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Abstract: Let F : Z> — Z be the pointwise minimum of several linear functions.
The theory of smoothing allows us to prove that under certain conditions there exists
the pointwise minimal function among all integer-valued superharmonic functions coin-
ciding with F “at infinity”. We develop such a theory to prove existence of so-called
solitons (or strings) in a sandpile model, studied by S. Caracciolo, G. Paoletti, and A.
Sportiello. Thus we made a step towards understanding the phenomena of the identity in
the sandpile group for planar domains where solitons appear according to experiments.
We prove that sandpile states, defined using our smoothing procedure, move changeless
when we apply the wave operator (that is why we call them solitons), and can interact,
forming triads and nodes.

1. Introduction

Periodic patterns (Fig. 1, left) in sandpiles were studied by S. Caracciolo, G. Paoletti,
and A. Sportiello in their pioneer work [2], see also Section 4.3 of [3] and Figure 3.1
in [23], Figure 9a in [28]. Experimental evidence suggests that these patterns appear
in many sandpile pictures and carry a number of remarkable properties: in particular,
they are self-reproducing under the action of waves. That is why we call these patterns
solitons.

The fact that the solitons appear as “smoothings” of piece-wise linear functions was
predicted by T. Sadhu and D. Dhar in [29]. We introduce a suitable definition of the
smoothing procedure (Definition 2.5). We prove (for the first time) the existence (and
uniqueness modulo translation) of solitons for all rational slopes (Theorem 1) and we
prove that the “mass” (the total defect of the Laplacian, or the total difference from the
maximal stable state) of the building block for the soliton of the direction (p, g) is p>+¢>
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Fig. 1. These are local patterns for the soliton of direction (1, 3) and the triad made by solitons of directions
0, —1), (1, =1), (1, 2). White means three grains of sand, green—two, yellow—one, and red—zero. The
rightmost picture (obtained using simulation in Golly [9]) shows the sandpile group identity for the graph
inside the region with blue boundary. We see solitons of different directions near the center of the picture

(Remark 8.2). We also study local interactions of solitons: triads (Fig. 1, middle—three
solitons meeting at a point) and nodes (Fig. 2). We prove that triads must satisfy a sort
of balancing condition (Remark 2.15). We prove a well known (experimentally) fact
that solitons move changeless under the action of waves (Corollary 2.13); triads and
nodes satisfy similar property. In addition, we accurately write the theory of sandpiles
on infinite domains in the absence of references, though it is absolutely parallel to the
finite case. This article also contains the facts (Theorem 2, Corollary 2.13) that we need
later to establish more general convergence results in sandpiles, see [14,15] for details
and motivation. In short, sandpile dynamics of small perturbations of the maximal stable
state is governed by a dynamic on tropical curves which also obeys power law [13].

The sandpile on 72 exhibits a fractal structure; see, for example, the pictures of the
identity element in the sandpile group [21] (and the rightmost picture in Fig. 1). As far
as we know, only a few cases have a rigorous explanation. It was first observed in [22]
that if we rescale by +/n the result of the relaxation of the state with n grains at (0, 0)
and zero grains elsewhere in Z2, it weakly converges as n — oo. Then this was studied
in [20] and was finally proven in [24]. However the fractal-like pieces of the limit found
their explanation later [18,19], and happen to be curiously related to Apollonian circle
packing. Recently the stability of patterns was proven in [25]. In most of these fractal
pictures one can find solitons which propagate along thin balanced graphs (which are
called defects in [25]). We expect that the methods of this article will be used to study the
fractal structure in the cases where the piece-wise linear nature of patterns is apparent
(see many such examples in [27], [29], and a groundbreaking paper [4]).

We present our theory in the simplest meaningful case leaving possible generalisa-
tions (with unavoidably heavier notation) for future works.

1.1. Sandpile patterns on 7Z*>. We think of Z? as the vertices of the graph whose edges
connect points with distance one. If v, w € Z? are neighbors we write v ~ w. A state of
a sandpile is a function ¢ : Z> — Z=; we interpret ¢ (v) as the number of sand grains
inv € Z2. We can topple v by sending four grains from v to its neighbors, each neighbor
gets one grain. If ¢ (v) > 4, such a toppling is called legal. A relaxation is doing legal
topplings while it is possible (for what this means for infinite graphs see Appendix A).
A state ¢ is stable if ¢ < 3 everywhere.
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Definition 1.1. Let v € Z? be such that ¢ (v) = ¢(w) = 3 where w is a neighbor of v.
By sending a wave from v we mean making a toppling at v, following by the relaxation.
We denote the obtained state by Wy ¢.

Note that after the first toppling the vertex v has —1 grain, and w has 4 grains, so w
subsequently topples and v has a non-negative number of grains again. We are interested
in states which move changeless under the action of waves, such states were previously
studied experimentally in [2,3,23].

Definition 1.2. Let (p, ¢) € Z2 \ {(0,0)}. A state ¢ is called (p, g)-movable, if there
exists v such that Wy¢ (x, y) = ¢ (x + p, y +¢q) for all (x, y). A state ¢ is called (p, q)-
periodic if ¢(x,y) = ¢(x + p,y +q). A state ¢ is called line-shaped if there exist
constants p, g, c1, ¢z such that the set {¢ # 3} belongs to {(x, y)|c1 < px +qy < ¢2}.

