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1. Introduction

Studying solutions to nonlinear elliptic equations is the classical problem arising both in PDE research and
applications of PDEs in geometry, physics and material sciences [12,13]. Indeed, many problems of nonlinear
physics are related to steady states of nonlinear scalar fields in nonlinear media. Thus, it is necessary to
investigate solutions with nontrivial spatial structures (patterns) to nonlinear elliptic PDEs. One of the
typical PDEs of this kind is

∆u + f(u) = 0, (1.1)

considered in some domain D ⊂ Rn together with some boundary conditions, or in the whole space Rn

with prescribed behavior at infinity. Important solutions with patterns for this equation are those which
are localized in one or more variables. This kind of problems can be linked with the study of self-localized
solutions in wave-guide optical channels [15], investigations of “particle-like” states of nonlinear fields in
some models of elementary particles [43], the description of bi-phase separation in fluids [13] and ordering in
binary alloys [5]. The problem of studying patterns in such equations is, in a sense, an analogue of problems
from the theory of dynamical systems, where ideally one needs to study and classify all solutions to a given
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system of autonomous differential equations. Unfortunately, nowadays the theory of elliptic PDEs is not
as developed as the theory of dynamical systems, where we know at least primary objects to be studied
(equilibria, periodic orbits, quasi-periodic orbits, homoclinic and heteroclinic structures etc.). In the absence
of a general theory studying certain interesting but more or less “simple” model equations is one of the main
problems now. Undoubtedly, Eq. (1.1) is among such models.

Solutions of the equation or the system of equations of type (1.1) also give rise to stationary solutions of
the evolution equations such as reaction–diffusion parabolic or wave PDEs. Stationary solutions for these
evolution equations are of the primary interest since this is a starting point to study non-stationary solutions
close to stationary, various stability problems, asymptotic behavior, etc. The study of so-called stationary
waves for nonlinear scalar field equations, like the Klein–Gordon equation, also lead to the study of equations
of type (1.1) [8]. Moreover, as it was mentioned in [46], PDEs of type (1.1) do have solutions with interesting
patterns, and the structure of their solution sets has remained mostly a mystery. This is especially true for
the solutions in the whole space (so-called entire solutions) considered in our paper.

Various methods were developed to find solutions of Eqs. (1.1) with some prescribed structures. In
particular, for solutions localized in space one method is to search for radial solutions, i.e. those which
depend only on the radial variable r. It is extremely interesting that the only possible positive bounded
solutions of (1.1) are radial, if some restrictions on nonlinearity are imposed [20]. When searching for radial
solutions the problem is reduced to the study of some specific solutions of the related nonautonomous
second order ODE with “time” r. For some types of nonlinearities the existence of infinitely many (sign-
changing) radial solutions was proved in [21]. Those results were extended to more complicated higher order
equations [27,32].

Another method was proposed in [23] and developed by several authors for elliptic equations (systems)
with nonlinearities of various types, see, for instance, [7,9,24,33,42]. This method has its roots in theory of
center manifolds for ODEs and allows one to construct solutions of elliptic equations in cylinder-like domains
that are unbounded in some distinguished direction. The original elliptic PDE can be formally written as an
evolutionary equation in the proper functional space but this equation is usually ill-posed in the whole space.
However, if one is lucky to find a finite dimensional invariant center submanifold of the proper smoothness,
then the restriction of the evolutionary equation to this submanifold gives a finite dimensional flow. Orbits
of this flow generate solutions of the original equation.

A different approach to finding solutions is related to bifurcation methods, in particular, the Lyapunov–
Schmidt reduction. These methods allow for construction of two-dimensional solutions with triangle sym-
metry [30] and solutions of Eq. (1.1) in Rn periodic in one variable and decaying in other variables [16].

A powerful method of constructing multi-peak solutions is based on the implicit function theorem. One
can consider a sum of soliton-type solutions (ground states, see [8]) located at several points with pairwise
distance sufficiently large. Using the decay of soliton at infinity, one can show that there is a solution of
the original equation close to this sum (see, e.g. [31,38,47]). The most difficult step in this approach is to
establish that the differential of the operator of the problem (1.1) is non-degenerate. For simple equations
this fact is well known (see, e.g. [14]). However, in more complicated cases, in particular for the equations
with p-Laplacian, it is not so obvious.

There are several other directions of research in studying elliptic problems. Solutions that were mentioned
above are rather regular. A natural problem here is to discover solutions that can be considered as being
chaotic. Studying a chaotic behavior is now one of the most rapidly developing field of research in finite
dimensional dynamical systems (flows and diffeomorphisms). Till now this direction in PDEs deals with
estimates of Hausdorff or Lyapunov dimension of attractors for evolutionary PDEs (see overviews [36,37,45]).
For elliptic PDEs this direction of research is represented by the study of so called trajectory attractors,
estimates of their upper and lower bounds for the complexity of entire solutions in cylindrical domains (see
the overview [37]). Other tools (for instance, a Conley index) are used to construct nontrivial solutions [18],
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bounded nonnegative solutions of the two-dimensional elliptic boundary value problem in the positive
quadrant of the plane [10], and so forth.

In this paper we construct entire bounded solutions to (1.1) which have various types of symmetries and
may also decay in some directions. We use purely variational approach which allows us to construct these
solutions using the concentration-compactness principle [29] and symmetry considerations [22].

The paper is organized as follows. In Section 2 we collect the basic known facts used in the proofs as well
as some necessary technical lemmata.

The main part of the paper deals with the model equation in R2

∆u − u + u3 = 0. (1.2)

In Section 3 we are concerned with periodic solutions. In Section 4 we discuss radially symmetric solutions.
Generalization of our results for higher dimensions and more general equations are presented in Section 5.

In Appendix A we give for the comparison a brief explanation of using the central manifold method for
our Eq. (1.2). This method was proposed in [4] in order to construct the so-called breather type solutions
which are localized in one variable and periodic in another variable, see also [1] and [17].

In Appendix B we show another approach of construction of breather type solutions using the Bubnov–
Galerkin approximations. This method reduces the problem to finding homoclinic solutions to some saddle
equilibrium of a proper Hamiltonian system. However, in this way we obtain only an approximate solution of
the original problem. See, in this respect, the paper [2] where the close connection between two-dimensional
solutions of the Allen–Cahn equation stabilizing in one variable at infinity and heteroclinic solutions of the
related one-dimensional equation was established.

We wish to stress that the variational method used in our paper is rather general, applicable in any
dimension and allows us to construct in a unified way several types of solutions (radial, breather type,
rectangular, triangular, hexagonal, etc.), both positive and sign-changing. Moreover, this method works
without change for wide class of equations, including equations with p-Laplacian.

