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a b s t r a c t

In everyday economic interactions, it is not clear whether each agent’s sequential choices are visible to
other participants or not: agents might be deluded about others’ ability to acquire, interpret or keep
track of data. Following this idea, this paper introduces uncertainty about players’ ability to observe
each others’ past choices in extensive-form games. In this context, we show that monitoring opponents’
choices does not affect the outcome of the interaction when every player expects their opponents indeed
to be monitoring. Specifically, we prove that if players are rational and there is common strong belief
in opponents being rational, having perfect information and believing in their own perfect information,
then, the backward induction outcome is obtained regardless of which of her opponents’ choices each
player observes. The paper examines the constraints on the rationalization process underwhich reasoning
according to Battigalli’s (1996) best rationalization principle yields the same outcome irrespective of
whether players observe their opponents’ choices or not. To this respect we find that the obtention of
the backward induction outcome crucially depends on tight higher-order restrictions on beliefs about
opponents’ perfect information. The analysis provides a new framework for the study of uncertainty about
information structures and generalizes the work by Battigalli and Siniscalchi (2002) in this direction.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Uncertainty about the information structure: an example

Assumptions regarding common knowledge of the information
structure of an economic model can significantly impact predic-
tions. Take for instance the sequential Battle of Sexes with perfect
information represented in Fig. 1. Two players, Alexei Ivanovich (A)
and Polina Alexandrovna (P) choose first and second respectively
between actions left and right, and obtain utility depending on
each history of actions according to the numbers depicted at the
bottom of the tree in the picture. By information structure we refer
to whether or not Polina observes Alexei’s earlier choice before
she chooses, which she does in this case of perfect information.
The game is played just once, so punishment and reinforcement
issues are assumed to be negligible. This description is common
knowledge among the players, and we further assume that both
of them are rational, and that Alexei believes Polina to be rational.
It then seems reasonable to predict that players’ choices will lead
to the unique backward induction outcome: (2, 1); since Polina is
rational and observes Alexei’s choice, she will mimic it regardless
of whether it is left or right. Alexei believes all the above, so since
he himself is rational too, he will move left.

E-mail address: peio.zuazo@ehu.eus.

Now consider a commonly known imperfect information situa-
tion (Fig. 2): consider the alternative information structure accord-
ing to which, when her turn arrives, Polina will not have observed
Alexei’s earlier move. Thus, Polina is uncertain of the outcome her
choice will induce. Even if it is additionally assumed that Polina
believes both that Alexei is rational and that Alexei believes she
is rational, it is easy to see that the above argument justifying
outcome (2, 1) finds no defense this time; and that indeed, de-
pending on reciprocal beliefs concerning opponents’ choices, every
outcome is consistent with rationality and with any assumption
about iterated mutual beliefs about rationality.

Consider finally an imperfect information case such as the one
represented in Fig. 2, with the following variation: Alexei believes
himself to be in a situation like the one in Fig. 1; and Polina
believes that Alexei believes himself to be in that situation of
perfect information. That is, the information structure of the game
is not commonly known this time and, in fact, Alexei happens to be
deluded about it. When it is her turn to choose, despite not having
observed Alexei’s earlier move, Polina can infer that since Alexei
believes himself to be in a situation with perfect information, he
also believes left to be followed by left and right by right, and will
therefore choose left. Hence, despite not observing Alexei’s earlier
move, Polina believes that Alexei has chosen left and consequently
she chooses left.

As the example above illustrates, assumptions regarding com-
monknowledge of the information structure of an economicmodel
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Fig. 1. A game with perfect information.

Fig. 2. A game w/o perfect information.

can significantly impact predictions. In order to determine strate-
gic behavior it does not suffice to specify players’ ability to observe
each others’ past choices: careful modeling of the beliefs that
players hold about the information structure itself is required too.
Consequently, establishing the distinction and exploring the dif-
ferences in strategic implications between ‘‘perfect information’’
and ‘‘common knowledge of perfect information’’, which refer not
only to the way that information flows but also to players’ higher-
order beliefs about that flow, becomes an interesting issue from
a game theoretical perspective. In particular, as the comparison
between the first and last situations in the example above suggests,
this language enables the class of games for which the backward
induction outcome can be considered as a reasonable prediction
to be extended to the more general setting of contexts with not
necessarily perfect information.

1.2. Information structures and the backward induction outcome:
beyond common knowledge of perfect information

Literature on extensive-form games typically assumes that how
information sets are distributed along the given game tree in such
games is commonly known. This feature can be understood as
the information structure of the game being part of the objective
rules of the game. However, since information sets describe play-
ers’ ability to observe, interpret and remember opponents’ past
behavior, they often depend more on players’ personal cognitive
abilities than on the rules of the game itself. Thus, since personal
cognitive abilities are usually uncertain, it is natural towonder how
predictions in extensive-form games are affected by players facing
incomplete information regarding the information structure.

The present paper takes its point of departure from the tra-
ditional approach of considering the information structure of an
extensive-form game as commonly known, and determines the
epistemic assumptions under which the backward induction out-
come of the extensive-form is obtained under arbitrary informa-
tion structures.1 To that end, we introduce uncertainty aboutwhat

1 Thus, we follow the approach by Di Tillio et al. (2014), according to which
certain characteristics typically involved in the description of a game, should be

we call the information structure of the extensive-form game. By
information structure we refer to how each player’s set of histories
(i.e. the histories in which it is the player’s turn tomake a choice) is
partitioned into information sets. The information structure can be
regarded as players’ ability to observe others’ past choices, so the
uncertainty thatwe introduce can be read as lack of certainty about
whether or not each player is able to observe or remember her
opponents’ past choices (prior to her turn to choose). To perform
our analysis, we first introduce a formal framework that enables
incomplete information regarding the information structure of
an extensive-form game to be accounted for. In particular, the
fact that we allow for each player to face uncertainty about her
own information structure means that the traditional notion of
information set needs to be broadened to carefully capture the
minimum information held by each player whenever it is her turn
to make a choice. Next, we present an epistemic framework based
on a special kind of conditional belief hierarchies à la (Battigalli and
Siniscalchi, 1999) (the extensive-form version of Brandenburger
and Dekel’s (1993) construction of universal type space) that ac-
count for uncertainty about information structures. Following this
approach,we prove in Theorem1 that if: (i) players are rational and
(ii) there is common strong belief in the event that opponents are
rational, have perfect information and strongly believe in their own
perfect information, then the backward induction outcome is ob-
tained. Note thatwe do not assume perfect information: it could be
the case that a player does not observe any of her opponents’ past
choices; still, our common strong belief assumptions enable her
to infer what these choices were. Furthermore, we do not impose
constraints on each player’s beliefs about her own information
structure: every player is assumed to believe that her opponents’
have perfect information and strongly believe in their own perfect
information, but may hold any arbitrary beliefs about her own
ability to observe future choices. Still, the obtention of the back-
ward induction outcome crucially hinges on tight assumptions on
higher-order beliefs about opponents’ perfect information; this
illustrates how strong the assumptions on beliefs must be in order
for uncertain information structures to not play a role.

The ability of agents involved in some interaction context to
obverse each others’ choice is often obvious. It might be obvious
that there is perfect information: anti-theft devices in a store
tell the owner whether a potential thief decided to steal or not.
Alternatively, it might be obvious that there is no perfect infor-
mation: a seller offers a product whose quality he can choose to
a buyer; the latter may not necessarily appreciate the quality of
the product prior to purchase. This distinction leads to the canon-
ical classification of extensive-form games into those with perfect
information and those with imperfect information, in which it is
common knowledge that there is perfect and imperfect informa-
tion, respectively. It turns out that this apparent dichotomy is non-
exhaustive, and it is possible to think of situations in which the
presence or absence of perfect information is not that obvious: in
the first example above the anti-theft device could just be a cheap
fake put there to fool potential thieves, while in the second, the
buyer might be an expert on the product who is perfectly able to
tell the quality of the option offered. Thus, the expected flow of
information is sensitive to many aspects surrounding the context
of interaction, and it is not clear why agents should not just agree,
but commonly agree in their appreciation of these aspects and their
influence. It is not the aim of this paper to propose a heuristic
mechanism that endogenizes the rising of different beliefs about
the information structure but rather to point out the possibility of
that structure being uncertain, to highlight the relevance of such
uncertainty, and to provide conditions in which the assumption of

treated as individual epistemic attributes of players, and hence, be captured by the
usual notion of type.
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perfect information being commonly known can be dropped with
no significant consequences in terms of behavior.

The epistemic assumptions leading to backward induction in
extensive-form games with common knowledge of perfect infor-
mation have been widely studied in recent years. Despite the
apparent simplicity and intuitive appeal of backward induction,
this way of reasoning seems unable to capture one crucial aspect
of sequential playing: the ability to consistently update beliefs, and
in particular, to question whether is plausible for a player who
showed erratic behavior in the past actually to behave rationally in
the future. Focusing on this aspect of backward induction reason-
ing, Reny (1992) presents an example of a finite extensive-form
game whose unique extensive-form rationalizable (EFR, Pearce,
1984) profile does not coincide with its backward induction pro-
file, and Ben Porath (1997) shows that in Rosenthal’s centipede
the backward induction outcome is not the only one consistent
with initial common belief in rationality. Still, in Reny’s example,
the outcome induced by both the EFR profile and the backward
induction profile is the same, and Battigalli (1997) generalizes this
coincidence to the point of proving that for generic finite
extensive-form games with perfect information EFR strategy pro-
files always lead to the unique backward induction outcome.2

A series of results follow the identity above: Battigalli and
Siniscalchi (2002) introduce the notion of strong belief to formalize
forward inducting according to Battigalli’s (1996) best rationaliza-
tion principle, and prove that rationality and common strong belief
in rationality induce EFR strategy profiles when the epistemic type
structure is complete (i.e., when it is able to represent any possible
belief hierarchy that players might hold), and hence, lead to the
backward induction outcome. Battigalli and Friedenberg (2012)
introduce the notion of extensive-form best-reply sets (EFBRSs),
and prove that rationality and common strong belief in rational-
ity induce strategy profiles included in these sets regardless of
whether the epistemic type structure is complete or not. However,
they present examples where strategy profiles in EFBRSs do not
induce the backward induction outcome, so sufficient epistemic
conditions for the backward induction outcome for not necessarily
complete epistemic type structures remain unclear. Penta (2011)
and Perea (2014), exploit the notion of belief in opponents’ future
rationality and present sufficient conditions for extensive-form
gameswith perfect information and arbitrary epistemic type struc-
tures by proving that rationality and common belief in opponents’
future rationality induces the backward induction outcome.3

Adifferent approach to epistemic analysis in gameswith perfect
information is adopted by Aumann (1995, 1998), whomakes use of
static partition models which, unlike the models explained above,
do not include explicit belief revision.4 Aumann (1995) proves that
ex ante common knowledge of rationality induces the backward
induction profile. Samet (2013) modifies this result substituting

2 While Battigalli’s original proof relies on rather intricate mathematics, Heifetz
and Perea (2014) present a more intuitive proof that clarifies the logic relating to
both outcomes.
3 The papers by Penta (2011) and Perea (2014) are more general indeed: Perea

(resp. Penta) proves that in generic extensive-form games with not necessarily
perfect information, rationality and common belief in opponents’ future rationality
(resp. and common belief in opponents’ future rationality and in Bayesian updating)
induce what he defines as strategy profiles surviving the backward dominance
procedure (resp. the backwards rationalizability procedure), which in games with
perfect information coincide exactly with the backwards inductive profile. More-
over, Penta, who in addition allows for incomplete information about the payoffs
of the game, proves that in his characterization result, the assumptions above
can be substituted by common certainty of full rationality and belief persistence.
These ideas are applied to robust dynamic implementation in Penta (2015). A non-
probabilistic version of belief in opponents’ future rationality can be found in Baltag
et al. (2009).
4 But, as shownby Perea (2007), do entail important implicit assumptions regard-

ing belief revision, namely no revision of beliefs about future behavior.

common knowledge by common belief, and defining rationality
in terms of beliefs rather than in terms of knowledge, as done by
Aumann. Bonanno (2013) also proves that common belief in ratio-
nality induces the backward inductive outcome using belief frames
that allow for belief revision and by assuming something analo-
gous to belief in opponents’ future rationality. In an earlier paper,
Samet (1996) approaches the problem with very rich models that
deal with knowledge rather than beliefs, but allow the modeling
of hypothetical counterfactual information updates.5 Literature
allowing for incomplete information and exploring its link with
rationalization in extensive-form games include Battigalli (2003),
Battigalli and Siniscalchi (2007) and Penta (2011, 2012) among
others. However, these papers only study incomplete information
about players’ preferences on the set of outcomes, not about the
information structure of the game. Thus, issues regarding beliefs
about the latter are not covered.

The rest of the paper is structured as follows: Sections 2 and 3
detail our formalization of extensive-form games and information
structures, and the epistemic framework required for the analysis,
respectively. Section 4 presents our main finding, which is sum-
marized in Theorem 1, and discusses in detail the relation of the
result with the different sources of uncertainty players face. We
finish with some remarks and discussion in Section 5. All proofs
are relegated to the appendices.