We classify all periodic line-shaped movable states, we call them solitons. We also
construct triads, i.e. three solitons meeting at a point, they are also movable.
In this paper we prove the following theorem.

Theorem 1 (See a proof in Sect. 8.1). For each p, q € 7, gcd(p, q) = 1 there exists a
unique (up to a translation in 7.*) movable (p, q)-periodic line-shaped state. Further-
more, it is (p’', q')-movable, where p', q' € Z, p'q — pq’ = 1.

Moreover, a movable (p, ¢g)-periodic line-shaped state is always (m, m)-
periodic which easily follows from our proof of this theorem (Corollary 8.5).

A state ¢ on Z?2 is called a background if there exists v € Z? such that W,¢ = ¢.
For example, such is the state ¢ = 3 decreased at any set of vertices with pairwise
distances at least two. Another example of a background is any recurrent state for a
finite part of Z2, and 3 everywhere else. It seems to be more difficult to classify all
movable states because many different backgrounds exist (see [23], Chapter 5). We give
two conjectures, phrased in different terms.

Conjecture 1. Any (p, g)-movable state is equal to a background plus the difference
between 3 and an aforementioned soliton.

Conjecture 2. On a doubly periodic background, the periodic line-shaped movable
states are classified by ordered pairs of tangent circles in the Apollonian packing of
[19]. Given a quadratic function whose Hessian corresponds to the peak of the cone
based at one such Apollonian circle, one constructs a doubly periodic background.
Moving infinitesimally down the cone, in the direction of a tangent circle, should result
in a line-shaped object, namely, a movable state.

1.2. Superharmonic functions.

Definition 1.3. The toppling function of a relaxation is the function Z> — Z>( counting
the number of topplings at every point during this relaxation.

It is known that the toppling function has bounded Laplacian and is minimal in a
certain class of functions. Therefore, if we know the toppling function “at infinity”, we
can, in principle, reconstruct it. When we send n waves towards a periodic movable
line-shaped state, the toppling function is zero on one side of the set {¢) # 3} and is
equal to n on another side. It is easy to guess (or find experimentally) that the toppling
function in this case will be something like F'(x, y) = min(px + gy, n) on one side of
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the set {¢ # 3}. Hence we are looking for a point-wise minimal superharmonic integer-
valued function which coincide with F(x, y) at infinity. However, a priori a pointwise
minimum in such a class of functions can be —oo everywhere. We develop a theory of
smoothings (see the definition in Sect. 2 where we state these results) to prove that the
pointwise minimum is reached by slicing characteristic functions of certain sets from
F, see Sect. 4. We also prove that a kind of monotonicity is preserved while doing this
slicing, Sect. 5. In Sect. 6 we state well-knows facts about discrete harmonic functions.
Sections 7, 8 are dedicated to a proof of Theorem 1.

To study the interaction between solitons, when several of them meet at a point, and
for the needs of [14], we also study triads and nodes, to whom the last Sects. 9, 10, 11
are dedicated.

1.3. Sandpiles on infinite domains. We could not find a satisfactory reference containing
the theory of sandpiles on infinite domains (in particular, the Least Action Principle for
waves). We hesitated about its inclusion here, because all the statements can be proven
exactly in the same way as in the finite case. Finally, for the sake of completeness, we
decided to present the theory of locally-finite relaxations in Appendix A where we define
and study locally-finite relaxations.

2. Smoothing, Its Relation to Waves
The discrete Laplacian A of a function F : Z?> — R is defined as
AF(x,y)=—4Fx, )+ Fx+1L, )+ Fx—-1,y)+F(x,y+ D)+ F(x,y—1).

A function F is called harmonic (resp., superharmonic) on A C 72 if AF = 0 (resp.,
AF < 0) atevery point in A.

Lemma 2.1. If F, G are two superharmonic functions on A C 72, then min(F, G) is a
superharmonic function on A.

Proof. Let v € A. Without loss of generality, F(v) < G(v). Then, Amin(F, G)(v) <
AF()<0. O

Definition 2.2. The deviation set D(F') of a function F is the set of points where F is
not harmonic, i.e.

D(F) = {(x,y) € Z*|AF(x, y) # 0}.

Lemma23.Let F : 7% — Z,ve 72 F (v) < n and the Euclidean distance between
v and the set

{AF > 0} = {w|[(AF)(w) > 0}

be at least n + 2. Let v' ~ v and F(v') > F(v). Then there exists a point u € 7* such
that F(u) < O.

Proof. Indeed, (AF)(v) < 0 and F(v') > F(v) imply that for some neighbor v
of v = vg we have F(v]) < F(vp). Then we repeat this argument for v; and find its
neighbor v, with F'(v2) < F(v1),etc. Note thatall vy, . . ., v+ does not belong to the set
{AF > 0}. Finally, we set u = v,4+1. We conclude by F (v,4+1) < F(vg) —(n+1) < —1.

O
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Lemma24. Let F : 72 — Z,vg ~ v] ~ ...~ vg be apathin 72 and F be harmonic at
allvi,0 <i <k—1and AF(vx) < 0. Then there exists i > 0 such that F (vg) = F (v;)
and v; has a neighbor v’ such that F (v;) > F (V).