Let us introduce some notation. We use letter C to denote various positive constants. To indicate that
some C depends on a parameter a, we write sometimes C(a).

For a domain Ω ⊂ Rn we denote by ΩR the set {Rx | x ∈ Ω}.
We use the notation B(x, R) for a ball of radius R centered at x.
Notations oR(1) and oε(1) mean o(1) as R → ∞ and ε → 0 respectively.
For 1 < p < ∞ we define

p∗ =

⎧⎨⎩
np

n − p
p < n;

+∞ otherwise.

Recall that p∗ is the critical Sobolev embedding exponent when p < n.

2. Auxiliary statements

2.1. Concentration

Proposition 2.1 (A Variant of Lemma 1.1 from [29]). Suppose that G(s), s ∈ R is a positive function.
Consider a sequence of functions uj(x), x ∈ Rn and suppose

∫
Rn G(uj)dx is finite for every j. Then (up to a

subsequence) one of the two conditions is satisfied:
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1. (concentration) There exist λ ∈ (0, 1] and a sequence of points xj ∈ Rn such that for every ε > 0 there
exist ρ > 0, a sequence ρ′(j) → ∞ and a number j0 such that for every j ⩾ j0⏐⏐⏐⏐ ∫

B(xj ,ρ)
G(uj) dx − λ

∫
Rn

G(uj) dx

⏐⏐⏐⏐
+

⏐⏐⏐⏐ ∫
Rn\B(xj ,ρ′(j))

G(uj) dx − (1 − λ)
∫
Rn

G(uj) dx

⏐⏐⏐⏐ < ε

∫
Rn

G(uj) dx. (2.1)

In that case xj is called a concentration sequence of G(uj) and λ is called a weight of the sequence.
2. (vanishing) For every ρ > 0 the following equality holds:

lim
j→∞

sup
x∈Rn

∫
B(x,ρ)

G(uj) dx = 0. (2.2)

Remark 2.1. The condition (2.1) remains true if we substitute the sequence of radii ρ′(j) with a smaller
sequence which tends to infinity and ρ with a larger constant.

Remark 2.2. If xj is a concentration sequence and yj is a sequence of points such that |xj − yj | ≤ d

for some d ∈ R then yj is a concentration sequence as well. Indeed, it is easy to see that ρy = ρx + d and
ρy

′(j) = ρx
′(j) − d makes it satisfy (2.1). In this case sequence yj is called equivalent to xj .

2.2. Some lemmata

Proposition 2.2 (A Variant of Lemma 1.6 from [25]). Assume that 1 < p < q < ∞ and functions
a, b, c ∈ W 1

p (Ω) ∩ Lq(Ω) have separated supports. Suppose also that b ̸≡ 0, c ̸≡ 0 and

∥b∥p

W 1
p

∥b∥q
Lq

≥
∥c∥p

W 1
p

∥c∥q
Lq

. (2.3)

Let
u = a + b + c

and

U = a +
(∥b∥q

Lq
+ ∥c∥q

Lq
)1/q

∥c∥Lq

· c.

Then

U = a for x ∈ Ω \ (supp c);∫
Ω

Uq dx =
∫
Ω

uq dx;

∥U∥p

W 1
p

< ∥u∥p

W 1
p

− C(b, c).

Furthermore, the constant C(b, c) depends only on ∥b∥Lq(Ω), ∥c∥Lq(Ω), ∥b∥W 1
p (Ω) and ∥c∥W 1

p (Ω).

Proof. The proof is a matter of simple calculation. □

The following lemma was proved in [11] (Lemma 2.9) for the case p = 2. The general case is very similar
but for convenience’s sake we prove it here.
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Lemma 2.1. Suppose a sequence uR is bounded in W 1
p (Rn), 1 < p < q < p∗ and for some ρ > 0

lim
R→∞

sup
x∈ω

∫
B(x,ρ)

|uR|q dx = 0

where ω is an open subset in Rn.
Then ∫

ω

|uR|q dx → 0 as R → ∞.

In case p < n the statement is also true for q = p∗.

Proof. Let d be a positive real number less than ρ/
√

n.
For m = (m1, . . . , mn) ∈ Zn we write

Qm = [m1d, (m1 + 1)d] × [m2d, (m2 + 1)d] × · · · × [mnd, (mn + 1)d].

By the Sobolev inequality, there exists C > 0 such that

∥u∥Lq(Qm) ≤ C∥u∥W 1
p (Qm)

for all u ∈ W 1
p (Qm).

Let M be the set of m ∈ Zn such that Qm ∩ ω ̸= ∅ and let Ω =
⋃

m∈M Qm.
For any u ∈ W 1

p (Rn) we deduce

∥u∥q
Lq(Ω) =

∑
m∈M

∥u∥q
Lq(Q(m)) ≤ ( sup

m∈M
∥u∥Lq(Qm))q−p

∑
m∈M

∥u∥p
Lq(Qm)

≤ Cp( sup
m∈M

∥u∥Lq(Qm))q−p
∑

m∈M

∥u∥p

W 1
p (Qm) = Cp( sup

m∈M
∥u∥Lq(Qm))q−p∥u∥p

W 1
p (Ω)

≤ Cp( sup
m∈M

∥u∥Lq(Qm))q−p∥u∥p

W 1
p (Rn). (2.4)

By the choice of d, Qm ⊂ B(x, ρ) for all x ∈ Qm. Therefore, for m ∈ M and x ∈ Qm ∩ ω we have

∥u∥Lq(Qm) ≤ ∥u∥Lq(B(x,ρ)),

and supm∈M ∥uR∥Lq(Qm) → 0 by hypothesis.
Since uR is bounded in W 1

p (Rn) it follows from (2.4) that ∥uR∥Lq(Ω) → 0. Since ω ⊂ Ω we are done. □

Lemma 2.2 (An Analogue of Lemma 3.1 from [25]). Suppose a sequence of functions {uR} is normalized
in Lq(ΩR) and bounded in W 1

p (ΩR). Let {xR} be a concentration sequence of |uR|q, i.e. for every ε > 0 there
exists a radius ρ > 0 and a sequence of radii ρ ′(R) that satisfy concentration condition for G(s) = |s|q.
Define σ as a cut-off function that satisfies

σ(x) =

⎧⎪⎨⎪⎩
1, |x − xR| ≤ (11ρ + ρ ′(R))/12;
1, |x − xR| ≥ (ρ + 11ρ ′(R))/12;
0, (5ρ + ρ ′(R))/6 ≤ |x − xR| ≤ (ρ + 5ρ ′(R))/6;

|∇σ| ≤ 12
ρ ′(R) − ρ

.