2. Games with uncertain information structure

We consider extensive-form games with incomplete informa-
tion regarding the information structure of the game. To that end,
we formalize two objects: (i) a game tree, similar to the extensive-
form games with perfect information in Osborne and Rubin-
stein (1994, Sect. 6.1) and assumed to be commonly known, and
(ii) the set of possible information structures on the given game
tree, which is the part of the description of the game that we as-
sume is possibly uncertain. Next, we detail the role of strategies in
this context and the way in which they relate to uncertainty about
the information structure and outcomes.We finish by adapting the
well-known notions of sequential rationality and backward induc-
tion outcome to the present set-up and introducing an example to
illustrate the definitions. So, we have:

2.1. Game trees

A (finite) game tree is an extensive-form game with perfect in-
formation as defined by Osborne and Rubinstein (1994). Formally,
it consists of a tuple T =

⟨
I, (Ai)i∈I ,H, Z, (ui)i∈I

⟩
, where:

• I is a finite set of players.
• For eachplayer i,Ai is a finite set of actions. The set of possible

actions is denoted by A =
⋃

i∈IAi,6 and we refer to a
pair (∅, c), where c is a finite concatenation of actions, as a
history. We say that history h follows history h′ (and that h′

precedes history h) if it is the case that h = (h′, c), where c
is a finite concatenation of actions, in which case h < h′ is
denoted.

• H and Z are finite and disjoint sets of histories. We assume
that (H ∪ Z,≤), where ≤ is defined in the obvious way, is
an oriented tree with root ∅ and terminal nodes Z . Histories
in H and Z are called partial and terminal, respectively. We
also assume that exactly one player chooses at each partial
history, that a player never chooses twice in a row and that
whenever a player has to choose, at least two actions are

5 For further references on epistemic game theory focused on extensive-form
games, see Perea (2007) and Section 7 in Dekel and Siniscalchi (2015).
6 Not to be confused with the set of action profiles.
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Fig. 3. Different information sets of player 2 precede {uuu}: {u} and {u, d}.

available to her. Let Ai (h) denote the set of actions available
to player i at h,7 and Hi, the set of partial histories in which
it is player i’s time to make a choice.8

• For each player i, ui : Z → R is player i’s payoff function.
Following Battigalli (1997), we assume that the game has
no relevant ties, i.e., that for any player i and any history
h ∈ Hi, function ui is injective when restricted to the set
of terminal histories that follow h. Note that this condition
holds generically.

2.2. Information structures and information sequences

Following standard terminology, for each player i and subset of
histories vi ⊆ Hi, we say that vi is an information set if none of
its elements follow one another, and exactly the same actions are
available at all of them.9 Let Vi be a partition ofHi; we say that Vi is
an information partition for player i if its cells are information sets
and it satisfies perfect-recall.10 Note thatwe can thendenoteAi (vi)
as the actions available at information set vi with no ambiguity. An
information structure is then a profile V = (Vi)i∈I of information
partitions. For each player i, we denote by Vi the set of player
i’s information partitions. Let V denote the set of information
structures.

Notice now that if player i reaches information set vi then: (S1)
she knows that she is at some history in vi, and (S2) she knows
which specific information sets (if any) (vki )

n
k=1 she previouslywent

through before reaching vi. In the extensive-form game where in-
formation structure V is commonly known statement (S1) implies
statement (S2): since i knows that she is at vi and she also knows
that her information structure is Vi, the fact that (by definition of
information structures) there exists a unique sequence (vki )

n
k=1 ⊆

Vi that ends in vi implies that player i knows that shewent through
sequence of information sets (vki )

n
k=1. Obviously, statement (S2)

7 Thus, formally, Ai (h) =
{
ai ∈ Ai

⏐⏐ (h, ai) ∈ H ∪ Z
}
. Using this notation, we are

requiring that the tree satisfies: (i) ∅ ∈ H , (ii) for any (h, a) ∈ H ∪ Z , h ∈ H , (iii) for
any h ∈ Z , (h, a) ̸∈ Z for any a ∈ A, (iv) for any h ∈ H , any i ∈ I and any ai ∈ Ai such
that (h, ai) ∈ H ∪ Z , it holds that if (h, a) ∈ H ∪ Z for some a ∈ A, then a ∈ Ai , (v)
for any h ∈ H , any i ∈ I , any ai ∈ Ai and any a ∈ A such that (h, ai, a) ∈ H , a ̸∈ Ai ,
and (vi) for any h ∈ H , if Ai (h) ̸= ∅, then |Ai (h)| ≥ 2.
8 That is, Hi =

{
h ∈ H

⏐⏐Ai (h) ̸= ∅
}
.

9 That is, for any h, h′
∈ vi , h ≮ h, and Ai (h) = Ai

(
h′

)
.

10 Denote byVi(h) the cell in Vi containing history h. Then, perfect recall is satisfied
when: (i) for any h, h′

∈ Hi such that h′
̸∈ Vi (h) and (h, ai) < h′ for some ai ∈ Ai , for

any h′′′
∈ Vi

(
h′

)
there is some h′′

∈ Vi (h) such that
(
h′′, ai

)
< h′′′ , and (ii) for any

h, h′, h′′, h′′′
∈ Hi such that h < h′′ , h′ < h′′′ and Vi (h) ̸= Vi

(
h′

)
, Vi

(
h′′

)
̸= Vi

(
h′′′

)
.

implies statement (S1) as well. Thus, in games with commonly
known information structure, statement (S1) and statement (S2)
are informationally equivalent.

But remember that we allow for uncertainty about the infor-
mation structure of the game. In particular, it is possible for a
player to face uncertainty about her own information structure.11
Notice that in this environment statement (S1) does not necessarily
imply statement (S2) anymore. The game tree in Fig. 3 illustrates
this point. If it is commonly known that the game has perfect
information, then, when player 2 reaches information set {uuu}we
know that the sequence of information sets that she went through
is exactly ({u}, {uuu}). In contrast, if we allow for uncertainty about
the information structure, when we say that player 2 reached
information set {uuu} we do not know whether she went through
sequence σ2 = ({u}, {uuu}) or sequence σ ′

2 = ({u, d}, {uuu}).
Hence, in games with uncertain information structure statement
(S2) is more informative than statement (S1).

Thus, in order to study gameswith uncertain information struc-
ture we require an alternative notion that plays the same role in
terms of representing information as information sets do in the
context of gameswith commonly known information structure. To
define this alternative notion properly, let us introduce some nota-
tion and terminology first. For each player i, information partition
Vi ∈ Vi and information sets vi, v′

i ∈ Vi, we write vi < v′

i if there
exist some histories h ∈ vi and h′

∈ v′

i satisfying that h′ follows h.
In such casewe say that v′

i follows vi. We say that information set vi
is minimal at information partition Vi when vi ∈ Vi and vi follows
no v′

i ∈ Vi. Then, we expand the notion of information set in the
following way:

Definition 1 (Information Sequence). Let T be a game tree. An
information sequence for player i is a concatenation of consecutive
information sets of some information partition Vi whose first ele-
ment is minimal at Vi; i.e., a sequence

(
vni

)
n≤N ⊆ Vi, with Vi ∈ Vi,

such that:

(i) vni < vn+1
i for any n = 1, . . . ,N − 1, and there is no vi ∈ Vi

such that vni < vi < vn+1
i .

(ii) v1i is minimal at Vi.

Let Σi denote player i’s set of information sequences, and for
each σi =

(
vni

)
n≤N ∈ Σi, let vσi = vNi .

2.3. Strategies and terminal histories

We refer to a pair G = ⟨T ,V⟩ as a game with uncertain infor-
mation structure.12 In this context, a strategy is not a description
of what action to choose in each history (resp. information set),
as in the standard cases of commonly known perfect information
(resp. imperfect information), but rather, of what action to choose
after any possible information sequence. That is, for each player i,
a strategy is a list si ∈ Si =

∏
σi∈Σi

Ai
(
vσi

)
. We write S−i =

∏
j̸=iSj

to represent the set of player i’s opponents’ strategies. Note that a
strategy profile itself does not induce any terminal history; to do

11 Uncertainty about own ability to observe opponents’ actions is a widespread
phenomenon. Consider a buyerwho prior to purchasemay not be able to appreciate
the quality of the product offered by a seller who is able to chose the quality,
or, alternatively, a firm which has to make an investment decision whose result
depends on the decision of a competing firm, and for which it is not clear whether
information regarding the competitor’s investment decision will be available on
time. Paragraph C in Section 5 addresseswhy such kind of uncertainty is not at odds
with positive introspection and briefly explains how to construct a simpler model
where uncertainty about own information structure is precluded.
12 There is a slight redundancy in listing both T and V: as shown above, the set
of all possible information structures (V) is already determined by the game tree
(T ). However, we keep this notation in order to emphasize the absence of common
knowledge assumptions regarding the information structure.
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that it is necessary to additionally specify an information structure:
for any pair (s, V ) ∈ S ×V there exists a unique z

(
s, V

⏐⏐h) ∈ Z such
that for any player i,

z
(
s, V

⏐⏐h) ≥
(
h′, si(σi)

)
for any h′

∈ Hi s.t. h

≤ h′ and h′ < z
(
s, V

⏐⏐h) ,
where σi is player i’s unique information sequence satisfying σi ⊆

Vi and vσi = Vi(h′). Thus, each player’s conditional payoffs are
naturally determined by conditional terminal histories as follows:
ui

(
s, V

⏐⏐h) = ui
(
z
(
s, V

⏐⏐h)).
Note that any combination of a strategy profile and an informa-

tion structure precludes certain information sets being reached, so
it is useful to write the following: take player i and information
sequence σi; then, we denote: (i) by (S−i × V) (σi), the set of i’s
opponents’ strategies and information structures that allow for σi
being reached, (ii) for any h ∈ vσi , by (S−i × V) (σi, h), the set of
i’s opponents’ strategies and information structures that allow for
h being reached while σi being i’s information sequence, and (iii)
by Si (σi), the set of i’s strategies that allow for σi being reached.13
Finally, for any strategy si, let Σi (si) =

{
σi ∈ Σi

⏐⏐si ∈ Si (σi)
}
rep-

resent the set of player i’s information sequences whose terminal
information set might be reached when she plays si.

2.4. Conjectures, sequential rationality and backward induction

Throughout the paper, and following the recovery of Renyi’s
(1955) original notion due to Myerson (1986) and Ben Porath
(1997), conditional probability systems will serve as the building
block for modeling players’ interactive beliefs. First, we recall its
definition, and then, apply them to adapt the notion of sequential
rationality to games with uncertain information structure. Finally
we recall the formalization of the backward induction outcome of
a game tree.

2.4.1. Conditional probability systems
A conditional base space for player i is defined as a pair (Ui, Ci)

consisting of: (i) a compact and metrizable basic uncertainty space
Ui whose Borel subsets we refer to as events, and (ii) a countable
family of conditioning events Ci ⊆ B (Ui) \ {∅},14 whose elements
are all both open and closed in Ui. Then, a conditional probability
system on (Ui, Ci) is a map µi : B (Ui)× Ci → [0, 1] that satisfies,

(i) µi
[
·
⏐⏐C]

∈ ∆ (Ui) for any conditioning event C .

(ii) µi
[
C
⏐⏐C]

= 1 for any conditioning event C .

(iii) µi
[
E
⏐⏐C]

·µi
[
C
⏐⏐C ′

]
= µi

[
E
⏐⏐C ′

]
for any event E and any two

conditioning events C and C ′ satisfying E ⊆ C ⊆ C ′.

Wedenote the set of all possible conditional probability systems on
(Ui, Ci) by ∆Ci (Ui), which is both compact and metrizable under
the topology inherited by endowing [∆ (Ui)]Ci with the product
topology (see Lemma 2.1 by Battigalli and Siniscalchi, 1999). For

13 Formally, we have these three characterizations:

(S−i × V) (σi) =
{
(s−i, V ) ∈ S−i × V

⏐⏐σi ⊆ Vi and z ((s−i; si) , V ) > h

for some h ∈ vσi and some si ∈ Si
}
,

(S−i × V) (σi, h) =
{
(s−i, V ) ∈ (S−i × V)(σi)

⏐⏐z((s−i, si), V ) > h for some si ∈ Si
}
,

Si(σi) =
{
si ∈ Si

⏐⏐h < z ((s−i; si) , V ) for some h ∈ vσi

and some (s−i, V ) ∈ (S−i × V) (σi)} .

14 For any topological space X let B (X) and ∆(X) respectively denote the corre-
sponding Borel σ -algebra and the set of probability measures on B(X). We endow
∆(X) with the weak∗ topology, so that if X is compact andmetrizable, so is∆(X); in
particular, every continuous function under this topologywill bemeasurable under
B(X).

notational convenience the following slight abuse is used through-
out the paper: for any basic uncertainty product space Ui = X × Y ,
if the family of conditioning events Ci can be described by indexing
its elements using Y ,15 then we denote ∆Y (Ui) = ∆Ci (Ui), and
for any conditional probability system µi, we write µi(y) [ · ] =

µi
[
·
⏐⏐Xy × {y}

]
for any index y.