Proof. If F(vyg) = F(vx) then we may choose i = k and such a neighbor exists since
(AF)(vr) < 0. If not, choose the first i such that F(vyg) = F(v;) # F(vi4+1) and then
use the harmonicity of F atv;. O

For A C Z?,C > 0, we denote by Bc(A) C Z? the set of points whose Euclidean
distance to A is at most C.

Definition 2.5. For n € N and a superharmonic function F : Z> — Z we define
On(F)={G: 7> > ZIAG <0,F —n <G < F,3C > 0, {F # G} C Bc(D(F))}.

Inplain words, ®,, (F') is the set of all integer-valued superharmonic functions G < F,
coinciding with F outside a finite neighborhood of D(F), whose difference with F is
at most n. Define S, (F) : Z?> — Z to be

Su(F)(v) = min{G(v)|G € ©,(F)}.

We call S,,(F) the n-smoothing of F. Note that S,,(F) > F — n. Note that S, (F) does
not necessarily belong to ®, (F).

Lemma 2.6. If F' > F for two superharmonic functions F, F', then S, (F') > S,(F)
for eachn € Z>y.

Proof. We automatically have S, (F’) > S, (F) on the set {F/ — F > n} and on the
set S,(F") = F’. Indeed, for each G’ € ©,(F’),G € ©,(F) we have G’ > G on
these two sets. Thus we need to prove that S, (F’) > S,(F) on the set {F' — F <
n} N {S,(F') < F’}. Consider any function G’ € O, (F’), let the set {G’ # F’} belong
to a Cg neighborhood of D(F").

Thus it is enough to prove that G’ > S,,(F) on the set

Ay ={F' — F <n}N Bc,(D(F")).
Consider the set
Ay ={F — F <n}Nn{| ~v,(F — F)(v) > (F — F)(?))}.

Note that F/ — F is a superharmonic function outside of D(F). It follows from
Lemma 2.3 that A, belongs to the (n + 1)-neighborhood of D(F) since F' — F > 0.

Next we prove that A| C Bc,(A2 U D(F)). Indeed, for each point v in A there
exists a path of length at most Cy to the set D(F’). If this path intersects D(F), we are
done. If not, then Lemma 2.4 asserts that for a v; on this path for a certain v’ ~ v;, we
have

n>(F' = F)v) = (F - F)(v) > (F' = F)(v)

and thus v; € A and we proved that A C B¢, (A2 U D(F)).

Summarising, we obtained that for each G’ € ©,(F’), G € ©,(F) we have G’ > G
outside Bc,(A2 U D(F)) C Bcysn+1(D(F)). Thus, min(G, G’) belongs to ©,(F),
because it coincides with G outside a finite neighborhood of D(F), it is superharmonic,
andsince I/ — G’ >n, F — G > n, F/ > F we have that F — min(G, G') > n. O



1654 N. Kalinin, M. Shkolnikov

Fig. 2. Two examples of nodes. On the left we see 3 + A6 where F is ¥pode = min(0, x —y, y,x —1). On
the right it is 3 + A6f with F = min(0, x, y — x, y — 10)

Let us fix p1, p2, 491,92, c1,c2 € Z such that pyg» — prg1 = 1. Consider the fol-
lowing functions on Z?:

Wedge (X, ¥) = min(0, p1x +q1y), (2.7)
Wyertex (X, y) = min(0, p1x +q1y, p2x + q2y +c1), (2.8)

Whode (X, y) = min (O, PIX+q1y, p2x+ @y +ci, (pr+p)x+(q1+q)y + cz).
(2.9)

These names correspond to the objects in the tropical world, see [14]. Namely,
Weertex» Wedge, Wnode are local models for “smooth vertices”, edges, and “nodes” of
a tropical curve. To use more colorful names, the smoothing of Wyerex is called a triad
in this paper, to not confuse it with a vertex of the graph of a vertex of a polygon.

We prove the following theorem.

Theorem 2. Let F be (a) Wegge, (b) Wyertex, 07 (C) Whode- The sequence of n-smoothings
Sa(F) of F stabilises eventually as n — oo, i.e. there exists N > 0 such that S, (F) =
SN (F) foralln > N. Moreover (it is not that obvious!), Sy (F) coincides with F outside
a finite neighborhood of D(F).

See a proof of (a) in Sect. 8 and a proof of (b,c) in Sect. 11. The problems to overcome
in proofs are as follows: the deviation set D (S, (F)) is infinite, and we need to prove
that it “flows” only locally and can not significantly spread when we increase n. Then,
even if the flow of D(S,,(F)) is restrained locally when n increases, the deviation locus,
in principle, can encircle growing regions where S, (F') is harmonic almost everywhere.
After taming these and other technicalities, the proof amounts to the fact that there
exists no integer-valued linear function which is less than F on a non-empty compact
set, because this linear function would correspond to a lattice point in the interior of
the Newton polygon of F' (the convex hull of linear parts (i, j) of functions in F'), see
Lemma 5.6.

Remark 2.10. A node (smoothing of W,.q.) represents a deformation (controlled by
calibrating c; in (2.9)) of two triads fusing together, see Fig. 2. From the “infinity” a
node looks as two intersecting solitons, which explains the name: nodal points of tropical
curves look exactly like that, see [15] for the details of this relation.

Definition 2.11. The pointwise minimal function in | J ®, (F), which exists by Theo-
rem 2, is called the canonical smoothing of F and is denoted by 6, see Fig. 2.

