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Abstract: Let F : Z
2 → Z be the pointwise minimum of several linear functions.

The theory of smoothing allows us to prove that under certain conditions there exists
the pointwise minimal function among all integer-valued superharmonic functions coin-
ciding with F “at infinity”. We develop such a theory to prove existence of so-called
solitons (or strings) in a sandpile model, studied by S. Caracciolo, G. Paoletti, and A.
Sportiello. Thus we made a step towards understanding the phenomena of the identity in
the sandpile group for planar domains where solitons appear according to experiments.
We prove that sandpile states, defined using our smoothing procedure, move changeless
when we apply the wave operator (that is why we call them solitons), and can interact,
forming triads and nodes.

1. Introduction

Periodic patterns (Fig. 1, left) in sandpiles were studied by S. Caracciolo, G. Paoletti,
and A. Sportiello in their pioneer work [2], see also Section 4.3 of [3] and Figure 3.1
in [23], Figure 9a in [28]. Experimental evidence suggests that these patterns appear
in many sandpile pictures and carry a number of remarkable properties: in particular,
they are self-reproducing under the action of waves. That is why we call these patterns
solitons.

The fact that the solitons appear as “smoothings” of piece-wise linear functions was
predicted by T. Sadhu and D. Dhar in [29]. We introduce a suitable definition of the
smoothing procedure (Definition 2.5). We prove (for the first time) the existence (and
uniqueness modulo translation) of solitons for all rational slopes (Theorem 1) and we
prove that the “mass” (the total defect of the Laplacian, or the total difference from the
maximal stable state) of the building block for the soliton of the direction (p, q) is p2+q2
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Fig. 1. These are local patterns for the soliton of direction (1, 3) and the triad made by solitons of directions
(0, −1), (1, −1), (1, 2). White means three grains of sand, green—two, yellow—one, and red—zero. The
rightmost picture (obtained using simulation in Golly [9]) shows the sandpile group identity for the graph
inside the region with blue boundary. We see solitons of different directions near the center of the picture

(Remark 8.2). We also study local interactions of solitons: triads (Fig. 1, middle—three
solitons meeting at a point) and nodes (Fig. 2). We prove that triads must satisfy a sort
of balancing condition (Remark 2.15). We prove a well known (experimentally) fact
that solitons move changeless under the action of waves (Corollary 2.13); triads and
nodes satisfy similar property. In addition, we accurately write the theory of sandpiles
on infinite domains in the absence of references, though it is absolutely parallel to the
finite case. This article also contains the facts (Theorem 2, Corollary 2.13) that we need
later to establish more general convergence results in sandpiles, see [14,15] for details
and motivation. In short, sandpile dynamics of small perturbations of the maximal stable
state is governed by a dynamic on tropical curves which also obeys power law [13].

The sandpile on Z
2 exhibits a fractal structure; see, for example, the pictures of the

identity element in the sandpile group [21] (and the rightmost picture in Fig. 1). As far
as we know, only a few cases have a rigorous explanation. It was first observed in [22]
that if we rescale by

√
n the result of the relaxation of the state with n grains at (0, 0)

and zero grains elsewhere in Z2, it weakly converges as n → ∞. Then this was studied
in [20] and was finally proven in [24]. However the fractal-like pieces of the limit found
their explanation later [18,19], and happen to be curiously related to Apollonian circle
packing. Recently the stability of patterns was proven in [25]. In most of these fractal
pictures one can find solitons which propagate along thin balanced graphs (which are
called defects in [25]).We expect that the methods of this article will be used to study the
fractal structure in the cases where the piece-wise linear nature of patterns is apparent
(see many such examples in [27], [29], and a groundbreaking paper [4]).

We present our theory in the simplest meaningful case leaving possible generalisa-
tions (with unavoidably heavier notation) for future works.

1.1. Sandpile patterns on Z
2. We think of Z2 as the vertices of the graph whose edges

connect points with distance one. If v,w ∈ Z
2 are neighbors we write v ∼ w. A state of

a sandpile is a function φ : Z2 → Z≥0; we interpret φ(v) as the number of sand grains
in v ∈ Z

2. We can topple v by sending four grains from v to its neighbors, each neighbor
gets one grain. If φ(v) ≥ 4, such a toppling is called legal. A relaxation is doing legal
topplings while it is possible (for what this means for infinite graphs see Appendix A).
A state φ is stable if φ ≤ 3 everywhere.
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Definition 1.1. Let v ∈ Z
2 be such that φ(v) = φ(w) = 3 where w is a neighbor of v.

By sending a wave from v we mean making a toppling at v, following by the relaxation.
We denote the obtained state by Wvφ.

Note that after the first toppling the vertex v has −1 grain, and w has 4 grains, so w

subsequently topples and v has a non-negative number of grains again. We are interested
in states which move changeless under the action of waves, such states were previously
studied experimentally in [2,3,23].

Definition 1.2. Let (p, q) ∈ Z
2 \ {(0, 0)}. A state φ is called (p, q)-movable, if there

exists v such that Wvφ(x, y) = φ(x + p, y + q) for all (x, y). A state φ is called (p, q)-
periodic if φ(x, y) = φ(x + p, y + q). A state φ is called line-shaped if there exist
constants p, q, c1, c2 such that the set {φ 	= 3} belongs to {(x, y)|c1 ≤ px + qy ≤ c2}.

We classify all periodic line-shaped movable states, we call them solitons. We also
construct triads, i.e. three solitons meeting at a point, they are also movable.

In this paper we prove the following theorem.

Theorem 1 (See a proof in Sect. 8.1). For each p, q ∈ Z, gcd(p, q) = 1 there exists a
unique (up to a translation in Z

2) movable (p, q)-periodic line-shaped state. Further-
more, it is (p′, q ′)-movable, where p′, q ′ ∈ Z, p′q − pq ′ = 1.

Moreover, a movable (p, q)-periodic line-shaped state is always (
p

gcd(p,q)
,

q
gcd(p,q)

)-
periodic which easily follows from our proof of this theorem (Corollary 8.5).

A state φ on Z
2 is called a background if there exists v ∈ Z

2 such that Wvφ = φ.
For example, such is the state φ ≡ 3 decreased at any set of vertices with pairwise
distances at least two. Another example of a background is any recurrent state for a
finite part of Z2, and 3 everywhere else. It seems to be more difficult to classify all
movable states because many different backgrounds exist (see [23], Chapter 5). We give
two conjectures, phrased in different terms.

Conjecture 1. Any (p, q)-movable state is equal to a background plus the difference
between 3 and an aforementioned soliton.

Conjecture 2. On a doubly periodic background, the periodic line-shaped movable
states are classified by ordered pairs of tangent circles in the Apollonian packing of
[19]. Given a quadratic function whose Hessian corresponds to the peak of the cone
based at one such Apollonian circle, one constructs a doubly periodic background.
Moving infinitesimally down the cone, in the direction of a tangent circle, should result
in a line-shaped object, namely, a movable state.

1.2. Superharmonic functions.

Definition 1.3. The toppling function of a relaxation is the functionZ2 → Z≥0 counting
the number of topplings at every point during this relaxation.

It is known that the toppling function has bounded Laplacian and is minimal in a
certain class of functions. Therefore, if we know the toppling function “at infinity”, we
can, in principle, reconstruct it. When we send n waves towards a periodic movable
line-shaped state, the toppling function is zero on one side of the set {φ 	= 3} and is
equal to n on another side. It is easy to guess (or find experimentally) that the toppling
function in this case will be something like F(x, y) = min(px + qy, n) on one side of
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the set {φ 	= 3}. Hence we are looking for a point-wise minimal superharmonic integer-
valued function which coincide with F(x, y) at infinity. However, a priori a pointwise
minimum in such a class of functions can be −∞ everywhere. We develop a theory of
smoothings (see the definition in Sect. 2 where we state these results) to prove that the
pointwise minimum is reached by slicing characteristic functions of certain sets from
F , see Sect. 4. We also prove that a kind of monotonicity is preserved while doing this
slicing, Sect. 5. In Sect. 6 we state well-knows facts about discrete harmonic functions.
Sections 7, 8 are dedicated to a proof of Theorem 1.

To study the interaction between solitons, when several of them meet at a point, and
for the needs of [14], we also study triads and nodes, to whom the last Sects. 9, 10, 11
are dedicated.

1.3. Sandpiles on infinite domains. Wecould not find a satisfactory reference containing
the theory of sandpiles on infinite domains (in particular, the Least Action Principle for
waves). We hesitated about its inclusion here, because all the statements can be proven
exactly in the same way as in the finite case. Finally, for the sake of completeness, we
decided to present the theory of locally-finite relaxations in Appendix Awhere we define
and study locally-finite relaxations.

2. Smoothing, Its Relation to Waves

The discrete Laplacian � of a function F : Z2 → R is defined as

�F(x, y) = −4F(x, y) + F(x + 1, y) + F(x − 1, y) + F(x, y + 1) + F(x, y − 1).

A function F is called harmonic (resp., superharmonic) on A ⊂ Z
2 if �F = 0 (resp.,

�F ≤ 0) at every point in A.

Lemma 2.1. If F,G are two superharmonic functions on A ⊂ Z
2, then min(F,G) is a

superharmonic function on A.

