathematics 79

(1957), 87-120,
[IZ80] C. Itzykson, J.-B. Zuber. The planar approximation. II. Journal of Mathematical Physics 21 (1980),

411-421.
[IZ92] C. Itzykson, J.-B. Zuber. Combinatorics of the modular group. II. The Kontsevich integrals. International

Journal of Modern Physics A 7 (1992), no. 23, 5661-5705.
[KL07] M. E. Kazarian, S. K. Lando. An algebro-geometric proof of Witten’s conjecture. Journal of the American

Mathematical Society 20 (2007), no. 4, 1079-1089.
[Kon92] M. Kontsevich. Intersection theory on the moduli space of curves and the matrix Airy function. Commu-

nications in Mathematical Physics 147 (1992), no. 1, 1-23.
[LZ04] S. K. Lando, A. K. Zvonkin. Graphs on surfaces and their applications. With an appendix by Don B.

Zagier. Encyclopaedia of Mathematical Sciences, 141. Low-Dimensional Topology, II. Springer-Verlag,
Berlin, 2004. xvi+455 pp.

[Mir07] M. Mirzakhani. Weil-Petersson volumes and intersection theory on the moduli space of curves. Journal of
the American Mathematical Society 20 (2007), no. 1, 1-23.

[OP05] A. Okounkov, R. Pandharipande. Gromov-Witten theory, Hurwitz numbers, and matrix models. Alge-
braic geometry-Seattle 2005. Part 1, 325-414, Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc.,
Providence, RI, 2009.

[PST14] R. Pandharipande, J. P. Solomon, R. J. Tessler. Intersection theory on moduli of disks, open KdV and
Virasoro. arXiv:1409.2191.

[STa] J. P. Solomon, R. J. Tessler. To appear.
[STb] J. P. Solomon, R. J. Tessler. To appear.
[Tes15] R. J. Tessler. The combinatorial formula for open gravitational descendents. arXiv:1507.04951.



PROOF OF THE OPEN ANALOG OF WITTEN’S CONJECTURE 27

[Wit91] E. Witten. Two-dimensional gravity and intersection theory on moduli space. Surveys in differential ge-
ometry (Cambridge, MA, 1990), 243-310, Lehigh Univ., Bethlehem, PA, 1991.

A. Buryak:
Department of Mathematics, ETH Zurich,
HG G 27.1, Rämistrasse 101 8092, Zürich, Switzerland
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