2.4.2. Conjectures and sequential rationality
Conditional probability systems are applied to model the dy-

namic fact that a player can update beliefs about opponents’
choices as the game unfolds. In this sense, a (correlated) conjecture
for player i is a conditional probability system µi on conditional
base space composed by basic uncertainty space Ui = S−i × V and
family of conditioning events Ci =

{
(S−i × V) (σi)

⏐⏐σi ∈ Σ∅

i

}
, where

Σ∅

i = {∅} ∪Σi. Conjectures naturally induce conditional expected
payoffs: player i’s conditional expected payoff under conjecture µi
after information sequence σi is given by,

Ui
(
µi, si

⏐⏐σi)
=

∑
h∈vσi

∑
(s−i,V )∈(S−i×V)(σi,h)

µi(σi)[(s−i, V )] · ui
(
(s−i; si) , V

⏐⏐h) ,
for any si ∈ Si. The notion of sequential rationality is then captured
by defining, for each player i, her (sequential) best-reply correspon-
dence as µi ↦→ BRi (µi), where,

BRi (µi) =

⎧⎨⎩si ∈ Si

⏐⏐⏐⏐⏐si ∈

⋂
σi∈Σi(si)

arg max
s′i∈Si(σi)

Ui
(
µi, s′i

⏐⏐σi)
⎫⎬⎭ ,

for any conjecture µi.16 Note that each BRi(µi) is guaranteed to
be non-empty due to the game tree being finite and conditional
probability systems updating beliefs according to the chain rule.
Since Si is finite, it is immediate to check that BRi is, in addition,
upper-hemicontinuous and closed-valued.

2.4.3. The backward induction outcome
With some abuse of language, we identify the backward induc-

tion outcome of the game with uncertain information structure G

with the backward induction outcome of the perfect information
game corresponding to its game treeT . For such a game, a strategy
profile in terms of histories ((si(h))h∈Hi )i∈I (which is by no means a
strategy for gamewith uncertain information structure G ) is called
inductive if it satisfies that for any player i and any history h ∈ Hi,

si(h) ∈ arg max
ai∈Ai(h)

ui
(
z
(
s−i; (si, ai)

⏐⏐h)) ,
where (si, ai)(h′) = ai if h′

= h and (si, ai)(h′) = si(h′) otherwise.
Clearly, one can interpret an inductive strategy as a backward
inductive strategy corresponding to the standard gamewith (com-
monly known) perfect informationwhose game tree isT . For a tree
with no relevant ties this profile, which we denote by α, is unique.
For each history h ∈ H , let zI(h) = z

(
α
⏐⏐h) denote the inductive

outcome of T conditional on h, and zI = zI(∅), the inductive
outcome; note that despite α not being a meaningful object in G ,
each zI(h) obviously is. For each history h we refer to αh as the
inductive choice at history h.

2.5. Stan’s Used Car Emporium: Dramatis personae

Let us illustrate the definitions abovewith an example. Consider
the game tree depicted in Fig. 4. Elaine (E) is considering whether

15 i.e., if Ci =
{
Xy × {y}

⏐⏐y ∈ Y and Xy ⊆ X
}
.

16 The fact that players update beliefs according to the chain rule ensures that no
dynamic inconsistency issues are present and that the one-shot deviation principle
is satisfied.
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Fig. 4. Stan’s Used Car Emporium.

to keep her old car (action k, in the picture) or replace it with a
new one. The only place that offers her the latter possibility in her
small local area is Stan’s Used Car Emporium, where once she gets
there (action e), Stan (S) will offer her a car that she can buy for
some fixed price. The car offered may be good or a lemon (actions
g and ℓ by Stan, respectively), and after a brief inspection, Elaine
may decide to accept the offer and pay the price or reject it and
leave (actions a and r , respectively). She would be happy to pay for
a good car, but prefers her old one to the lemon, and, in any case,
Elaine prefers to stay home rather than walk into Stan’s and leave
empty-handed. Stan makes a profit from either sale, but this profit
is obviously higher if the car that Elaine buys is the lemon.

We assume that the reader is familiar with the notions of game
tree and CPS, so we only detail the concepts this paper introduces.
In regard to information partitions, we have a unique possible one
for Stan, VS = {{e}}, but two alternatives for Elaine: (i) one in
which she is proficient enough in auto-mechanics as to be able to
tell a good car from a lemon apart (i.e., in which she has perfect
information), V PI

E = {{∅} , {g} , {ℓ}}, and (ii) one in which she
knows little about cars and cannot distinguish between the good
car and the lemon (i.e., in which she has imperfect information),
V II
E = {{∅} , {g, ℓ}}. Thus, VE =

{
V PI
E , V

II
E

}
. Stan only chooses

once, so his unique information set can be identified with his
unique possible information sequence. On the contrary, we have
the following set of information sequences for Elaine: ΣE =

{{∅} , ({∅} , {g}) , ({∅} , {ℓ}) , ({∅} , {g, ℓ})}. Each of her strategies
assign a certain action to each of her information sequences: ei-
ther k or e to {∅} and either a or r to ({∅} , {g}), ({∅} , {l}) and
({∅} , {g, ℓ}) (of course, not necessarily the same action to the three
of them), for instance, (e, a, r, a). The backward induction outcome
of the tree is zI = (∅, e, g, a). We continue with the example in
Section 4.2.

3. Higher-order beliefs, rationality and perfect information

Conjectures as defined in Section 2.4.2 model players’ dynamic
beliefs about opponents’ choices and the information structure.
Still, they are not suitable for capturing one essential aspect of
strategic reasoning: beliefs about each opponents’ beliefs about
her opponents’ choices, her opponents’ beliefs, and so on. That
is, higher-order beliefs, or belief hierarchies. In order to properly
formalize these ideas we first construct an epistemic framework
reminiscent of the one employed by Tan and Werlang (1988), and
built upon the original notion of conditional belief hierarchy due to
Battigalli and Siniscalchi (1999). Then, under this epistemic frame-
work, we define in Section 3.2 the main epistemic assumption,
based on Battigalli and Siniscalchi’s (2002) notion of strong belief,
which together with rationality leads to our result presented in
Section 4.

3.1. Epistemic framework

3.1.1. Epistemic types: canonical construction
We formally represent each player i’s higher-order conditional

beliefs about opponents’ choices and the information structure via
epistemic types, or conditional belief hierarchies. Let us recall the
construction due to Battigalli and Siniscalchi (1999): consider for
each player i, conditional base space (Ui, Ci) composed of basic
uncertainty space Ui = S−i × V and family of conditioning events
Ci =

{
(S−i × V) (σi)

⏐⏐σi ∈ Σ∅

i

}
. Then, set first Xi,1 = Ui and E0

i,1 =

∆Ci (Xi,1), and then, define recursively,

Xi,n+1 = Xi,n ×

∏
j̸=i

E0
j,n and E0

i,n+1 = ∆Ci
(
Xi,n+1

)
.

Note that conditioning event C ∈ Ci can be identified with some
information sequence σi ∈ Σ∅

i ; thus, in what follows we use
the latter to index the former. Now, let E0

i =
∏

n∈NE
0
i,n; we refer

to each ei ∈ E0
i as epistemic type and we say that ei is coherent

if different order hierarchies do not contradict each other, i.e., if
margXn

i
ei,n+1(σi) = ei,n(σi) for any information sequence σi ∈ Σ∅

i
and any natural n. Let E1

i denote player i’s set of coherent epistemic
types, and let E0

−i =
∏

j̸=iE
0
j . Then define recursively17:

En+1
i =

{
ei ∈ En

i

⏐⏐ei,m(σi)[ProjXi,m (
En

−i × S−i × V
) ]

= 1 for anym ∈ N and any σi ∈ Σ∅

i

}
,

where En
−i =

∏
j̸=iE

n
j for any natural n.18 Each En+1

i is capturing
the idea that in player i’s mind, players hold iterated beliefs up
to order n of every player having coherent beliefs. We say that
each epistemic type in Ei =

⋂
n∈NE

n
i represents common certainty

in coherence. It is known from Propositions 2.3 and 2.5 by Batti-
galli and Siniscalchi (1999) how epistemic types and beliefs about
the basic uncertainty space and on opponents’ epistemic types
relate to each other: there exists a homeomorphism ψi : E1

i →

∆
C∗
i
(
E0

−i × S−i × V
)
, where C∗

i =
{
E0

−i × C
⏐⏐C ∈ Ci

}
, that satisfies

both:

(i) margXi,nψi (ei) (σi) = ei,n(σi) for any natural n, any informa-
tion sequence σi and any coherent epistemic type ei.

(ii) Restriction ψi |Ei
is a homeomorphism between Ei and

∆Σ
∅

i (E−i × S−i × V).

3.1.2. States of the world and events
The epistemic analysis is performed in set of states (of the world)

Ω = E×S×V . For each player iwedenoteΩi = Ei×Si, and for each
state ω, we consider the following projections: ωi = ProjΩi (ω),
ei (ω) = ProjEi (ω), si (ω) = ProjSi (ω) and v (ω) = ProjV (ω).
Thus, each state is a description of the information structure,
players’ choices, and players’ belief hierarchies on the previous two
contingencies. An event is a Borel subset E ⊆ Ω . Note that some
events and information sequences aremutually exclusive: for each
player i and information sequence σi, E ∩ (E × (S × V) (σi)) = ∅

would imply that player i can only assign null probability to event
E at σi, regardless of her epistemic type. Thus, for player i and event
E, we define player i’s set of information sequences belief-consistent
with E as Σ∅

i (E) =
{
σi ∈ Σ∅

i

⏐⏐E ∩ (E × (S × V) (σi)) ̸= ∅
}
. This

set represents i’s information sequences in which i might assign
positive probability to E.

17 For any subset of a product set S ⊆ X × Y , we denote by ProjY (S) the projection
of S on Y , i.e., ProjY (S) =

{
y ∈ Y

⏐⏐(x, y) ∈ S for some x ∈ X
}
.

18 The fact that taking marginals is continuous guarantees that E1
i is compact,

and from this starting point, it is trivial to check that each En
i is well-defined and

compact.
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3.2. Rationality, perfect information and forward induction

Themain result in Section 4 is based on one behavioral assump-
tion, rationality, and one epistemic assumption, common strong
belief that opponents are rational, have perfect information and
strongly believe in their own perfect information. The epistemic
condition is defined in terms of conditional beliefs, which are
defined as follows: player i’s conditional belief operator after infor-
mation sequence σi ∈ Σ∅

i is given by E ↦→ Bi
(
E
⏐⏐σi), where,

Bi
(
E
⏐⏐σi) =

{
ω ∈ Ω

⏐⏐ψi (ei (ω)) (σi)
[
ProjΩ−i×V (E)

]
= 1

}
,

for any event E ⊆ Ω .19 Thus, Bi
(
E
⏐⏐σi) should be interpreted as the

event that player i assigns probability 1 to E after σi.

3.2.1. Rationality and perfect information
We say that player i is rational when her choices are condi-

tionally optimal given her conditional beliefs. Thus, since states
describe both beliefs and strategies they must describe whether
players are rational or not. Then, we can formalize the event that
player i is rational as,20

Ri =
{
ω ∈ Ω

⏐⏐si(ω) ∈ BRi
(
ei,1(ω)

)}
,

and, as usual, we denote R−i =
⋂

j̸=iRj and R =
⋂

i∈IRi. Similarly,
since states describe information structures, they must describe
whether players have (not necessarily commonly known) perfect
information or not. We say that a player has perfect information
if, whenever she has to make a choice, she is informed about
everything her opponents previously chose; in other words: when
her information sets are singletons. Thus, the event that player i
has perfect information is defined as,

PIi =
{
ω ∈ Ω

⏐⏐vi (ω) = {{h}|h ∈ Hi}
}
,

and, as usual, we denote PI−i =
⋂

j̸=iPIj and PI =
⋂

i∈IPIi.
Notice the event that there is perfect information differs from the
standard notion of game with perfect information, in which not
only there is perfect information, PI , but furthermore, event PI is
commonly known. Obviously, all the sets introduced in this section
are closed, and therefore, well-defined events.

3.2.2. Common strong belief in opponents being rational, having per-
fect information and strongly believing in their own perfect informa-
tion

Battigalli and Siniscalchi (2002) introduce the concept of strong
belief in order to formalize the idea of forward induction, i.e., con-
jecturing about opponents’ future behavior depending on the in-
formation collected about their past behavior. They define the
strong belief operator, which, adapted to the present context,
associates each event E with the event that player i conditionally
believes Ewith probability 1 after any information sequence belief-
consistent with E. Thus, formally, each player i’s strong belief oper-
ator is given by E ↦→ SBi (E), where,

SBi (E) =

⋂
σi∈Σ

∅

i (E)

Bi
(
E
⏐⏐σi) ,

for any event E ⊆ Ω . Thus, SBi (E) should be read as the event
that player i maintains the hypothesis that E is true as long as
it is not contradicted by evidence. For our result in Theorem 1
we are interested in the working hypothesis that players believe
that their opponents are rational, have perfect information and

19 There aremanyways to define conditional belief operators in dynamic settings;
we stick to an adaptation of the one by Dekel and Siniscalchi (2015).
20 For the following characterization remember the best-reply correspondence
introduces in Section 2.4.2, and that ei,1(ω) represents player i’s conditional belief
in S−i × V corresponding to state ω.

strongly believe in their own perfect information. Formally, this
is represented for each player i by SBi(

⋂
j̸=iRj ∩ PIj ∩ SBj(PIj)). If

we iterate these strong belief assumptions, we invoke a special
case of Battigalli’s (1996) best rationalization principle, according to
which, players rationalize observed behavior to the highest degree
possible. We add the particular feature that this rationalization
assumes that opponents have perfect information and strongly
believe in their own perfect information. To formalize this idea, for
each player i set,

CSBORPIi,1 = SBi

⎛⎝⋂
j̸=i

Rj ∩ PIj ∩ SBj(PIj)

⎞⎠ and,

CSBORPIi,n+1

= CSBORPIi,n ∩ SBi

⎛⎝⋂
j̸=i

Rj ∩ PIj ∩ SBj(PIj) ∩ CSBORPIj,n

⎞⎠ ,

for any n ∈ N. Then, set CSBORPIi =
⋂

n∈NCSBORPIi,n, and denote,
as usual, CSBORPI =

⋂
i∈ICSBORPIi. It is important to notice that

CSBORPI makes no assumption at all regarding whether or not the
game has perfect information: it is consistent with every possi-
ble information structure. Furthermore, as mentioned above, this
framework enables i to face uncertainty about her own information
structure; accordingly, note that CSBORPIi imposes no constraints
on player i’s beliefs about what her own information structure is
or will be as the game unfolds.21

4. Uncertain information structure and the backward induc-
tion outcome

Battigalli and Siniscalchi’s (2002) Proposition 6 shows that in
extensive-form games without uncertainty about the information
structure, rationality and common strong belief in opponents’ ra-
tionality induce Pearce’s (1984) extensive-form rationalizable (EFR)
strategies.22 In addition, it is known from Battigalli (1997) that
in games with (commonly known) perfect information and trees
with no relevant ties, EFR strategies induce precisely the unique
backward induction outcome of the tree. Our main result in Theo-
rem 1 shows that proper restrictions on the rationalization process
enable the perfect information assumption to be dropped with no
consequences in terms of outcome. That is, obtaining the backward
induction outcome is unrelated to players’ ability to observe their
opponents’ past choices. We present the result in Section 4.1,
illustrate its logic in an example in Section 4.2 and discuss the
precise relation of the result to the different sources of uncertainty
each player faces in Section 4.3.