We claim inequalities
∥σuR∥W 1

p (ΩR) ≤ ∥uR∥W 1
p (ΩR) + oR(1), (2.5)

∥σuR∥Lq(ΩR) ≥ 1 − oε(1) (2.6)

hold true for all sufficiently large R.
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Remark 2.3. Suppose we have several concentration sequences. In that case we can use Lemma 2.2 to
produce cut-off functions for each sequence and then multiply them to obtain a cut-off function which isolates
all of the concentration sequences. Note that (2.5) and (2.6) are still satisfied.

2.3. Concentration theorem

In this section we consider the functional

J̃ [u] =
∫
ΩR

(|∇u|p + |u|p) dx(∫
ΩR

|u|q dx
)p/q

(2.7)

where 1 < p < q < p∗.

Lemma 2.3. Suppose uR ∈ W 1
p (ΩR) is a sequence of minimizers of functional (2.7). Then uR has no more

than one concentration sequence.

Proof. Since J̃ [tu] = J̃ [u] we may assume that ∥uR∥Lq = 1. Suppose there are two sequences xR and
yR with weights λ1 and λ2. We are going to show it is more profitable to have only one of them. Let σ

be a cut-off function that isolates xR and yR (Remark 2.3). Let σ1 and σ2 be the components of σ with
xR ∈ supp σ1 and yR ∈ supp σ2. Set σ0 = σ − σ1 − σ2. Without loss of generality, assume

∥σ1uR∥p

W 1
p

∥σ1uR∥q
Lq

≥
∥σ2uR∥p

W 1
p

∥σ2uR∥q
Lq

.

We apply Proposition 2.2 for functions a = σ0uR, b = σ1uR and c = σ2uR and obtain function vR which
satisfies

∥vR∥W 1
p (ΩR) < ∥σuR∥W 1

p (ΩR) − µ,

∥vR∥q
Lq(ΩR) = ∥σuR∥q

Lq(ΩR) > 1 − oε(1).

The last inequality is by Lemma 2.2. Thus,

J̃ [vR] < J̃ [σuR] − µ1 ≤ J̃ [uR](1 − µ2 + oε(1) + oR(1))

for some µ2 > 0, independent of ε and R, which contradicts the minimality of uR. □

Theorem 2.1 (Concentration Theorem). Suppose ΩR is a sequence of Lipschitz domains in Rn such that
the set of extension operators from W 1

p (ΩR) to W 1
p (Rn) is uniformly bounded in norm (see [44, Chapter 6,

Section 3]). Suppose uR ∈ W 1
p (ΩR) is a sequence of minimizers of functional (2.7). Further, suppose that

supR ∥uR∥W 1
p

< ∞. Then uR has exactly one concentration sequence of weight 1.

Proof. We again assume that ∥uR∥Lq = 1.
Firstly, by Lemma 2.3 we have no more than one concentration sequence. It remains to prove that it exists

and has weight 1. Let us assume the converse. There are two cases: either there is a concentration sequence
xR with weight λ < 1 or no sequence at all. In the first case consider the cut-off function σ from Lemma 2.2,
let σ1 be the component which isolates xR and define σ0 = σ − σ1 (exactly as in the previous Lemma). In
the second case we take σ0 ≡ 1. Now Proposition 2.1 implies that σ0uR satisfies the vanishing condition.
Moreover, ∥σ0uR∥Lq tends to 1 − λ in the first case and is equal to 1 in the second case.

Let ΠR be the extension operator from W 1
p (ΩR) to W 1

p (Rn). It follows that

∥ΠR(σ0uR)∥W 1
p

≤ ∥ΠR∥ sup
R

(∥uR∥W 1
p

+ oR(1)) < C.
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In other words, ΠR(σ0uR) is a bounded sequence in W 1
p (Rn). However,

lim
R→∞

∥ΠR(σ0uR)∥Lq(Rn) ≥ lim
R→∞

∥σ0uR∥Lq(ΩR) > 0,

which contradicts Lemma 2.1 since the extension operators preserve the vanishing condition. □

3. Periodic solutions in R2

Here we construct several families of solutions to (1.2) in dimension 2 with various lattices of periods.
To do this, we choose a domain Ω tiling the plane by reflections and solve (1.2) with Neumann (Dirichlet)
boundary conditions in ΩR using classical variational method. Then we use even (respectively, odd) reflection
to obtain a solution in the whole plane.

We begin with the general construction of a positive solution in Section 3.1. To recognize the structure of
this solution we use the Concentration Theorem 2.1 and find possible positions of the concentration point.
Without additional restrictions, for large R the minimal energy solution concentrates at the corner with the
smallest angle. This is sufficient to obtain solutions with rectangular and triangular lattices, see Sections 3.2
and 3.3. For solutions with hexagonal symmetries we use the minimization with restrictions and refine the
Concentration Theorem for this case, see Section 3.4. To construct breather type solutions in Section 3.5 we
deal with unbounded Ω . Finally, in Section 3.6 we consider sign-changing solutions.

3.1. Some general results

Suppose Ω is a domain in R2 with piecewise smooth boundary. Consider the variational problem for the
energy functional

J [u] =
∫
ΩR

(|∇u|2 + |u|2) dx(∫
ΩR

|u|4 dx
)1/2 → min . (3.1)

Since J [cu] = J [u] it is equivalent to finding a constrained minimum for the problem∫
ΩR

(|∇u|2 + |u|2) dx → min;
∫
ΩR

|u|4 dx = 1. (3.2)

Suppose this minimum is attained (this holds, for instance, in bounded domains, see Remark 3.1). Let vR

be a minimizer. Then it satisfies the Euler–Lagrange equation as well as the natural boundary conditions.
Thus it is a weak solution of the problem

−∆v + v = λv3 in ΩR; ∂v

∂n

⏐⏐⏐⏐
∂ΩR

= 0

where n stands for the exterior unit normal vector on ∂ΩR. Notice that the Lagrange multiplier λ coincides
with the sought-for minimum of the problem (3.2). By the elliptic regularity theory vR is a classical solution.

Since J [|u|] = J [u] we can presume vR ≥ 0, and after that the maximum principle gives vR > 0 in ΩR.
We multiply vR by

√
λ and get another minimizer of (3.1) uR which satisfies

− ∆u + u = u3 in ΩR; ∂u

∂n

⏐⏐⏐⏐
∂ΩR

= 0. (3.3)

We note that ∥uR∥L4 =
√

λ evidently depends on R. We now prove it cannot be either too small or too
large.

