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Economic predictions often hinge on two intuitive premises: agents rule out the possibility 
of others choosing unreasonable strategies (‘strategic reasoning’), and prefer strategies 
that hedge against unexpected behavior (‘cautiousness’). These two premises conflict and 
this undermines the compatibility of usual economic predictions with reasoning-based 
foundations. This paper proposes a new take on this classical tension by interpreting 
cautiousness as robustness to ambiguity. We formalize this via a model of incomplete 
preferences, where (i) each player’s strategic uncertainty is represented by a possibly 
non-singleton set of beliefs and (ii) a rational player chooses a strategy that is a 
best-reply to every belief in this set. We show that the interplay between these two 
features precludes the conflict between strategic reasoning and cautiousness and therefore 
solves the inclusion-exclusion problem raised by Samuelson (1992). Notably, our approach 
provides a simple foundation for the iterated elimination of weakly dominated strategies.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Economists commonly use iterated strategy elimination procedures as solution concepts in games. Such procedures thus 
constitute one of the cornerstones for modeling agents’ behavior in economic theory. The predictive power of iterated 
elimination procedures is in general lower than that of equilibrium-related notions; however, since the latter requires players 
to correctly forecast their opponents’ behavior (see Aumann and Brandenburger, 1995), the former seems more appropriate 
in situations of multiple equilibria wherein either the players or the economic analyst lack accurate data about past play or 
such data appears uninformative about future behavior.1 For instance, this is the case in many application of auction theory, 
e.g., wireless spectrum, carbon emission rights and online advertising.2 Consequently, thorough understanding of the forces 
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1 In Dekel and Fudenberg’s (1990) words (p. 243): “Nash equilibrium and its refinements describe situations with little or no ‘strategic uncertainty,’ in 
the sense that each player knows and is correct about the beliefs of the other players regarding how the game will be played. While this will sometimes 
be the case, it is also interesting to understand what restrictions on predicted play can be obtained when the players’ strategic beliefs may be inconsistent, 
that is, using only the assumption that it is common knowledge that the players are rational.”

2 See Milgrom (1998), Cramton and Kerr (2002) and Varian (2007), respectively.
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behind iterated elimination is relevant from both a purely theoretical perspective and a more applied point of view, and is 
key to effective mechanism design and correct identification in empirical analyses.3

The conceptual appeal of iterated elimination procedures is that they carry the intuitive game-theoretic appeal of strategic 
reasoning: if a player is certain that some of her opponent’s strategies are not going to be played, then she might deem some 
of her own strategies to be unreasonable.4 However, as discussed in Samuelson’s (1992) classic analysis, strategic reasoning 
is in conflict with the criterion of cautiousness, which dictates that players favor strategies that, ceteris paribus, hedge 
against unexpected behavior. If players are modeled as expected utility maximizers, the clash seems inescapable: Strategic 
reasoning requires each player i’s beliefs to assign zero probability to some of the strategies of i’s, while cautiousness 
requires player i’s decision to be sensitive to those strategies that receive zero probability (and are therefore of negligible 
importance for the maximization problem). Given that economic modeling often invokes the avoidance of weakly dominated 
strategies—a specific kind of cautiousness—as a criterion for equilibrium selection,5 the seemingly mutually exclusive nature 
of strategic reasoning and cautiousness requires clarification. Such an understanding is desirable in particular in scenarios 
where behavior is likely to be reasoning-based and cautiousness plays a role.

This paper proposes a new take on this longstanding problem by suggesting a novel theoretical foundation for the 
interplay between strategic reasoning and cautiousness. The analysis by Samuelson (1992) clearly shows that two ingredients 
are necessary to overcome this tension: First, multiple beliefs are needed to account for epistemic conditions that would 
be mutually excluding if required to be satisfied by a single belief. Second, the best-reply needs to be sensitive to all 
these beliefs. We achieve this within our framework by augmenting the underlying standard decision-theoretic foundation 
for each player by allowing for incomplete preferences à la Bewley (2002) where: (i) Each player’s strategic uncertainty 
is represented by a possibly non-singleton set of beliefs thus allowing for ambiguity, and (ii) a rational player chooses 
a strategy that is a best-reply to every belief in her set, so that the resulting choice is robust to the possible ambiguity 
faced by the player.6 Under this set-up, and inspired by Brandenburger et al. (2008), we say that a player assumes certain 
behavior by her opponents if at least one of the beliefs in her set has full-support on the collection of states representing 
such behavior. Consequently, the introduction of ambiguity and the requirement of robustness give great flexibility: It is 
possible for a player to assume certain behavior and, simultaneously, assume certain more restrictive behavior. If the player 
is also rational, her choice needs to be a best-reply to both of these beliefs. Hence, in particular, the tension between 
strategic reasoning and cautiousness is solved: A player can be strategically sophisticated by having one belief that assigns 
zero probability to her opponents playing dominated strategies, and at the same time cautious by having another belief that 
assigns positive probability to every strategy of her opponents. Thus, our model overcomes the problem as identified by 
Samuelson (1992) since it allows precisely for the two necessary ingredients.

Based on the above, we build a framework that provides reasoning-based foundations for iterated admissibility—the 
iterated elimination of weakly dominated strategies. In Theorem 1 we show that, when type spaces are belief-complete 
(roughly speaking, rich enough to capture any possible belief hierarchy), iterated admissibility characterizes the behavioral 
implications of rationality, cautiousness, and common assumption thereof. From our characterization, it is easy to see that 
the foundations of iterated admissibility necessarily require the presence of ambiguity whenever strategic reasoning has 
any bite. If the elimination procedure consists of multiple rounds, the set of ambiguous beliefs needs to contain a specific 
belief with full-support on the set of opponents’ strategies that survive each round. Theorem 2 provides the analysis for 
the relaxation of belief-completeness and shows that, in this case, it is self-admissible sets à la Brandenburger et al. (2008)
which characterize the behavioral implications of rationality, cautiousness and common assumption thereof. Although the 
main approach in the paper is conceptual and focused on the link between cautiousness in reasoning-based processes and 
robustness to ambiguity, the results provide a methodological contribution for the use of incomplete preferences in game 
theory, which is a subject of interest in itself aside from its interpretation as a reflection of ambiguity.7

The literature studying the conflict between strategic reasoning and cautiousness is epitomized by the seminal paper 
by Brandenburger et al. (2008), who shed light on the question by building upon the lexicographic probability system ap-
proach by Blume et al. (1991a,b).8 Lexicographic probability systems represent the uncertainty faced by a decision maker 
whose preferences depart from standard Bayesian preferences by allowing violations of the continuity axiom. In this setting, 

3 See Bergemann and Morris (2009, 2011); Bergemann et al. (2011) and Aradillas-Lopez and Tamer (2008), respectively.
4 This is clearly exemplified by the informal argument for competitive prices in Bertrand duopoly models. Consider a market consisting of profitable, 

identical firms A and B: If A slightly lowers its mark-up it should absorb all the demand and increases its profit; now, this is easy to forecast by B , which 
might in turn decide to lower its mark-up more than slightly and thus absorb itself all the demand and increase her profit with respect to the losses 
obtained under A’s, hypothetical, initial slight cut. Obviously, this logic leads to the standard zero mark-up conclusion. Sketches of this elementary intuition 
in modern economic theory can be traced back to Keynes (1936): “It is not a case of choosing those [faces] that, to the best of one’s judgment, are really 
the prettiest, nor even those that average opinion genuinely thinks the prettiest. We have reached the third degree where we devote our intelligences to 
anticipating what average opinion expects the average opinion to be. And there are some, I believe, who practice the fourth, fifth and higher degrees.”

5 E.g., Kohlberg and Mertens (1986), Palfrey and Srivastava (1991), Feddersen and Pesendorfer (1997), or Sobel (2017, 2019).
6 Due to incompleteness such a strategy might not exist for a given set of beliefs. In such case we also say that the player is not rational.
7 As argued by Aumann (1962): “Of all the axioms of utility theory, the completeness axiom is perhaps the most questionable. [. . . ] [W]e find it hard to 

accept even from the normative viewpoint. Does ‘rationality’ demand that an individual make definite preference comparisons [. . . ]” Previous applications 
of Bewley’s (2002) model to game theory include, among others, Lopomo et al. (2011, 2014), who study mechanism design and optimal contracting, 
respectively.

8 Early contributions along the same lines include, for example, Brandenburger (1992) and Stahl (1995).
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Brandenburger et al. (2008) provide reasoning-based foundations for finitely many iterations of weakly dominated strategy 
elimination based on rationality and finite-order assumption of rationality, but also present a celebrated impossibility result: 
under some standard technical conditions and generically in all games, common assumption of rationality cannot be satis-
fied. This negative result has spurred a line of research concerned with obtaining sound epistemic foundations for iterated 
admissibility. Keisler and Lee (2015) and Yang (2015) propose answers by tweaking topological properties of the modeling 
of higher-order beliefs and the notion of assumption, respectively, while Lee (2016) obtains foundations by proposing a 
modification in the definition of coherence.9 Catonini and De Vito (2018a) also provide foundations by introducing a weaker 
notion of the likeliness-ordering of events that characterizes the lexicographic probability system, and via an alternative def-
inition of cautiousness that restricts attention to the payoff-relevant component of the states. In a slightly different direction, 
Heifetz et al. (2019) propose a new solution concept, comprehensive rationalizability, that coincides with iterated admissibility 
in many settings and admits epistemic foundations. Within a standard Bayesian decision-theoretic model, Barelli and Galanis 
(2013) provide a characterization for iterated admissibility by introducing an exogenous ‘tie breaking’ criterion. Robustness 
to ambiguity is studied by Stauber (2011, 2014) with a different interpretation from ours.