Remark 2.12. Note that AOr > —3 because otherwise we could decrease 6 at a point
violating this condition, preserving superharmonicity of 6, and this would contradict
to the pointwise minimality of 6 in | ©,(F).
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Let F' be Wedge, Wyertex> OF Whode, WE Write

F(x,y)= min (ix+ jy+a;;).
(x,y) (i,j)eA( Jy lj)

Consider the sandpile state ¢ = 3+ Afr. By Remark 2.12, ¢ > 0 and ¢ is a stable state
because 0 is superharmonic. Let v € Z? be a point far from D(6F). Let F be equal to
ioX + joy + aj,j, near v. The following corollary says, informally, that sending a wave
from v increases the coefficient a;, ;, by one.

Corollary 2.13. In the above conditions, Wy¢ = 3 + AOp: where W, is the sending
wave from v (Definition 1.1) and

F'(x,y) = min (iox + joy + aiyjp + 1, minGix + jy +a;j |G, j) € A, (i, j) # (o, jo)))-
Proof. Let H 5 (A.19) be the toppling function of the wave from v. Since
Wy =¢+AH;§ = 3+A(QF+H£),

we should prove that HJ; = O — OF. It follows from Lemma 2.6 that 6z — 0r > 0. By
the Least Action Principle for waves (Proposition A.29) we have that 6 — 60 > H (g
because 6 — O = l atv, 0 —6p > 0 and ¢ + A(0, — OF) = 3 + O is a stable
state. On the other hand, the function 0 + H (;; coincides with 65/ outside of a finite
neighborhood of D(F’) and is superharmonic. Therefore, by the definition of 07/, we
see that O < Op + HJ; and this finishes the proof. O

Remark 2.14. As we will see later, all sandpile solitons are of the form 3 + Afy,, -

Remark 2.15. Since a triad is a smoothing of a piece-wise linear function such as
min(0, p1x +q1y, p2x +g2y+c1) (up to adding a linear function), the direction of three
solitons coming out of the center of the triad are (p1, q1), (p2—P1, 2—q1), (— P2, —q2),
and these directions sum up to (0, 0), see Fig. 1, center.

3. Holeless Functions

We will frequently use the fact that the set {S1(F) # F} belongs to a finite neighborhood
of D(F) (in particular, this fact implies a pleasurable property S, Sx(F) = Sp+x(F)).
Unfortunately, this fact is not true for all superharnomic functions F, so we need to
restrict the domain of functions F that we consider. Namely, we ask for the following
technical property prohibiting to have arbitrary large holes in the deviation set.

Definition 3.1. We say that a function F : Z> — Z is holeless if there exists C > 0 such
that Bc(D(F)) contains all the connected components of 72 \ D(F) which belong to
some finite neighborhood of D(F). When we want to specify the constant C we write
that F' is C-holeless.

Example 3.2. The functions F' = Wedge, Wyertex» Wnode (s€€ (2.7), (2.9)) are holeless just
because Z2 \ D(F) has no components which belong to a finite neighborhood of D(F).

Lemma 3.3. If F' is C-holeless, then for each G € ©, (F) the set {F # G} is contained
in Bmax(n,c)(D(F)).
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Proof. Let A, = {v € Z*|G(v) = F(v) —n}. If v € A, \ D(F) then from the
superharmonicity of G and harmonicity of F' at v we deduce that all neighbors of v
belong to A,,. Therefore the connected component of v € A, in 7?2 \ D(F) belongs to
Ay, which, in turn, belongs to a finite neighborhood of D(F’) because there belongs the
set{F # G}. Thus A, belongs to C-neighborhood of D (F). By the same arguments, for
An—1 ={G = F —n+1},eachpointin A,_1 \ D(F) is contained in the 1-neighborhood
of D(F)N A, or, together with its connected component of 7>\ D(F) belongsto A,_1,
i.e. is contained in Bc(D(F)), A,—2 \ D(F) is contained in the 2-neighborhood of
D(F) N A, orin 1-neighborhood of D(F) N A,,_1, orin Bc(D(F)),etc. O

Corollary 3.4. If F is C-holeless for some C > 0, then for each n > 0 the function
S, (F) belongs to ®,(F).

Corollary 3.5. Let F' be one of Wedge, Wvertex> Wnode (see (2.7), (2.8), (2.9)). Then for
eachn > 1 we have

dist(D(F), [F # S,l(F)}> <n,

where the distance is the minimum among the Euclidean distances between pairs of
points x € D(F),y € {F # S,(F)}.

4. Smoothing by Steps

Let F, G be two superharmonic integer-valued functions on Z?. Suppose that H = F —G
is non-negative and bounded. Let m be the maximal value of H. Define the functions
Hi, k=0,1,...,m as follows:

1, if H(v) >k,

Hy() = x(H =z k) = {0, otherwise. .1

Lemma 4.2. In the above settings, the function F — H,, is superharmonic.