Lemma 3.1. ∥uR∥L4 =
√

λ(R) is bounded and separated from zero as R → ∞.
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Proof. First we observe that for u compactly supported J [u] does not depend on R. This implies λ(R) is
bounded since it is the minimum for problem (3.1).

Further, let ΠR : W 1
2 (ΩR) → W 1

2 (R2) stand for the extension operator (see [44, Chapter 6, Section 3]). The
sequence of norms ∥ΠR∥ is bounded by some constant as R → ∞. Since the embedding W 1

2 (R2) ↪→ L4(R2)
is bounded (this follows, for instance, from (2.4)), we obtain

∥uR∥W 1
2 (ΩR) ≥ C∥ΠR(uR)∥W 1

2 (R2) ≥ C∥ΠR(uR)∥L4(R2) ≥ C∥uR∥L4(ΩR),

so λ = J [uR] = ∥uR∥2
W 1

2 (ΩR)/∥uR∥2
L4(ΩR) ≥ C and we are done. □

Remark 3.1. The functional in the problem (3.2) is coercive and weakly lower semicontinuous in W 1
2 (ΩR).

If Ω is bounded the embedding W 1
2 (ΩR) ↪→ L4(ΩR) is compact so the set of functions satisfying the condition

in the problem (3.2) is weakly closed in W 1
2 (ΩR). This implies (see [19, Theorems 24.11 and 26.8]) that the

minimum in (3.2) is attained and the reasoning above can be applied.

We construct first the simplest families of solutions in R2 which have a rectangular and triangular lattices
of periods.

3.2. Solutions with rectangular symmetry

Suppose ΩR is a rectangle (0, R)×(0, aR) where a is a given number. By Remark 3.1 we obtain a positive
solution uR to the problem (3.3) that minimizes the functional (3.1).

By the Concentration Theorem 2.1 in Section 2.3, uR has exactly one concentration sequence xR as
R → ∞. We consider three possibilities listed below.

1. The distance between concentration sequence and the sets of vertices of respective rectangles is
bounded.

2. There is a subsequence with unbounded distance from vertices but bounded distance from ∂ΩR.
3. There is a subsequence with unbounded distance from ∂ΩR.

By Remark 2.2 we can assume xR is a sequence of vertices in the first case and xR ∈ ∂ΩR in the second case.
By Remark 2.1 in the case 2 we can choose ρ′(R) → ∞ such that ρ′ is smaller than the distance from xR to
the vertices. Similarly, in the case 3 we can assume ρ′ < dist (xR, ∂ΩR). For R large enough the intersection
B(xR, ρ′(R)) ∩ ΩR is a quarter-disk in the first case (see Fig. 1), half-disk in the second and full disk in the
third (see Fig. 2).

Now we claim that the case 3 is impossible. Indeed, choose ε > 0. Let σ be a cut-off function from
Lemma 2.2 in Section 2.2. We consider the component hR of σuR which contains B(xR, ρ). By Lemma 2.2
J [hR] ≤ J [uR] + oε(1) for R large enough.

Now let h̃R be the symmetric rearrangement of hR. It is well known that ∥hR∥W 1
2

≥ ∥h̃R∥W 1
2

and
∥hR∥L4 = ∥h̃R∥L4 (see [22, Section II.9, Corollary 2.35]). Therefore, J [hR] ≥ J [h̃R]. We then consider a
trial function vR which is a quarter-disk of h̃R placed in the corner of the rectangle.

It is easy to see J [h̃R] = 2J [vR]. Therefore, J [vR] ≤ J [uR]/2 + oε(1). This contradicts the minimality of
J [uR] if R is large enough and ε small enough, and the claim follows.

The case 2 is likewise impossible.
We conclude that uR is concentrated in the corner.
Using even reflection, we extend uR to the rectangle (−R, R) × (−aR, aR) and then extend it to R2

periodically. Thus, we obtain solutions of (1.2) in R2 with (2R, 2aR) rectangular lattice of periods (see Fig. 3).
Therefore, for every a ∈ R+ for sufficiently large R our periodic solutions are non-trivial and distinct.
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Fig. 1.

Fig. 2.

Fig. 3.

Corollary 3.1. Given a ≥ 1 and N ∈ N there exist R∗(a, N) ∈ R such that for R > R∗(a, N) Eq. (1.2) in
R2 has at least N different nontrivial positive (2R, 2aR)-periodic solutions.

Proof. We proved that there exists R0 such that uR is concentrated in the corner for R > R0. For R > 2R0

we can consider the problem (3.1) in ΩR = (0, R) × (0, aR) and in ΩR = (0, R/2) × (0, aR/2). By the
previous argument this gives different solutions, both are nontrivial, positive and (2R, 2aR)-periodic. The
case of arbitrary N is managed similarly. □

3.3. Solutions with triangular symmetry

Suppose now Ω is the equilateral triangle with sides of length 1. By the same argument as in Section 3.2
the minimizer uR of the variational problem (3.1) is a strong solution of (3.3) and is concentrated in a corner
of triangle for R sufficiently large.

Using even reflection we extend uR to the hexagon with side R (see Fig. 4) and then extend it periodically
to R2. We obtain a solution of (1.2) with triangular lattice with side 2R (see Fig. 5).
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Fig. 4.

Fig. 5.

Exactly as in the previous case the Concentration Theorem 2.1 gives us the following corollary.

Corollary 3.2. Giver N ∈ N there exist R∗(N) ∈ R such that for R > R∗(N) Eq. (1.2) in R2 has at least
N different nontrivial positive R-triangular-periodic solutions.

3.4. Solutions with hexagonal symmetry

For the case of hexagonal lattice of periods a little more intricate argument is required. Let Ω be a triangle
with angles π/2, π/3, π/6 and hypotenuse of length 1. Denote ΩR by XY Z where ∠X = π/3, ∠Y = π/6,
∠Z = π/2 and denote sector ΩR ∩ B(Y, R/2) by AR. If we consider the usual problem (3.2) in ΩR the
minimizer is concentrated near Y as it is the corner with the least angle. After extending it to R2 we get a
solution with a triangular lattice of periods similar to Section 3.3. To prevent this we study the variational
problem (3.2) with an additional condition ∫

AR

|u|4 dx ≤ 1/4. (3.4)

Note that we can still apply some of the reasoning from Section 3.1 and deduce that the minimum is
attained and the solution is non-negative. We now prove a variant of the Concentration Theorem for this
case.

Theorem 3.1. Let uR is a sequence of minimizers for the problem (3.2) with the additional condition (3.4).
Then uR has exactly one concentration sequence of weight 1 concentrated near X (see Fig. 6).
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Fig. 6.