Proof. Let v ∈ A. Without loss of generality, F(v) ≤ G(v). Then, �min(F,G)(v) ≤
�F(v) ≤ 0. 
�
Definition 2.2. The deviation set D(F) of a function F is the set of points where F is
not harmonic, i.e.

D(F) = {(x, y) ∈ Z
2|�F(x, y) 	= 0}.

Lemma 2.3. Let F : Z2 → Z, v ∈ Z
2, F(v) ≤ n and the Euclidean distance between

v and the set

{�F > 0} = {w|(�F)(w) > 0}
be at least n + 2. Let v′ ∼ v and F(v′) > F(v). Then there exists a point u ∈ Z

2 such
that F(u) < 0.

Proof. Indeed, (�F)(v) ≤ 0 and F(v′) > F(v) imply that for some neighbor v1
of v = v0 we have F(v1) < F(v0). Then we repeat this argument for v1 and find its
neighbor v2 with F(v2) < F(v1), etc. Note that all v0, . . . , vn+1 does not belong to the set
{�F > 0}. Finally, we set u = vn+1. We conclude by F(vn+1) ≤ F(v0)− (n +1) ≤ −1.


�
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Lemma 2.4. Let F : Z2 → Z, v0 ∼ v1 ∼ . . . ∼ vk be a path inZ2 and F be harmonic at
all vi , 0 ≤ i ≤ k−1 and�F(vk) < 0. Then there exists i ≥ 0 such that F(v0) = F(vi )

and vi has a neighbor v′ such that F(vi ) > F(v′).

Proof. If F(v0) = F(vk) then we may choose i = k and such a neighbor exists since
(�F)(vk) < 0. If not, choose the first i such that F(v0) = F(vi ) 	= F(vi+1) and then
use the harmonicity of F at vi . 
�

For A ⊂ Z
2,C > 0, we denote by BC(A) ⊂ Z

2 the set of points whose Euclidean
distance to A is at most C.

Definition 2.5. For n ∈ N and a superharmonic function F : Z2 → Z we define

�n(F) = {G : Z2 → Z|�G ≤ 0, F − n ≤ G ≤ F, ∃C > 0, {F 	= G} ⊂ BC(D(F))}.
In plainwords,�n(F) is the set of all integer-valued superharmonic functionsG ≤ F ,

coinciding with F outside a finite neighborhood of D(F), whose difference with F is
at most n. Define Sn(F) : Z2 → Z to be

Sn(F)(v) = min{G(v)|G ∈ �n(F)}.
We call Sn(F) the n-smoothing of F . Note that Sn(F) ≥ F − n. Note that Sn(F) does
not necessarily belong to �n(F).

Lemma 2.6. If F ′ ≥ F for two superharmonic functions F, F ′, then Sn(F ′) ≥ Sn(F)

for each n ∈ Z≥0.

Proof. We automatically have Sn(F ′) ≥ Sn(F) on the set {F ′ − F ≥ n} and on the
set Sn(F ′) = F ′. Indeed, for each G ′ ∈ �n(F ′),G ∈ �n(F) we have G ′ ≥ G on
these two sets. Thus we need to prove that Sn(F ′) ≥ Sn(F) on the set {F ′ − F <

n} ∩ {Sn(F ′) < F ′}. Consider any function G ′ ∈ �n(F ′), let the set {G ′ 	= F ′} belong
to a C0 neighborhood of D(F ′).

Thus it is enough to prove that G ′ ≥ Sn(F) on the set

A1 = {F ′ − F < n} ∩ BC0(D(F ′)).

Consider the set

A2 = {F ′ − F < n} ∩ {v|∃v′ ∼ v, (F ′ − F)(v) > (F ′ − F)(v′)}.
Note that F ′ − F is a superharmonic function outside of D(F). It follows from

Lemma 2.3 that A2 belongs to the (n + 1)-neighborhood of D(F) since F ′ − F ≥ 0.
Next we prove that A1 ⊂ BC0(A2 ∪ D(F)). Indeed, for each point v in A1 there

exists a path of length at most C0 to the set D(F ′). If this path intersects D(F), we are
done. If not, then Lemma 2.4 asserts that for a vi on this path for a certain v′ ∼ vi , we
have

n > (F ′ − F)(v) = (F ′ − F)(vi ) > (F ′ − F)(v′)

and thus vi ∈ A2 and we proved that A1 ⊂ BC0(A2 ∪ D(F)).
Summarising, we obtained that for each G ′ ∈ �n(F ′),G ∈ �n(F) we have G ′ ≥ G

outside BC0(A2 ∪ D(F)) ⊂ BC0+n+1(D(F)). Thus, min(G,G ′) belongs to �n(F),
because it coincides with G outside a finite neighborhood of D(F), it is superharmonic,
and since F ′ − G ′ ≥ n, F − G ≥ n, F ′ ≥ F we have that F − min(G,G ′) ≥ n. 
�
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Fig. 2. Two examples of nodes. On the left we see 3 +�θF where F is �node = min(0, x − y, y, x − 1). On
the right it is 3 + �θF with F = min(0, x, y − x, y − 10)

Let us fix p1, p2, q1, q2, c1, c2 ∈ Z such that p1q2 − p2q1 = 1. Consider the fol-
lowing functions on Z

2:

�edge(x, y) = min(0, p1x + q1y), (2.7)

�vertex(x, y) = min(0, p1x + q1y, p2x + q2y + c1), (2.8)

�node(x, y) = min
(
0, p1x + q1y, p2x + q2y + c1, (p1 + p2)x + (q1 + q2)y + c2

)
.

(2.9)

These names correspond to the objects in the tropical world, see [14]. Namely,
�vertex, �edge, �node are local models for “smooth vertices”, edges, and “nodes” of
a tropical curve. To use more colorful names, the smoothing of �vertex is called a triad
in this paper, to not confuse it with a vertex of the graph of a vertex of a polygon.

We prove the following theorem.

Theorem 2. Let F be (a) �edge, (b) �vertex, or (c) �node. The sequence of n-smoothings
Sn(F) of F stabilises eventually as n → ∞, i.e. there exists N > 0 such that Sn(F) ≡
SN (F) for all n > N.Moreover (it is not that obvious!), SN (F) coincides with F outside
a finite neighborhood of D(F).

See a proof of (a) in Sect. 8 and a proof of (b,c) in Sect. 11. The problems to overcome
in proofs are as follows: the deviation set D(Sn(F)) is infinite, and we need to prove
that it “flows” only locally and can not significantly spread when we increase n. Then,
even if the flow of D(Sn(F)) is restrained locally when n increases, the deviation locus,
in principle, can encircle growing regions where Sn(F) is harmonic almost everywhere.
After taming these and other technicalities, the proof amounts to the fact that there
exists no integer-valued linear function which is less than F on a non-empty compact
set, because this linear function would correspond to a lattice point in the interior of
the Newton polygon of F (the convex hull of linear parts (i, j) of functions in F), see
Lemma 5.6.

Remark 2.10. A node (smoothing of �node) represents a deformation (controlled by
calibrating c2 in (2.9)) of two triads fusing together, see Fig. 2. From the “infinity” a
node looks as two intersecting solitons, which explains the name: nodal points of tropical
curves look exactly like that, see [15] for the details of this relation.

Definition 2.11. The pointwise minimal function in
⋃

�n(F), which exists by Theo-
rem 2, is called the canonical smoothing of F and is denoted by θF , see Fig. 2.

Remark 2.12. Note that �θF ≥ −3 because otherwise we could decrease θF at a point
violating this condition, preserving superharmonicity of θF , and this would contradict
to the pointwise minimality of θF in

⋃
�n(F).
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Let F be �edge, �vertex, or �node, we write

F(x, y) = min
(i, j)∈A

(i x + j y + ai j ).

Consider the sandpile state φ = 3 +�θF . By Remark 2.12, φ ≥ 0 and φ is a stable state
because θF is superharmonic. Let v ∈ Z

2 be a point far from D(θF ). Let F be equal to
i0x + j0y + ai0 j0 near v. The following corollary says, informally, that sending a wave
from v increases the coefficient ai0 j0 by one.

Corollary 2.13. In the above conditions, Wvφ = 3 + �θF ′ where Wv is the sending
wave from v (Definition 1.1) and

F ′(x, y) = min
(
i0x + j0y + ai0 j0 + 1,min(i x + j y + ai j |(i, j) ∈ A, (i, j) 	= (i0, j0))

)
.

Proof. Let Hv
φ (A.19) be the toppling function of the wave from v. Since

Wvφ = φ + �Hv
φ = 3 + �(θF + Hv

φ ),

we should prove that Hv
φ = θF ′ − θF . It follows from Lemma 2.6 that θF ′ − θF ≥ 0. By

the Least Action Principle for waves (Proposition A.29) we have that θF ′ − θF ≥ Hv
φ

because θF ′ − θF = 1 at v, θ ′
F − θF ≥ 0 and φ + �(θ ′

F − θF ) = 3 + θF ′ is a stable
state. On the other hand, the function θF + Hv

φ coincides with θF ′ outside of a finite
neighborhood of D(F ′) and is superharmonic. Therefore, by the definition of θF ′ , we
see that θF ′ ≤ θF + Hv

φ and this finishes the proof. 
�
Remark 2.14. As we will see later, all sandpile solitons are of the form 3 + �θ�edge .