Proof. Indeed, F — H,, is superharmonic outside of the set { H = m}. Look at any point
v such that H (v) = m. Then we conclude by

ACF = Hp)(v) =4G@) +40m — 1) = Y Gw) +4(m — 1) = Y " (F — Hy)(w).

w~v w~v

O

We repeat this procedure for F — H,,; namely, consider F — H,, — Hy,_1, F — H;;, —
H,,_1 — H,_», etc. We have

H=H,+H,_+H, >+ ---+Hj,

and it follows from subsequent applications of Lemma 4.2 that all the functions F —

ZZ:,?’EH H,, are superharmonic, fork = 1,2, ..., m. Also, it is clear that
m—k+1 m—k
0< (F— > H,,)—<F—2Hn> = Hyi <1
n=m n=m

atallvel,k=0,...,m.
Consider a superharmonic function F. We are going to prove that two consecutive
smoothings (see Definition 2.5) of F differ at most by one at every point of Z?.
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Proposition 4.3. Foralln € N
0 < 8u(F) = Sp1(F) = 1.

Proof. By definition, S, (F) > S,+1(F) at every point of Z2. 1f the inequality S, (F) —
Sy+1(F) < 1doesn’t hold, then the maximum M of the function H = S,,(F) — S;+1(F)
is at least 2. We will prove that

Su(F) —x(H>M) > F —n.

Namely, by Lemma 4.2 the function S, (F) — x (H > M) is superharmonic. Suppose
that

Sy(F)— x(H>M)<F—n atapoint v e Z>.

Since the set { H > 1} contains the set { H > M}, we arrive to a contradiction by saying
that, at v,

F—m+1)>S8(F)=x(H=M) - x(H=1)=851(F) > F—(m+1).

Therefore S, (F) — x (H > M) € 0, (F) which contradicts the minimality of S, (F).
O

Corollary 4.4. Proposition 4.3 and Lemma 3.3 imply that for C-holeless F the function
Sn+1(F) can be characterized as the point-wise minimum of all superharmonic functions
G such that S,(F) — 1 < G < S,(F) and S,,(F) — G vanishes outside some finite
neighborhood of D(S,(F)) (recall that the distance between D(F), D(S,(F)) is at
most max(C, n)). In other words, n-smoothing S, (F) of F is the same as 1-smoothing
of (n — 1)-smoothing S,—1(F) of F.

Corollary 4.5. In the above assumptions, if S,,(F) # Sy+1(F) then there exists vy such
that Sp+1(F)(vo) = F(vo) — (n +1).

Indeed, if there is no such a point, then S,+1(F) > F — n and therefore S,+1(F) =
S, (F).

Remark 4.6. Let F(x, y) = min(x, y,0) or F(x,y) = min(x, y,x +y, c) for c € Z>op.
Then it is easy to check that S1(F)(x,y) = F(x,y) and therefore ®r = {F} (see
Definition 2.5 for the notation).

5. Monotonicity While Smoothing

Definition 5.1. Let e € Z2\ {(0, 0)}. We say that a function F : Z> — Zis e-increasing

if

(a) F is a smoothing of a holeless function,

(b) F(v) < F(v + e) holds for each v € Z2,

(c) there exists aconstant C > 0 such that foreach v with F (v) = F(v—e), the first vertex
v — ke in the sequence v, v — e, v — 2e, . . ., satisfying F (v —ke) < F(v— (k— 1)e),
belongs to Bc(D(F)).

Example 5.2. Let F(x,y) = min(px + qy, 0) where p, g € Z. Note that F is (e, e2)-
increasing if and only if pe; + gex > 0. In particular, F is (0, 1)-increasing if ¢ > 0
and (eg, ex)-increasingif p <0 <gand0 <e; <g —1,e2 > |p|.
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Lemma 5.3. If F is e-increasing, then S1(F), the 1-smoothing of F, is also e-increasing.

Proof. Corollary 4.4 gives the property (a) of Definition 5.1, because if F = S,,(G), and
G is holeless, then S1(F) = S,+1(G). To prove that S; (F) satisfies (b) in Definition 5.1
we argue a contrario. Let H = F — S1(F). Suppose that the set

A:{veZle(v—e)zF(v),H(v—e):O,H(v): 1}
is not empty. Since H|4 = 1, we have A C Bc(D(G)). Consider the set
B={wlHWw)=0,ne€Z-g,v+n-ec A, Fv)=Fw+n-e)}.

Consider v € B.Sincev+n-e € A C Bc(D(F)) and F(v) = F(v+n - e), then
(c) in Definition 5.1 impose an absolute bound on » and therefore B belongs to a finite
neighborhood of D(F). Consider the following function

F=S81(F)=) 6,

veB

It is easy to verify that F(v) < F(v +¢) for each v. Note that AF(v) <AS|(F)(v) <0
automatically for all v € Z? \ B. Pick any v € B. Since v+n-e € A forsome n € Z-o,
we have

4F(v) =4S (F)(v+n-e) > Z SUF)(w+n-e) > Z F(w).

w~v w~v

Therefore F is superharmonic, and satisfies F > F > F — 1 by construction, which
contradicts to the minimality of S (F) in ©1(F).

Finally, by Corollary 3.4 the sets {F # S1(F)} and D(S1(F)) belong to Bc(D(F))
for some C > 0. Therefore the fact that |S;(F) — F| < 1 (Proposition 4.3) gives ¢) with
the constant C+ |e|+ 1. O

Corollary 5.4. Let I be one of Wedge, Wyertex» Wnode (Egs. (2.7), (2.8), (2.9)). Let e €
Z? \ {0, 0)}. If F is e-increasing, then S, (F) is also e-increasing.

The following remark follows from the definition of smoothing.