4.1. Main result

Next, we present themain result of the paper, which shows that
perfect information is not required in order to obtain the backward
induction outcome if higher-order beliefs about the information
structure satisfy certain conditions. An immediate consequence is
that the information that players acquire by observing opponents’
choices in the perfect information case is found to be irrelevant in
terms of behavior. Thus, if we denote by [z = zI] the event that
the backward induction outcome is obtained,23 we have that:

21 Although it plays no role in our results, it is convenient to be aware of the
fact that opponents’ perfect information, PI−i , cannot be falsified in player i’s view:
she can observe (or not) her opponents’ actions, but cannot derive from these
actions whether her opponents had perfect information or not. In consequence,
player i having strong belief in perfect information, SBi(PI−i), is equivalent to player
i conditionally believing in PI−i after every information sequence σi .
22 Common strong belief in opponents’ rationality, CSBOR, is defined in a way
analogous to CSBORPI , merely by replacing each

⋂
j̸=iRj ∩ PIj ∩ SBj(PIj) with just

R−i .
23 I.e.,[z = zI ] =

{
ω ∈ Ω

⏐⏐z(s(ω), v(ω)) = zI
}
.
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Theorem 1 (Sufficiency for the Backward Induction Outcome). Let
G be a game with uncertain information structure. Then, under ra-
tionality and common strong belief in the event that opponents are
rational, have perfect information and strongly believe in their own
perfect information, the backward induction outcome of the tree is
obtained regardless of the information structure; i.e.,

R ∩ CSBORPI ⊆ [z = zI].

Themain intuition behind the result is detailed in Appendix A.1.
Basically, it consists in showing that under the assumptions of
the theorem three phenomena arise. First, if player i has missed
to observe some of her opponents’ past actions she will believe,
as long as what she has observed does not contradict it, that her
opponents’ are playing some rationalizable strategy of the game
with commonly knownperfect information. Second, because of the
latter and the fact that the path consistent with rationalizability is
unique, player i will be able to infer the choices she has missed to
observe. Third, once player i has inferredwhich specific history she
finds herself at, and given that this specific history will necessarily
be in the backward induction path, player i will conclude that the
best thing she can due is to continue in the backward induction
path.

4.2. Stan’s Used Car Emporium: Elaine’s reputation and choice

We illustrate the logic behind Theorem 1 by going back to
the example in Section 2.5. As mentioned there, intuitively, we
can identify Elaine’s information structure with her expertise in
cars: if she is an expert, she can tell good cars from lemons and
has, therefore, perfect information; on the contrary, if she is not
an expert and cannot assess the quality of the car offered, she
has imperfect information. Then, we can understand Elaine and
Stan’s belief hierarchies on the information structure as Elaine’s
reputation regarding expertise in cars. Under this interpretation,
let us analyze the interaction in the following three scenarios:
Stan vs. the expert (Common knowledge of perfect information). As-
sume that Elaine is an expert in cars, and that since both she and
Stan live in the same small area, she has a reputation of expertise
that is commonly known to them. In that case, not only will Elaine
be able to distinguish the good car from the lemon, but her ability to
do sowill be commonly known to both her and Stan. Asmentioned
above, the unique backward induction outcome of the game with
commonly known perfect information is zI = (∅, e, g, a), and this
is what we obtain under rationality and common strong belief
in rationality: a rational Elaine will chose a at (∅, e, g) and r at
(∅, e, ℓ), where she will believe that Stan takes her for rational and
non-rational, respectively. A rational Stan who believes that Elaine
is rational will choose g at (∅, e), and a rational Elainewho believes
in both Stan’s rationality, and Stan’s belief that she is rational,
will be able to predict all the reasoning above, and will therefore,
choose e at ∅.
Stan vs. the non-expert (Common knowledge of imperfect informa-
tion). Assume now that Elaine knows little about cars and is unable
to distinguish the good car from the bad one, and further assume
that this is commonly known. We are now faced with a case of
commonly known imperfect information, and appeal to forward
induction. There is only one way in which Stan can rationalize
seeing Elaine walk into his business: Elaine, who cannot tell the
quality of the car she will be offered, must expect to be offered the
good one and thus,must have planned to accept the deal regardless
of her ignorance of whether it is the good car or the lemon (any
other option is worse for Elaine than staying home). Thus, since
Elaine apparently plans to accept whatever Stan offers, it becomes
optimal for Stan to offer the lemon. Now, before deciding whether
to stay home or not, Elaine is able to predict Stan’s reasoning
(because she believes both that he is rational and that he will

rationalize her decision of entering the emporium if she does so).
Thus, since she expects to be offered the lemon, Elaine decides to
stay home and keep her old car. Hence, we conclude that under
rationality and common strong belief in opponents’ rationality,
the outcome of the game for the commonly known imperfect
information case is z = (∅, k).
Stan vs. the fake expert (Theorem 1). Now assume again that Elaine
knows little about cars and that, unlike in the previous case, she
has a deluded reputation of expertise. This is precisely what is
represented by event ¬PIE ∩ (R ∩ CSBORPI). Now, as in the first
case, Stan expects her to be able to distinguish between good cars
and lemons, so if he sees her walk into his emporium, he chooses
to offer her the good car. However, despite that, as in the second
case, Elaine does not knowwhat car she has in front of her, the fact
that she is aware of her deluded reputation of expertise makes her
infer that a rational Stan must have offered her the good car. Thus,
she accepts the offer. And note that indeed, RE ∩ CSBORPIE implies
that before leaving home, Elaine is able to predict this outcome of
her visit to the emporium; thus, she decides to visit Stan’s rather
than keeping her old car. Consequently, we obtain zI again, despite
the game not having perfect information and Elaine knowing that
this is indeed the case.

4.3. Robustness of Theorem 1

As seen in the previous section, in some simple games the logic
of why the backward induction should be obtained easily extends
to environments where we allow for uncertainty about the infor-
mation structure but impose common strong belief assumptions
on opponents’ perfect information. In this section we rely on the
analysis of the sensitivity of the result to the different sources
of uncertainty players face as a vehicle to observe that, indeed,
guaranteeing the obtention of the backward induction outcome
under the presence of uncertainty on the information structure
necessarily requires tight constraint in players’ higher-order be-
liefs. Specifically, regarding the assumptions of the theorem, de-
spite the result is found to be independent of both information
structures and beliefs about own information structures, it does
exhibit great sensitivity to departures in the assumptions about
beliefs about opponents’ information structures. We conjecture
that constraints on beliefs about opponents’ beliefs about their
own information structure are not required for the result to hold24;
however, aswe illustrate in the last paragraph, the intuition behind
this conjecture is not completely obvious. Let us take a look at each
source of uncertainty separately:
Information structures. The assumptions on Theorem 1 only refer
to each player’s belief hierarchies (via constraint CSBORPIi) and
behavior, or reaction, to these belief hierarchies (Ri). That is, they
only put restrictions on the first two component of each state ω =

(e, s, V ). Obviously, this results on the assumption on Theorem 1
being consistent with any information structure the game might
have.25 Perfect information is a particular case, but this is not re-
quired at all: on the contrary, it could be the case that some player
i has not observed any past action by her opponents; Theorem 1
shows that even such player acts exactly as she would in case she
was capable of observing every past action by her opponents.
Beliefs about own information structure. As seen, the assumptions
on Theorem 1 only refer to each players’ belief hierarchies and
behavior. We can be more specific though: restrictions on belief
hierarchies only affect each player i’s beliefs about her opponents’

24 Remember that Theorem 1 assumes that each player i strongly believes each
player j ̸= i to strongly believes in her own perfect information.
25 Formally, we have that R∩CSBORPI∩[v = V ] ̸= ∅ for any information structure
V .
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Fig. 5. Uncertainty about own information structure and rationalization.

rationality and information structure, but not about her own in-
formation structure. That is, a player might be uncertain about
her ability to observe opponents’ choices in future stages of the
game (or, for instance, certain that she will not observe anything).
Theorem 1 shows that this uncertainty is immaterial in terms of
outcome: every player will play as if she could observe everything
and knew she was going to be able to observe everything. How-
ever, as we see next, the way in which players reason off-path is
significantly affected, and therefore, reaching the conclusion that
their behavior does not depart from the standard case of common
knowledge of perfect information is not immediate.

To illustrate this point let us take a look at the game tree in
Fig. 5. Both players, Alice (A) and Bob (B) have an outside option (oA
and oB, respectively), being Alice the first one with the possibility
of exercising it. If both players decide to enter the game (i.e., they
choose eA and eB) they participate in a Battle of Sexes where Alice
chooses first.

Let us analyze the standard case of commonly known perfect
information first. It is clear that upon observing that Alice entered
the game, it becomes strictly dominant for Bob to enter the game
too: in case he exercises his outside option his payoff is 3, whereas
in case he enters the game he can guarantee a minimum payoff of
4 (because he will be able to observe Alice’s action and therefore
optimally react to it). In consequence, if at the beginning of the
game Alice is rational and expects Bob to be rational, then she
will exercise her outside option because she will not expect Bob
to exercise his in case she enters the game. Thus, in the case of
commonly known perfect information oA is the only outcome con-
sistent with rationality and common strong belief in opponents’
rationality. Still, Bob’s only strategy consistent with rationality and
common strong in rationality dictates him to enter the game in case
he observes that Alice entered the game.

This is in contrast with the case with uncertainty about the
information structure, even under the assumptions on Theorem 1.
Let us have a look at it. How is Bob going to reason if he ob-
serves that Alice entered the game? He cannot discard that she
is rational, because he can believe that Alice decided to enter
the game expecting him to exercise his outside option. But, as
we saw above, if Bob is rational and believes to have perfect
information in the continuation game, then he declines to exercise
his outside option. In consequence, Alice will not enter the game
under the assumption of Theorem 1. We see then that under these
assumptions Alice entering the game is a zero probability event
for Bob. Thus, if he observes eA Bob can update his beliefs in an
arbitrary way as long as he maintains the belief that Alice will be
rational in case he decides to enter the game too. In particular, it
is possible for Bob to update his beliefs in the following way: let

him assign probability 1 to not having perfect information in the
continuation game and probability 1/2 to each of Alice’s possible
actions in that game. Clearly, these beliefs make optimal for Bob
to exercise his outside option. We see then that the reasoning
processes of the case of commonly known perfect information and
the case with uncertainty about the information structure diverge
under the assumptions on Theorem1; still, the theorem shows that
predictions do not.
First-order beliefs about opponents’ perfect information. We already
observed that the result in Theorem 1 is robust to two aspects
described by the state of the world: the information structure and
players’ beliefs about their own information structure. However,
in general, it is not possible to ensure that the result allows for re-
laxations on the higher-order belief assumptions about opponents’
perfect information; indeed, not even for relaxations on first-order
belief assumptions. To see it, consider the sequential Battle of Sexes
in Section 1.1 and introduce the following variation: Alexei’s payoff
when he and Polina choose right and left respectively is 10 instead
of 0. In that case, under R ∩ CSBORPI , Alexei still plays left, but as
soon as we drop the assumption that he believes Polina to have
perfect information, right becomes strictly dominant for him, and
thus, the backward induction outcome fails to be obtained. This
example illustrates the necessity of tight high-order belief assump-
tions about opponents’ perfect information in order to ensure that
he backward induction will be obtained for any arbitrary payoff
structure of the game tree.
Second-order beliefs about opponents’ first-order beliefs about their
own information structure.Wehave already observed that the result
in Theorem1: (i) is independent of both information structures and
players’ beliefs about their own information structures and (ii) it
crucially hinges on tight constraints on higher-order beliefs about
opponents’ perfect information. The assumption that each player i
player strongly believes each opponent j ̸= i to strongly believe in
her own perfect information turns out to be more involved, as we
shall see next.