Our paper can be regarded as complementary to the lexicographic probability system approach as standard Bayesian 
preferences are also abandoned by dropping completeness instead of continuity. Both these relaxations allow for multiple 
beliefs, but while the former requires a specific order, our model drops the order altogether and allows for multiplicity 
directly. However, apart from the transparent link between cautiousness and robustness to ambiguity that our framework 
allows for, the nice structure of the sets of ambiguous beliefs representing incomplete preferences has some additional 
advantages. First, it is easy to show that rationality and common assumption of rationality is a non-empty event and thus, 
that iterated admissibility is properly founded for all games. Second, the definitions and formalism involved do not require 
departures from the canonical definition of the objects involved: (i) The modeling of higher-order beliefs (i.e., the type 
structures employed), including the definition of coherence, and the version of assumption that we rely on are natural 
extensions of their counterparts in the realm of standard Bayesian preferences; and (ii) the notion of cautiousness invoked 
in our theorems is not necessarily restricted to environments where the sets of states have a specific structure (e.g. games).10

Finally, the presence of ambiguity via incomplete preferences has been shown to be empirically testable by recent work by 
Cettolin and Riedl (2019).

The rest of the paper is structured as follows. First, Section 2 provides an informal, non-technical overview of the effect of 
robustness to ambiguity on predictions in games, and specifically, on iterated admissibility as a solution concept. Section 3
reviews both the game-theoretic and the decision-theoretic preliminaries and Section 4 introduces the epistemic framework 
and the interpretation of strategic cautiousness as a manifestation of robustness of ambiguity. Section 5 the presents the 
epistemic characterization results. Section 6 concludes. All proofs and purely technical digressions are relegated to the 
appendices.

2. Non-technical overview

2.1. Examples

To illustrate the intuition behind the usual tension between rationality and cautious behavior and to show how our 
approach avoids this issue, we present two examples.

Example 1. Consider a two player game with the following payoff matrix11:

0
2

1
0

1
1

0
1

Bob
L R

Ann
T

D

Clearly, no action is strictly dominated for either player, so (standard) rationalizability predicts {T , D} × {L, R}. However, 
R is weakly dominated by L. Deleting R will therefore make D strictly dominated in the reduced game. Thus, iterated 
admissibility has a unique prediction in this game: (T , L).

Now assume that one wishes to study how players themselves reason about this game. If Bob is rational and cautious 
he should play L. Suppose Ann is cautious as well. Therefore her belief has to put positive probability on Bob playing L

9 Similar to Epstein and Wang (1996), coherency is imposed on the preferences directly, not only on the beliefs that represent the preferences.
10 Though they are sensitive to topological specifications.
11 This is the leading example of Brandenburger et al. (2008) and was introduced by Samuelson (1992).
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and on Bob playing R . However, if Ann believes that Bob is rational and cautious, then she should rule out Bob playing 
R . This is the ‘inclusion-exclusion’ problem as identified by Samuelson (1992). On the one hand, Ann should include R in 
her belief because she is cautious. On the other hand, she should exclude R because she believes that Bob is rational and
cautious. �

In our framework, we have more flexibility because players are not Bayesian, but are allowed to have a (potentially 
non-singleton) set of beliefs. To see how this relaxation avoids the tension just described, we provide a slightly more 
elaborate example, which also explores the reasoning of the players more explicitly.

Example 2. Again, there are two players, Ann and Bob, who play the following game:

0
2

0
2

1
2

3
2

1
4

1
0

1
2

1
0

1
0

1
4

1
2

1
0

Bob
A B C D

Ann

H

M

L

Now suppose that each player faces ambiguity (as described by Bewley, 2002) about the strategy choice of their oppo-
nent. That is, neither player has a unique belief about the opponent’s strategy choice, but rather each has a set of beliefs. In 
particular, suppose that Ann has a convex closed set of beliefs described by two extreme points. Her first belief is uniform 
across all of Bob’s strategies, μ1

A(sB) = 1/4 for sB = A, B, C, D , and her second (extreme) belief is uniform across A, B , 
and C only, μ2

A(sB) = 1/3 for sB = A, B, C . Similarly, Bob faces uncertainty about Ann’s choice. Consider the following set 
of beliefs for Bob, which also has two extreme beliefs. The first is uniform across all of Ann’s strategies, μ1

B (sA) = 1/3 for 
sA = H, M, L, and the second belief assigns equal probability to H and M , μ2

B(H) = μ2
B(M) = 1/2.

Let us check what strategies are rational for each player given their beliefs. Preferences à la Bewley (2002) are incomplete, 
and for incomplete preferences there is no obvious definition of rationality: Optimality is a stronger requirement than 
maximality for incomplete orders. As stated in the introduction, the solution to the inclusion-exclusion problem requires 
that a best-reply to be sensitive to all beliefs. Thus, we identify rationality with optimality so that a rational strategy is a 
best-reply to all beliefs, i.e. the choice needs to be robust to the ambiguity faced by the player. In this example this implies 
that Ann will not rationally choose L since it is not a best-reply that is robust to the ambiguity that she faces. H and M , 
on the other hand, are best-replies to all beliefs and are therefore rational choices for Ann. For Bob, only D is not rational 
because it is not a best-reply to any of his beliefs. The three other strategies A, B , and C are rational as they are best-replies 
to all of his beliefs. Thus, with these sets of beliefs the prediction of the model would correspond to iterated admissibility. 
This is not a coincidence and foreshadows our results on the characterization iterated admissibility, explained in more detail 
below, where the strategic reasoning is also made explicit. �
2.2. Heuristic treatment of strategic reasoning

In the previous examplesit can be seen that a set of beliefs enables strategic reasoning and cautiousness to be incorpo-
rated. To study games in general, players need to be allowed to reason about the reasoning process of other players too. 
This necessitates the formalizing of infinite sequences of the following form:

a1: Ann is rational and cautions b1: Bob is rational and cautions
a2: a1 holds and Ann assumes b1 b2: b1 holds and Bob assumes a1
a3: a1 holds and Ann assumes b1 & b2 b2: b1 holds and Bob assumes a1 & a2

. . . . . .

If this infinite sequence holds, we say that there is rationality, cautiousness, and common assumption thereof (RCCARC).
To study these infinite sequences and to see which strategies are played if they hold, (epistemic) types need to be 

introduced for each player. Accordingly, consider T A and T B as type spaces for Ann and Bob, respectively. Usually, each of 
Ann’s type t A ∈ T A is associated with a belief about Bob’s strategy and type, i.e. a probability distribution over S B × T B . 
However, the idea here is to model players who face ambiguity, so each type is associated with a (closed, and convex) set 
of beliefs about S B × T B . Thus, for a strategy-type pair of Ann (sA, t A), strategy sA is said to be rational if sA is a best-reply 
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Fig. 1. Cautiousness.

Fig. 2. Rationality, cautiousness, and common assumption thereof.

to all of the beliefs associated with t A . Whether a player is cautious depends only on her beliefs: she thinks everything 
is possible. That is, one of her beliefs has full support on the full space of uncertainty. Thus, we say that Ann’s type t A is 
cautious if there exists a belief in the associated set of belief which has full support on S B × T B .

For example, consider a type of Ann’s, t A , which has only a singleton set of beliefs {μA} with support as depicted in 
Fig. 1. For such a cautious type, the question arises of which strategies are rational. Accordingly, consider the marginal of 
μA on Bob’s strategy space S B . This marginal has full support on S B and if Ann is rational, her rational choice has to 
be a best-reply to this marginal. It then follows from Pearce (1984) that she must choose a strategy which is not weakly 
dominated.

Now, it is possible to study the infinite sequences described above. In this case the picture that emerges looks like Fig. 2. 
Here the small area with solid boundary corresponds to all strategy-type combinations of Bob satisfying RCCARC. Now, set 
a strategy-type combination (sA, t A) for Ann. Does this type correspond to RCCARC for Ann? i.e. does the type satisfy the 
sequence a1, a2, . . .? It is already known that if a1 holds there needs to be a belief in the associated set of beliefs which has 
support as μ1

A . Next, it is considered that Ann assumes b1. This rules out some of Bob’s strategy-type pairs, but also requires 
t A to have a belief which has full support on the remaining pairs. Thus, in the associated set of beliefs there needs to a 
belief μ2

A . In the next step, Ann is considered to assume b1 and b2. Similar reasoning applies and there needs to be a belief 
like μ3

A in the set of beliefs corresponding to t A . This procedure can now be iterated (as indicated in the picture) to verify 
whether the type t A corresponds to RCCARC for Ann. Only finite games are considered here so at some stage n this iteration 
no longer rules out any strategies for Bob. However, it might be the case that at every step there are still some types of Bob’s 
that need to be ruled out. In the worst case there needs to be a different belief for each iteration as the support of each 
belief is changing over the course of the sequence. However, this does not cause a problem. For each type the set of beliefs 
could be potentially very large.12 Since such large sets of beliefs are within the framework under consideration, the event 
RCCARC is not empty. Thus we do not get a negative result, as Brandenburger et al. (2008) find in a different framework. To 
illustrate more specifically how this analysis works, types are added explicitly for the example considered above.

Example 2 (continuing from p. 200). Consider the following type space Ti = {t0
i , t1

i , t2
i , t3

i

}
for i = A, B and define (with some 

abuse of notation) the following beliefs on S B × T B :

μ1
A(sB , tB) = 1/16, for all (sB , tB) ∈ S B × T B ,

μ2
A(sB , tB) = 1/9, for all (sB , tB) ∈ {A, B, C} × {t1

B , t2
B , t3

B}, and

μ3
A(sB , t3

B) = 1/3, for all sB ∈ {A, B, C}.