Remark 5.5. Let F : 7> — Z,p,q,r € Z.Let G(x,y) = F(x,y) — px —qy —r.
Then S, (F)(x, y) — (px +qy +r) = Sy (G)(x, y).

Lemma 5.6. Let F be Wyertex 07 Whode. Then there exists k > 0 such that for eachn > 0
for each square S of size k x k inside the set {F # S,(F)} the function S, (F) is not a
restriction of a linear function mix + mayy + m,my,ma, m € Z on S.

Proof. We associate each linear function px + gy + ¢ in F with the point (p, ¢) € Z?.
Then, a triangle of area 1/2 is associated to Wyerex and a parallelogram of area 1 is
associated to Wpege. Pick any vertex of such a polygon (triangle or parallelogram) A.
Calibrating as in Remark 5.5 we may suppose that this point is (0, 0). Then, such a
function F is e-monotone for all e in the dual cone for the cone at (0, 0) in A (the dual
cone is the set of vectors which have a non-negative scalar product with vectors from a
given cone). By Corollary 5.4, S, (F) is also monotone in this direction. Therefore, if
Sp(F)ismix+may+m on S, the point (m1, my) must belong to the cone at (0, 0) in A.
By doing that for each vertex of A we obtain that (m, my) belongs to A. To be able to
do that we need to assume that k is big enough, namely, bigger than twice the length of
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each primitive vector from the edges of the dual cones considered above (this is a finite
set of vectors).

Then, the fact that (m1, my) € A (and hence (m1, m») is a vertex of A) contradicts
the superharmonicity of S, (F). Namely, by Remark 5.5 we may assume that (m, my) =
(0,0) and F is given as in (2.8) or (2.9). Therefore S, (F) is a constant m < 0 on S.
Consider the set {S,,(F) = m}. There is a direction e such that F is e-increasing and
for each v € {S,(F) = m} we have that v + /e belongs to {S,(F) = F = 0} for some
| € Z~¢. Then we go from the center of the set {S,(F) = m} in the direction e, and
we find a vertex v € {S,(F) = m} such that S,(F) > m at all neighbors of v and
S,(F) > m at one of the neighbors, and this contradicts to the superharmonicity of
Sp(F). O

For Wegge the similar result holds, see Lemma 7.4 (perhaps, with a more direct proof).

Remark 5.7. If the Newton polygon of F contains an integer point strictly inside, then
a new bounded region will appear in Z? \ D(S, (F)), while smoothing. If the Newton
polygon of F contains exactly & integer points in the interior of an edge, then the deviation
set D(F) in the dual direction will split into the k + 1 solitons in this direction and we
will see there k infinite regions in 72 \ D(S, (F)), while smoothing.

6. Discrete Superharmonic Integer-Valued Functions

Throughout the paper we denote all absolute constants by C, when we want to stress that
C depends on other constants such as k, . . . we write it as C(k, . . .) correspondingly. We
will also omit writing “there is an absolute constant C with the following property...”.

Lemma 6.1 ([5], Theorem 5). Let R > 1,v € Z% and F : BR(w) NZ* — R be a
discrete non-negative harmonic function. Let v’ ~ v, then

C- maXyeBg(v) F(w)
R

|[F() = F(v)| <

Morally, this lemma provides an estimate on a derivative of a discrete harmonic
function. We call 9, F (x, y) = F(x +1, y) — F(x, y) the discrete derivative of F in the
x-direction. The derivative 9, in the y-direction is defined in a similar way. We denote
by d, F' the discrete derivative of a function F in any of directions x or y.

Lemma 6.2 (Integer-valued discrete harmonic functions of sublinear growth). Let v €
77 and . > 0 be a constant. Let R > 4uC. For a discrete integer-valued harmonic
function F : B3g(v) NZ% — Z, the condition |F (V)| < R forallv' € B3g(v) implies
that F is linear in Bg(v) N Z2.

Proof. Consider F which satisfies the hypothesis of the lemma. Note that 0 < F(v') +
uwR < 2uR for v/ € Bzg(v) and applying Lemma 6.1 for By (v) yields

C-2uR

0o F (V)| < =2uC, forall v e Byr(v).

Then, applying it again for 0 < 9, F (v) + 2uC < 4uC yields

4uC
19,9, F (1')] < % <1, for v eBgr(v) if R>4uC.
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Since F is integer-valued, all the derivatives 0,0, F are also integer-valued. Therefore
all the second derivatives of u are identically zero in Bg(v), which implies that F is
linear in Br(v). O

Let A be a finite subset of Z2, 9 A be the set of points in A which have neighbors in
7%\ A. Let F be any function A — Z.

Lemma 6.3. In the above hypothesis the following equality holds:

Y AFw= Y (F)-F@)).

veA\IA VedA,
vV'EA\IA, v~V

Proof. We develop left side by the definition of AF'. All the terms F (v), except for the
vertices v near d A, cancel each other. So we conclude by a direct computation. O

Definition 6.4. For v € Z? we denote by G, : Z?> — R the function with the following
properties:

e AG,(v) =1,

e AGy(w) =0if w # v,

e G,(v) =0,

e Gy(w) = %10g|w —v|l+c+ 0 (m) when |w — v| — oo, where ¢ is some
constant.

Itis a classical fact that G, does exist and is unique ([31], (15.12), or [17], p.104, see [8],
Remark 2, for more terms in the Taylor expansion).