Consider the modified game between Alice and Bob depicted
in Fig. 6. In this case, no matter whether Bob believes Alice to
be rational or not, in the game with commonly known perfect
information it is dominant for him to enter the game, because he
knows that regardless of Alice’s next action, he can best respond
and therefore guarantee a minimum payoff above the one corre-
sponding to his outside option. Thus, if in the beginning of the game
Alice believes Bob to be rational then it becomes optimal for her to
enter the game: she expects Bob to also do so and therefore expects
a minimum payoff above the one corresponding to her outside
option. Thus, players being rational and Alice believing that Bob
is rational (in the beginning of the game) is enough to ensure that
outcome (eA, eB, ℓA, ℓB) is obtained.

Let us see next what the impact of uncertainty on the infor-
mation structure is. In particular, suppose that in the beginning
of the game Alice: (i) believes that Bob is rational and has perfect
information, (ii) believes that Bob believes that she is rational (and
has perfect information; this is trivially true for Alice), but (iii)
believes that Bob does not believe that he will have perfect infor-
mation in the Battle of Sexes game (that is, it is not true that Alice
strongly believes in SBB(PIB)). In such case it is possible for Alice to
believe that at information set {(∅, eA)} Bob assigns probability 1/2
to her playing ℓA in the Battle of Sexes, and probability 1/2 to her
playing ℓB. If these were Bob’s beliefs upon observing eA (keep in
mind that we are assuming that in Alice’s mind Bob expects not
to have perfect information in the Battle of Sexes game), it would
be optimal for him to exercise his outside option. In consequence,
if in the beginning of the game Alice’s beliefs about Bob’s beliefs
at {(∅, eA)} were as described above then it would be optimal for
her to exercise her outside option as well. So despite Alice believes
Bob to have perfect information and she holds second-order beliefs
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Fig. 6. Impact of lack of strong belief in opponents’ strong belief in own perfect
information

of mutual rationality, the fact that she does not believe Bob to
believe in his own perfect information results in Alice, although
rational, playing a strategy that is dominated in the game with
commonly known perfect information (whenever she believes in
Bob’s rationality).

Obviously, if we were assuming (as the theorem does) that
Alice believes that Bob believes that he will have perfect infor-
mation, Alice believing that Bob is rational would suffice for her
to decide to enter the game. However, as we argue next, such
belief in opponents’ belief in own perfect information seems not
to be necessary. In addition to assumptions (i)–(iii) in the previous
paragraph, suppose that in the beginning of the gameAlice believes
that Bob believes that she believes that he is rational and has
perfect information. Let us see howwould Alice reason about Bob’s
reasoning at {(∅, eA)}: despite Bob believes that hewill not observe
Alice’s choice in the Battle of Sexes, he believes that she expects
both him to do so andhim to best react towhatever she plays. Then,
at {(∅, eA)}, Bob must expect Alice to play ℓA in the Battle of Sexes,
and therefore, it becomes optimal for him to enter the game. This
is Alice’s conclusion about Bob’s strategic reasoning at {(∅, eA)}. In
consequence, despite she does not believe that Bob believes that
he will have perfect information, imposing three layers of belief in
opponents’ rationality and perfect information is enough to lead
Alice to entering the game.

In light of the above we conjecture that assumptions on be-
liefs about opponents’ belief about own perfect information are
dispensable. However, as the example illustrates, the level of
complexity grows fast as these assumptions are abandoned.
Specifically, it seems that ensuring behavior that corresponds to
kth-order rationalizable behavior in the game with commonly
known perfect information (what, following Battigalli and Sinis-
calchi Battigalli (1997), eventually allows for concluding that the
backward induction is obtained) requires more than k iterations of
belief in opponents’ rationality and perfect information, and that
indeed, this difference in iterations is increasing in the length of the
game tree. Thus, great difficulties arise in linking behavior in the
game with uncertain structure with rationalizable behavior in the
gamewith commonly known perfect information. In consequence,
in the absence of higher-order beliefs about opponents’ belief in
own perfect information, the argument that connects common
strongbelief in opponents’ rationality andperfect informationwith
the backward induction outcome remains unclear.

5. Final remarks

A. Summary. Literature in extensive-form games typically assumes
that, in such games, the way in which information sets are dis-
tributed along the tree is commonly known. This feature can be

understood as the information structure of the game being part
of the objective rules of the game. However, since information
sets concern players’ ability to observe, interpret and remember
opponents’ past behavior, they often depend more on players’
personal cognitive abilities than on the rules of the game itself.
Thus, since personal cognitive abilities are usually uncertain, it is
natural to wonder how predictions in extensive-form games are
affected by players facing incomplete information regarding the
information structure. In this context, this paper contributes to the
literature in extensive-form games and epistemic game theory by:

(i) Introducing a tractable game-theoretical framework that
allows for arbitrary uncertainty regarding the information
structure. This is done by defining games with uncertain
information structure, which consist of a game tree, assumed
to be commonly known, and an information structure for the
game, assumed to be possibly uncertain.

(ii) Extending, first, the notion of conditional belief hierarchy
due to Battigalli and Siniscalchi (1999), and second, the
resulting epistemic framework employed by the same au-
thors, so that uncertainty about the information structure
can be incorporated.

(iii) Showing that, under suitable restrictions on the rational-
ization process, the information structure of the game is
irrelevant in terms of outcome: players behave exactly as in
the case of commonly known perfect information whether
or not they observe any of their opponents past choices.
Specifically, Theorem 1 proves that, if players are rational
(R) and there is common strong belief in opponents being
rational, having perfect information and strongly believing
in their own perfect information (CSBORPI), then the back-
ward induction outcome of the game tree is obtained. Notice
that no assumption regarding the information structure of
the game is made.

B. Robustness of the result anddependence on the epistemic re-
quirements. Theorem 1 introduces sufficient epistemic conditions
for the backward induction outcome for any game tree, regardless
of what factual information structure the game happens to have
as it is played. These epistemic assumptions differ from those
that would represent the standard notion of perfect information
game in the absence of uncertainty about the information struc-
ture: perfect information, common strong belief in own perfect
information and common belief in opponents’ perfect information.
Thus, Theorem 1 addresses robustness properties of the backward
induction outcome in two somewhat oppositeways: (i) it is proved
that the backward induction outcome is robust to shocks in the
information structure of the game, as long as these shocks do not
affect players’ higher-order beliefs about their opponents’ infor-
mation structures, and (ii) in general, players’ belief in opponents’
perfect information plays a crucial role in the backward induction
outcome being obtained, so that the latter is found very sensitive,
i.e., non-robust, to changes in such beliefs. The sensitivity of the
result to the assumption that each player strongly believes that
their opponents strongly believe in their own perfect information
is inconclusive:we conjecture that the assumption can be dropped,
but great difficulties arise when studying an environment where it
does not hold.
C. Knowledge of own information structure. The modeling of
gameswith uncertain information structure presented in Section 2
allows for players facing uncertainty not only about their oppo-
nents’ information structure, but also about their own one. Two
observations are worth being made to this respect26:

26 Thanks are due to an anonymous referee for calling attention on the following
two issues.
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(i) A question that naturally arises is whether allowing for un-
certainty about own information structure might imply vio-
lations of positive introspection, i.e., about a player knowing
what she knows. In a standard gamewith commonly known
information structure, as the gameunfolds, a player possibly
gains information about her opponents’ past choices. In a
game with uncertain information structure, as the game
unfolds, a player gains information both about her oppo-
nents’ past choices (possibly) and about her own informa-
tion structure (certainly). That is, the player learns about the
possible outcome of the game by discarding those outcomes
inconsistent with the actions of her opponents she has ob-
served, and learns about her own information structure by
discarding those information structures not consistent with
the information sets she already went through. Similarly as
learning about opponents’ past behavior does not pin down
their future behavior and therefore allows for uncertainty
about the outcome of the game, partial learning about the
information structure (i.e., going through some information
sets) does not necessarily pin downwhat future information
sets will be like and therefore allows for uncertainty about
the information structure (though not, of course, about
which the past information sets were). As an illustration,
consider again the partial tree depicted in Fig. 3. Suppose
that Player 2 finds herself at (singleton) information set {u}.
In such case, Player 2 knows that her information structure is
not that beginningwith information structure {u, d}because
she knows she has observed Player 1’s choice u. Still, this
is not enough to conclude that she knows her information
structure: she might be uncertain about whether she will
observe Player 3’s choice or not. For instance, at {u}, she
could assign positive probabilities to the following two in-
formation structures:

V 1
2 = {{u}, {d}, {uuu, uud}, {udu, udd},

{duu, dud}, {ddu, ddd}},

V 2
2 = {{u}, {d}, {uuu}, {uud}, {udu}, {udd},

{duu}, {dud}, {ddu}, {ddd}},

where V 1
2 is the information structure corresponding to the

case in which Player 2 observes Player 3’s choice and V 2
2 the

one corresponding to the case in which she does not. Note
that both are consistent with Player 2 observing Player 1’s
choice. On the contrary, at {u}, Player 2 necessarily assigns 0
probability to, for example, information structure:

V 3
2 = {{u, d}, {uuu, uud}, {udu, udd},

{duu, dud}, {ddu, ddd}},

which would have required Player 2 not having observed
Player 1’s choice.27 This would be at odds with her acquired
knowledge that she did observe Player 1’s choice.

(ii) In cases in which the economic analysis focuses on environ-
ments where uncertainty about own information structure
can be reasonably excluded, the model can accommodate
the assumption that players know their own information
structure in the sense that they hold correct beliefs about
it. To do so, simply consider the event that each player
knows her own information structure together with the
event that each player exhibits common belief (i.e., common

27 More specifically, this information structure corresponds to a game in which
Player 2 does not observe Player 1’s choice, and in her second turn she does not
observe Player 3’s choice but is informed of Player 1’s previously unobserved choice.

everywhere belief) in the event that opponents’ know their
own information structure.28

However, a more sensible alternative approach to these
situations consists on constructing a reduced version of
the general framework that losses in generality but gains
in tractability and transparency. This can be done by sim-
ply envisioning the information structure of each player
i as her (privately known) type and then supposing that
her set of strategies is conditional on her type/information
structure.29 In this reduced model the way in which each
information set can be reached is univocally determined by
the type of the player; that is, all the information gained by
her during the game is already encoded in her information
set and therefore, the notion of information sequence is
unnecessary.

D. Initial types. The main result of this paper is formulated in
terms of epistemic game theory and restrictions on states of the
world. An alternative approachwould be towork at a purely game-
theoretical level: defining first non-conditional belief hierarchies
(or type spaces à la Harsanyi, 1967–1968) which only reflect initial
(that is, at history ∅) uncertainty on the information structure,30
then introducing some interim solution concept that maps each
belief hierarchy to a set of strategies induced by some notion of
common strong belief in rationality,31 and finally, finding what
restrictions on belief hierarchies ensure that the backward induc-
tion is obtained. This approach may be very interesting, but is
problematic in the present set-up.We allow players to have beliefs
about their own information structure, but do not restrict these
beliefs. This can result in situations in which players update their
initial belief hierarchies even when their opponents’ behavior did
not falsify their initial beliefs (for instance, when player i initially
believes that she will not have perfect information, but while on
the backward induction path, finds herself at a singleton). After
such unexpected own information structure, a player will retain
her higher-order beliefs about opponents’ rationality, but may
arbitrarily update her higher-order beliefs about her opponents’
perfect information. In particular, she could update her belief so
that she does no longer believe that her opponents will have
perfect information in the future. Thus, we cannot ensure that the
inductive choice is made.
E. Future belief. An earlier version of this paper presented an
alternative analysis of epistemic sufficiency for the backward in-
duction outcome for games with uncertain information structure.
This was performed in terms of Perea’s (2014) notion of common
belief in opponents’ future rationality, towhichwehad to add com-
mon belief in opponents’ future perfect information. These two
assumptions suffice to ensure that players that find themselves
at singletons always follow the conditional backward induction
path. However, they do not guarantee that players that missed to
observe some past action by their opponents will be able to infer in
which precise history of their respective information set they find
themselves at, and therefore, it is not possible to ensure backward

28 Note that the belief that an opponent holds certain beliefs can never be fal-
sified (unless we additionally impose simultaneous rationality restrictions). Thus,
formally, we would set first K 0

i =
{
ω ∈ Ω

⏐⏐SBi(vi = vi(ω))
}
, and then, take the

intersection of
⋂

i∈IK
0
i with every

⋂
i∈IK

n
i , where K n

i =
⋂
σi∈Σ

∅

i
Bi(

⋂
j̸=iK

n−1
j |σi) for

any player i.
29 Formally, the set of strategies available to player i given type/information
structure Vi would be Si(Vi) =