12 That is, not finitely generated sets.
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Similarly, define the following beliefs on S A × T A :

μ1
B(sA, t A) = 1/12 for all (sA, t A) ∈ S A × T A,

μ2
B(sA, t1

A) = 1/6, for all sA ∈ S A, μ2
B(sA, t A) = 1/8, for all (sA, t A) ∈ {H, M} × {t2

A, t3
A}, and

μ3
B(sA, t3

A) = 1/2, for all sA ∈ {H, M}.
Given these beliefs, define the set of beliefs Mi(ti) for each type as follows: for i = A, B set Mi(t0

i ) = {
μ3

i

}
, Mi(t1

i ) = {
μ1

i

}
, 

Mi(t2
i ) is the convex hull of μ1

i and μ2
i , and Mi(t3

i ) is the convex hull of μ1
i , μ2

i , and μ3
i

Now, it is possible to analyze the infinite sequences a1, a2, . . . and b1, b2, . . . introduced above. a1 is the event that Ann 
is rational and cautious, so we must collect all strategy-type pairs which satisfy the full-support requirement (cautiousness) 
and the requirement that the strategy is a best-reply to all beliefs of the given type (rationality). Here, all types but t0

i
have at least one belief with full support on S−i × T−i . Together with rationality this gives that the following strategy-type 
pairs correspond to a1: S A × {t1

A} ∪ {H, M} × {t2
A, t3

A}. Similarly, b1 corresponds to {A, B, C} × {t1
B , t2

B , t3
B}. So both a1 and 

b1 rule out some strategy-type pairs and in particular the weakly dominated strategy D is ruled out. Next, to get to a2, 
we want to find all types of Ann that assume b1. That is, all types of Ann that have at least one belief with full-support 
on {A, B, C} × {t1

B , t2
B , t3

B}. Only t2
A and t3

A satisfy this requirement, leaving {H, M} × {t2
A, t3

A} corresponding to a2. For Bob, 
it emerges that b2 corresponds to {A, B, C} × {t2

B , t3
B}. Again, note that in this step the interactive reasoning leads to the 

ruling out of L, which is weakly dominated after elimination of D . In the next step (i.e. a3 and b3), types t2
i are ruled out, 

but no more strategies. This construction, however, would lead to the conclusion that a4 and b4 do not correspond to any 
strategy-type pairs. The solution, and this is the main idea of how to prove one direction of Theorem 1, is to add more 
types. For each iteration add another type with full support on the previous rounds (similar to types t3

i ). This gives an 
infinite (but countable) number of types and only the “limiting” type corresponds to RCCARC. This argument shows that the 
illustration in Fig. 2 is accurate in the sense that for higher order iterations the supported strategies are constant, but only 
types are removed in each round.

Theorem 2 provides a direct (and hence different) way to construct finite type spaces so that for strategy-type pairs 
satisfying RCCARC the strategies of iterated admissibility (or those of any other self-admissible set) are obtained. �
3. Preliminaries

This section presents the main standard concepts and formalism related to game and decision theory. The object of study 
is the inclusion-exclusion problem inherent in the iterated elimination of weakly dominated strategies raised by Samuelson 
(1992). Thus, Section 3.1 recalls the formalization of strategic-form games, iterated admissibility (Luce and Raiffa, 1957; 
Moulin, 1979) and self-admissible sets (Brandenburger et al., 2008). However, our analysis models players as individual 
decision makers whose beliefs may display ambiguity via incomplete preferences. Section 3.2 recalls the necessary decision-
theoretical toolbox and Bewley’s (2002) model of incomplete preferences as formalized by Gilboa et al. (2010), and highlights 
its key features.13

3.1. Games and iterated strategy elimination

A game consists of a tuple G := 〈I, (Si, ui)i∈I 〉 where I is a finite set of players, and for each player i there is a finite 
set of (pure) strategies Si and a utility function ui : S → R, where S := ∏

i∈I Si denotes the set of strategy profiles. For 
each player i a randomization of own strategies σi ∈ �(Si) is referred to as a mixed strategy,14 and a probability measure 
μi ∈ � (S−i), where S−i :=∏ j �=i S j , as a conjecture. When necessary, with some abuse of notation, we use si to refer to the 
degenerate mixed strategy that assigns probability one to si . Each conjecture μi and possibly mixed strategy σi naturally 
induce expected utility Ui(μi; σi) and based on this, each player i’s best-reply correspondence is defined by assigning to each 
conjecture μi the subset of pure strategies B Ri(μi) that maximize its corresponding expected utility.15

Following the duality results of Pearce (1984), we use the best-reply correspondence directly to define iterated ad-
missibility whose foundations are then studied in Section 5. Strategy si is iteratively admissible if it survives the iterated 
elimination of weakly dominated strategies; i.e., if it is not weakly dominated given strategy profiles S−i × Si , it is not 
weakly dominated given strategy profiles W 1

−i × W 1
i consisting only of strategies surviving the first elimination round, etc. 

Thus, formally, strategy si is iteratively admissible if si ∈ W ∞
i :=⋂n≥0 W n

i , where W 0
i := Si and for any n ∈ N,

13 Section A in the appendix provides further details on the decision theoretic foundations and on how to envision games as decision problems, as is 
standard in the literature since Tan and da Costa Werlang (1988) (see Di Tillio (2008) for a more detailed formulation).
14 Throughout the paper, for any topological space X , as usual, � (X) denotes the set of probability measures on the Borel σ -algebra of X .
15 That is, given conjecture μi the expected utility is Ui(μi; σi) :=∑(s−i ;si )∈S μi [s−i ] · σi [si ] · ui(s−i; si) for each possibly mixed strategy σi , and the set of 

best-replies is B Ri(μi) := arg maxsi∈Si
Ui(μi; si).
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W n
i :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

si ∈ W n−1
i

∣∣∣∣∣∣∣∣∣

There exists some μi ∈ �(S−i) such that:

(i) supp μi =∏ j �=i W n−1
j ,

(ii) si ∈ B Ri(μi)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Finally, that set of strategy profiles Q =∏i∈I Q i is said to be a self-admissible set (SAS) if for every player i the following 
three conditions are satisfied:

(i) No si ∈ Q i is weakly dominated given S−i × Si .
(ii) No si ∈ Q i is weakly dominated given Q −i × Si .
(iii) For every si ∈ Q i and every mixed strategy σi such that Ui(s−i; σi) = Ui(s−i; si) for every s−i , it holds that supp σi ⊆

Q i .

The connection between the notions of self-admissibility and iterated admissibility is immediately apparent: the set of 
iteratively admissible strategy profiles is a self-admissible set of game G , but in general there are other self-admissible sets. 
For details see Brandenburger and Friedenberg (2010), who also study properties of self-admissible sets for specific (classes 
of) games.

3.2. Decision problems and incomplete preferences

We follow the reformulation of Anscombe and Aumann’s (1963) framework by Fishburn (1970). The decision maker faces 
decision environment (Z , �) where: (i) Z is a set of outcomes, which can be informally understood as the elements that will 
ultimately yield direct utility to the decision maker; and (ii) � is a set of states (of the world) about which the decision 
maker might face uncertainty, and which may affect how her choices relate to outcomes. We refer to randomizations 
of outcomes, � ∈ �(Z), as lotteries. A preference is a binary relation � over the set of acts, F , which is the collection 
of all maps f : � → �(Z) that assign a lottery to each state. M (�) denotes the set of closed and convex nonempty 
subsets of �.16 Throughout the paper we focus on preferences which we call Bewley preferences, since they were introduced 
by Bewley (2002).17 The main point of departure from the preferences of a standard Bayesian decision maker (i.e., one 
whose preferences satisfy the axioms by Anscombe and Aumann, 1963) is that completeness of the preferences is dropped. 
Theorem 1 by Gilboa et al. (2010) provides the following convenient representation for these preferences18: � is a Bewley 
preference if and only if there exist a non-constant utility-function u : Z → R and a set of ambiguous beliefs M ∈ M (�)

such that for every pair of acts f , g ,19

f � g ⇐⇒
∫
�

E f (θ)[u(z)]dμ ≥
∫
�

Eg(θ)[u(z)]dμ for every μ ∈ M.

A decision maker’s epistemic attitude with respect to the source of uncertainty may not be represented by a single belief, as 
in the standard case, but rather by a possibly non-singleton set of beliefs that reflects the decision maker’s possible ambi-
guity towards that source of uncertainty. As argued extensively in Section 5, this is key to resolving the inclusion-exclusion 
problem. With such preferences the decision maker is allowed to have beliefs with different supports, but also needs to 
respond robustly to her ambiguity by best-replying to all of her beliefs: for act f to be regarded as at least as good as 
another act g , the expected utility for f must be at least as high as the expected utility for g for every belief in the set 
of ambiguous beliefs. Notably, recent work by Cettolin and Riedl (2019) presents experimental tools to test whether the 
preferences display this form of ambiguity via incompleteness.