Remark 2.15. Since a triad is a smoothing of a piece-wise linear function such as
min(0, p1x +q1y, p2x +q2y + c1) (up to adding a linear function), the direction of three
solitons coming out of the center of the triad are (p1, q1), (p2−p1, q2−q1), (−p2,−q2),
and these directions sum up to (0, 0), see Fig. 1, center.

3. Holeless Functions

Wewill frequently use the fact that the set {S1(F) 	= F} belongs to a finite neighborhood
of D(F) (in particular, this fact implies a pleasurable property SnSk(F) = Sn+k(F)).
Unfortunately, this fact is not true for all superharnomic functions F , so we need to
restrict the domain of functions F that we consider. Namely, we ask for the following
technical property prohibiting to have arbitrary large holes in the deviation set.

Definition 3.1. We say that a function F : Z2 → Z is holeless if there exists C > 0 such
that BC(D(F)) contains all the connected components of Z2 \ D(F) which belong to
some finite neighborhood of D(F). When we want to specify the constant C we write
that F is C-holeless.

Example 3.2. The functions F = �edge, �vertex, �node (see (2.7), (2.9)) are holeless just
because Z2 \ D(F) has no components which belong to a finite neighborhood of D(F).

Lemma 3.3. If F is C-holeless, then for each G ∈ �n(F) the set {F 	= G} is contained
in Bmax(n,C)(D(F)).
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Proof. Let An = {v ∈ Z
2|G(v) = F(v) − n}. If v ∈ An \ D(F) then from the

superharmonicity of G and harmonicity of F at v we deduce that all neighbors of v

belong to An . Therefore the connected component of v ∈ An in Z
2 \ D(F) belongs to

An , which, in turn, belongs to a finite neighborhood of D(F) because there belongs the
set {F 	= G}. Thus An belongs to C-neighborhood of D(F). By the same arguments, for
An−1 = {G = F−n+1}, each point in An−1 \D(F) is contained in the 1-neighborhood
of D(F)∩ An or, together with its connected component of Z2 \ D(F) belongs to An−1,
i.e. is contained in BC(D(F)), An−2 \ D(F) is contained in the 2-neighborhood of
D(F) ∩ An or in 1-neighborhood of D(F) ∩ An−1, or in BC(D(F)), etc. 
�
Corollary 3.4. If F is C-holeless for some C > 0, then for each n ≥ 0 the function
Sn(F) belongs to �n(F).

Corollary 3.5. Let F be one of �edge, �vertex, �node (see (2.7), (2.8), (2.9)). Then for
each n ≥ 1 we have

dist
(
D(F),

{
F 	= Sn(F)

}) ≤ n,

where the distance is the minimum among the Euclidean distances between pairs of
points x ∈ D(F), y ∈ {F 	= Sn(F)}.

4. Smoothing by Steps

Let F,G be two superharmonic integer-valued functions onZ2. Suppose that H = F−G
is non-negative and bounded. Let m be the maximal value of H . Define the functions
Hk, k = 0, 1, . . . ,m as follows:

Hk(v) = χ(H ≥ k) =
{
1, if H(v) ≥ k,
0, otherwise. (4.1)

Lemma 4.2. In the above settings, the function F − Hm is superharmonic.

Proof. Indeed, F − Hm is superharmonic outside of the set {H = m}. Look at any point
v such that H(v) = m. Then we conclude by

4(F − Hm)(v) = 4G(v) + 4(m − 1) ≥
∑
w∼v

G(w) + 4(m − 1) ≥
∑
w∼v

(F − Hm)(w).


�
We repeat this procedure for F − Hm ; namely, consider F − Hm − Hm−1, F − Hm −

Hm−1 − Hm−2, etc. We have

H = Hm + Hm−1 + Hm−2 + · · · + H1,

and it follows from subsequent applications of Lemma 4.2 that all the functions F −∑m−k+1
n=m Hn are superharmonic, for k = 1, 2, . . . ,m. Also, it is clear that

0 ≤
(
F −

m−k+1∑
n=m

Hn

)
−

(
F −

m−k∑
n=m

Hn

)
= Hm−k ≤ 1

at all v ∈ �, k = 0, . . . ,m.
Consider a superharmonic function F . We are going to prove that two consecutive

smoothings (see Definition 2.5) of F differ at most by one at every point of Z2.
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Proposition 4.3. For all n ∈ N

0 ≤ Sn(F) − Sn+1(F) ≤ 1.

Proof. By definition, Sn(F) ≥ Sn+1(F) at every point of Z2. If the inequality Sn(F) −
Sn+1(F) ≤ 1 doesn’t hold, then the maximum M of the function H = Sn(F)− Sn+1(F)

is at least 2. We will prove that

Sn(F) − χ(H ≥ M) ≥ F − n.

Namely, by Lemma 4.2 the function Sn(F)−χ(H ≥ M) is superharmonic. Suppose
that

Sn(F) − χ(H ≥ M) < F − n at a point v ∈ Z
2.

Since the set {H ≥ 1} contains the set {H ≥ M}, we arrive to a contradiction by saying
that, at v,

F − (n + 1) > Sn(F) − χ(H ≥ M) − χ(H ≥ 1) ≥ Sn+1(F) ≥ F − (n + 1).

Therefore Sn(F)−χ(H ≥ M) ∈ �n(F)which contradicts the minimality of Sn(F).

�
Corollary 4.4. Proposition 4.3 and Lemma 3.3 imply that for C-holeless F the function
Sn+1(F) can be characterized as the point-wise minimum of all superharmonic functions
G such that Sn(F) − 1 ≤ G ≤ Sn(F) and Sn(F) − G vanishes outside some finite
neighborhood of D(Sn(F)) (recall that the distance between D(F), D(Sn(F)) is at
most max(C, n)). In other words, n-smoothing Sn(F) of F is the same as 1-smoothing
of (n − 1)-smoothing Sn−1(F) of F.

Corollary 4.5. In the above assumptions, if Sn(F) 	= Sn+1(F) then there exists v0 such
that Sn+1(F)(v0) = F(v0) − (n + 1).

Indeed, if there is no such a point, then Sn+1(F) ≥ F − n and therefore Sn+1(F) =
Sn(F).

Remark 4.6. Let F(x, y) = min(x, y, 0) or F(x, y) = min(x, y, x + y, c) for c ∈ Z≥0.
Then it is easy to check that S1(F)(x, y) = F(x, y) and therefore �F = {F} (see
Definition 2.5 for the notation).

5. Monotonicity While Smoothing

Definition 5.1. Let e ∈ Z
2 \{(0, 0)}. We say that a function F : Z2 → Z is e-increasing

if

(a) F is a smoothing of a holeless function,
(b) F(v) ≤ F(v + e) holds for each v ∈ Z

2,
(c) there exists a constantC > 0 such that for eachvwith F(v) = F(v−e), the first vertex

v − ke in the sequence v, v − e, v −2e, . . ., satisfying F(v − ke) < F(v − (k−1)e),
belongs to BC(D(F)).

Example 5.2. Let F(x, y) = min(px + qy, 0) where p, q ∈ Z. Note that F is (e1, e2)-
increasing if and only if pe1 + qe2 > 0. In particular, F is (0, 1)-increasing if q > 0
and (e1, e2)-increasing if p < 0 < q and 0 ≤ e1 ≤ q − 1, e2 ≥ |p|.



1658 N. Kalinin, M. Shkolnikov

Lemma 5.3. If F is e-increasing, then S1(F), the 1-smoothing of F, is also e-increasing.

Proof. Corollary 4.4 gives the property (a) of Definition 5.1, because if F = Sn(G), and
G is holeless, then S1(F) = Sn+1(G). To prove that S1(F) satisfies (b) in Definition 5.1
we argue a contrario. Let H = F − S1(F). Suppose that the set

A = {v ∈ Z
2|F(v − e) = F(v), H(v − e) = 0, H(v) = 1}

is not empty. Since H |A = 1, we have A ⊂ BC(D(G)). Consider the set

B = {v|H(v) = 0, ∃n ∈ Z>0, v + n · e ∈ A, F(v) = F(v + n · e)}.
Consider v ∈ B. Since v + n · e ∈ A ⊂ BC (D(F)) and F(v) = F(v + n · e), then

(c) in Definition 5.1 impose an absolute bound on n and therefore B belongs to a finite
neighborhood of D(F). Consider the following function

F̃ = S1(F) −
∑
v∈B

δv.

It is easy to verify that F̃(v) ≤ F̃(v + e) for each v. Note that �F̃(v) ≤ �S1(F)(v) ≤ 0
automatically for all v ∈ Z

2 \ B. Pick any v ∈ B. Since v + n · e ∈ A for some n ∈ Z>0,
we have

4F̃(v) = 4S1(F)(v + n · e) ≥
∑
w∼v

S1(F)(w + n · e) ≥
∑
w∼v

F̃(w).

Therefore F̃ is superharmonic, and satisfies F ≥ F̃ ≥ F − 1 by construction, which
contradicts to the minimality of S1(F) in �1(F).