∏
vi∈Vi

Ai(vi).
30 Whenever we refer to belief hierarchies in this discussion, we refer always to
uncertainty about the information structure, V , not about S−i × V .
31 A strong belief in rationality version of Penta’s (2012) interim sequential ratio-
nality, in a set-up where types reflect uncertainty on information structures, not
payoffs.
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inductive behavior. The earlier version of this paper fixed this prob-
lem additionally imposing strong belief in opponents’ rationality
and perfect information. This last assumption, combined with the
previous two, allows players to rationalize the pieces of past be-
havior observed and infer their exact location in the tree. Still, as
accurately pointed out by Andrés Perea to us, the strong belief
assumption and the belief in future rationality assumption become
mutually exclusive in epistemic type spaces that are sufficiently
rich, such as the belief-complete ones we consider in the present
version of the paper.
F. Absence of relevant ties. The fact that the game trees under
consideration have no relevant ties is crucial for Theorem 1. In-
deed, if the game tree had more than just one backward induction
outcome, it would be impossible to infer opponents’ past choices
in some non-singleton information sets and therefore to identify
which choice is actually the inductive one. Consider an uncertain
imperfect information game such as the one in Fig. 2 and modify
the payoffs so that every non-null payoff is exactly 1. Assume in
addition that the conditions in Theorem 1 are satisfied. In this case
these conditions are reduced to: rationality (R), Alexei’s belief in
Polina’s rationality and perfect information (implicit in CSBORPIA)
and both Polina’s strong belief in Alexei’s rationality and her belief
in Alexei believing she is rational and has perfect information
(implicit in CSBORPIP ). Since Alexei believes both that Polina is
rational and has perfect information, he believes that any choice of
his yields him 1. He is therefore indifferent and may choose either
left or right. Thus, if it is the case that Alexei is deluded and Polina
has no perfect information, there is nothing she can infer from
CSBORPIP , and despite being rational, finds no reason to expect left
or right to yield her a higher payoff than the other alternative.
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A. Preliminaries for the proofs

A.1. Outline of the proof of Theorem 1

The proof of Theorem 1 is conceptually simple but requires
some technical intricacies and additional notation.32 For the sake
of expositional clarity, let us present a brief description of the
different steps leading to the proof before jumping later to the fully
detailed version in Appendix B. The proof is based on the following
three intermediate result:

32 Specifically, notation regarding gameswith commonly known perfect informa-
tion. This is presented in A.2.

1. Suppose that player i taking part in a game with uncertain
information structure: (i) is rational (Ri holds), (ii) has strong
belief in his own perfect information (SBi(PIi) holds) and
(iii) exhibits common strong belief of order n in opponents
being rational, having perfect information and having strong
belief in their own perfect information (CSBORPIi,n holds).
Suppose that si is a strategy for player i consistent with (i),
(ii) and (iii). We show first that, if player i happens to have
perfect information (PIi holds) then the behavior induced
by strategy si in the game tree corresponds to a (n + 1)th-
order rationalizable strategy s∗i (Pearce, 1984) of the game
with commonly known perfect information. The proof is
performed by induction in Appendix B.2.1; the initial step
for n = 0 is completed in Lemma 1, and the inductive one,
in Lemma 2.

2. We show that the backward induction path of the game tree
is consistent with players being rational (R holds), having
perfect information (PI holds), having strong belief in their
own perfect information (

⋂
i∈ISBi(PIi) holds) and exhibiting

common strong belief of order n in their opponents being ra-
tional, having perfect information and having strong believe
in their ownperfect information (

⋂
i∈ICSBORPIi,n holds). This

follows easily from the result in the previous step. The
formal proof is provided in Corollary 1 in Appendix B.2.2.

3. Suppose that player i is taking part in a game with uncer-
tain information structure and that, after every information
sequence σi consistent with the backward induction path,
player i believes that all her opponents are playing some
rationalizable strategy of the gamewith perfect information.
We show that then, after every such information sequence
σi, a rational player i chooses to play the action that corre-
sponds to the backward inductive choice of the (unique) his-
tory in which σi and the backward induction path intersect.
The proof in presented in Lemma 3 in Appendix B.2.3.

It is easy to see how the three intermediate results above inter-
act to give rise to the claim in Theorem 1. For any player i, CSBORPIi
implies that whenever possible, player i believes her opponents to
be rational, to have perfect information, to have strong belief in
their ownperfect information and to eachof themexhibitCSBORPIj.
It follows from the first step and from the monotonicity of the
conditional belief operators that whenever player i can hold these
believes, then she also believes her opponents to play according to
some rationalizable strategy of the gamewith perfect information.
Hence, it follows from the second step that CSBORPIi implies that,
while player i is not aware of being outside the backward induction
path, she believes her opponents to be playing according to some
rationalizable strategy of the game with perfect information. As
shown in the third step, this makes player i able to infer in which
specific history of her information sequence she finds herself at,33
and conclude that her best possible choice is to stay in the back-
ward induction path.

A.2. Games with (commonly known) perfect information

Given game with uncertain information structure G = ⟨T ,V⟩,
we denote by G ∗ the gamewith perfect information identifiedwith
game tree T . Then, in the context of G ∗, for each player iwe have:

• A set of strategies S∗

i =
∏

h∈Hi
Ai(h). As usual, S∗

=
∏

i∈IS
∗

i
denotes the set of strategy profiles, and S∗

−i =
∏

j̸=iS
∗

j , the
set of i’s opponents’ partial strategy profiles. Obviously, for
any history h ∈ H∅

i = H∅

i ∪ {∅}, each strategy profile s∗

33 Remember now that we know from Battigalli (1997) that all rationalizable
strategy profiles induce the same path.
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induces a unique conditional outcome z∗(s∗|h) ∈ Z; when
h = ∅, we simply write z∗(s∗). For each history h ∈ H∅

i
let S∗

−i(h) denote i’s opponents’ strategies that reach h,34

and similarly, let H∅

i (s
∗

i ) denote the set of player i’s histories
reached by strategy s∗i .

35

• A set of conjectures ∆H∅

i (S∗

−i), build upon conditional base
space (U∗

i , C
∗

i ) consisting of basic uncertainty space S∗

−i and
family of conditioning events {S∗

−i(h)|h ∈ H∅

i }. For any con-
jectureµi, any strategy s∗i and any history h ∈ H∅

i we denote
player i’s conditional expected payoff at h by U∗

i (µi, s∗i |h).
36

Players i’s best-reply correspondence is defined as BR∗

i :

∆H∅

i (S∗

−i) ⇒ S∗

i , where,

µi ↦→

⎧⎨⎩ŝ∗i ∈ S∗

i

⏐⏐⏐⏐⏐ŝ∗i ∈

⋂
h∈Hi(ŝ∗i )

arg max
s∗i ∈S∗

i

U∗

i (µi, s∗i |h)

⎫⎬⎭ .

Finally, following Pearce (1984), each player i’s set of (extensive-
form) rationalizable strategies is defined as EFR∗

i =
⋂

n≥0EFR
∗

i,n,
where, first, for each player i, EFR∗

i,0 = S∗

i , H
∗

i,0 = H∅

i and C∗

i,0 =

∆H∅

i (S∗

−i(h)) and then, recursively we set,

EFR∗

i,n+1 =
{
s∗i ∈ EFR∗

i,n

⏐⏐s∗i ∈ BR∗

i (µi) for some µi ∈ C∗

i,n

}
,

H∗

i,n+1 =
{
h ∈ H∗

i,n

⏐⏐S∗

−i(h) ∩ EFR∗

−i,n+1 ̸= ∅
}
,

C∗

i,n+1 =
{
µi ∈ C∗

i,n

⏐⏐µi(h)[EFR∗

−i,n+1] = 1 for any h ∈ H∗

i,n+1

}
,

for any n ≥ 0, where EFR∗

−i,n+1 =
∏

j̸=iEFR
∗

j,n+1. Notice that finite-
ness of S∗ implies that there exists some n̄ such that EFR∗

i,n̄ = EFR∗

i
for any player i. For convenience, at some stages we will rely on
the result by Shimoji and Watson (1998) that ensures that we can
dispense chain-rule updating in the definition of rationalizability.
That is, if we initially set D∗

i,0 =
∏

h∈H∅

i
∆(S−i(h)) and rely on the

latter rather than on C∗

i,0 to iteratively define rationalizability,37
the strategy elimination procedure remains exactly the same.
Remember that we know from Theorem 4 by Battigalli (1997)
that every rationalizable strategy profile induces the backward
induction outcome of the game tree.

Behavior in the game with uncertain information structure can
be regarded as behavior in the game with commonly known per-
fect information. We study next how to formalize this idea prop-
erly. For each player i letσi : H∅

i ×Vi → Σ∅

i be given by (h, Vi) ↦→ σi
where σi ⊆ Vi and h ∈ vσi if h ̸= ∅, and (h, Vi) ↦→ ∅ otherwise.
Map σi represents what information would player i have in G if,
given information structureVi, her history hwas reached. Note that
σi is well-defined, surjective and measurable. When Vi = V ∗

i we
write simply σh = σi(h, V ∗

i ). Applying thesemapswe can relate the
behaviors corresponding to uncertain information structure and
common knowledge of perfect information:

Definition 2 (Choice Morphism). Each player i’s choice morphism is
defined as:
gi : Si × Vi −→ S∗

i
(si, Vi) ↦→ (si(σi(h, Vi)))h∈Hi .

Map gi represents what, given strategy si and information
structure Vi, would player i choose in case her history h was
reached.38 Obviously, gi is well-defined map and notice that

34 I.e., S∗

−i(h) = {s∗
−i ∈ S∗

−i|z
∗(s∗

−i; s
∗

i ) > h for some s∗i ∈ S∗

i }.
35 I.e., Hi(s∗i ) = {h ∈ Hi|z∗

i (s
∗

−i; s
∗

i ) > h for some s∗
−i ∈ S∗

−i}.
36 Formally, U∗

i (µi, s∗i |h) =
∑

s∗
−i∈S

∗
−i
µi(h)[s∗−i] · ui(z∗(s∗

−i; s
∗

i |h)).
37 Properly substituting each C∗

i,n by the corresponding D∗

i,n in which updating
according to the chain rule is not required.
38 The fact that player i might not know that she is at h (Vi(h) ̸= {h}) does not
imply that she does not make a choice at h.

outcomes are related by the following relation: z∗(gi(si, Vi)i∈I ) =

z(s, V ) for any (s, V ) ∈ S × V . In particular, the latter implies that
for any pair (si, Vi) ∈ Si × Vi,

h ∈ Hi(gi(si, Vi)) H⇒ σi(h, Vi) ∈ Σi(si). (1)

Remark 1. Every choice morphism gi is a well-defined quotient
map. Sincewe are dealingwith finite spaces, continuity and closed-
ness are trivial, and thus, all we need to check then is surjec-
tiveness. To see it fix arbitrary strategy s̄i ∈ Si and define map
fi : S∗

i → Si by setting for each s∗i , fi(s
∗

i )(σi) = s∗i (h) if σi = σh for
some h ∈ H∅

i and fi(s∗i )(σi) = s̄i(σi) otherwise. Obviously, fi satisfies
that gi(fi(s∗i ), V

∗

i ) = s∗i for any s∗i ∈ S∗

i , and hence, we conclude that
gi is surjective.

B. Proofs

Throughout the proofs wemake use of the following notational
conventions:

• s∗i (ω) denotes player i’s behavior in the game tree induced
by the strategy and the information structure corresponding
state ω.39

• V ∗

i denotes player i’s information structure corresponding to
the case of perfect information.40

• ICi denotes the event that after every information sequence
consistent with the backward induction path, i chooses the
action that would keep the play in such path.41

• Let CSBORPIi,0 = Ω and Σn
i = Σ∅

i (
⋂

j̸=iRj ∩ PIj ∩ SBj(PIj) ∩

CSBORPIj,n) for any n ≥ 0.

B.1. Main result

Theorem 1 (Sufficiency for the Backward Induction Outcome). Let
G be a game with uncertain information structure. Then, under ra-
tionality and common strong belief in the event that opponents are
rational, have perfect information and strongly believe in their own
perfect information, the backward induction outcome of the tree is
obtained regardless of the information structure; i.e.,

R ∩ CSBORPI ⊆ [z = zI].

Proof. The proof consists of five inclusions. The first and the fifth
hold by definition, and the intermediate three correspond to each
of the steps informally detailed in Appendix A.1 and proved in
Appendix B.2:

R ∩ CSBORPI ⊆

⋂
i∈I

Ri ∩

n̄−1⋂
n=0

⋂
σi∈Σ

n
i

Bi

×

⎛⎝⋂
j̸=i

Rj ∩ PIj ∩ SBj(PIj) ∩ CSBORPIj,n|σi

⎞⎠
⊆

⋂
i∈I

Ri ∩
⋂

σi∈Σ
n̄−1
i

Bi(s∗−i ∈ EFR∗

−i|σi) (Step 1)

⊆

⋂
i∈I

Ri ∩
⋂

σi:vσi<zI

Bi(s∗−i ∈ EFR∗

−i|σi) (Step 2)

⊆

⋂
i∈I

ICi. (Step 3)

The obvious fact that
⋂

i∈I ICi ⊆ [z = zI] completes the proof. ■

39 That is, s∗i (ω) = gi(si(ω), vi(ω)).
40 That is, V ∗

i = {{h}|h ∈ Hi}.
41 That is, ICi = {ω ∈ Ω|ω ∈

⋂
h<zI

⋂
σi∈Σi(si(ω)):h∈vσi

[si(σi) = αh]}.
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B.2. Intermediate steps

B.2.1. First step
In this section we show that at each stage n of an induction

process, two different things hold. First, that Ri ∩ PIi ∩ SBi(PIi) ∩

CSBORPIi,n implies (n + 1)th-order rationalizable behavior in the
game with perfect information for player i. Second, in order to
make the inductive argument work, that if h is a history of player i
that in the perfect information game can be reached by some (n +

1)th-order rationalizable play of her opponents, then, information
sequence σi consistent with perfect information and ending in
{h} is consistent with opponents satisfying the conditions above,
i.e., with

⋂
j̸=iRj ∩ PIj ∩ SBj(PIj) ∩ CSBORPIj,n. Lemma 1 proves the

claim for n = 0 and Lemma 2 inductively extends the claim to
arbitrary n.