4. Reasoning in games

For the rest of the paper we consider game G to be fixed and therefore drop most explicit mentions to it. In this 
section we present the epistemic framework that we employ below to establish foundations for iterated admissibility in 
Section 5. Formally, for each player we specify a choice and a representation of her beliefs on her opponents’ strategies, 
her beliefs on her opponents’ beliefs over their opponents’ strategies, etc. These elements suffice to assess whether under 

16 To be more mathematically precise, Z is assumed to be finite, � is compact and metrizable and the elements of F , simple and measurable in the Borel 
σ -algebra of �. Space Mi(S−i × T−i) is endowed with the topology induced by the Hausdorff metric and is therefore compact and metrizable.
17 Actually we rely on a more modern version by Gilboa et al. (2010) of Bewley’s (2002) original preferences. Bewley’s (2002) version requires the 

decision-maker to have a designated default act always chosen unless ranked strictly lower than some alternative. This is commonly known in the literature 
as inertia (see, Bewley, 2002, or Lopomo et al., 2011). Furthermore, the version of Gilboa et al. (2010) allows for infinite state spaces which are necessary 
in our framework.
18 Details about the axioms on preferences and how to map the game theoretic setup to a decision environment can be found in Appendix A.
19 More precisely, M is non-empty closed and convex. Moreover, M is unique and u is unique up to positive affine transformations.
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such specifications, the player is being rational, has preferences that exhibit ambiguity (i.e. multiple beliefs) or has certain 
higher-order beliefs on her opponents’ rationality and the presence of ambiguity in their preferences. The question then is 
which precise constraints on rationality and higher-order beliefs on opponents’ rationality induce the behavior captured by 
iterated admissibility. Section 5 provides an answer based on the formalism developed in this section.

However, some previous methodological work is required. As seen above, when ambiguity via incomplete preferences 
is allowed for, the representation of uncertainty may require non-singleton sets of beliefs. It follows that standard type 
structures as introduced by Harsanyi (1967–1968) and standard belief-hierarchies à la Mertens and Zamir (1985) are not 
suitable for analyzing strategic reasoning: They fail to capture the possibility of ambiguity. Instead, we rely on a modified 
version of type structure that accounts for ambiguous beliefs.20 Thus, in Section 4.1 we first introduce these ambiguous 
type structures. We build on them and then, in Section 4.2, define the restrictions on behavior and beliefs required for the 
results in Section 5.

4.1. Ambiguous type structures

The study of strategic reasoning requires an instrument that formalizes players’ beliefs about their opponents’ choices, 
players’ beliefs about their opponents’ beliefs about their opponents’ choices and so on. When players have complete pref-
erences this hierarchical uncertainty can easily be represented through type structures. Thus, it is convenient to extend the 
definition of the latter so that can deal with the possibility of ambiguity. Formally, an ambiguous type structure consists of a 
list T := 〈Ti, Mi〉i∈I where for each player i there is21:

(i) A set of (ambiguous) types Ti .
(ii) An ambiguous belief map Mi : Ti → Mi(S−i × T−i), where T−i := ∏

j �=i T j , that associates each type with ambiguous 
beliefs on opponents’ strategy-type pairs.

It is easy to see why ambiguous type structures capture the idea of hierarchical reasoning mentioned at the beginning of 
the paragraph. For any player i’s type ti it is possible to compute the following by recursive marginalization22:

(1) First-order ambiguous beliefs that represent type ti ’s uncertainty about her opponents’ strategies, Mi,1(ti) ∈ Mi,1 :=
Mi(S−i), which is easily obtained by taking the marginals on S−i of the beliefs in Mi(ti).

(2) Second-order ambiguous beliefs that represent type ti ’s uncertainty about her opponents’ strategy-first-order ambiguous 
beliefs pairs, Mi,2(ti) ∈ Mi,2 := Mi(

∏
j �=i(S j × M j,1)).

· · ·
(n) nth-order ambiguous beliefs that represent type ti ’s uncertainty about her opponents’ strategy-(n − 1)th-order ambigu-

ous beliefs pairs, Mi,n(ti) ∈ Mi,n := Mi(
∏

j �=i(S j × M j,n−1)).
· · ·

Ambiguous type structure T is said to be complete if every map Mi is surjective, that is, if for every possible ambiguous 
beliefs the ambiguous type structure may admit, there exists some type that is mapped to such ambiguous beliefs.23

4.2. Behavioral and epistemic conditions

The analysis of each player i’s reasoning is focused on strategy-type pairs (si, ti), which specify both player i’s choice, 
and as described above, her ambiguous beliefs on her opponents’ choices, her ambiguous beliefs on her opponents’ first-
order ambiguous beliefs, etc. Thus, each strategy-type pair (si, ti) enables questions such as the following to be addressed: Is 
player i rational given her beliefs? Do her preferences embody some kind of ambiguity? What are her higher-order beliefs 
about her opponents’ rationality and ambiguity? Next, we first formalize the notion of rationality that we employ (Sec-
tion 4.2.1). Second, we introduce our formalization of cautiousness as a manifestation of ambiguity (Section 4.2.2). Finally, 

20 These type structures are regarded to Ahn’s (2007) ambiguous hierarchies what Harsanyi’s (1967–1968) type structures are to Mertens and Zamir’s 
(1985) belief hierarchies.
21 We assume each Ti to be compact and metrizable and each Mi , continuous. See Footnote 40.
22 The conceptual simplicity that follows contrasts the notational complexity that it requires; technically, for each n ∈N we have:

Mi,n+1(ti) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μi ∈ �

⎛
⎝∏

j �=i

(S j × M j,n)

⎞
⎠
∣∣∣∣∣∣∣∣∣∣∣

There exists some μ′
i ∈ Mi(ti) such that:

μi [E] = μ′
i

[(∏
j �=i(idS j × M j,n)

)−1
(E)

]

for every measurable E ⊆∏ j �=i S j × M j,n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

.
23 As shown by Ahn (2007), the answers to the following modified questions in (Dekel and Siniscalchi, 2015, p. 629): “Is there a[n] [ambiguous] type 

structure that generates all [ambiguous] hierarchies of beliefs? Is there a[n] [ambiguous] type structure into which every other [ambiguous] type structure 
can be embedded?” are yes, and yes. Within a Bayesian framework, Friedenberg (2010) studies such a richness requirement more generally.
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we define the appropriate tool to impose restrictions on higher-order beliefs (Section 4.2.3), which is a generalization to 
Bewley preferences of the usual notion of full-support belief for standard Bayesian preferences.

4.2.1. Rationality
We say that strategy si is rational for type ti if si is a best-reply to every first-order ambiguous belief induced by ti ; thus, 

the set of strategy-type pairs in which player i is rational is formalized as follows:

Ri :=
⎧⎨
⎩(si, ti) ∈ Si × Ti

∣∣∣∣∣∣si ∈
⋂

μi∈Mi(ti)

B Ri(margS−i
μi)

⎫⎬
⎭ .

Note that the definition implicitly requires each type ti , in order to be eligible for rational behavior, to satisfy that the 
intersection of the best-replies to the ambiguous first-order beliefs induced by it is non empty.24 This is a consistency 
requirement in the vein of Bayesian updating for conditional probability systems in the literature of dynamic games: When 
a conditional probability system fails to satisfy Bayesian updating it may not admit sequential best-replies.25

4.2.2. Cautiousness and ambiguity
We next argue that cautiousness, intuitively thought of as the decision maker considering every state of the world when 

deciding which choice is best, can be interpreted as a product of ambiguity in the sense that types that exhibit cautiousness 
tend to represent preferences that also display ambiguity. We first formalize the notion of cautiousness that takes part in 
the characterizations result in Section 5 and then discuss its link to ambiguity.26

Definition 1 (Cautiousness). Let G be a game and T , an ambiguous type structure. Then, for any player i and any type ti
we say that type ti is cautious if at least one belief in Mi(ti) has full-support on S−i × T−i . We denote the set of player i’s 
strategy-type pairs in which the type is cautious by Ci .

If at an intuitive level cautiousness is seen as the idea that a decision maker takes every possible contingency into 
account, then that is present in this definition. Cautiousness requires, loosely speaking, that every state is taken into account 
by the decision maker.27 The link with ambiguity is easy to see. In principle, it is possible for a type to display cautiousness 
but not ambiguity. This is the case of every type whose set of ambiguous beliefs consists of a single belief with full-support 
on S−i × T−i as in Fig. 1. However, if in addition to cautiousness the type also exhibits some form of strategic sophistication 
in the sense of having a (different) belief that rules out some proper subset of S−i × T−i , then, necessarily, the type displays 
ambiguity: The corresponding ambiguous beliefs a fortiori contain at least two different beliefs. Hence, the introduction 
of ambiguity not only enables strategic reasoning and cautiousness to be made compatible, but is indeed, necessary when 
strategic reasoning has any bite.

4.2.3. Assumption
Hereafter we refer to measurable subsets E ⊆ S × T as events. A standard Bayesian decision maker is said to assume

event E when the unique subjective belief induced by her preference has full-support on E .28 Some changes are in order 
if this idea is to be extended to Bewley preferences: The set of ambiguous beliefs may contain beliefs that have different 
supports. We say that a Bewleyian decision maker assumes event E when at least one belief in her set of ambiguous beliefs 
has full-support on E . Given the inclusion-exclusion problem, it is natural to consider such a weak version of assumption. 
As discussed in Section 1, it is necessary to have multiple beliefs which have potentially different supports to resolve the 
tension between strategic reasoning and cautiousness.

Definition 2 (Assumption). Let G be a game and T , an ambiguous type structure. For any player i, any type ti and any event 
E−i ⊆ S−i × T−i we say that type ti assumes E−i if at least one belief in Mi(ti) has full-support on the topological closure 
of E−i . We denote the set of player i’s strategy-type pairs in which the type assumes E−i by Ai(E−i).