Finally, by Corollary 3.4 the sets {F 	= S1(F)} and D(S1(F)) belong to BC(D(F))

for some C > 0. Therefore the fact that |S1(F)− F | ≤ 1 (Proposition 4.3) gives c) with
the constant C + |e| + 1. 
�
Corollary 5.4. Let F be one of �edge, �vertex, �node (Eqs. (2.7), (2.8), (2.9)). Let e ∈
Z
2 \ {(0, 0)}. If F is e-increasing, then Sn(F) is also e-increasing.

The following remark follows from the definition of smoothing.

Remark 5.5. Let F : Z2 → Z, p, q, r ∈ Z. Let G(x, y) = F(x, y) − px − qy − r .
Then Sn(F)(x, y) − (px + qy + r) = Sn(G)(x, y).

Lemma 5.6. Let F be�vertex or�node. Then there exists k > 0 such that for each n > 0
for each square S of size k × k inside the set {F 	= Sn(F)} the function Sn(F) is not a
restriction of a linear function m1x + m2y + m,m1,m2,m ∈ Z on S.

Proof. We associate each linear function px + qy + c in F with the point (p, q) ∈ Z
2.

Then, a triangle of area 1/2 is associated to �vertex and a parallelogram of area 1 is
associated to �node. Pick any vertex of such a polygon (triangle or parallelogram) �.
Calibrating as in Remark 5.5 we may suppose that this point is (0, 0). Then, such a
function F is e-monotone for all e in the dual cone for the cone at (0, 0) in � (the dual
cone is the set of vectors which have a non-negative scalar product with vectors from a
given cone). By Corollary 5.4, Sn(F) is also monotone in this direction. Therefore, if
Sn(F) ism1x +m2y +m on S, the point (m1,m2) must belong to the cone at (0, 0) in �.
By doing that for each vertex of � we obtain that (m1,m2) belongs to �. To be able to
do that we need to assume that k is big enough, namely, bigger than twice the length of
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each primitive vector from the edges of the dual cones considered above (this is a finite
set of vectors).

Then, the fact that (m1,m2) ∈ � (and hence (m1,m2) is a vertex of �) contradicts
the superharmonicity of Sn(F). Namely, by Remark 5.5wemay assume that (m1,m2) =
(0, 0) and F is given as in (2.8) or (2.9). Therefore Sn(F) is a constant m < 0 on S.
Consider the set {Sn(F) = m}. There is a direction e such that F is e-increasing and
for each v ∈ {Sn(F) = m} we have that v + le belongs to {Sn(F) = F = 0} for some
l ∈ Z>0. Then we go from the center of the set {Sn(F) = m} in the direction e, and
we find a vertex v ∈ {Sn(F) = m} such that Sn(F) ≥ m at all neighbors of v and
Sn(F) > m at one of the neighbors, and this contradicts to the superharmonicity of
Sn(F). 
�

For�edge the similar result holds, see Lemma 7.4 (perhaps, with a more direct proof).

Remark 5.7. If the Newton polygon of F contains an integer point strictly inside, then
a new bounded region will appear in Z

2 \ D(Sn(F)), while smoothing. If the Newton
polygon of F contains exactly k integer points in the interior of an edge, then the deviation
set D(F) in the dual direction will split into the k + 1 solitons in this direction and we
will see there k infinite regions in Z

2 \ D(Sn(F)), while smoothing.

6. Discrete Superharmonic Integer-Valued Functions

Throughout the paper we denote all absolute constants by C, when we want to stress that
C depends on other constants such as k, . . . we write it as C(k, . . .) correspondingly. We
will also omit writing “there is an absolute constant C with the following property...”.

Lemma 6.1 ([5], Theorem 5). Let R > 1, v ∈ Z
2, and F : BR(v) ∩ Z

2 → R be a
discrete non-negative harmonic function. Let v′ ∼ v, then

|F(v′) − F(v)| ≤ C · maxw∈BR(v) F(w)

R
.

Morally, this lemma provides an estimate on a derivative of a discrete harmonic
function. We call ∂x F(x, y) = F(x + 1, y)− F(x, y) the discrete derivative of F in the
x-direction. The derivative ∂y in the y-direction is defined in a similar way. We denote
by ∂•F the discrete derivative of a function F in any of directions x or y.

Lemma 6.2 (Integer-valued discrete harmonic functions of sublinear growth). Let v ∈
Z
2 and μ > 0 be a constant. Let R > 4μC. For a discrete integer-valued harmonic

function F : B3R(v)∩Z
2 → Z, the condition |F(v′)| ≤ μR for all v′ ∈ B3R(v) implies

that F is linear in BR(v) ∩ Z
2.

Proof. Consider F which satisfies the hypothesis of the lemma. Note that 0 ≤ F(v′) +
μR ≤ 2μR for v′ ∈ B3R(v) and applying Lemma 6.1 for B2R(v) yields

|∂•F(v′)| ≤ C · 2μR

R
= 2μC, for all v′ ∈ B2R(v).

Then, applying it again for 0 ≤ ∂•F(v′) + 2μC ≤ 4μC yields

|∂•∂•F(v′)| ≤ 4μC

R
< 1, for v′ ∈ BR(v) if R > 4μC.
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Since F is integer-valued, all the derivatives ∂•∂•F are also integer-valued. Therefore
all the second derivatives of u are identically zero in BR(v), which implies that F is
linear in BR(v). 
�

Let A be a finite subset of Z2, ∂A be the set of points in A which have neighbors in
Z
2 \ A. Let F be any function A → Z.

Lemma 6.3. In the above hypothesis the following equality holds:
∑

v∈A\∂A
�F(v) =

∑
v∈∂A,

v′∈A\∂A,v∼v′

(
F(v) − F(v′)

)
.

Proof. We develop left side by the definition of �F . All the terms F(v), except for the
vertices v near ∂A, cancel each other. So we conclude by a direct computation. 
�
Definition 6.4. For v ∈ Z

2 we denote by Gv : Z2 → R the function with the following
properties:

• �Gv(v) = 1,
• �Gv(w) = 0 if w 	= v,
• Gv(v) = 0,

• Gv(w) = 1
2π log |w − v| + c + O

(
1

|w−v|2
)
when |w − v| → ∞, where c is some

constant.

It is a classical fact thatGv does exist and is unique ([31], (15.12), or [17], p.104, see [8],
Remark 2, for more terms in the Taylor expansion).

Corollary 6.5. Let v = (0, 0). By a direct calculation we conclude that

|∂•∂•Gv(x, y)| ≤ C

(x2 + y2 + 1)
.

Lemma 6.6. The following inequality holds for all N ∈ Z>0, v ∈ Z
2:

∑
−N≤x,y≤N

|∂•∂•Gv(x, y)| ≤ C ln N .

Proof. Themaximum of this sum is attained when v = (0, 0). Then the sum is estimated
from above by

∫

1≤x2+y2≤2N2

C dxdy

x2 + y2
+ C < C

∫ 2N

r=1

rdr

r2
+ C ≤ C ln N .


�
Lemma 6.7. Let k, μ ∈ N. For all N > C(k)μ the following holds. Let F be any
non-negative integer-valued function on A = ([0, N ] × [0, N ]) ∩ Z

2 satisfying

max |F(v)| ≤ μN .

Let v1, v2, . . . vN be points in Z
2 (not necessary distinct) and suppose that G = F +∑N

k=1 Gvk (see Definition 6.4) is a discrete harmonic function on A. Then there exists a
square of size k × k in A such that F is linear on this square.
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Proof.

Applying Lemma 6.1 text f or v ∈ A′ =
[
N

5
,
4N

5

]
×

[
N

5
,
4N

5

]
we obtain |∂•G|

≤ μCN

N/5
.

Proceeding as in Lemma 6.2, we see that in the square

A′′ =
[
2N

5
,
3N

5

]
×

[
2N

5
,
3N

5

]

the second discrete derivatives ∂•∂•G are at most

Cμ

N

by the absolute value, which is less than 1
2 if N > C(k)μ.

Since
∑

w∈A ∂•∂•Gvk (w) is at most C ln N (Lemma 6.6), we obtain by the direct
calculation that

N∑
k=1

∑
w∈A

∂•∂•Gvk (w) ≤ CN ln N .

We cut A′′ on ( N
5k )

2 squares of size k × k. Therefore for N > C(k)μ we can find a
square A′′′ ⊂ A′′ of size k × k such that

N∑
k=1

|∂•∂•Gvi (v)| ≤ 1/3 at every point v ∈ A′′′.

The estimates for |∂•∂•G| and ∑N
i=1 |∂•∂•Gvi | imply that for all second derivatives of

F we have ∂•∂•F(v) = 0 for v ∈ A′′′. Thus F is linear on A′′′. 
�

7. Estimates on a Cylinder

Definition 7.1. Let p, q ∈ Z, q > 1. We consider the equivalence relation (x, y) ∼
(x + q, y − p) on Z

2, it respects the graph structure on Z
2, so we define a new graph

� = Z
2/ ∼, where ∼ is generated by (x, y) ∼ (x + q, y − p).