Corollary 6.5. Let v = (0, 0). By a direct calculation we conclude that

0e0e Gy (X, <—\
| v(x, Y (x2+y2+1)

Lemma 6.6. The following inequality holds for all N € Z—q, v € Z*:

Y 18.0:Gu(x. y)| < ClnN.

—N=x,y=N

Proof. The maximum of this sum is attained when v = (0, 0). Then the sum is estimated
from above by

2N
/ Cdxdy+C<c/ rdr c<cmN.
x2+y2 r=1 }"2

1<x2+y2<2N2
O

Lemma 6.7. Let k, u € N. For all N > C(k)u the following holds. Let F be any
non-negative integer-valued function on A = ([0, N]x [0, N ]) N Z? satisfying

max |F(v)| < uN.

Let vy, va, ... vN be points in 72 (not necessary distinct) and suppose that G = F +
211(\]:1 Gy, (see Definition 6.4) is a discrete harmonic function on A. Then there exists a
square of size k X k in A such that F is linear on this square.
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Proof.
. , N 4N N 4N .
Applying Lemma 6.1 text for ve A" = 35 X 35 we obtain [3,G|
- /,LCN.
~ NJ5

Proceeding as in Lemma 6.2, we see that in the square
P
5 5 5 5
the second discrete derivatives 0,0, G are at most
C_u
N
by the absolute value, which is less than % if N > Ck)u.

Since ZweA 0e0eGy, (w) is at most Cln N (Lemma 6.6), we obtain by the direct
calculation that

N

D> 8.0sGy(w) <CNInN.

k=1 weA

We cut A” on (%)2 squares of size k x k. Therefore for N > C(k)u we can find a
square A” C A” of size k x k such that

N
Z 10606 G, (v)| < 1/3 at every pointv € A”.
k=1

The estimates for |0,0,G| and ZlN: 1 10606 G, | imply that for all second derivatives of
F we have 0,0, F (v) = 0 for v € A”. Thus F is linearon A”. 0O

7. Estimates on a Cylinder

Definition 7.1. Let p,q € Z,q > 1. We consider the equivalence relation (x, y) ~
(x +¢q,y — p) on Z?, it respects the graph structure on Z2, so we define a new graph

Y= Zz/ ~, where ~ is generated by (x,y) ~ (x+¢q,y— p).

We identify ¥ with the strip [0, g — 1] x Z where each vertex is connected with its
neighbors and, additionally, (0, y) is connected with (¢ — 1, y — p) for alli € Z. The
concept of discrete harmonic function easily descends to X.

Let G be an integer valued function on Z? satisfying
Gx,y)=G(x+q,y—p) forall x,y e Zandfixed p,q > 0.

The function G naturally descends to X. Let G be an integer valued superharmonic func-
tion on X. Suppose that 0 < G(x, y) < Cy forall y > 0,x € [0, g — 1]. Suppose also
that the number of points v with AG (v) < Oisfiniteanddenote D = ) 5 AG(v) < 0.
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Lemma 7.2. Let G be as above and k > |p| + |q|. Then, for some m < C(k, |D]) the
function G is linear on

¥ =[0,g—1]x[m,m+k] C Z.
Proof. Choose big N. Dissect [0,g — 1] x [0, N(|D| + 1)] on |D| + 1 parts

[0,g — 1] x [0, N]
[0,g — 1] x [N, 2N], etc.

Then there exists a part A in this dissection where G is discrete harmonic. Note that
0<Gla=<C-(ID|+1)N.

Let v be the center of A. Applying Lemma 6.2 for v and R = N/6 we prove that
derivatives 0,0,G are zeros in By6(v) if N > C and thus G is linear on By (v). If
N /6 > 2k then we found desired ¥’ C By (v). O

Lemma 7.3. Let F' = Weqge (see (2.7)). Then for all n € Z-o smoothings S, (F) are
periodic in the direction e = (q1, —p1), i.e. Sy(F)(v) = Sy(F)(v +e) forall v € Z2.

Proof. Suppose, to the contrary, that S, (F)(v) > S,(F)(v + e) for some v € VAR
follows fromNLemma 2.1 that S, (F)(w) = min(S, (F)(w), S, (F)(w + e)) belongs to
®,(F), but S,(F)(v) < S,(F)(v) which contradicts to the minimality of S, (F) in
®,(F). O

Lemma 7.4 (cf. Lemma 5.6). Let X be from Definition 7.1, F = min(px + qy, 0), note
that F descends to X. Let

ACHF # S(F)}, A=10,q — 1] x [m,m +|p| +ql].

Suppose that S, (F) restricted to A is linear. Then gcd(p, q) > 1.