24 We discuss this requirement in detail in Appendix A, where we first separate the condition that ensures non-emptiness of the intersection of best 
replies (decisiveness) from rationality per se, and provide a behavioral characterization for it.
25 We thank Pierpaolo Battigalli for this observation. This issue, which refers to the distinction between a choice being optimal or undominated, is 

discussed in further detail in Section A in the appendix, which also provides a behavioral foundation for a non-empty intersection.
26 We note that all of the following analyses could have been carried out employing a slightly weaker notion of cautiousness than the one introduced in 

Definition 1. In principle it would suffice to require full support on S−i rather than S−i × T−i . Our reason for opting for the stronger notion is twofold: 
(i) It does not prevent our characterization from dispensing with impossibility issues à la Brandenburger et al. (2008) (see Section 5.3), so it is clear that 
it is not modifications in the notion of cautiousness that enable for this to be achieved; and (ii) since it does not apply only to state spaces with product 
structure, it has a more general decision-theoretic foundation.
27 Cautiousness is also present in the analysis by Brandenburger et al. (2008). However, there it is incorporated into the definition of rationality. We find 

it more transparent to explicitly define the event when a player is cautious.
28 Technically, we are considering the collapse of the notion of assumption (see Brandenburger et al., 2008 and Dekel et al., 2016) under the lexicographic 

probability system when the preferences satisfy continuity and the corresponding lexicographic probability system thus collapses to a single belief.
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Remark 1. Cautiousness as defined in Definition 1 can be restated in terms of assumption: A type ti is cautious if it assumes 
S−i × T−i .

5. Iterated admissibility and ambiguous types

This section presents the main results of the paper. Based on the observation made in the previous section that the pres-
ence of ambiguity can reconcile strategic reasoning with cautiousness, we provide foundations for iterated admissibility and 
self-admissibility in terms of rationality, cautiousness, and certain higher-order assumption constraints. We provide those 
foundations in Section 5.1. Then, in Section 5.2, we discuss the link between iterated assumption and ambiguity to resolve 
the inclusion-exclusion problem. Finally, in Section 5.3 we review the seminal impossibility result due to Brandenburger et 
al. (2008) within the approach in terms of lexicographic probability systems, recall some of the responses in the related 
literature, and explore the connection with our result.

5.1. Epistemic foundation

As mentioned above, the epistemic foundation of iterated admissibility is to be formulated in terms of rationality, 
cautiousness, and higher-order assumption restrictions. The set of strategy-type pairs in which player i exhibits common 
assumption in rationality and cautiousness is given by C ARCi :=⋂

n≥0 C ARCi,n , where each C ARCi,n is defined recursively 
by setting:

C ARCi,0 := Si × Ti,

C ARCi,n := C ARCi,n−1 ∩ Ai(
∏
j �=i

R j ∩ C j ∩ C ARC j,n−1),

for every n ∈N. That is, C ARCi brings together all the strategy-type pairs (si, ti) where player i’s type ti assumes that every 
player j �= i is rational, cautious, and assumes that every player j �= i assumes that every player k �= j is rational, cautious, 
and so on. Based on the above29:

Theorem 1 (Foundation of iterated admissibility). Let G be a game. For any player i the following holds:

(i) For any complete ambiguous type structure, any player i and any strategy-type pair (si, ti), if type ti is consistent with cautiousness 
and assumption of rationality and cautiousness and si is rational for ti , then si is iteratively admissible; i.e.,

ProjSi
(Ri ∩ Ci ∩ C ARCi) ⊆ W ∞

i .

(ii) For any player i and any strategy si , if si is iteratively admissible then there exist a complete ambiguous type structure T and a 
type ti consistent with cautiousness and assumption of rationality and cautiousness for which si is rational; i.e.,

W ∞
i ⊆ ProjSi

(Ri ∩ Ci ∩ C ARCi).

Thus, Theorem 1 provides a complete characterization of iterated admissibility. Part (i) is a sufficiency result. It shows 
that whenever a player chooses in a robust way that maximizes with respect to higher-order assumptions that represent 
common assumption in rationality and cautiousness, then the resulting strategy is necessarily iteratively admissible. Part (ii)
is, partially, the necessity counterpart: while it is not true that every time an iteratively admissible strategy is chosen this 
is due to the player being rational, cautious, and best-replying to the higher-order assumption restrictions that represent 
common assumption in rationality and cautiousness, it is true that every iteratively admissible strategy is a rational choice 
for a type that is consistent with common assumption in rationality and cautiousness. The proof of the theorem is provided 
by iteration and relies on the slightly stronger result according to which, n rounds of elimination of weakly dominated 
strategies characterize the behavioral implications of rationality, cautiousness and n − 1 rounds of assumption in rationality 
and cautiousness.30 Notably, from a conceptual perspective, the theorem reveals that whenever the elimination procedure 
involves more than one round, satisfying the epistemic conditions above requires players’ preferences to display ambigu-

29 The theorem is stated and holds only for a complete type structure because the assumption operator is not monotone. This is similar to, for example, 
assumption in Brandenburger et al. (2008) or strong belief of Battigalli and Siniscalchi (2002). An example showing why completeness is needed is available 
upon request.
30 This statement is properly formalized in Theorem B.1 in Section B. For expositional reasons, we opted here to present the result corresponding to only 

the full iteration process, so that the result for iterated admissibility and the result for self-admissibility (Theorem 2 below) can be compared straightfor-
wardly.
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ity. As the next theorem shows, if the requirement of completeness of the type structure is dropped then the behavioral 
consequences of rationality, cautiousness and common assumption thereof are captured by self-admissibility:

Theorem 2 (Foundation of self-admissibility). Let G be a game. Then:

(i) For any ambiguous type structure T the set of strategies consistent with rationality, cautiousness and common assumption of 
rationality and cautiousness is a self-admissible set; i.e., the following set is self-admissible:∏

i∈I

ProjSi
(Ri ∩ Ci ∩ C ARCi).

(ii) For any self-admissible set Q there exists a finite ambiguous type structure T for which Q characterizes the behavioral implica-
tions of rationality, cautiousness and common assumption of rationality and cautiousness; i.e., such that:∏

i∈I

ProjSi
(Ri ∩ Ci ∩ C ARCi) = Q .

The interpretation is analogous to that of Theorem 1. Part (i) states that given an arbitrary ambiguous type structure, not 
necessarily complete, the set of strategy profiles that are consistent with rationality, cautiousness and common assumption 
of rationality and cautiousness is a self-admissible set. Part (ii) offers the partial converse: For any given self-admissible set 
Q there exists an ambiguous type structure T , notably, finite, such that Q is exactly the set of strategy profiles that are 
consistent with rationality, cautiousness and common assumption of rationality and cautiousness within T . Theorems 1 and 
2 are clearly connected because the set of iteratively admissible strategy profiles is itself self-admissible. In particular, for a 
fixed game this reveals that the set of iteratively admissible strategies can be understood as strategies obtained not only in 
a very large complete type structure, but also under a smaller finite one in which, as shown in the proof of Theorem 2, each 
player i only has as many types as there are iteratively admissible strategies plus one additional dummy type.31

5.2. Iterated assumption and ambiguity

The main distinctive feature of assumption with respect to the usual belief for Bayesian agents, and as in the assump-
tion operator of Brandenburger et al. (2008), is the failure of monotonicity.32 Whenever a Bayesian agent believes in event 
E , she also believes in every event F such that E ⊆ F : The (Bayesian) belief μi that assigns probability one to E assigns 
probability one to F . This is not the case with our notion of assumption. Type ti might assume event E via some belief 
μi ∈ Mi(ti) that has full-support on E , but she may fail to assume an event F such that E ⊆ F 33; even if ti assumed such 
F , it certainly, could not be via μi . Thus, when considering a sequence of nested events such as the finite iterations in 
the common assumption events defined above, a single belief can assign probability one to all the events in the sequence 
simultaneously, but different beliefs are required in order to assume each of them at the same time. This is exactly why 
the inclusion-exclusion problem arises within a standard Bayesian framework, but it can be resolved within our frame-
work.

In principle there is no reason to consider that the assumption of an event is an expression of cautiousness; for every 
type there exists always an event that is assumed and this simply relates to which specific states play some role in how 
preference ranks acts. However, the assumption of different nested events is a non-trivial feature that reveals a cautious 
attitude: Whenever a type assumes two nested events E and F , the preference represented is crucially sensitive to com-
parisons at every state in E but also to comparisons at every state in the larger event F , in particular to those outside 
E . Of course, as mentioned above, the simultaneous assumption of different events necessarily requires belief multiplic-
ity.

5.3. (Non-)Emptiness of common assumption of rationality and cautiousness

The canonical epistemic foundation of iterated admissibility in the literature is due to Brandenburger et al. (2008). Their 
seminal result shows that m rounds of elimination of non-admissible strategies characterize the behavioral implications of 
rationality and mth-order mutual assumption of rationality for finite m in a model where players’ uncertainty is formalized 
by type structures where types are mapped to lexicographic probability systems. As shown by Blume et al. (1991a), lexi-
cographic probability systems arise under a variation of Anscombe and Aumann’s (1963) preferences in which the axiom 
of continuity is relaxed (rather than that of completeness, as in Bewley’s (2002) variant). However, Brandenburger et al. 
(2008) also reveal a vexatious feature of the common assumption case: Their celebrated impossibility result shows that for 

31 The proof of Theorem 2 proceeds in a way very similar to the one by Brandenburger et al. (2008) of their characterization result for self-admissible 
sets (Theorem 8.1). In particular, we need exactly the same number of types for each player.
32 This is also reminiscent of strong belief as defined and studied by Battigalli and Siniscalchi (1999, 2002).
33 We are implicitly assuming that the topological closure of F contains that of E .
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every generic game, if the type structure is complete and maps types continuously, then common assumption in rationality 
is empty. Below we also discuss the work by Keisler and Lee (2015), Yang (2015), Lee (2016) and Catonini and De Vito 
(2018a), who propose changes in the formalism that allow for sound epistemic foundations, and compare their results to 
ours.