We identify � with the strip [0, q − 1] × Z where each vertex is connected with its
neighbors and, additionally, (0, y) is connected with (q − 1, y − p) for all i ∈ Z. The
concept of discrete harmonic function easily descends to �.

Let G be an integer valued function on Z
2 satisfying

G(x, y) = G(x + q, y − p) for all x, y ∈ Z and fixed p, q > 0.

The functionG naturally descends to�. LetG be an integer valued superharmonic func-
tion on �. Suppose that 0 ≤ G(x, y) ≤ Cy for all y > 0, x ∈ [0, q − 1]. Suppose also
that the number of points vwith�G(v) < 0 is finite and denoteD = ∑

v∈� �G(v) < 0.
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Lemma 7.2. Let G be as above and k > |p| + |q|. Then, for some m ≤ C(k, |D|) the
function G is linear on

�′ = [0, q − 1] × [m,m + k] ⊂ �.

Proof. Choose big N . Dissect [0, q − 1] × [0, N (|D| + 1)] on |D| + 1 parts

[0, q − 1] × [0, N ]
[0, q − 1] × [N , 2N ], etc.

Then there exists a part A in this dissection where G is discrete harmonic. Note that

0 ≤ G|A ≤ C · (|D| + 1)N .

Let v be the center of A. Applying Lemma 6.2 for v and R = N/6 we prove that
derivatives ∂•∂•G are zeros in BN/6(v) if N > C and thus G is linear on BN/6(v). If
N/6 > 2k then we found desired �′ ⊂ B2k(v). 
�
Lemma 7.3. Let F = �edge (see (2.7)). Then for all n ∈ Z>0 smoothings Sn(F) are
periodic in the direction e = (q1,−p1), i.e. Sn(F)(v) = Sn(F)(v + e) for all v ∈ Z

2.

Proof. Suppose, to the contrary, that Sn(F)(v) > Sn(F)(v + e) for some v ∈ Z
2. It

follows from Lemma 2.1 that S̃n(F)(w) = min(Sn(F)(w), Sn(F)(w + e)) belongs to
�n(F), but S̃n(F)(v) < Sn(F)(v) which contradicts to the minimality of Sn(F) in
�n(F). 
�
Lemma 7.4 (cf. Lemma 5.6). Let � be from Definition 7.1, F = min(px + qy, 0), note
that F descends to �. Let

A ⊂ {F 	= Sn(F)}, A = [0, q − 1] × [m,m + |p| + |q|].

Suppose that Sn(F) restricted to A is linear. Then gcd(p, q) > 1.

Proof. Since Sn(F) is periodic in thedirection (q,−p),we conclude that Sn(F)(x, y)|A =
k(px +qy)+ k′ for some k, k′ ∈ Z. The property of (0, 1)-increasing implies that k ≥ 0.

Suppose that k = 0, Sn(F) = k′ on A. Then k′ < 0 because Sn(F)|A < F |A. Let
y0 be max{y|Sn(F)(1, y) = k′}. Then Sn(F) is not superharmonic at (1, y), which is a
contradiction. Therefore k > 0.

Consider the function F ′(x, y) = F(x, y) − px − qy. Using Remark 5.5, we write

Sn(F
′)(x, y) = Sn(F)(x, y) − px − qy

and repeat verbatim all the above consideration, which gives k < 1.
Since k(px + qy) has integer values and 0 < k < 1 we conclude that gcd(p, q) > 1.


�
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8. Proof of Theorem 2 for �edge

Proof. For the sake of notation denote F = �edge (see (2.7)), set p = p1, q = q1,
i.e. F(x, y) = min(0, px + qy). We will prove that the sequence {Sn(F)}∞n=1 of n-
smoothings (Definition 2.5) of F eventually stabilizes. It is easy to check that in the
cases when (p, q) = (±1, 0), (0,±1), (±1,±1) we have S1(F) = F (cf. Remark 4.6).
Therefore, we conclude the proof of the theorem in this case by Corollary 4.4 (since
Sn(F) = S1(F) = F). From now on we suppose that pq 	= 0, q > 1 without loss of
generality, and that the sequence {Sn(F)}∞n=1 does not stabilize.

It follows from Lemma 7.3 that all Sn(F) are periodic in the direction (q,−p).
Consider the quotient � of Z2 by translations by (q,−p) (see Definition 7.1), � is a
kindof infinite cylinder.Abusingnotations,we thinkof F, S1(F), S2(F), . . . as functions
on �. Note that D = ∑

v∈� �F(v) is finite. Indeed, min(0, px + qy) has only finite
number of points in � where the Laplacian is not zero.

Applying Lemma 6.3 for a big enough neighborhood of D(F) we observe that∑
v∈� �S1(F)(v) = D. Similarly, we obtain

∑
v∈� �Sn(F)(v) = D for all n ∈ Z>0

and because of superharmonicity of Sn(F) we see that

|D(Sn(F))| = |{v ∈ �|�Sn(F)(v) 	= 0}| ≤ D. (8.1)

Since the sequence {Sn(F)}∞n=1 does not stabilize, by Corollary 4.5 for each n ∈ Z>0
the set

An = {v ∈ Z
2|Sn(F)(v) = F(v) − n}

is not empty. Hence A1 ⊃ A2 ⊃ A3 · · · , and A1 is finite because A1 ⊂ D(F) by
Corollary 3.5. Thus we can take v0 ∈ ⋂

n≥1
An .

Note that F is (0, 1)-increasing and byCorollary 5.4 so do all Sn(F). Also ifm, k ∈ Z

are such that 0 ≤ m ≤ q − 1, k > |p| then pm + qk > 0 and consequently all Sn(F)

are (m, k)-increasing (Corollary 5.2). The property of (m, k)-increasing gives that

F(v0) − n = Sn(F)(v0) ≥ Sn(F)(v0 − (m, k))

and F(v0)−n < F(v0−(m, k)) for fixed (m, k) and n > Ck. Therefore supp(F−Sn(F))

grows at least linearly in n.
For big n let

c = min{F(x, y)|(x, y) ∈ supp(F − Sn(F))}.
Applying Lemma 7.2 to the function Sn(F) − c we note that Sn(F) is linear on A ⊂
supp(F − Sn(F)), is we choose A = Bq+|p|(v) for some v. We conclude the proof
because Lemma 7.4 implies that gcd(p, q) > 1 which contradicts the definition of
�edge. 
�
Remark 8.2. The following equality holds in this case: |D| = p2 + q2. In other words,
the total defect of Laplacian (or the total difference with the state 〈3〉) on the building
block of the soliton of the direction (p, q) is p2 + q2.

Proof. For convenience, consider a function G(x, y) = min(0, px −qy) and the lattice
rectangle R = [0, q] × [0, p] ∩ Z

2. Then

D =
∑

R\(q,p)

�G.
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On the other hand, the sum of Laplacians over the rectangle R is reduced to the sum
along its boundary (Lemma 6.3), i.e.

∑
R

�G =
p∑

k=0

(G(0, k) − G(−1, k)) +
p∑

k=0

(G(q, k) − G(q + 1, k))

+
q∑

k=0

(G(k, 0) − G(k,−1)) +
q∑

t=0

(G(k, p) − G(k, p + 1)).

Since �G(q, p) = −p − q we have

−D = −p − q −
∑
R

�G = −p − q + (p + 1)p + (q + 1)q.


�
This equality was observed earlier in [2]. Note also that p2 + q2 is the symplectic

area of an edge (p, q) in a tropical curve (see [15] for details).

Corollary 8.3. Let p, p′, q, q ′, a, a′ ∈ Z. Suppose that gcd(p − p′, q − q ′) = 1. Then
there exists the canonical smoothing θp,q,a,p′,q ′,a′(x, y) of F(x, y) = min(px + qy +
a, p′x + q ′y + a′). Furthermore,

θp,q,a,p′,q ′,a′(x, y) = θp−p′,q−q ′,a−a′,0,0,0(x, y)

= θp−p′,q−q ′,0,0,0,0(x + (a − a′)p′′, y + (a − a′)q ′′)

where (p′′, q ′′) ∈ Z
2 satisfies (p − p′)q ′′ + (q − q ′)p′′ = 1.

Proof. The operation f (x, y) → f (x, y) + p′x + q ′y + a′ of adding a linear function
commutes with n-smoothings and

min
(
(p − p′)x + (q − q ′)y + (a − a′), 0

)

= min
(
(p − p′)(x + (a − a′)p′′) + (q − q ′)(y + (a − a′)q ′′), 0

)
.


�

8.1. Classification of solitons, proof of Theorem 1. Consider a movable line-shaped
(p, q)-periodic state φ with q > 0. As in Sect. 7 we pass to the cylinder � =
Z
2/{(x, y) ∼ (x + p, y + q)}. Line-shapedness of φ implies that {φ 	= 3} ⊂ � is

contained in [0, q − 1] × [−k, k] for some k ∈ Z.