Proof. Since S, (F) is periodic in the direction (g, — p), we conclude that S, (F) (x, y)|a =
k(px+qy) +k’' for some k, k' € Z. The property of (0, 1)-increasing implies that k > 0.
Suppose that k = 0, S,,(F) = k' on A. Then k¥’ < 0 because S,,(F)|a < F|a. Let
vo be max{y|S, (F)(1, y) = k’}. Then S, (F) is not superharmonic at (1, y), which is a
contradiction. Therefore k > 0.
Consider the function F'(x, y) = F(x, y) — px — qy. Using Remark 5.5, we write

Su(F)(x, y) = Sp(F)(x, y) — px — qy

and repeat verbatim all the above consideration, which gives k < 1.
Since k(px +¢gy) has integer values and 0 < k < 1 we conclude that gcd(p, q) > 1.
0
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8. Proof of Theorem 2 for Weqge

Proof. For the sake of notation denote F' = Weqge (see (2.7)), set p = p1,q = q1,
ie. F(x,y) = min(0, px + gy). We will prove that the sequence {S,(F)};°, of n-
smoothings (Definition 2.5) of F eventually stabilizes. It is easy to check that in the
cases when (p, g) = (£1, 0), (0, 1), (£1, £1) we have S| (F) = F (cf. Remark 4.6).
Therefore, we conclude the proof of the theorem in this case by Corollary 4.4 (since
Sy (F) = S1(F) = F). From now on we suppose that pg # 0, ¢ > 1 without loss of
generality, and that the sequence {5, (F)}>2 | does not stabilize.

It follows from Lemma 7.3 that all S,(F) are periodic in the direction (g, —p).
Consider the quotient ¥ of Z? by translations by (g, —p) (see Definition 7.1), ¥ is a
kind of infinite cylinder. Abusing notations, we think of F', §1(F), S2(F), ... as functions
on X. Note that D = ) - AF(v) is finite. Indeed, min(0, px + gy) has only finite
number of points in ¥ where the Laplacian is not zero.

Applying Lemma 6.3 for a big enough neighborhood of D(F) we observe that
Y vex AS1(F)(v) = D. Similarly, we obtain ) .5 AS,(F)(v) = D foralln € Z-
and because of superharmonicity of S, (F) we see that

ID(Sp(F)| = [{v € X|AS,(F)(v) # 0} = D. 8.1
o

Since the sequence {S,, (F)};
the set

| does not stabilize, by Corollary 4.5 foreachn € Z-¢

Ayp = {v € Z2|S,(F)(v) = F(v) — n}

is not empty. Hence Aj D Ay D Asz---, and A is finite because Ay C D(F) by
Corollary 3.5. Thus we can take vg € [ A,-
n>1
Note that F is (0, 1)-increasing and by Corollary 5.4 sodo all S, (F). Alsoifm, k € Z
are such that 0 <m < g — 1,k > |p| then pm + gk > 0 and consequently all S, (F)
are (m, k)-increasing (Corollary 5.2). The property of (m, k)-increasing gives that

F(vo) —n = S8, (F)(vo) = Sp(F)(vo — (m, k))

and F (vo)—n < F(vo—(m, k)) for fixed (m, k) andn > Ck. Therefore supp(F — S, (F))
grows at least linearly in n.
For big n let

¢ =min{F(x, y)|(x, y) € supp(F — S, (F))}.

Applying Lemma 7.2 to the function S, (F) — ¢ we note that S, (F) is linear on A C
supp(F — S, (F)), is we choose A = By, |p|(v) for some v. We conclude the proof
because Lemma 7.4 implies that gcd(p, g) > 1 which contradicts the definition of
\I/edge~ o

Remark 8.2. The following equality holds in this case: |D| = p? + ¢>. In other words,
the total defect of Laplacian (or the total difference with the state (3)) on the building
block of the soliton of the direction (p, ¢) is p* + g°.

Proof. For convenience, consider a function G (x, y) = min(0, px — ¢qy) and the lattice
rectangle R = [0, ¢] x [0, p] N 72. Then

D= Z AG.

R\(¢q,p)
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On the other hand, the sum of Laplacians over the rectangle R is reduced to the sum
along its boundary (Lemma 6.3), i.e.

P p
Y AG =) (G0, k) — G(—1,k) + Y (G(g. k) — G(g +1,k))
R

k=0 k=0

q q
+ Gk, 0) = Gk, ~1) + Y_(Glk, p) = G(k, p+1)).

k=0 t=0

Since AG(gq, p) = —p — g we have

—D=-p—q—Y AG=—p—q+(p+p+(g+1g.
R

O

This equality was observed earlier in [2]. Note also that p> + g2 is the symplectic
area of an edge (p, ¢) in a tropical curve (see [15] for details).

Corollary 8.3. Let p, p'. q,q',a,a’ € Z. Suppose that gcd(p — p’,q — q') = 1. Then
there exists the canonical smoothing 0, 4 4, 4'.a'(X, y) of F(x,y) = min(px +qy +
a, p'x+q'y +a’). Furthermore,

ep,q,a,p’,q’,a’(x» y) = ep—p’,q—q’,a—a/,0,0,0(x» y)
N oI NI
= Gp—p/,q—q’,O,O,O,O(x +@a—a)p,y+(a—a )q )

where (p”, q") € Z? satisfies (p — p')q" + (q —q")p" = 1.

Proof. The operation f(x,y) — f(x,y)+ p'x +q’y +a’ of adding a linear function
commutes with n-smoothings and

min ((p — pHx+ (g —¢")y+(a—a),0)
=min ((p — p)x+@—a)p")+(q — gy +(a—a)q"),0).

8.1. Classification of solitons, proof of Theorem 1. Consider a movable line-shaped
(p, q)-periodic state ¢ with ¢ > 0. As in Sect. 7 we pass to the cylinder ¥ =
Z?/{(x,y) ~ (x + p,y + q)}. Line-shapedness of ¢ implies that {¢ # 3} C = is
contained in [0, ¢ — 1] x [—k, k] for some k € Z.

Lemma 8.4. In the above setti