Notice first that within our set-up, and for every game G , common assumption in rationality and cautiousness is never 
empty in complete ambiguous type structures. The intuition behind the claim is easy to see: For each iteration in player 
i’s reasoning process set a belief μn

i ∈ �(S−i × T−i) that has full-support on the topological closure of 
∏

j �=i R j ∩ C ARC j,n

(these collections of strategy-type pairs are clearly never empty; thus, the belief μn
i always exists). Then, define Mi as the 

topological closure of the convex hull of {μn
i }n∈N , and by virtue of the ambiguous type structure being complete, pick type ti

with ambiguous beliefs Mi .34 By construction, ti is a type representing common assumption of rationality and cautiousness 
and hence, C ARCi is non-empty.

Furthermore, as briefly mentioned in Section 1, the non-emptiness of rationality and common assumption thereof does 
not follow from specific alterations in the formalism (beyond the different decision-theoretic model underlying the ap-
proach). This is easier to visualize by direct comparison with other studies that also provide sound foundations for iterated 
admissibility. Keisler and Lee (2015) obtain their result by dropping the requirement that types are mapped continuously, 
Yang (2015) considers a weaker version of assumption than that in Brandenburger et al. (2008) and Lee (2016) explicitly
imposes coherence on the preferences, which is usually only checked for the beliefs that represent the preferences. For 
lexicographic probability systems, which he builds on, this makes a difference. As said, we do not require any of these 
modifications: Our type structures map types continuously, our notion of assumption is a direct adaption of that in Bran-
denburger et al. (2008) and Dekel et al. (2016),35 and the coherence requirement implicit in our type structures resembles 
the standard one in literature due to Brandenburger and Dekel (1993).36 Finally, Catonini and De Vito (2018a) consider a 
weaker version of the likeliness-ordering of events that characterizes the lexicographic probability system and an alternative 
version of cautiousness where only the payoff-relevant aspect of the states of the world play any role. Again (and despite 
Theorems 1 and 2 would remain unchanged under this alternative notion of cautiousness), we obtain our non-emptiness 
result with a standard, purely decision-theoretic notion of cautiousness that does not require any specific structure of the 
set of states.

To end this section, we present a comparison between lexicographic probability systems and ambiguous beliefs that 
provides some understanding of the differences between the two approaches with respect to the presence of ambiguity. 
Remember that a lexicographic probability system consists of a finite sequence beliefs {μk}n

k=1 ⊆ �(�),37 where the order 
of the sequence represents the epistemic priority attached to each element: μ1 is the decision maker’s ‘primary’ hypothesis, 
μ2 is the ‘secondary’ hypothesis, and so on. This is reflected by the lexicographic consideration, i.e. if act f is better than 
g for belief μ1, then the comparison between the two acts for the rest of the beliefs in the sequence is immaterial and 
the decision maker prefers f to g . The main distinction between lexicographic probability systems and ambiguous beliefs 
is then clear: Both are composed of multiple beliefs, but the former incorporates a hierarchy in terms of epistemic priority 
and hence removes any trace of ambiguity. However, as we show above, this hierarchy is not important to overcome the 
inclusion-exclusion problem; what is important is the multiplicity of beliefs.

6. Conclusions

Cautiousness in games is intuitively understood as the idea that even when a player deems some of her opponents’ 
strategies to be completely unlikely (typically on the basis of strategic reasoning), she still prefers to choose strategies that 
are immune to deviations towards such unexpected strategies. This is at odds with the strategically sophisticated expected 
utility maximization process representing a standard Bayesian rational decision maker who believes her opponent to be 
rational too: Every suboptimal strategy of the latter is assigned zero probability by the subjective belief of the former, and 
cannot therefore affect the decision process.

This paper proposes a new theoretic understanding of cautiousness in interactive settings that reconciles it with strate-
gic sophistication. We interpret cautiousness under strategic sophistication as a manifestation of robustness to ambiguity, 
which renders more choices as non-optimal. Then we show that the resulting behavioral implications can be obtained as a 
consequence of rationality and related higher-order assumption constraints. Specifically:

(i) We introduce the possibility of ambiguity in beliefs by allowing players’ preferences to be incomplete. This is done by 
replacing the standard Anscombe and Aumann (1963) decision-theoretic framework behind each player with a model 

34 As shown by Ahn (2007), this assignment can take place in an ambiguous type structure that maps types to ambiguous beliefs continuously.
35 See also Footnote 28.
36 The requirement is explicit in the construction by Ahn (2007).
37 Brandenburger et al. (2008) use lexicographic conditional probability systems, but their result extends to more general lexicographic probability systems 

as shown by Dekel et al. (2016).
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of (possibly) incomplete preferences à la Bewley (2002) so that each player’s uncertainty about her opponents’ behavior 
is represented by a possibly non-singleton set of beliefs that reflects the decision maker’s possibly ambiguous uncer-
tainty. Our main result implies that for choices that are iteratively admissible the justifying set of beliefs has to be 
non-singleton for non-trivial games.

(ii) We apply the framework described above to study the epistemic (i.e. reasoning-based) foundations of iterated ad-
missibility in belief-complete type structures and find that it characterizes the behavioral implications of rationality, 
cautiousness, and common assumption thereof (Theorem 1). For non-complete type structures we find that it is self-
admissible sets that characterize the behavioral implications of such an event (Theorem 2).

Thus, the main insight is immediately apparent: The inclusion-exclusion problem of Samuelson (1992) can be resolved 
not only by relaxing continuity of preferences (i.e. through lexicographic probability systems), but also by relaxing com-
pleteness (while maintaining continuity). Notably, this enables us to provide a sound epistemic foundation of iterated 
admissibility—a challenging task within the framework of lexicographic probability systems. Using our approach, it is easy 
to see that the event of rationality, cautiousness, and common assumption thereof is non-empty across all games—unlike, 
for instance, the foundations for iterated admissibility under lexicographic probability systems, as found by Brandenburger 
et al. (2008), and the instruments involved in our characterization (type structures and assumption operators) are straight-
forward generalizations of those in the realm of standard Bayesian preferences. In addition, the suggested link between 
ambiguity via incomplete preferences and the presence of cautiousness is potentially testable by applying techniques for the 
identification of incompleteness of preferences recently developed in the literature on experimental economics (see Cettolin 
and Riedl, 2019).

Finally, the formalism shows that even with incomplete preferences, an iterative solution concept is valid and well-
founded. To elaborate, note that the inclusion-extension problem extends, well-beyond iterated admissibility, to every (non 
trivial) iterated deletion procedure that incorporates cautiousness. This is apparent in Dekel and Fudenberg’s (1990) proce-
dure (the DF-procedure; persistency in Brandenburger, 2003, and Catonini and De Vito, 2018b), which consists of one round 
of elimination of weakly dominated strategies followed by the iterated elimination of strictly dominated strategies. Here, the 
notion of cautiousness behind the first elimination round requires player i’s beliefs to assign positive probability to every 
strategy by her opponents (i.e. to include all strategies of the opponents) whereas the iterated elimination that follows re-
quires player i’s beliefs to assign zero probability to opponents’ strategies that did not survive the first round (i.e. to exclude
some strategies). Hence, the presence of inclusion-exclusion issues makes understanding the DF-procedure problematic from 
the standard Bayesian perspective. Unsurprisingly, the tension can again be solved via multiplicity of beliefs resulting from 
ambiguity. Say that player i believes event E if at least one belief in her set of ambiguous beliefs assigns probability one 
to E . It is easy to show then that the DF-procedure characterizes the behavioral implications of rationality, cautiousness 
(as defined in Section 4.2.2) and common belief thereof.38 In addition, it is immediately possible to replicate, within this 
framework, the well-known result that rationalizability (the iterated elimination of strictly dominated strategies) character-
izes rationality and common belief thereof. A comparison between these two observations and Theorem 1 illustrates the 
theoretical connection between cautiousness and strategic reasoning on the one hand, and ambiguity on the other: In the 
absence of cautiousness (i.e. rationalizability) behavior can be explained without appealing to ambiguous beliefs, but the 
latter becomes a sine qua non condition as soon as the solution concept relies on any notion of cautiousness (i.e. iterated 
admissibility and the DF-procedure).
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Appendix A. Decision theory

A.1. Decision problems and Bewley preferences

Given a decision environment (Z , �), a decision problem consists of a triplet (Z , �, F ) where F is a subset of acts that 
we call feasible and represents the acts that are materially available to the decision maker.39 Bewley preferences satisfy the 
following axioms:

A1. Preorder. � is reflexive and transitive.
A2. Monotonicity. For any pair of acts f , g ,

f (θ) � g(θ) for any θ ∈ � =⇒ f � g.

A3. Continuity. For any three acts f , g, h the following two are closed in [0, 1]:{
λ ∈ [0,1] ∣∣λ f + (1 − λ)g � h

}
and

{
λ ∈ [0,1] ∣∣h � λ f + (1 − λ)g

}
.

A4. Nontriviality. There exist two acts f , g such that f � g and not g � f .
A5. Certainty-Completeness. For any two constant acts f , g either f � g or g � f .
A6. Independence. For any acts f , g, h and any α ∈ (0, 1),

f � g ⇐⇒ α f + (1 − α)h � αg + (1 − α)h.

Theorem 1 in Gilboa et al. (2010) shows that these axioms characterize the preferences to get the representation stated in 
the main text.

A.2. Games as decision problems

Players are envisioned as individual decision makers facing a decision problem where their opponents’ strategies are part 
of the description of the states of the world and strategies are the feasible acts. For obvious reasons, for each player i, game 
G is a very specific decision problem (Zi, �i, Fi) consisting of:

• Outcomes. In contexts of complete (payoff-relevant) information, player i’s utility depends only on the strategy profiles 
chosen in the game; hence, we identify outcomes with the latter: Zi := S .