Proof. Suppose there are two concentration sequences xR and yR. We use Remark 2.3 to construct a cut-off
function which isolates them. Let σ1 and σ2 be the components of σ with xR ∈ supp σ1 and yR ∈ supp σ2
respectively. Assume first that both of the components σ1 and σ2 lie within AR. In that case functions vR

constructed in the proof of Lemma 2.3 still satisfy condition (3.4) which contradicts the minimality of uR.
The same argument can be applied if both components lie in ΩR \ AR. Further, suppose the support of one
of the components, say, σ1, intersects (∂AR) ∩ ΩR. By the construction of σ the diameter of σ1 is not more
than 2(5ρ + ρ′(R))/6. The width of the annulus around σ1 where σ equals zero is 4(ρ′(R) − ρ)/6. Therefore,
for R large enough we can move the “bubble” σ1uR fully into ΩR \ AR which eliminates this case. Thus, we
can presume supp σ1 ⊂ ΩR \ AR and supp σ2 ⊂ AR.

The proof of the Concentration Theorem 2.1 shows that the combined weight of the concentration
sequences is 1. After that, the reasoning from Section 3.2 applied for each sequence shows that we can
assume xR = X and yR = Y . Next we are going to show that it is more profitable to have all of the weight
concentrated near X.

Remark 2.1 allows us to take radii ρ and ρ′(R) equal for xR and yR. Using symmetrization if needed
we can assume that σ1uR(x) = h1(|xR − x|), σ2uR(x) = h2(|yR − x|) where h1(t) and h2(t) are decreasing
functions vanishing for t > ρ′(R).

Consider the function
g(x) = ∥σ1uR∥L4

∥σ2uR∥L4
·
(π/6

π/3

)1/4
· h2(|xR − x|).

It is easy to see that ∥g∥L4 = ∥σ1uR∥L4 . Therefore, replacing σ1uR with g preserves the L4 norm of the
function. Since uR is a minimizer it follows from (2.5) that

∥σ1uR∥W 1
2

≤ ∥g∥W 1
2

− oR(1) = ∥σ1uR∥L4

∥σ2uR∥L4
· 21/4 · ∥σ2uR∥W 1

2
− oR(1).

Combining (3.4) and (2.6) gives us

∥σ2uR∥4
L4 ≤ 1/4; ∥σ1uR∥4

L4 ≥ 3/4 − oε(1).

Hence
∥σ1uR∥2

W 1
2

∥σ1uR∥4
L4

≤
∥σ1uR∥2

L4

∥σ2uR∥2
L4

· 21/2 ·
∥σ2uR∥2

W 1
2

∥σ1uR∥4
L4

− oR(1)

≤
( 2 · 1/4

3/4 − oε(1)

)1/2
·

∥σ2uR∥2
W 1

2

∥σ2uR∥4
L4

− oR(1) <
∥σ2uR∥2

W 1
2

∥σ2uR∥4
L4

for R large enough and ε small enough.
Finally, this shows the condition (2.3) is satisfied for functions b = σ2uR, c = σ1uR and a = (σ−σ1−σ2)uR.

Proposition 2.2 then gives us a function U satisfying the condition (3.4) which contradicts the minimality
of uR.

Thus, there is at most one concentration sequence. As it was mentioned, the combined weight of
concentration sequences is 1 and the statement follows. □
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Fig. 7.

Fig. 8.

Theorem 3.1 implies that ∫
AR

|uR|4 dx → 0

as R → ∞ since uR is concentrated around X with weight 1. Therefore, for R large enough the restriction
in (3.4) is non-active and the Euler–Lagrange equation

−∆uR + uR = λu3
R in ΩR.

is derived the usual way.
Similar to Section 3.1 we multiply uR by

√
λ and obtain a solution of (1.2) concentrated near X. Finally,

we use even reflection to extend it to a hexagon and then extend it to R2 periodically. The constructed
solution has a hexagonal lattice of periods (see Fig. 7).

Remark 3.2. Using the same technique with two constrictions (see Fig. 8)∫
B(Y,R/4)

|u|4 dx ≤ 1/8,

∫
B(X,R/4)

|u|4 dx ≤ 1/8

we can force the solution to concentrate near Z. This gives us yet another lattice, depicted below (see Fig. 9).

3.5. Breather type solutions

Here we construct a family of solutions periodic in one variable and rapidly decaying in another. To do
this we consider problem (3.2) in the strip ΩR = (0, R) × R. Since the embedding of W 1

2 (ΩR) into L4(ΩR)
is not compact we cannot apply the argument from Section 3.1 directly and need to refine it.

Let vn be a minimization sequence for the problem (3.2):

∥vn∥L4 = 1; ∥vn∥W 1
2

↘ min as n → ∞.

Extending the functions to R2 and using Lemma 2.1 shows there is no vanishing. Therefore, vn must satisfy
the concentration condition.
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Fig. 9.

Fig. 10.

Notice that the Steiner symmetrization with respect to y and monotonous rearrangement with respect to
x do not increase the functional (3.1) (see, e.g., [22, II.7]). Taking into account that J [|v|] = J [v], we can
presume that vn are nonnegative, symmetrically decreasing in y and monotonous (without loss of generality,
decreasing) in x. Then they can only concentrate around (0, 0).

Next, we extract a subsequence vnk
which converges weakly in W 1

2 (ΩR) to some function uR. Let T > 0
and consider ΩR,T = (0, R)×(−T, T ). The sequence vnk

(restricted to ΩR,T ) converges weakly in W 1
2 (ΩR,T ).

Since the embedding of W 1
2 (ΩR,T ) into L4(ΩR,T ) is compact it converges strongly in L4(ΩR,T ). Choose ε > 0.

The sequence vnk
is concentrated around (0, 0) which shows there is T > 0 such that

∥vnk
∥L4(ΩR) ≥ ∥vnk

∥L4(ΩR,T ) > (1 − ε)∥vnk
∥L4(ΩR).

Therefore,
lim inf ∥vnk

∥L4(ΩR) ≥ ∥uR∥L4(ΩR,T ) ≥ lim sup(1 − ε)∥vnk
∥L4(ΩR).

Thus ∥uR∥L4(ΩR) = limT →∞ ∥uR∥L4(ΩR,T ) = 1. Finally, since uR is the weak limit of vnk
, ∥uR∥W 1

2
≤

lim inf ∥vnk
∥W 1

2
and uR is, therefore, a minimizer. By construction, uR is non-constant in x provided R is

large enough.
Now we extend uR to the whole plane by even reflection and periodic expansion. This gives us a required

solution of (1.2) in R2 (see Fig. 10).
As a corollary, given N ∈ N, for R > R∗(N) we obtain at least N different nontrivial positive solutions

of (1.2) in R2, 2R-periodic in x and symmetrically decreasing in y.
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Fig. 11.