Lemma 8.4. In the above setting, sending a wave from a point (x, y) ∈ �, x ∈ [0, q −
1], y >> 0 causes no topplings in the set {y << 0}.
Proof. Suppose that there is a toppling in {y << 0}. Then the whole region {y < −k}
topples. Send n such waves where n is big enough. Then the toppling function F would
be equal to n in {y >> 0}, F = n in {y << 0}, �F ≥ 0 in [0, q − 1] × [−k, k] and
�F ≤ 0 on the set where the soliton is situated after n waves, let this be a subset of
[0, q − 1]× [Cn− k,Cn + k]. Note that for each v ∈ � we have F(v) ≥ n−C because,
in the above assumptions, during a wave a point does not topple only if it belongs to the
deviation set of the current state, and the latter moves with some constant speed. Take
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a point v1 ∈ � with �F(v1) < 0. It has a neighbor v2 with F(v2) < F(v1) and then
v2 has a neighbor v3 with F(v3) < F(v2), etc. Since the distance between {�F < 0}
and �F > 0 is al least Cn we will find a point v with F(v) < n − C − 1 which is a
contradiction, cf. our proof of Lemma 2.6. 
�
Proof. It follows from the above lemma that the toppling function F for sending waves
from a point (x, y), y >> 0 on φ is bounded from above by min(n, p′x + q ′y + r) such
that pp′+qq ′ = gcd(p, q) and p′x +q ′y+r > 0 in [0, q−1]×[−k,+∞]. Therefore, as
in the proof of Theorem 2 for�edge we obtain that F is linear in [0, q−1]×[k, k+C] and
therefore (repeating the arguments in Corollary 2.13) the soliton is 3 + �θmin(p′x+q ′y,0)
up to a translation. An application of Corollary 2.13 concludes the proof. 
�
Corollary 8.5. Note that the formula 3 + �θmin(p′x+q ′y,0) for the soliton depends
only on the direction of (p, q), therefore the soliton for (p, q)-periodic and for
(

p
gcd(p,q)

,
q

gcd(p,q)
)-periodic movable line-shaped states are the same.

9. Reduction to a Smaller State

Seeking to prove the theorem for nodes and triads we apply the theorem for solitons
along the “rays” of the deviation sets, and reduce the problem to a compact region.
We use the notation of Theorem 2. Consider �vertex, (2.8). We denote by � ′

vertex the
function

� ′
vertex(x, y)

= min
(
θmin(0,p1x+q1y)(x, y), θmin(0,p2x+q2 y+c1)(x, y), θmin(p1x+q1y,p2x+q2 y+c1)(x, y)

)
.(9.1)

Consider �node, (2.9). We denote by � ′
node the function

� ′
node(x, y) = min

(
θmin(0,p1x+q1y)(x, y), θmin(0,p2x+q2 y+c1)(x, y), (9.2)

θmin(p1x+q1y,(p1+p2)x+(q1+q2)y+c2)(x, y),

θmin(p2x+q2 y+c1,(p1+p2)x+(q1+q2)y+c2)(x, y)
)
. (9.3)

Note that each of the functions F = � ′
vertex, �

′
node is C-holeless for some C, because

D(� ′
vertex), D(� ′

node) are periodic. Therefore by applying Corollary 3.4 we obtain the
following remark.

Remark 9.4. Corollary 3.5 holds for F = � ′
vertex, �

′
node, if n is big enough.

Lemma 9.5. Let F be�vertex (resp.�node) and F ′ be� ′
vertex (resp.�

′
node). The following

conditions are equivalent:

• The sequence of n-smoothings Sn(F) of F stabilizes.
• The sequence of n-smoothings Sn(F ′) of F ′ stabilizes.

Proof. It is enough to note that F ′ coincides with F outside of a finite neighborhood of
D(F) because we have already proven Theorem 2 for the case of �edge. Hence there
exists n such that |F − F ′| < n. Therefore Sn(F) ≤ F ′ ≤ F and smoothings of F ′ can
be estimated by smoothings of F and vice versa. 
�

We want to consider F ′ instead of F because of the following lemma.
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Fig. 3. Illustration for Lemma 9.6. Horizontal line represents {�φ 	= 0}, broken lines along it represent the
boundary of {G 	= S1(G)}. Slices Q2, Q4 are identical

Lemma 9.6. Let (p, q), (p′, q ′) be primitive vectors such that pq ′ − p′q = 1. Denote
A = {(x, y)|p′x + q ′y ≤ 0}. Let G : Z2 → Z be equal to θmin(0,px+qy) in the region
p′x + q ′y ≥ 0. Then there exists a constant C such that

BC(A) contains the set {G 	= S1(G)} \ B1(A).

Proof. Weknow that {G 	= S1(G)} is contained in the union of B1(A) and B1(�G 	= 0).
Therefore we need to prove that {G 	= S1(G)} \ B1(A) (which is in 1-neighborhood of
{�G 	= 0}) can not be far from A. Suppose the contrary.

The function G|D(G) is periodic in the direction (p, q), so we can cut D(G) into
periodic pieces, see Fig. 3. We look at G − S1(G) on the periodic pieces and find two of
them with the the same restriction of G − S1(G). Then it means that we could smooth
more the initial function θmin(0,px+qy): indeed, take all the pieces in between of these
two, repeat that all along as in Fig. 4, and decrease θmin(0,px+qy) according to G− S1(G)

periodically. 
�
Lemma 9.7. For all k ∈ Z≥0 the cardinality of the set {F ′ 	= Sk(F ′)} is finite.

Proof. Note that D(F ′) is made of solitons by definition of F ′. Each time we apply 1-
smoothing, the set {F ′ 	= Sn(F ′)} belongs to a finite neighborhood of D(F ′). Therefore
we only need to prove that {Sn(F ′) 	= Sn+1(F ′)} can not propagate far along a soliton,
which is exactly the assertion in Lemma 9.6. 
�
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Fig. 4. Taking the region in between of Q2, Q4 we repeat it, thus obtaining a smoothing of θpx+qy,0 which
is a contradiction

10. Growth of an Internal Harmonic Region

Definition 10.1. For a subset A ⊂ Z
2 we define r(A) as max(x,y)∈A(

√
x2 + y2), i.e. the

maximal distance between A and (0, 0).

Lemma 10.2. The sequence Rn = r
(
{F ′ 	= Sn(F ′)}

)
grows at most linearly in n, i.e.

Rn ≤ Cn for all n ∈ Z>0.

Proof. It is enough to prove that Rn+1 ≤ Rn +C for all n. Now, look at how the support
of F ′ − Sn+1(F ′) differs from the support of F ′ − Sn(F ′) outside of BRn (O). It follows
from Remark 9.4 that supp(F ′ − Sn(F ′)) belongs to the n + 1-neighborhood of D(F ′)
for n big enough. Then we use Lemma 9.6 for each soliton-like ray in D(F ′). 
�
Lemma 10.3. We suppose that the sequence {Sn(F)}∞n=1 does not stabilize. Then the
sequence

rn = max
{
r |Br (O) ⊂ {Sn(F ′) 	= Sn+1(F

′)}
}

(10.4)

grows at least linearly in n, rn ≥ Cn as long as n is big enough.

Proof. It follows from Lemma 9.5 and Corollary 4.5 that for each n ∈ Z>0 the set
An = {v ∈ Z

2|Sn(F ′)(v) = F(v′)−n} is not empty. Hence A1 ⊃ A2 ⊃ A3 · · · , and A1
is finite by Lemma 9.7. Thus we can take v0 ∈ ⋂

n≥1
An . Take any point v ∈ Z

2. Consider

the vector e = v0 − v. By adding a suitable linear function to F we may suppose that F
is e-increasing. Hence F ′ is e-increasing. Then Sn(F ′)(v) ≤ Sn(F ′)(v0) = F ′(v0) − n.
There exists a constant C(F) (depending on the slopes of the linear parts of F) such that
if |v − v0| < C(F)n then F ′(v) > F ′(v0) − n. For such v, the above formulae give
Sn(F ′)(v) < F ′(v0) − n < F ′(v) which, with the fact that |v0| is a fixed finite number,
concludes the lemma by taking any C > C(F). 
�
Lemma 10.5. There exists a constant ρ such that the number of points v in BnC(0, 0)
with �Sn(F ′)(v) < 0 is at most ρn for n big enough.
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Proof. The functions F ′, Sn(F ′) coincide outside BnC(O) and superharmonic, therefore
it follows from Lemma 6.3 that

∑
v∈BnC(0,0)

|�Sn(F
′)(v)| =

∑
v∈BnC(0,0)

�Sn(F
′)(v) =

∑
v∈BnC(0,0)

�F ′(v).

Then, outside of a finite neighborhood of (0, 0) the function �F ′(v) coincide locally
with �θmin(p′x+q ′y,c) in each direction, and

∑
v∈BnC(0,0) �θmin(p′x+q ′y,c) is linear in n

for any coprime p′, q ′ ∈ Z
2. This works both for �vertex and �node. 
�

11. Proof of Theorem 2 for F=�vertex and F=�node.

A geometric explanation of the proof is as follows. Since rn (see (10.4)) grows linearly,
the set {Sn(F ′) 	= F ′} encircles a figure with the area of order n2. So, the set {�Sn(F ′) 	=
0} is of linear size, hence we can find a big part where Sn(F ′) is harmonic and with at
most linear growth, thus, it is linear (Lemma 6.7), which will contradict to Lemma 5.6.