• States. Player i’s primary source of uncertainty (and the only payoff-relevant one) is strategic: it refers to her oppo-
nents’ behavior (S−i ). However, player i’s beliefs about her opponents’ strategies could be affected by an additional non 
payoff-relevant unobserved parameters about which she might face uncertainty, say T−i .40 We identify the set of states 
of the world with these joint sources of uncertainty: �i := S−i × T−i .

• Acts and feasible acts. Player i’s set of acts is Fi := �(S)S−i×T−i . Notice that within the context of a game this set of acts 
is not feasible. First, player i cannot make her choice contingent on a parameter t−i that she does not observe. Second, 
in situations of simultaneous choice, player i cannot make her choice contingent on her opponents’ choices. Still, player 
i might (and typically will) have preferences on modeled but unavailable options. The set of player i’s feasible acts is 
then identified with her mixed strategies:

Fi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ∈ Fi

∣∣∣∣∣∣∣∣∣

There exists a σi ∈ �(Si) such that:

f (s−i, t−i)[(s′
−i; s′

i)] =
{

σi[s′
i] if s′

−i = s−i,

0 otherwise,

for any (s−i, t−i) ∈ S−i × T−i and any (s′
−i; s′

i) ∈ S

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

In addition, remember that game G already incorporates utility functions; thus, each player i’s set of Bewley preferences 
under consideration needs to be restricted to those preferences whose risk attitude is represented by utility function ui . 
Now, Theorem 1 by Gilboa et al. (2010) implies that for any set of parameters T−i , each Bewley preference for decision 
environment (S, S−i × T−i) whose risk attitude is represented by ui is biunivocally associated with ambiguous beliefs Mi ⊆
�(S−i × T−i).41 Thus, there is no loss of generality in switching the focus from Bewley preferences to ambiguous beliefs, 
the collection of which we denote by Mi(S−i × T−i).

39 That is, the decision maker may have preference on elements of not only F , but F , which means that she might have preferences on options that are 
not materially available in the problem under study.
40 To ensure appropriate construction, T−i is assumed to be compact and metrizable.
41 Remember that Mi is non-empty, closed, and convex. Of course, Mi is a subset of �(S−i) in cases in which we omit set of parameters T−i .
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A.3. Decisiveness

We refer to the types that admit rational choices as decisive. The foundation of decisiveness in terms of preferences is 
provided by Proposition 1 below. Decisive types are those induced by preferences that are possibly incomplete but display 
completeness at the top: the decision maker is indifferent between two acts that are not less preferred than another act.42

Proposition 1 (Behavioral foundation of decisiveness). Let G be a game and T , an ambiguous type structure. Then, any player i’s type 
ti is decisive if and only if there exists a subset of feasible acts F ∗

i ⊆ Fi , such that �i , the Bewley preference represented by (ui, Mi(ti)), 
satisfies

f ∼i g �i h,

for every f , g ∈ F ∗
i and every h ∈ Fi \ F ∗

i .

Proof. Fix player i, type ti and event E−i ⊆ S−i × T−i and let �i denote the Bewley preference represented by (ui, Mi(ti)). 
The ‘if’ part is immediate, so we focus on the ‘only if’ part. To see it simply take S∗

i :=⋂μi∈Mi(ti)
B Ri(margS−i

μi) and set:

F ∗
i :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f i ∈ Fi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists a σi ∈ �(Si) such that:

(i) f i(s−i, t−i)[(s′
−i; s′

i)] =
{

σi[s′
i] if s′

−i = s−i,

0 otherwise,

for any (s−i, t−i) ∈ S−i × T−i and any (s′
−i; s′

i) ∈ S,

(ii) σi[S∗
i ] = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Clearly, F ∗ ⊆ F and f ∼i g �i h for every f , g ∈ F ∗
i and every h ∈ Fi \ F ∗

i . �
Notice that in the presence of incomplete preferences ‘undomination’ (an act not being strictly worse than some other 

act) and ‘optimality’ (an act being at least as good as every other act) are two different concepts, which is not the case 
under completeness: An optimal act is always undominated but an undominated act might not be optimal; furthermore, 
every Bewley preference admits undominated acts, but there may not exist optimal ones. Decisiveness ensures the existence 
of the latter, which in turn, restores the equivalence of undomination and optimality. In consequence, imposing decisiveness 
on incomplete preferences is similar in spirit to the requirement of Bayesian updating for conditional probability systems 
in the literature of extensive-form games.43 As for decisiveness, Bayesian updating guarantees the existence of optimal 
strategies by forcing them to be equivalent to undominated ones.

Appendix B. Characterization result

As mentioned in the main text, we first prove the result for every finite iteration.

Theorem B.1. Let G be a game and T a complete ambiguous type structure. For any n ∈N and every player i the following holds:

ProjSi
(Ri ∩ Ci ∩ C ARCi,n) = W n+1

i .

Proof. For the sake of convenience, for each player i we denote Xi,0 := Si × Ti and for any n ∈ N, Xi,n := Ri ∩Ci ∩C ARCi,n−1. 
Now, we proceed by induction on n:

Initial Step (n = 0). For the right-hand inclusion, set strategy-type pair (s̄i, ̄ti) ∈ Ri ∩ Ci and denote M̄i = Mi(t̄i). Then, since 
t̄i is cautious, we know that there exists a belief μ1

i ∈ M̄i whose support is S−i × T−i , and since (s̄i, ̄ti) ∈ Ri , we know that s̄i

is a best-reply for margS−i
μ1

i . Thus, μ̄1
i := margS−i

μ1
i is a conjecture in with full-support on S−i for which s̄i is a best-reply. 

Hence, s̄i ∈ W 1
i .

For the left-hand inclusion, set strategy s̄i ∈ W 1
i and conjecture μ̄i with full-support on S−i for which s̄i is a best-reply. 

Then, take arbitrary full-support belief ηi ∈ �(T−i) and set μ1
i := μ̄i × ηi and M̄i := {μ1

i }. Since T is complete, we know 
that there exists a type t̄i ∈ Ti such that Mi(t̄i) = M̄i . Since μ1

i has full-support on S−i × T−i we know that t̄i is cautious, 

42 Despite the following characterization relying on an axiom evoking existence, G being a finite game implies that the verification of the condition 
requires only finitely many bets.
43 The definition of conditional probability systems (originally due to Renyi, 1955) requires the decision maker to update her beliefs according to the chain 

rule whenever possible; this requirement is usually referred to as Bayesian updating.
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and hence, that (s̄i, ̄ti) ∈ Ci , and as s̄i is a best-reply to the marginal on S−i induced by the unique belief in Mi(t̄i) it follows 
that (s̄i, ̄ti) ∈ Ri . Thus, it can be concluded that (s̄i, ̄ti) is a strategy-type pair in Ri ∩ Ci that induces s̄i .

Inductive Step. Suppose that n ≥ 0 is such that the claim holds. We next verify that it also holds for n +1. For the right-hand 
inclusion, set strategy-type pair (s̄i, ̄ti) ∈ Ri ∩ Ci ∩ C ARCi,n+1 and denote M̄i := Mi(t̄i). Then, since (s̄i, ̄ti) ∈ Ri ∩ Ci ∩ C ARCi,n

it is known from the induction hypothesis that s̄i ∈ W n+1
i , and since (s̄i, ̄ti) ∈ Ri ∩ C ARCi,n+1 there must exist a belief 

μn+1
i ∈ M̄i whose support is the closure of X−i,n+1 :=∏

j �=i X j,n+1 and whose marginal on S−i admits s̄i as a best-reply. It 
follows from the induction hypothesis and completeness that the support of μ̄n+1

i := margS−i
μn+1

i is W n+1
−i and hence, it 

can be concluded that s̄i ∈ W n+2
i .

For the left-hand inclusion, set strategy s̄i ∈ W n+2
i and family of conjectures {μ̄k

i }n+2
k=1 such that for each k = 1, . . . , n + 2: 

(i) μ̄k
i has full-support on W k−1

−i , and (ii) s̄i is a best-reply to μ̄k
i . Now, set arbitrary k = 0, . . . , n + 1 and for any player 

j �= i and any strategy s j ∈ W k
j define:

Y j,k(s j) := ProjT j

({s j} × T j ∩ X j,k
)
,

which is known from the induction hypothesis to be non-empty. It is also known from the induction hypothesis that 
{Y j,k(s j)|s j ∈ W k

j } is a finite cover of ProjT j
(X j,k). Now, for each s−i ∈ W k

−i pick arbitrary belief ηk
i (s−i) ∈ �(

∏
j �=i Y j,k(s j))

whose support is the closure of 
∏

j �=i Y j,k(s j), and define belief μk
i in �(S−i × T−i) as follows:

μk
i [E] :=

∑
s−i∈W k−1

−i

μ̄k+1
i [s−i] · ηk

i (s−i)

⎡
⎣E ∩

∏
j �=i

{s j} × Y j,k(s j)

⎤
⎦ .

Obviously, μk
i is well-defined and its support is exactly the closure of X−i,k :=∏ j �=i X j,k .44 Notice in addition that since the 

marginal of μk
i on S−i is precisely μ̄k+1

i , we know that s̄i is a best-reply to μk
i . Then, let M̄i be the convex hull of {μk

i }n+1
k=0

and pick type t̄i ∈ Ti such that Mi(t̄i) = M̄i . Clearly, the following two hold:

• (s̄i, ̄ti) ∈ Ci ∩ C ARCi,k for any k = 0, . . . , n + 1. To see this, simply note that for any k = 0, . . . , n + 1, it holds that 
μk

i ∈ Mi(t̄i) = M̄i . Then, the claim is proven since (as seen above) the support of μk
i is exactly the closure of X−i,k .