Fig. 12.

Fig. 13.

3.6. Sign-changing solutions

Now we consider problem (3.1) in the rectangle (0, R) × (0, aR) with the additional condition of u = 0 on
{0, R}×(0, aR) (the vertical sides of the rectangle). Similarly to the previous sections we deduce the solution
is concentrated in a half-circle adherent to the horizontal side. We again extend it to the strip (0, R) × R
by even reflection and then to the strip (0, 2R) × R by odd reflection. Next we extend the function to R2

periodically which gives us a solution with alternating signs (see Fig. 11).
We can also consider the boundary condition u = 0 on all the boundary of the rectangle which will give

us a solution concentrated in a circle. We extend it to (−R, R) × (−aR, aR) oddly and to R2 periodically.
The resulting signs are in staggered order (see Fig. 12). Breather type case is analogous (see Fig. 13).

The equilateral triangular case is a little different. If the condition u = 0 holds for only one side of the
triangle then the minimizer is concentrated in the opposite corner. We extend it to the hexagon and the
function is positive there. We could try to extend it to the whole plane but the partitioning of R2 into
hexagons have three hexagons which are pairwise adherent and each pair must have different signs which is
impossible.
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Fig. 14.

Fig. 15.

Fig. 16.

However if we set u = 0 on the whole boundary of the triangle we do not have this problem. We use odd
reflection and extend the function to R2 like on the picture (see Fig. 14). Doing the same with triangles that
have angles π/2, π/4, π/4 and π/2, π/3, π/6 gives us two more types of solutions (see Figs. 15 and 16).

4. Radially symmetric solutions

In this section we prove the existence of a positive radially symmetric solution using the standard method
and the existence of a countable family of radially symmetric solutions using Lusternik–Schnirelmann
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Theorem. Notice that the radial case is well studied by many authors, see, e.g. [8,21]. We give here the
proofs for the sake of completeness.

4.1. Positive solution

Here we consider the problem (3.2) in Ω = ΩR = R2. As in the breather type case we can find a
minimization sequence vn which is radially symmetric since symmetrical rearrangement does not increase the
functional (3.1) (see, e.g., [22, II.9]). We again note that vn must concentrate around (0, 0). By considering
the problem in balls B(0, T ) and taking T to infinity we prove the nonzero limit exists similarly to Section 3.5.
In the end this gives us a positive, symmetrically decreasing solution of the problem (1.2) in R2.

4.2. A countable family

To prove that problem (1.2) has a countable number of radial solutions we need the following statement
(the Lusternik–Schnirelmann theorem, see, e.g., [40, Chapter 8]).

Proposition 4.1. Suppose H is a Hilbert space and I : H → R is a (nonlinear) functional such that:

1. I is weakly continuous and smooth (namely, I ∈ C1,1
loc ),

2. I is even and I[0] = 0,
3. I[u] > 0 and ∥I ′[u]∥ > 0 for u ̸= 0 (non-degenerate).

Then I has at least a countable number of critical points on the sphere Sa = {x ∈ H | ∥x∥ = a} for every
a > 0.

We take the subspace of radial functions in W 1
2 (R2) as H and put I[u] =

∫
R2 u4. We now show that I

satisfies the conditions of Proposition 4.1. The conditions 2 and 3 are evident. The map u ↦→ I ′[u] is Lipschitz
on any bounded set in H so the functional is C1,1

loc . It remains to prove that I is weakly continuous. We pass
to the polar coordinates and write

∥u∥2
H = 2π

∫ ∞

0
r(|u|2 + |u′|2) dr.

∥u∥4
L4 = 2π

∫ ∞

0
r|u|4 dr.

Using an obvious inequality
∥u∥L4(R,R+1) ≤ C∥u∥W 1

2 (R,R+1)

we obtain for R ≥ 1 (∫ R+1

R

r|u|4 dr
)1/2

≤ (R + 1)1/2CR−1
∫ R+1

R

r(|u|2 + |u′|2) dr

= C
(R + 1

R2

)1/2 ∫ R+1

R

r(|u|2 + |u′|2) dr.

This implies, similar to Lemma 2.1,∫ ∞

R

r|u|4 dr =
∞∑

k=0

∫ R+k+1

R+k

r|u|4 dr

≤
(

sup
k

∫ R+k+1

R+k

r|u|4 dr
)1/2 ∞∑

k=0

(∫ R+k+1

R+k

r|u|4 dr
)1/2
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≤ C
(

sup
k

∫ R+k+1

R+k

r|u|4 dr
)1/2 ∞∑

k=0

(
R + k + 1
(R + k)2

)1/2 ∫ R+k+1

R+k

r(|u|2 + |u′|2) dr

≤ C
R + 1

R2

(∫ ∞

R

r(|u|2 + |u′|2) dr
)2

. (4.1)

It is well known that the embeddings W 1
2 (B(0, R)) ↪→ L4(B(0, R)) are compact. It follows that the mappings

u ↦→ u|BR(0) from H to L4(R2) are compact. By (4.1) the embedding H ↪→ L4(R2) is the norm limit of
compact operators hence compact which proves the weak continuity of I.

The critical points of I on the sphere Sa are those where∫
R2

u3h = λ

∫
R2

(∇u∇h + uh) (4.2)

for some λ ∈ R and every h ∈ H.
By the principle of symmetric criticality, see [41], the relation (4.2) holds for any h ∈ W 1

2 (R2). Taking
h = u shows that λ > 0. Therefore we can multiply u by

√
λ and get a solution of (1.2) in R2. Thus,

Lusternik–Schnirelmann theorem implies that there is a countable number of radial solutions.

5. Some generalizations

Our arguments are valid if we consider Eq. (1.2) in R3. By choosing an appropriate domain Ω we can get
the following:

1. solutions periodic in x, y, z;
2. solutions triangular-periodic in x, y and periodic in z;
3. solutions periodic in x, y and symmetrically decreasing in z;
4. solutions triangular-periodic in x, y and symmetrically decreasing in z;
5. solutions periodic in x and symmetrically decreasing in y, z;
6. radial solutions, etc.