Now we supply all the details. Suppose that the sequence {Fn} of n-smoothings of
F does not stabilize as n → ∞. Therefore, by Lemma 9.5 the sequence of {Sn(F ′)} of
n-smoothings of F ′ does not stabilize. Lemma 9.7 asserts that the support of F ′−Sn(F ′)
is finite, and Lemmata 10.2, 10.3 tell us that the set {F ′ 	= Sn(F ′)} grows at most and at
least linearly in n.

Remark 4.6 eliminated several simple cases. Note that, after change of coordinates
x → ±y, y → ±x , if necessary, we may assume that F is (0, 1)-increasing (Defini-
tion 5.1) and the corner locus of F contains no vertical ray. Thus, F ′ and all Sn(F ′) are
(0, 1)-increasing by Corollary 5.4.

By Lemma 10.5 the number of points v in big disk BnC(O) with �Sn(F ′)(v) < 0 is
bounded from above by ρn for some fixed ρ.

Consider SN (F ′) for N big enough. Then we choose C big enough and cut internal
disk into squares with sides equal to N

C (later we refer to them as small squares).
Comparing the area of ∼ N 2 of the internal disk with ρN we see that there exists a

small square S which contains at most N
C points v with �SN (F ′)(v) < 0. On S, SN (F)

is bounded from above and below by linear functions in N with coefficients depending
on F . Then Lemma 6.7 implies that Sn(F ′) − M should be linear on this small square
k × k which is a subset of S. This, by Lemma 5.6, is a contradiction.

12. Discussion

12.1. Sand dynamic on tropical varieties, divisors. Let G be a graph and V =
{v1, v2, . . . , vk} be a collection of some of its vertices. Consider the following state
φV = ∑

v∈G v · (deg(v) − 1) − ∑
v∈V δv . It corresponds to the divisor V = ∑

v∈V δv .
Let P = {p1, p2, . . . , pn} be another collection of vertices of G. Then there exists
a divisor linearly equivalent to V and containing P if and only if the relaxation of
φV +

∑
p∈P δp terminates.

We can produce the same type of problems for a tropical surface, if we have a sort
of grid on it. For example, take a surface defined over Z, its p-adic tropicalization has a
natural grid of integral points. Tropical divisors in this case are tropical curves and we
can model such curves by gluing solitons using triads and nodes.

Using relaxation in sand dynamic we can understand if there exist a divisor linearly
equivalent to a given tropical divisor L , passing through prescribed set P of points
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p1, p2, . . . , pn . For that we represent L as a collection of sand-solitons glued, then we
add sand to P , and relax the obtained state. If the relaxation terminates, it produces the
divisor which is linearly equivalent to L . If not, that means that such a divisor does not
exist. Again, as in the one-dimensional case, this observation boils down to the question
of existence of a piecewise-linear function F with {�F > 0} ⊂ L and {�F < 0} ⊃ P .

12.2. Continuous models. It would be interesting to find a sandpile PDE which gives
solitons in the limit. As we proved [14], straightforward passing to the limit gives piece-
wise linear model [15] and a tropical curve. We do not know how to argue why a priori
the partial derivatives of the functions must be rational. We expect that there should be
a family of deformations (e.g. such as in [30]) of the sandpile model, and the limits of
deformations are the amoebas of algebraic curves, and amoebas tend to a tropical curve.
If this is true, it must be a fruitful connection between sandpiles and algebraic geometry.
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Appendix A: Locally Finite Relaxations and Waves

In this section we study the relaxations and stabilizability issues. Themain goal here is to
establish The Least Action Principle (Proposition A.16, cf. [6]) and wave decomposition
(Proposition A.26 and Corollary A.30) for locally-finite relaxations (Definition A.6) on
infinite graphs. We also prove that given a finite upper bound on a toppling function of
a state, there exists a relaxation sequence of this state which converges pointwise to a
stable state (Lemma A.13).
The proofs are the same as in the finite case, but in the absence of references we give all
the details here. Sandpiles on infinite graphs were previously considered, for example,
in [1,7,11], but only from the distribution point of view: in their approach the relaxation
(after adding a grain to a random configuration in a certain class) is locally finite almost
sure with respect to a certain distribution. The ideas of this section are similar to [12].

A.1. The least action principle for locally finite relaxations, relaxability. Let � be a
graph with at most countable set of vertices of finite degree, τ : � → Z>0 be a threshold
function and γ : � → 2� be a set-valued function such that

• v 	∈ γ (v),

• if v ∈ γ (w), then w ∈ γ (v),
• |γ (v)| ≤ τ(v) for all v ∈ �, where |γ (v)| denotes the number of elements in the
set γ (v).
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We interpret γ (v) as the set of neighbors of a point v ∈ �. We write u ∼ v instead of
u ∈ γ (v), because γ induces a symmetric relation. The Laplacian � is the operator on
the space Z� = {φ : � → Z} of states on � given by

�φ(v) = −τ(v)φ(v) +
∑
u∼v

φ(u).

A function φ is called superharmonic if �φ ≤ 0 everywhere.

Remark A.1. Note that |γ (v)| ≤ τ(v) for all v ∈ � holds if and only if the function
φ ≡ 1 is superharmonic.

Example A.2. In our main situation, � is a subset of Z2 and |γ (v)| = τ(v) = 4 for all
v ∈ � \ ∂�. In this case we obtain the standard definition of a Laplacian on � \ ∂�:

�φ(v) = −4φ(v) +
∑
u∼v

φ(u). (A.3)

Definition A.4. For a point v ∈ �, we denote by Tv the toppling operator acting on the
space of states Z� . It is given by

Tvφ = φ + �δ(v),

where δ(v) is the function on � taking the value 1 at v and vanishing elsewhere.

We can think that vertices v with τ(v) > γ (v) are connected with the stock vertex, so
the system looses sand while performing topplings at such vertices.

Definition A.5. A relaxation φ• of a state φ ∈ Z
� is a sequence of functions φ• =

{φi }i∈I , (for I = Z≥0 or I = {0, 1, . . . , n}, n ∈ Z≥0) such that φ0 = φ and for each
k ≥ 0 there exists vk ∈ � such that φk(vk) ≥ τ(vk) and φk+1 = Tvkφk . The toppling
function Hφ• : � → Z≥0 ∪ {∞} of the relaxation φ• is given by

Hφ• =
∑
i∈I

δ(vi ) ∈ Z≥0 ∪ {+∞},

it counts the number of topplings at every point during this relaxation.We refer to {vi }i∈I
as a relaxation sequence.

Definition A.6. A relaxation φ• is called locally-finite if Hφ•(v) is finite for every v ∈ �.

The result of a locally-finite relaxation is the state φ′ given by the point-wise limit

φ′ = φ0 + �Hφ• = lim
k→∞ φk .

Lemma A.7. Consider a locally-finite relaxationφ• for a stateφ and a function F : � →
Z≥0 such that φ + �F < τ . Then Hφ•(v) ≤ F(v) for all v ∈ �.

Proof. We use the notation from Definition A.5. Consider the relaxation φ• and the
corresponding sequence of functions Hn for n = 1, . . . given by

Hn =
n∑

i=1

δ(vi ), (A.8)

where vi are the points where topplings were made. Let H0 ≡ 0.
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It suffices to show that Hn ≤ F for every n, and H0 ≡ 0 ≤ F . Suppose that n > 0 and
Hn−1 ≤ F. Since Hn = Hn−1 + δ(vn), it is enough to show that Hn−1(vn) < F(vn).

We know that φn(vn) ≥ τ(vn) and φn(vn) = φ0(vn) + �Hn−1(vn). Therefore,

τ(vn) ≤ φ0(vn) − τ(vn)Hn−1(vn) +
∑
u∼vn

Hn−1(u)

≤ φ0(vn) − τ(vn)Hn−1(vn) +
∑
u∼vn

F(u)

= φ0(vn) + �F(vn) + τ(vn)
(
F(vn) − Hn−1(vn)

)
.

Since φ0(vn) + �F(vn) < τ(vn) (by the hypothesis of the lemma) and τ(vn) > 0, we
conclude that

1 ≤ F(vn) − Hn−1(vn).


�
Corollary A.9. Consider a state φ. If there exists a function F : � → Z≥0 such that
φ + �F < τ , then all relaxation sequences of φ are locally finite.

Lemma A.10. Consider a state φ and the set � of all its relaxations ψ•. Then there
exists a relaxation φ• of φ such that

Hφ•(v) = sup
ψ•∈�

Hψ•(v),∀v ∈ �.

Proof. Consider the set W = {(v, k)} ⊂ � × Z≥0 which contains all pairs (v, k) such
that there exists a relaxation φv,k• ∈ � which has k topplings at the vertex v ∈ �. Clearly,
if (v, k) ∈ W, k > 0 then (v, k − 1) ∈ W . The set W is at most countable, so we order
it as {(vn, kn)}n=1,2,... in such a way that (v, k − 1) appears earlier than (v, k) for all
(v, k) ∈ W, k > 0.
Take any relaxation φ•. We construct relaxations φ0• , φ1• , . . . in such a way that φ• = φ0• ,
all φ≥n• coincide at first n topplings, and for each n ≥ 0 the toppling function of φn• (vn)

is at least kn .
Let φn−1• be already constructed, n ≥ 1, we construct φn• as follows.
If the toppling function of φn−1• at vn is at least kn , we are done. If not, take φ

vn ,kn• and
consider its toppling functions Hi

φ
vn ,kn•

as in (A.8) except that we put the bottom index to

the top. Take the first i such that there exists w ∈ � such that H
φn−1• (w) < Hi

φ
vn ,kn•

(w).