• (s̄i, ̄ti) ∈ Ri . This follows immediately from—as seen above—s̄i being a best-reply to the conjecture induced by each 
belief in {μk

i }n+1
k=0 and thus, also to each belief in Mi(t̄i).

Thus, it can be concluded that (s̄i, ̄ti) is a strategy-type pair in Ri ∩ Ci ∩ C ARCi,n+1 that induces s̄i . �
Theorem 1 (Foundation of iterated admissibility). Let G be a game. For any player i the following holds:

(i) For any complete ambiguous type structure, any player i and any strategy-type pair (si, ti), if type ti is consistent with cautiousness 
and assumption of rationality and cautiousness and si is rational for ti , then si is iteratively admissible; i.e.,

ProjSi
(Ri ∩ Ci ∩ C ARCi) ⊆ W ∞

i .

(ii) For any player i and any strategy si , if si is iteratively admissible then there exist a complete ambiguous type structure T and a 
type ti consistent with cautiousness and assumption of rationality and cautiousness for which si is rational; i.e.,

W ∞
i ⊆ ProjSi

(Ri ∩ Ci ∩ C ARCi).

Proof. For the right-hand inclusion set strategy-type pair (s̄i, ̄ti) ∈ Ri ∩ Ci ∩ C ARCi and simply notice that since (s̄i, ̄ti) ∈
Ri ∩ Ci ∩ C ARCi,n for any n ≥ 0, Theorem B.1 reveals that s̄i ∈ W n

i for any n ≥ 1. Thus, s̄i ∈ W ∞
i .

For the left-hand inclusion, set strategy s̄i ∈ W ∞
i . Since, in particular, s̄i ∈ W n+1

i for any n ≥ 0, it is known from Theo-
rem B.1 that for any n ≥ 0 there exists a type tn

i ∈ Ti such that (s̄i, tn
i ) ∈ Ri ∩ Ci ∩ C ARCi,n . Now, let M̄i denote the closure 

of the convex-hull of 
⋃

n≥0 Mi(tn
i ) and pick type t̄i ∈ Ti such that Mi(ti) = M̄i . Obviously, s̄i is a best-reply is to every 

conjecture induced by the beliefs in Mi(t̄i) and t̄i is cautious and is consistent with common assumption in rationality and 
cautiousness. Thus, (s̄i, ̄ti) ∈ Ri ∩ Ci ∩ C ARCi and hence, s̄i ∈ ProjSi

(Ri ∩ Ci ∩ C ARCi). �

44 For the latter, simply note that for any (s−i, t−i), μk
i [N] > 0 for any neighborhood N of (s−i , t−i) if and only if ηk

i (s−i)[N] > 0 for any neighborhood N
of (s−i , t−i).
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For the characterization of self-admissible sets, the first thing needed is the simple observation that the reasoning process 
about strategies only stops after finitely many rounds.

Lemma B.1. Let G be a game. Set an ambiguous type structure T . There exists a N ∈N such that for all n ≥ N,∏
i∈I

ProjSi

(
Ri ∩ Ci ∩ C ARCi,n

)=
∏
i∈I

ProjSi

(
Ri ∩ Ci ∩ C ARCi,N

)
.

Proof. By definition C ARCi,n+1 ⊆ C ARCi,n , so that it also holds that Ri ∩ Ci ∩ C ARCi,n+1 ⊆ Ri ∩ Ci ∩ C ARCi,n . Since Si is 
finite there has to be an Ni ∈N such that n ≥ Ni

ProjSi

(
Ri ∩ Ci ∩ C ARCi,n

)= ProjSi

(
Ri ∩ Ci ∩ C ARCi,Ni

)
.

Take N = maxi Ni . �
Theorem 2 (Foundation of self-admissibility). Let G be a game. Then:

(i) For any ambiguous type structure T the set of strategies consistent with rationality, cautiousness and common assumption of 
rationality and cautiousness is a self-admissible set; i.e., the following set is self-admissible:∏

i∈I

ProjSi
(Ri ∩ Ci ∩ C ARCi).

(ii) For any self-admissible set Q there exists a finite ambiguous type structure T for which Q characterizes the behavioral implica-
tions of rationality, cautiousness and common assumption of rationality and cautiousness; i.e., such that:∏

i∈I

ProjSi
(Ri ∩ Ci ∩ C ARCi) = Q .

Proof. For the first part set an ambiguous type structure T and consider

Q :=
∏
i∈I

ProjSi
(Ri ∩ Ci ∩ C ARCi) .

If Q = ∅ then Q is a SAS. So assume it is non-empty. Set si ∈ ProjSi
(Ri ∩ Ci ∩ C ARCi); then there exists a ti such that 

(si, ti) ∈ Ri ∩ Ci ∩ C ARCi . Thus (si, ti) ∈ Ri ∩ Ci implies that condition (i) of SAS is satisfied. Furthermore, with N from 
Lemma B.1 and because (si, ti) ∈ C ARCi ⊆ C ARCi,N+1 there must exist a μi ∈ Mi(ti) such that supp μi =∏

j �=i R j ∩ C j ∩
C ARC j,N . Then, μ̄i := margS−i

μi is a conjecture with full-support on Q −i (again using Lemma B.1) for which si is a best-
reply. Hence, condition (ii) of SAS is satisfied. Lastly, consider mixed strategy σi such that Ui(s−i; σi) = Ui(s−i; si) for every 
s−i . Then, by Lemma D.2 of Brandenburger et al. (2008) supp σi ⊆ B Ri(margS−i

μi) for every μi ∈ Mi(ti) giving (ri, ti) ∈ Ri
for all ri ∈ supp σi . Then it also holds that (ri, ti) ∈ Ri ∩ Ci ∩ C ARCi,n for every n ≥ 1, so that ri ∈ ProjSi

(Ri ∩ Ci ∩ C ARCi)

and thus, condition (iii) of SAS is satisfied too.
For the second part set SAS Q . By definition of SAS (and Pearce, 1984), for each si ∈ Q i , there exist a μ1

i (si), μ2
i (si) ∈

�(S−i) such that supp μ1
i (si) = S−i and supp μ2

i (si) = Q −i . By Lemma D.4 of Brandenburger et al. (2008) we choose μ1
i (si)

so ri ∈ B Ri(μ
1
i (si)) if and only if ri ∈ supp σi for a mixed strategy σi with Ui(s−i; σi) = Ui(s−i; si) for every s−i .

Now, consider the set of types Ti := {ti(si)|si ∈ Q i} ∪ {
i}; to get an ambiguous type structure define Mi(
i) ⊆ �(S−i ×
T−i) such that there is no ηi ∈ Mi(
i) with supp ηi = S−i × T−i . For si ∈ Q i , define,

Yi(si) := {(ri, ti(si)) : either ri = si or

∃σi ∈ �(Si), such that ri ∈ supp σi and Ui(s−i;σi) = Ui(s−i; si) for all s−i ∈ S−i}
and then define two beliefs η1

i (si), η2
i (si) ∈ �(S−i × T−i) such that

supp η1
i (si) = S−i × T−i and margS−i

η1
i (si) = μ1

i (si),

supp η2
i (si) =

∏
j �=i

∪s j∈Q j Y j(s j) ∩ R j and margS−i
η2

i (si) = μ2
i (si).

To complete the description of the type structure, set Mi(ti(si)) to be the convex hull of η1
i (si) and η2

i (si). Note that Ri only 
depends on the marginal beliefs on the strategies, so for η2(si) to be well-defined the following is required:
i
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Claim 1. ProjSi

⋃
si∈Q i

Yi(si) ∩ Ri = Q i . If si ∈ Q i , then (si, ti(si)) ∈ Yi(si) and by construction also (si, ti(si)) ∈ Ri . Conversely, 
set ri ∈ ProjSi

⋃
si∈Q i

Yi(si) ∩ Ri . So there exists a si ∈ Q i such that (ri, ti(si)) ∈ Yi(si) ∩ Ri . If ri = si , the proof is complete. If 
not, then by property (iii) of self-admissible sets (and definition of Yi(si)), we it also follows that ri ∈ Q i . �

Next we prove that the type structure satisfies that:

Q =
∏
i∈I

ProjSi
(Ri ∩ Ci ∩ C ARCi) .

Claim 2. 
⋃

si∈Q i
Yi(si) ∩ Ri = Ri ∩ Ci . Consider (ri, ti) ∈⋃si∈Q i

Yi(si) ∩ Ri . Then for some si ∈ Q i we have η1
i (si) and thus 

ti(si) is cautious. Conversely, for (ri, ti) ∈ Ri ∩ Ci it is needed that ti �= 
i since 
i is not cautious. Thus, there exists a si ∈ Q i
such that ti = ti(si). If si = ri , the proof is complete. If not, then Ri requires that ri ∈ B Ri(μ

1
i (si)), which holds if and only if 

(see above) ri ∈ supp σi for a mixed strategy σi with Ui(s−i; σi) = Ui(s−i; si) for every s−i . Thus, in either case it holds that 
(ri, ti(si)) ∈ Yi(si). �

Claim 3. 
⋃

si∈Q i
Yi(si) ∩ Ri = Ri ∩ Ci ∩ C ARCi,1. (ri, ti) ∈ ∪si∈Q i Yi(si) ∩ Ri , that is (ri, ti(si)) ∈ Yi(si) ∩ Ri for some si ∈ Q i . 

Then, (ri, ti(si)) ∈ C ARCi,1 due to η2
i (si). The converse follows from Claim 2. �

Induction concludes the proof. �
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