More generally, consider the equation

∆pu − |u|p−2
u + |u|q−2

u = 0 in Rn (5.1)

Here 1 < p < ∞, ∆pu ≡ div(|∇u|p−2
u) is a p-Laplacian while q ∈ (p, p∗). The corresponding variational

problem is the minimization of the functional J [u] = ∥u∥W 1
p

/∥u∥Lq . Since the Concentration Theorem
(Theorem 2.1 holds true, argument similar to the one in Section 2 can be applied again. In that way we
obtain positive solutions of (5.1) which have various periodic lattices in some variables and are symmetrically
decaying in other variables. The sign-changing solutions with various periodic structures could be obtained
as well.

Using the classical Nehari method, it is possible to apply our machinery for a more general equation

∆pu − |u|p−2
u + f(u) = 0 in Rn (5.2)

with an odd function f satisfying some natural assumptions. Roughly speaking, f(s) is assumed to be “more
convex” than sp for s > 0 and to have subcritical growth at infinity.

For instance, the requirements for f can be given as follows:

sf ′(s) > (p − 1)f(s) for almost any s ≥ 0;

lim inf
s→∞

sf(s)∫ s

0 f(t) dt
> p;
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lim
s→0

f(s)
sp−1 = 0;

lim
s→∞

sf(s)
Φ(s) = 0,

where
Φ(s) = sp∗

, p < n,

Φ(s) = sq for any q ∈ (p, ∞), p ≥ n.

The method used to prove the existence of solutions is well known (see e. g. [28,39]). After the solution
is found the concentration theory can be applied (with appropriate modifications) and the results follow.

6. Conclusions

For the elliptic equation (1.2) and its generalizations we have constructed nontrivial solutions of several
types: periodic with various lattices of periods, breather type and radial. Of course, many questions remain
open. It seems that using methods of [47] it is possible to obtain solutions with finite number of humps
located at different points on the plane with pairwise distances large enough. Also it would be interesting
to prove the existence of solutions which are localized in both variables, invariant under the rotation by the
angle π/2 and being not rotationally invariant. Simulations with Eq. (1.2) showed their existence (see Figure
3 in [3]).
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Appendix A. Breather type solutions and center manifold reduction

The variational approach of previous sections provides families of breather type solutions (see Section 3.5)
with large enough periods. It is of interest to find a lower bound for these periods. An approach to this
problem was proposed in [4]. It relies on the bifurcation theory and an extension of the center manifold theory
to elliptic equations in cylindric domains (see [23] and more rigorously in [33]). To explain this approach,
let us rewrite Eq. (1.2) formally as a dynamical system w.r.t. the “time” y:

uy = v, vy = −uxx + u − u3. (A.1)

Let us stress that here we consider the “time” y as future periodic variable. In the next section we change
their roles and take variable x as the “time”.

The system (A.1) has the plane wall type solution

u0(x) = ±
√

2/ cosh x, v0(x) = 0,

which formally is “the equilibrium state” of this system. Let us linearize the system at this solution and
study the related spectral problem. We obtain a linear system which is equivalent to the Sturm–Liouville
equation

Lϕ ≡ −d2ϕ

dx2 + (1 − 3u2
0(x))ϕ = λ2ϕ.
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This equation is invariant with respect to change of variable x → −x, so we may consider it in the space
of even in x functions in L2(R). The function −3u2

0(x) (the potential, if one interprets this equation as the
Schrödinger equation) is rapidly decaying as |x| → ∞. Thus the spectrum of the operator L − 1 consists
of finitely many negative eigenvalues and the continuous spectrum [0, ∞) [26, Ch. IX]. For the equation in
question the unique eigenvalue is λ2 = −3 with the eigenfunction h(x) = c/ cosh2(x) and the continuous
spectrum [1, ∞) is separated from the eigenvalue.

For the system linearized at the equilibrium its spectrum consists of the pair of pure imaginary eigenvalues
±i

√
3 and two rays of continuous spectrum λ ≥ 1 and λ ≤ −1. Thus, if the center manifold theorem

from [33,35] is valid for this case, then in the whole phase space one gets a smooth local two dimensional
center manifold through the equilibrium [34] which corresponds to eigenvalues ±i

√
3. The restriction of the

system (A.1) to this manifold generates a two-dimensional Hamiltonian system in “time” variable y with
the equilibrium – center – whose neighborhood is filled with periodic orbits. These orbits provide periodic
in y solutions of the initial elliptic equation. As the amplitudes tend to zero, their periods tend the period
of the linearized oscillations, which is equal to 2π/

√
3.

In [4] this scheme was presented with the necessary calculations for the related operators. But the needed
estimates on operators that would allow one to apply the center manifold theorem from [33] were not proved
there. To apply results of [6,33,35] and others one needs to introduce the Banach space (u, v) ∈ H1(R)×L2(R)
as a phase space. The system (A.1) becomes a differential equation in this space, and we consider it near the
equilibrium. The conditions of [35] on the linearized operator and nonlinearities can be verified which gives
the needed center manifold. As mentioned in [35], in general the center manifold is not smooth enough to
apply the theory of Hamiltonian systems directly but in the case under consideration this is not a problem
since this manifold is two-dimensional and is filled with periodic orbits.

Appendix B. Breather type solutions and homoclinic orbits

To demonstrate another view on breather type solutions, namely, their connection with homoclinic orbits
of some dynamical system, we use the Fourier expansion in y variable. Denote by l the period in y of such
a solution, u(x, y) ≡ u(x, y + l). We also assume u(x, y) → 0 as x → ±∞.

After plugging the Fourier series into the equation we get an infinite system of ODEs for the Fourier
coefficients. Using the Bubnov–Galerkin procedure, we truncate this system keeping only three modes: zero
mode and two complex conjugated modes exp[±i2πy/l]. Thus the ansatz

u(x, y) = (U1(x) − iV1(x))e−i 2π
l

y + U0(x) + (U1(x) + iV1(x))ei 2π
l

y (B.1)

gives an approximation solution. After plugging (B.1) into (1.2), projecting on the subspace of related modes
and scaling we arrive at the following Euler–Lagrange type system of second order ODEs:⎧⎪⎪⎪⎨⎪⎪⎪⎩

U ′′
1 −

(4π2

l2 + 1
)
U1 + 6U1U2

0 + 3(U2
1 + V 2

1 )U1 = 0,

V ′′
1 −

(4π2

l2 + 1
)
V1 + 6V1U2

0 + 3(U2
1 + V 2

1 )V1 = 0,

U ′′
0 − U0 + 2U3

0 + 6(U2
1 + V 2

1 )U0 = 0.