Since it is the first such moment, for some j we have

H j

φn−1•
(w′) ≥ Hi

φ
vn ,kn•

(w′)

for all w′ ∼ w. So we add to φn−1• the toppling at w somewhere after j th toppling, and
denote the obtained relaxation sequence as φn−1• again. Note that by repeating this cycle
of arguments a finite number of times, we will have that φn• (vn) ≥ kn . 
�
Definition A.11. A state φ is called stable if φ < τ everywhere. A state φ is called
relaxable if there exist a locally-finite relaxation φ• of φ such that φ′(Definition A.6) is
stable. Such a relaxation φ• is called stabilizing.
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Corollary A.12. Ifφ is relaxable, then Hφ1• = Hφ2• for any pair of stabilizing relaxations

φ1• and φ2• of φ. In particular, (φ1•)◦ = (φ2•)◦.
Proof. Applying Lemma A.7 twice, we have Hφ1• ≤ Hφ2• and Hφ1• ≥ Hφ2• . 
�
Lemma A.13. If all relaxations of a state φ are locally-finite, then φ is relaxable.

Proof. Consider a point v ∈ �.Wewill prove that there exist N > 0 such that Hφ•(v) <

N for all relaxations φ• of φ. Suppose the contrary. Then there exists a sequence of
relaxations φn• such that limn→∞ Hφn• (v) = ∞. Applying Lemma A.10 to the sequence
φn• we see that there exists a relaxation of φ, that is not locally-finite.
Therefore, for any v ∈ � there exist a relaxation φv• such that Hφ•(v) ≤ Hφv• (v) for all
relaxations φ• of φ. Applying Lemma A.10 again to the family of relaxations {φv• }v∈�

we find a relaxation sequence φ̃• such that Hφ•(v) ≤ Hφ̃•(v) for all relaxations φ•.
We claim that φ̃• is a stabilizing relaxation. Suppose that φ + Hφ̃• is not stable, i.e. there
exists v ∈ � such that φ(v) + Hφ̃•(v) ≥ τ(v). Therefore, we can make an additional

toppling at v after the moment when all the topplings at v and its neighbors in φ̃• are
already made. This contradicts to the maximality of φ̃•. 
�
Proposition A.14. A state φ is relaxable if and only if there exists a function F : � →
Z≥0 such that φ + �F < τ .

Proof. If φ is relaxable then we can take F to be Hφ.On the other hand, if such F exists,
then by Lemma A.7 all the relaxations of φ are locally-finite. Therefore, φ is relaxable
by Lemma A.13. 
�
Definition A.15. Consider a relaxable state φ. Denote by Hφ the toppling function of φ,
where Hφ is a toppling function of some stabilizing relaxation ofφ.Define the relaxation
of φ to be the state φ◦ = φ + �Hφ.

Proposition A.16. (The Least Action Principle, [6]) Let φ be a relaxable state and
F : � → Z≥0 be a function such that φ + �F is stable. Then Hφ ≤ F. In particular,
Hφ is the pointwise minimum of all such functions F.

Proof. Straightforward by Lemma A.7. 
�
Lemma A.17. Consider a stable state φ and a point v ∈ �. Then the state Tvφ is
relaxable.

Proof. Consider a function F(z) = 1 − δ(v) for every z ∈ �. Then Tvφ + �F =
φ + �δ(v) + �(1 − �δ(v)) = φ + �1. Applying Remark A.1 we see that Tvφ + �F is
stable. Thus, Tvφ is relaxable by Proposition A.14. 
�

A.2. Waves, their action. Sandpile waves were introduced in [10], see also [16].

Definition A.18. Let v be a point in �. The wave operator Wv , acting on the space of
the stable states on �, is given by

Wvφ = (Tvφ)◦.

The wave-toppling function Hv
φ of φ at v is given by

Hv
φ = δ(v) + HTvφ. (A.19)
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Remark A.20. Note that if v has τ(v) − 1 grains and has a neighbor w with τ(w) − 1
grains, then the result Wvφ is non-negative everywhere.

Indeed, Tvφ has −1 grain at v, but w has enough grains and will topple. So, eventually,
we will have non-negative amount of sand at v.

Remark A.21. It is clear that Wvφ = φ + �Hv
φ .

Corollary A.22 ([26]). For any u ∈ � the value Hv
φ (u) is either 0 or 1. Furthermore,

Hv
φ (v) = 1.

Proof. It follows from the proof of Lemma A.17 that HTvφ ≤ 1 − δ(v). 
�
Lemma A.23. Suppose that φ is a stable state and v a point in �. If φ +δ(v) is relaxable
and not stable, then the toppling function for the wave from v is less or equal than the
toppling function for a relaxation of φ + δ(v), i.e.

Hv
φ (w) ≤ Hφ+δ(v)(w) ,∀w ∈ �.

Proof. It is clear that (φ + δ(v))(w) = φ(w) < τ(w) for all w 	= v and (φ + δ(v))(v) =
τ(v).Therefore, Tv is the first toppling in any non-trivial relaxation sequence for φ+δ(v)

and Hφ+δ(v)(v) ≥ 1. In particular, the function Hφ+δ(v) − δ(v) is non-negative and
HTvφ ≤ Hφ+δ(v) − δ(v) by Lemma A.7 since

Tvφ + �
(
Hφ+δ(v) − δ(v)

) = φ + �δ(v) + �
(
Hφ+δ(v) − δ(v)

) = φ + �Hφ+δ(v)

= (
φ + δ(v)

)◦ − δ(v) < τ.


�
Definition A.24. Letφ be a relaxable state, Hφ be its toppling function.Let 0 ≤ F ≤ Hφ .
The state φ + �F is called a partial relaxation of φ.

Lemma A.25. Consider a relaxable state φ and an integer-valued function F on � such
that 0 ≤ F ≤ Hφ. Then the state φ + �F is relaxable and

Hφ+�F = Hφ − F.

Proof. By Proposition A.14 the state φ + �F is relaxable because

φ + �F + �(Hφ − F) = φ + �Hφ = φ◦ < τ

and Hφ − F is non-negative. In particular, Hφ − F ≥ Hφ+�F by Lemma A.7. On the
other hand, since Hφ+�F + F ≥ 0, we have

φ + �(Hφ+�F + F) = φ + �F + �Hφ+�F = (φ + �F)◦ < τ.

Applying again Lemma A.7, we have Hφ ≤ Hφ+�F + F . 
�
Proposition A.26. Let φ be a stable state and v be a point in �. Suppose that φ + δ(v)

is relaxable. Then the relaxation of φ + δ(v) can be decomposed into sending n waves
from v, i.e.

(φ + δ(v))◦ = δ(v) +Wn
v φ,

where n = Hφ+δ(v)(v) and Wn
v (φ) = Wv(Wv(. . . (φ)) . . . ), nth power of Wv . On the

level of toppling functions, this gives

Hφ+δ(v) =
n−1∑
k=0

Hv
(Wk

v φ)
.
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Added parenthesis in the subscript are for the better readability only.

Proof. Combining Lemmata A.23 and A.25 we have

Hφ+δ(v) = Hv
φ + H(Wvφ+δ(v)).

If the state Wvφ + δ(v) is not stable, then we can apply the same lemmata again. We
complete the proof by iteration of this procedure and using Corollary A.22 (each wave
has one toppling at v, therefore we have n waves). 
�
Lemma A.27. If φ is a stable state and v1, . . . , vm are vertices of � such that vi is
adjacent to vi+1 and φ(vi ) = τ(vi ) − 1 for all i = 1, 2, . . . ,m, then Hv1

φ = Hvm
φ .

Proof. It follows from the simplest case m = 2, for which it is just a computation. 
�
Definition A.28. In a given state φ, a territory is a maximal by inclusion connected
component of the vertices v such that φ(v) = τ(v) − 1. Given a territory T , we denote
by WT the wave which is sent from a point in T (by Lemma A.27 it does not matter
from which one).

Basically, Corollary A.22 tells us that a wave from v increases the toppling function
exactly by one in the territory to which v belongs to, and by at most one in all other
vertices.

Proposition A.29. Let φ be a stable stable, v be a point in �, and F : � → Z≥0 be a
function such that F(v) ≥ 1 and φ + �F is stable. Then F ≥ Hv

φ .

Proof. Similar to Lemma A.7. 
�
Corollary A.30. (Least Action Principle for waves, cf. [6]) Suppose that a state φ is
stable. We send n waves from a vertex v. Let H = ∑n−1

k=0 H
v
(Wkφ)

be the toppling function
of this process. Let F be a function such that φ + �F ≥ 0, F(w) ≥ 0 for all w, and
F(v) ≥ n. Then F(w) ≥ H(w) for all w.

Proof. We apply Proposition A.29 n times, each time decreasing F by Hv
Wk (φ)

for
k = 0, 1, . . . , n − 1. 
�
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