Lemma 1. For any player i it holds that:

(i) Ri ∩ PIi ∩ SBi(PIi) ⊆
[
s∗i ∈ EFR∗

i,1

]
.

(ii) σh ∈ Σ0
i for any history h ∈ H∗

i,1.

Proof. Suppose that player i has enjoyed local perfect information
(i.e., σi = σh for some h ∈ H∅

i ) and exhibits strong belief in
own perfect information. Notice then that player i’s conditional
expected utilities of the gamewith uncertain information structure
can be regarded as conditional expected payoffs of the perfect
information game: for any state ω ∈ SBi(PIi), any strategy si ∈ Si
and any history h ∈ H∅

i it holds that:

Ui(ei,1(ω), si|σh) = U∗

i (e
∗

i,1(ω), gi(si, V
∗

i )|h), (2)

where e∗

i,1(ω) ∈ (∆(S∗

−i))
H∅

i is defined by setting:

e∗

i,1(ω)(h)[s
∗

−i] = ei,1(ω)(σh)

⎡⎣∏
j̸=i

g−1
j (s∗j ) × {V ∗

i }

⎤⎦ ,
for any s∗

−i ∈ S∗

−i and any h ∈ H∅

i . In principle, we cannot guarantee
that e∗

i,1(ω) is a conditional probability system, because it is not
obvious that it updates applying the chain rule. Still, this feature
will eventually turn out to be immaterial. To prove the equality in
(2) simply notice that:

Ui(ei,1(ω), si|σh)

=

∑
h∈vσh

∑
(s−i,V )∈(S−i×V)(σh,h)

ei,1(σh)[(s−i, V )] · ui((s−i; si), V |σh)

=

∑
(s−i,V )∈S−i×V

ei,1(σh)[(s−i, V )] · ui((s−i; si), V |σh)

=

∑
(s−i,V−i)∈S−i×V−i

ei,1(σh)[(s−i, (V−i; V ∗

i ))]

· ui((s−i; si), (V−i; V ∗

i )|σh)

=

∑
s∗
−i∈S

∗
−i

ei,1(ω)(σh)

⎡⎣∏
j̸=i

g−1
j (s∗j ) × {V ∗

i }

⎤⎦ · u∗

i (s
∗

−i; gi(si, V
∗

i )|h)

=

∑
s∗
−i∈S

∗
−i

e∗

i,1(ω)(h)[s
∗

−i] · u∗

i (s
∗

−i; gi(si, V
∗

i )|h)

= U∗

i (e
∗

i,1(ω)), gi(si, V
∗

i |h).

We now prove each part of the claim separately:
Part (i). Fix player i and state ω ∈ Ri ∩ PIi ∩ SBi(PIi). We are
going to check that strategy s∗i (ω) = gi(si(ω), vi(ω)) is a sequential
best-reply to conjecture e∗

i,1(ω). We proceed by contradiction and
suppose that s∗i (ω) reaches some history ĥ in which it fails to be

optimal w.r.t. e∗

i,1(ω).
42 Then, there must exist some strategy ŝ∗i ∈

S∗

i such that U∗

i (e
∗

i,1(ω), ŝ
∗

i |ĥ) > U∗

i (e
∗

i,1(ω), s
∗

i (ω)|ĥ). It follows from
(2) that U∗

i (e
∗

i,1(ω
∗), ŝ∗i |ĥ) > Ui(ei,1(ω), si(ω)|σĥ). Consider now the

following strategy for game with uncertain information structure:

ŝi(σi) =

{
ŝ∗i (h) if σi = σh for some h ∈ Hi,

si(ω)(σi) otherwise,

for anyσi ∈ Σi. Clearly, strategy ŝi induces ŝ∗i whenplayer ihas per-
fect information: gi(ŝi, V ∗

i ) = ŝ∗i . Thus, (2) implies that Ui(ei,1(ω),
ŝi|σĥ) = U∗

i (e
∗

i,1(ω), ŝ
∗

i |ĥ), and in consequence, Ui(ei,1(ω), ŝi|σĥ) >
Ui(ei,1(ω), si(ω)|σĥ). But notice that this is a contradiction: since
s∗i (ω) reaches ĥ, it follows from (1) that si(ω) reaches σĥ,

43 and
therefore, since ω ∈ Ri, strategy si(ω) cannot fail to be optimal
w.r.t. conjecture ei,1(ω) at σĥ. Hence, we conclude that s∗i (ω) is a se-
quential best-reply to e∗

i,1(ω). In consequence, s∗i (ω) is a first-order
rationalizable strategy in the game with perfect information. ♦
Part (ii). For technical convenience, we will prove the following
claim,which is slightlymore general but alsomore obscure: for any
player i and any first-order rationalizable strategy s∗i , there exists
some state ωi

∈ Ri ∩ PIi ∩ SBi(PIi) that induces s∗i in the game with
commonly known perfect information, i.e., such that s∗i (ω) = s∗i .
To see it, fix player i and first-order rationalizable strategy ŝ∗i . Since
ŝ∗i ∈ EFR∗

i,1 we know that there exists some conjectureµi ∈ C∗

i,0 for
which s∗i is a sequential best-reply. Then:

• For each j ∈ I pick injective map fj : S∗

j → Sj such that
gj(fj(s∗j ), V

∗

j ) = s∗j for every s∗j ∈ S∗

j . Remember that we know
from Remark 1 that such objects exist.

• Fix some arbitrary first-order conditional belief ēi,1 ∈

∆Σ
∅

i (S−i × V), and some arbitrary s̄i ∈ BRi(ēi,1).

Now, based on conjecture µi, family of maps (fj)j̸=i and first-order
conditional belief ēi,1, we define appropriate first-order conditional
belief êi,1 ∈ ∆Σ∅

i (S−i × V) by setting:

êi,1(σi) [(s−i, V )]

=

{
µi(h)[(f −1

j (sj))j̸=i] if σi = σh for some h ∈ H∅

i , and V = V ∗,

ēi,1(σi)[(s−j, V )] otherwise,

for every pair (s−i, V ) ∈ S−i × V and every information sequence
σi ∈ Σ∅

i . It is routine to check that êi,1 is a well-defined element of
∆Σ∅

i (S−i × V),44 and let êi be some conditional belief hierarchy
whose first-order conditional belief in precisely êi,1. Define now
strategy ŝi as follows:

ŝi(σi) =

{
ŝ∗i (h) if σi = σh for some h ∈ H∅

i ,

s̄i(σi) otherwise,

for any σi ∈ Σi. Set now ωi
= (ω−i, êi, ŝi, V ∗), where ω−i is

some arbitrary element inΩ−i. We claim now that ωi satisfies the
requirements we are asking for:

• s∗i (ω
i) = s∗i . This follow from construction of ŝi.

• ωi
∈ SBi(PIi). This follow from the fact that êi,1 assigns full

probability to V ∗

i whenever possible. The fact that ωi
∈ PIi is

trivially true.
• ωi

∈ Ri. It follows from the construction of êi and ŝi and from
(2) that after those information sequences consistent with
perfect information, ŝi is optimal with respect to êi,1. After
information sequences not consistent with perfect informa-
tion, ŝi is optimal with respect to êi,1 because s̄i is optimal
with respect to ēi,1.

42 That is, there exists some ĥ ∈ Hi(s∗i (ω)) such that s∗i (ω) ̸∈ argmaxs∗i ∈S∗
i

U∗

i (e
∗

i,1(ω), s
∗

i |ĥ).
43 That is, ĥ ∈ Hi(s∗i (ω)) implies that σĥ ∈ Σi(si(ω)).
44 One needs to check that êi,1(σi)[(S−i×V)(σi)] = 1 for any information sequence
σi , and that êi,1 updates beliefs applying, when possible, the chain rule.
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Now to properly prove part (ii) in the claim of the lemma, fix
player i and history h ∈ H∗

i,1. We need to prove that there exist
some strategy si ∈ Si and some state ω ∈

⋂
j̸=iRj ∩ PIj ∩ SBj(PIj)

such that σh ⊆ vi(ω) and z((s−i(ω); si), v(ω)) > h. Fix s∗
−i ∈

EFR∗

i,1 and s∗i ∈ S∗

i such that z∗(s∗) > h, and for each j ̸= i,
pick ωj

∈ Rj ∩ PIj ∩ SBj(PIj) such that s∗j (ω
j) = s∗j . Then, pick

arbitrary conditional belief hierarchy ei and define ω as follows
ω = ((ej(ωj), sj(ωj))j̸=i, (ei, si), V ∗), where si = fi(s∗i ) for some map
fi as defined in Remark 1. We have then: that σh ⊆ vi(ω), that
ω ∈

⋂
j̸=iRj∩PIj∩SBj(PIj) and that z((s−i(ω); si), v(ω)) = z∗(s∗) > h.

Thus, we conclude that σh ∈ Σ0
i . ■

Lemma 2. For any player i and any n ≥ 0 it holds that:

(i) Ri ∩ PIi ∩ SBi(PIi) ∩ CSBORPIi,n ⊆
[
s∗i ∈ EFR∗

i,n+1

]
.

(ii) σh ∈ Σn
i for any history h ∈ H∗

i,n+1.

Proof. The proof proceeds by induction on n. The initial step
(n = 0) is implied by Lemma 1, so let us focus in the inductive
step. Suppose that n ≥ 0 is such that both claims holds for every
k = 0, . . . , n. Next we check separately that both claims hold for
n + 1:
Part (i). Fix player i and state ω ∈ Ri ∩ PIi ∩ SBi(PIi)∩ CSBORPIi,n+1.
Define strategy s∗i (ω) and conjecture e∗

i,1(ω) for the game with
perfect information exactly as done in the proof of Lemma 1. We
know from part (i) of the induction hypothesis that s∗i (ω) is a
sequential best-reply to e∗

i,1(ω), so all we need to check is that
e∗

i,1(ω) ∈ D∗

i,n+1.
45 This is verified by showing inductively that

e∗

i,1(ω) ∈ D∗

i,k for any k = 0, . . . , n+1. It holds trivially that e∗

i,1(ω) ∈

D∗

i,0. Suppose that e∗

i,1(ω) ∈ D∗

i,k for some k ∈ {0, . . . , n − 1}; let us
prove that then, e∗

i,1(ω) ∈ D∗

i,k+1. Pick h ∈ H∗

i,k+1. We know from
part (ii) of the induction hypothesis that σh ∈ Σk

i , and thus, that:

e∗

i,1(ω)(h)
[
EFR∗

−i,k+1

]
= ei,1(ω)(σh)

⎡⎣∏
j̸=i

g−1
j (EFR∗

j,k+1) × {V ∗

i }

⎤⎦
≥ ψi(ei(ω))(σh)

×

⎡⎣ProjΩ−i×V

⎛⎝⋂
j̸=i

Rj ∩ PIj ∩ SBj(PIj) ∩ CSBORPIj,k

⎞⎠⎤⎦ = 1,

being the last equality a consequence of ω ∈ SBi(PIi) ∩ CSBORPIi,n.
Hence, we just learned that conjecture e∗

i,1(ω) assigns probability 1
to EFR∗

−i,k+1 at every history reached by partial profiles of strategies
in EFR∗

−i,k+1. Thus, we conclude that e∗

i,1(ω) ∈ D∗

i,k+1. It follows that
e∗

i,1(ω) ∈ D∗

i,n+1 and in consequence, that s∗i (ω) ∈ EFR∗

i,n+2. ♦
Part (ii). Similarly as done in the proof of Lemma1, due to technical
reasonswewill prove first the slightlymore general statement: for
any player i and any (n+1)th-order rationalizable strategy s∗i , there
exists some stateωi

∈ Ri ∩PIi ∩ SBi(PIi)∩CSBORPIi,n that induces s∗i
in the game with commonly known perfect information, i.e., such
that s∗i (ω) = s∗i . Since we know that the claim is true for n = 0 (see
proof of Lemma 1), we can proceed inductively: let us suppose that
the claim is true for n, and let us prove it for n+1. Then, fix player i
and (n + 2)th-order rationalizable strategy s∗i , and pick conjecture
µi ∈ C∗

i,n+1 for which s∗i is a sequential best-reply. We follow now
a constructive process which, despite being similar to that in the
proof of part (ii) of Lemma 1 presents some additional technical
subtleties. Consider first the following elements:

• First, for each k = 1, . . . , n + 1 define:

Xk
i (µi) = {h ∈ H∅

i |µi(h′)[S−i(h)] = 0
for every h′ < h} ∩ H∗

i,k \ H∗

i,k+1.

45 As mentioned above, in principle we cannot ensure that e∗

i,1(ω) updates beliefs
according to the chain rule.

Then, Xk
i (µi) is the set of histories in H∗

i,k \ H∗

i,k+1 in which
µi updates without applying the chain rule. It is important
to identify set

⋃n+1
k=1X

k
i (µi) because it is telling us in which

information sequences consistent with perfect information
will we be able to impose beliefs derived from µi without
spoiling belief updates via the chain rule.46 It is also useful
to identify each particular Xk

i (µi), because it is telling us
which the highest degree of higher-order belief in opponents’
rationality and perfect information that can be sustained at
a given information sequence consistent with perfect infor-
mation.