(B.2)

It can be transformed to the Hamiltonian form with Hamiltonian

H = p2
0 + p2

1 + q2
1

2 −
U2

0 +
( 4π2

l2 + 1
)
(U2

1 + V 2
1 )

2

+U4
0

2 + 3U2
0 (U2

1 + V 2
1 ) + 3

4(U2
1 + V 2

1 )2. (B.3)

It is easy to verify that this system has an additional integral K = p1V1 − q1U1.
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Solutions corresponding to the plane walls belong to the invariant 2-plane U1 = p1 = V1 = q1 = 0, and
they form two homoclinic loops of the saddle equilibrium U0 = p0 = 0 in this plane.

Breather type solutions we are searching for correspond to homoclinic orbits of the zero equilibrium
situated out of this 2-plane. The equilibrium in the whole space is a saddle, its eigenvalues are three nonzero
real pairs

±1, ±
√

1 + 4π2/l2, ±
√

1 + 4π2/l2.

Hence, the equilibrium has three-dimensional smooth stable and unstable invariant manifolds, both of which
lie in the level H = 0. Homoclinic orbits to the equilibrium belong to the intersection of these two manifolds,
hence they are doubly asymptotic as x → ±∞ to the equilibrium. Since the system has integral K, the value
of K is also preserved along the homoclinic orbit. Therefore homoclinic orbits should belong to the joint level
of two integrals H = K = 0.

For the Hamiltonian system obtained the following assertion is valid.

Proposition B.1. The system has two homoclinic orbits of the zero equilibrium in the invariant 2-plane
U1 = p1 = V1 = q1 = 0 and a one parameter family of homoclinic orbits in the invariant 4-plane U0 = p0 = 0.

The proof is done by means of a direct integration using two integrals. For the one parameter family
expressions for U1, V1 are as follows

U1 = r cos θ = −2λ

eλx + 3
2 e−λx

cos θ, V1 = r sin θ = −2λ

eλx + 3
2 e−λx

sin θ

where λ2 = 4π2

l2 +1. After that one can find expressions for all functions U0, U1, V1 and construct approximate
solutions U(x, y).

This approach can be extended capturing 2n + 1 symmetrically chosen modes. Again, using the Bubnov–
Galerkin truncation we get (after scaling) a Hamiltonian system with 2n+1 degrees of freedom with a saddle
type equilibrium at the origin and homoclinic loops.

But we also can consider the problem as follows. Take as a functional space the set of (2π/l)-periodic in
y functions, more exactly, the space H1(S1

l ) × L2(S1
l ), where S1

l denote the circle with y-coordinate being
(2π/l)-periodic. In this space we consider the system (A.1) where roles of x and y are interchanged. The
system has the equilibrium at the origin but its spectrum is |λ| ≥ 1. Here the equilibrium formally has
infinite dimensional stable and unstable manifolds and solutions we seek correspond to homoclinic orbits
of this equilibrium lying at their intersection. In fact, their existence is known from other considerations
presented in Sections above.

References

[1] N.N. Akhmediev, A. Ankiewicz, Solitons, Non-Linear Pulses and Beams, Springer, 1997.
[2] F. Alessio, Stationary layered solutions for a system of Allen-Cahn type equations, Indiana Univ. Math. J. 62 (5) (2013)

1535–1564.
[3] G.L. Alfimov, V.M. Eleonsky, N.E. Kulagin, L.M. Lerman, V.P. Silin, On the existence of nontrivial solutions for the

equation ∆u − u + u3 = 0, Physica D 44 (1–2) (1990) 168–177.
[4] G.L. Alfimov, V.M. Eleonsky, N.E. Kulagin, L.M. Lerman, V.P. Silin, On some types of non one-dimensional self-localized

solutions of the equation ∆u+f(u) = 0, in: L.P. Shilnikov (Ed.), Methods of Qualitative Theory and Bifurcation Theory,
Nizhny Novgorod State University, 1991, pp. 154–169.

[5] S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain
coarsening, Acta Metall. 27 (1979) 1084–1095.

[6] A.V. Babin, Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain, Russ.
Acad. Sci. Izv. Math. 44 (2) (1995) 207–223.

[7] M. Barrandon, G. Iooss, Water waves as a spatial dynamical system; infinite depth case, Chaos 15 (3) (2005) 037112.
[8] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Ration. Mech. Anal.

82 (1983) 313–345.

http://refhub.elsevier.com/S0362-546X(19)30235-4/sb1
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb2
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb2
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb2
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb3
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb3
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb3
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb4
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb4
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb4
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb4
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb4
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb5
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb5
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb5
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb6
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb6
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb6
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb7
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb8
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb8
http://refhub.elsevier.com/S0362-546X(19)30235-4/sb8


L.M. Lerman, P.E. Naryshkin and A.I. Nazarov / Nonlinear Analysis 190 (2020) 111590 21

[9] B. Braksmaa, G. Iooss, L. Stolovitch, Proof of quasipatterns for the Swift-Hohenberg equation, Comm. Math. Phys. 353
(1) (2017) 37–67.

[10] J. Busca, M. Efendiev, S. Zelik, Classification of positive solutions of semilinear elliptic equations, C. R. Acad. Sci.,
Paris I 338 (2004) 7–11.

[11] J. Byeon, K. Tanaka, Multi-bump positive solutions for a nonlinear elliptic problem in expanding tubular domains, Calc.
Var. 50 (1–2) (2014) 365–397.

[12] J.W. Cahn, Free energy of a nonuniform system II, Thermodynamic basis, J. Chem. Phys. 30 (1959) 1121–1124.
[13] J.W. Cahn, J.E. Hillard, Free energy of a nonuniform system I, Interfacial free energy, J. Chem. Phys. 28 (1958) 258–267.
[14] S.-M. Chang, S. Gustafson, K. Nakanishi, T.-P. Tsai, Spectra of linearized operators for LNS solitary waves, SIAM J.

Math. Anal. 39 (4) (2007) 1070–1111.
[15] R.Y. Chiao, E. Garmire, C. Townes, Self-trapping of optical beams, Phys. Rev. Lett. 13 (1964) 479–482.
[16] E.N. Dancer, New solutions of equations on Rn, Ann. Sc. Norm. Super. Pisa Cl. Sci. Ser. 4 30 (3–4) (2001) 535–563.
[17] V.M. Eleonskii, N.E. Kulagin, L.M. Lerman, Ya.L. Umanskii, Dynamic systems and soliton states of completely integrable

field equations, Radiophys. Quantum Electron. 31 (2) (1988) 108–120.
[18] B. Fiedler, A. Scheel, M.I. Vishik, Large patterns of elliptic systems in infinite cylinders, J. Math. Pures Appl. 77 (9)

(1998) 879–907.
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