• We apply now the induction hypothesis. We know from the
latter that for any k = 0, . . . , n, any h ∈ Xk+1

i (µi), any
s∗
−i ∈ supp µi(h) and any j ̸= i we can pick some state
ωj(s∗j , k) satisfying s∗j (ω

j(s∗j , k)) = s∗j and ω
j(s∗j , k) ∈ Rj ∩ PIj ∩

SBj(PIj) ∩ CSBORPIj,k.
• Fix some arbitrary conditional belief hierarchy ēi consistent

with CSBORPIi,n+1, and pick strategy s̄i which is a sequential
best-reply to ēi,1.

We are going to rely now on the elements introduced above to
define some appropriate conditional belief ψ̂i ∈ ∆Σ∅

i (E−i×S−i×V).
We define it piecewise, depending on the three possible domains
each information sequence σi can belong to:

• σi = σh for some history h ∈ Xk+1
i (µi) and some k =

0, . . . , n. Then, set:

ψ̂i(σh) [(e−i, s−i, V )]

=

⎧⎪⎨⎪⎩
µi(h)[s∗−i] if V = V ∗, s∗

−i ∈ supp µi(h)
and for any j ̸= i,
(ej, sj) = (ej(ωj(s∗j , k)), sj(ω

j(s∗j , k))),
ēi,1(σi)[(s−j, V )] otherwise,

for any (e−i, s−i, V ) ∈ E−i × S−i × V . Note that the fact that
each µi(h) has finite support implies that every ψ̂i(σh) is a
well defined element of ∆(E−i × (S−i × V)(σh)). In addition,
we know that by construction it assigns probability 0 to
E−i × (S−i × V)(σh′ ) for every h′

∈
⋃n+1

k=1X
k
i (µi) such that

h < h′.
• σi = σh for some history h ̸∈

⋃n+1
k=1X

k
i (µi). Then, pick

the unique h′
∈

⋃n+1
k=1X

k
i (µi) satisfying that h′ < h and

µi(h)′[S∗

−i(h)] > 0 and define ψ̂i(σh) applying the chain rule
on ψ̂i(σh′ ).

• σi ̸= σh for some history h ∈ H∅

i . Then, set ψ̂i(σi) = ψi(ēi)(σi).

It is then routine to check that ψ̂i is a well-defined conditional
belief in∆Σ∅

i (E−i×S−i×V).47 Set then conditional belief hierarchy
êi = ψ−1

i (ψ̂i) and define strategy ŝi as follows:

ŝi(σi) =

{
s∗i (h) if σi = σh for some h ∈ H∅

i ,

s̄i(σi) otherwise,

for any σi ∈ Σi. Finally, let ωi
= (ω−i, êi, ŝi, V ∗), where ω−i is

some arbitrary element inΩ−i. We claim now that ωi satisfies the
requirements we are asking for:

• s∗i (ω
i) = s∗i . This follow from construction of ŝi.

• ωi
∈ CSBORPIi,n+1. It follows by construction of êi. To see it

fix first k ∈ {1, . . . , n} and information sequence σi ∈ Σk
i .

Now, if σi ̸= σh for any history h ∈ H∅

i , notice that ēi
has been chosen ex profeso to guarantee that ψi(ēi)(σi) will
be assigning full probability to states in the projection of

46 By information sequences consistent with perfect information we mean those
σi = σh for some history h.
47 Both common certainty of coherence and update applying the chain rule are
satisfied by construction.
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j̸=iRj ∩ PIj ∩ SBj(PIj) ∩ CSBORPIj,k. Alternatively, if σi = σh

for some history h ∈ H∅

i , it follows from part (i) of the
induction hypothesis that h ∈ H∗

i,k+1. Thus, ψ̂i(σh) assigns
positive probability only to the projection of states ωj( · , k)
of the kind obtained via part (ii) of the induction hypothesis,
which satisfy that ωj( · , k) ∈ Rj ∩ PIj ∩ SBj(PIj) ∩ CSBORPIj,k.

• ωi
∈ SBi(PIi). This follow from the fact that êi,1 assigns full

probability to V ∗

i whenever possible. The fact that ωi
∈ PIi is

trivially true.
• ωi

∈ Ri. It follows from the construction of êi and ŝi and from
(2) that after those information sequences consistent with
perfect information, ŝi is optimal with respect to êi,1. After
information sequences not consistent with perfect informa-
tion, ŝi is optimal with respect to êi,1 because s̄i is optimal
with respect to ēi,1.

Now to properly prove part (ii) in the claim of the lemma, fix
player i and history h ∈ H∗

i,n+2. We need to prove that there exist
some strategy si ∈ Si and some state ω ∈

⋂
j̸=iRj ∩ PIj ∩ SBj(PIj) ∩

CSBORPIj,n+1 such that σh ⊆ vi(ω) and z((s−i(ω); si), v(ω)) > h.
Fix s∗

−i ∈ EFR∗

i,n+2 and s∗i ∈ S∗

i such that z∗(s∗) > h, and for
each j ̸= i, pick ωj

∈ Rj ∩ PIj ∩ SBj(PIj) ∩ CSBORPIj,n+1 such that
s∗j (ω

j) = s∗j . Then, pick arbitrary conditional belief hierarchy ei
and define ω as follows ω = ((ej(ωj), sj(ωj))j̸=i, (ei, si), V ∗), where
si = fi(s∗i ) for some map fi as defined in Remark 1. We have then
that: σh ⊆ vi(ω), that ω ∈

⋂
j̸=iRj ∩ PIj ∩ SBj(PIj) ∩ CSBORPIj,n+1

and that z((s−i(ω); si), v(ω)) = z∗(s∗) > h. Thus, we conclude that
σh ∈ Σn+1

i . ■

B.2.2. Second step
The following result easily follows from the two lemmas in

Appendix B.2.1.

Corollary 1. For any player i it holds that:

{σi ∈ Σ∅

i |vσi < zI} ⊆

n̄−1⋂
n=0

Σn
i .

Proof. Fix player i, n ∈ {0, . . . , n̄ − 1} and information sequence
σi preceding the backward induction outcome. Obviously, there
exists some history h in vσi such that h < zI . Hence, in particular,
h ∈ H∗

i,n+1 and thus, we know from part (ii) of Lemma 2 that
σh ∈ Σn

i . Then, by definition there exist some state ω ∈
⋂

j̸=iRj ∩

PIj ∩ SBj(PIj) ∩ CSBORPIj,n and some strategy si ∈ Si such that
σh ⊆ vi(ω) and z(s−i(ω), v−i(ω), si, vi(ω)) > h. Pick now arbitrary
information structure such that σi ⊆ V ′

i , and define strategy s′i as
follows:

si(σ ′

i ) =

{
si(σh′ ) if h′

≤ h for some h′
∈ vσ ′

i
,

si(σ ′

i ) otherwise,

for any σ ′

i ∈ Σi. Set now ω̂ = (ω−i, v−i(ω), ei(ω), s′i, V
′

i ). Everything
we need holds by construction: we have first that ω̂ ∈

⋂
j̸=iRj ∩

PIj ∩ SBj(PIj) ∩ CSBORPIj,n, second, that σi ⊆ vi(ω̂) and finally, that
z(s−i(ω̂), v−i(ω̂), s′i, vi(ω̂)) > h for h ∈ vσi . Thus, σi ∈ Σn

i . ■

B.2.3. Third step
Finally, we present the intermediate result that summarizes

how a player infers her exact location in the game tree and opti-
mally reacts to it.

Lemma 3. For any player i that at every information sequence
consistent with the backward induction path believes her opponent to
play rationalizable strategies, following the backward induction path
is the only optimal choice; i.e.,

Ri ∩
⋂

σi:vσi<zI

Bi(s∗−i ∈ EFR∗

−i|σi) ⊆ ICi.

Proof. For simplicity, during the proof we write σi < zI to mean
that vσi < zI . Then, we are going to check first that, under the as-
sumptions of the claim, at every information sequence consistent
with the backward induction path, the corresponding player is able
infer in which particular history of the last information set of the
information sequence she is at. That is, for any player i, any state ω
and any information sequence σi ∈ Σi(si(ω)) such that σi < zI we
have that,

Bi(s∗−i ∈ EFR∗

−i|σi) ⊆ Bi(s∗−i ∈ S∗

−i(h)|σi) (3)

for the unique h ∈ vσi such that h < zI . To see it, proceed
by contradiction and suppose that there exists some alternative
h′

∈ vσi different from h that is reached by some partial profile
of strategies ŝ∗

−i ∈ EFR∗

−i.
48 Since h < zI we can also pick some

rationalizable strategy ŝ∗i that reaches h.49 Notice though that the
fact that h, h′

∈ vσi implies that S∗

i (h) = S∗

i (h
′) and thus, we can

conclude that ŝ∗ is a profile of rationalizable strategies such that
z∗(ŝ∗) > h′ and therefore, such that z∗(ŝ∗) ̸= zI . We reached a
contradiction then, because Theorem 4 by Battigalli (1997) shows
that z∗(s∗) = zI for any profile of rationalizable strategies s∗.
Hence, we conclude that EFR∗

−i ⊆ S∗

−i(h), from which (3) follows
immediately.

Maintain player i, state ω ∈
⋂
σi<zIBi(s∗−i ∈ EFR∗

−i|σi) and
information sequence σi ∈ Σi(si(ω)) such that σi < zI fixed. We
check next that Ui(ei,1(ω), si(ω)|σi) = ui(zI). Note first that (3)
allows for the following characterization of conditional expected
utility:

Ui(ei,1(ω), si|σi) =

∑
Vi∈Vi

∑
s∗
−i∈S

∗
−i

ei,1(ω)(σi)

⎡⎣∏
j̸=i

g−1
j (s∗j ) × {Vi}

⎤⎦
·u∗

i (s
∗

−i; gi(si, Vi)|h), (4)

for any si ∈ Si. Then, to see that Ui(ei,1(ω), si(ω)|σi) = ui(zI)
proceed again by contradiction and consider the two possible
situations:

• Suppose that Ui(ei,1(ω), si(ω)|σi) > ui(zI). Then it follows
from (4) that there must exist some information structure
Vi for player i and some partial profile of rationalizable
strategies of i’s opponents ŝ∗

−i that reaches h and such that
u∗

i (ŝ
∗

−i; gi(si(ω), Vi)|h) > ui(zI). Pick nowarbitrary conjecture
µi ∈ C∗

i and define µ̂i as follows:

µ̂i(h′) =

{
1{ŝ∗

−i}
if ŝ∗

−i ∈ S∗

−i(h
′),

µi(h′) otherwise,

for any h′
∈ H∅

i . It is routine to check that µ̂i ∈ C∗

i . Remember
now that we know from Theorem 4 by Battigalli (1997) that
z∗(s∗) = zI for any profile of rationalizable strategies s∗ and
thus, that every rationalizable strategy s∗i of player i reaches
h, the unique history in vσi that precedes zI . Then, since
h < zI and every sequential best-reply to µ̂i is rationalizable,
we know that for any ŝ∗i ∈ BR∗

i (µ̂i) we have both that
U∗

i (µ̂i, ŝ∗i |h) = ui(zI) and ŝ∗i ∈ argmaxs∗i ∈S∗
i
U∗

i (µ̂i, s∗i |h).
Notice that it follows from the latter that U∗

i (µ̂i, ŝ∗i |h) ≥

U∗

i (µ̂i, gi(si(ω), Vi)|h), and that:

U∗

i (µ̂i, gi(si(ω), Vi)|h) = u∗

i (ŝ
∗

−i, gi(si(ω), Vi)|h) > ui(zI).

Thus, we conclude thatU∗

i (µ̂i, ŝ∗i |h) > ui(zI) andU∗

i (µ̂i, ŝ∗i |h)
= ui(zI). Hence, we reach a contradiction.

48 I.e., such that ŝ∗
−i ∈ EFR∗

−i ∩ S∗

−i(h
′) ̸= ∅.

49 I.e., ŝ∗i ∈ EFR∗

i ∩ S∗

i (h).
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• Suppose instead that Ui(ei,1(ω), si(ω)|σi) < ui(zI). Define
then strategy ŝi as follows:

ŝi(σ ′

i ) =

{
αh′ if σ ′

i ≥ σi, h′ < zI and h′
∈ vσ ′

i
,

si(ω)(σi) otherwise,

for any σ ′

i ∈ Σi. Clearly, Ui(ei,1(ω), ŝi|σi) = ui(zI): simply
notice that for any partial profile of i’s opponents rational-
izable strategies ŝ∗

−i we have that z∗(ŝ∗
−i; gi(ŝi, Vi)|h) = zI

for any player i’s information structure Vi. It follows then
Ui(ei,1(ω), si(ω)|σi) < Ui(ei,1(ω), ŝi|σi), and therefore, si(ω)
is not optimal w.r.t. ei,1(ω) at σi. Hence, we reach again a
contradiction, because σi ∈ Σi(si(ω)) and ω ∈ Ri.

Thus, it must be true Ui(ei,1(ω), si(ω)|σi) = ui(zI), and therefore,
that sσi (ω) = αh for the unique h ∈ vσi such that h < zI . In
consequence, ω ∈

⋂
h<zI

⋂
σi∈Σi(si(ω)):h∈vσi

[sσi = αh], i.e., ω ∈

ICi. ■
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