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Abstract

We propose a new approach to studying electrical networks interpreting
the Ohm law as the operator which solves certain Local Yang-Baxter equa-
tion. Using this operator and the medial graph of the electrical network
we define a vertex integrable statistical model and its boundary partition
function. This gives an equivalent description of electrical networks. We
show that, in the important case of an electrical network on the stan-
dard graph introduced in [1], the response matrix of an electrical network,
its most important feature, and the boundary partition function of our
statistical model can be recovered from each other.
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Defining the electrical varieties in the usual way we compare them to
the theory of the Lusztig varieties developed in [2]. In our picture the
former turns out to be a deformation of the later.

Our results should be compared to the earlier work started in [3] on
the connection between the Lusztig varieties and the electrical varieties.
There the authors introduced a one-parameter family of Lie groups which
are deformations of the Unipotent group. For the value of the parameter
equal to 1 the group in the family acts on the set of response matrices and
is related to the symplectic group. Using the data of electrical networks we
construct a representation of the group in this family which corresponds to
the value of the parameter −1 in the symplectic group and show that our
boundary partition functions belong to it. Remarkably this representation
has been studied before in the work on six vertex statistical models and
the representations of the Tempeley-Lieb algebra.

1 Introduction

The theory of cluster algebras [4], [5], [6] and the theory of directed networks,
not necessarily planar, developed in [7] grew out of a very interesting paper [2]
where the authors studied the Lusztig variety L, the variety of parametrisations
of the unipotent group Un. The following features of this variety are important
for us:

• the set of toric charts labelled by reduced words for the longest permuta-
tion coming out of the factorization of a unipotent matrix into a product
of the Jacobi matrices

• the set of directed graphs labelled by the same set as the charts, these
directed graphs are obtained out of the pseudo-line arrangements defined
by reduced words for the longest permutation

• a supply of functions defined as sums of weights of directed paths in these
graphs which can be packed into a unipotent upper triangular matrix

• the transition maps between the charts correspond to the local “Yang-
Baxter” mutations and a particular solution to the tetrahedron Zamolod-
chikov equation defines the formulas for these transition maps

• the nil Temperley-Lieb algebra related to this solution

• a particular set of functions ML labelled by the subsets of the set [1, n]
which generate the ring of functions of the Lusztig variety and obey a
Plücker type relation

• the natural action of the symmetric group on the electrical varieties as-
sociated with important classes of graphs analogous to the discrete Toda
lattice
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These led among other things to the discovery of the concept of the cluster
algebra and the theory of directed networks.

Let us look at a different problem. Suppose we are given a connected graph
Γ, a part of its vertices is called the boundary the rest are forming the internal
and a function γ from the edges of Γ to the non-zero complex numbers. If γ
takes only positive real values the pair (Γ, γ) defines an electrical network with
the conductivity γ on Γ [1], [8]. Apply the electrical potential to the boundary
vertices then the Ohm law and the Kirchhoff law imply that the current through
the internal vertices is zero and therefore we obtain a linear map sending the
values of the potential on the boundary to the currents from the boundary to
the network. The matrix of this linear map is called the response matrix of the
network. One naturally obtains a variety T of electrical networks in this situation.
Indeed the choice of the conductivity function, not necessary positive, should
be treated as a point in the toric chart labelled by Γ. The graph of the network
can be changed locally using the so called “star-triangle” transformation which
involves three edges incident to each other in two different ways. If one changes
the value of the conductivity function on these edges appropriately, obtaining a
new network, the response matrix of this network is equal to the response matrix
of the old network. This change of the conductivity defines the transition map
between the toric charts. In what follows we use the fact that this transformation
produces a solution for the Zamolodchikov tetrahedron equation. The response
matrix MR is therefore a matrix-valued function on our variety. Studying the
variety T, which we will call the electrical variety, is the natural task. Moreover
it is evident from the description of the electrical varieties that one should search
for the connection between them and the Lusztig varieties.

The first work in this direction was done in [3] where the authors clearly
introduced the idea that the theory of the electrical varieties is a deformation
of the theory of the Lusztig varieties. Using a solution of the Yang-Baxter type
equation the authors introduced the Electrical Lie group which is a deformation
of the Unipotent group, acts on the set of electrical varieties, and is closely
related to the symplectic group. This idea was further developed in the sub-
sequent work [9], [10], [11] leading to a number of significant developments in
the theory of the electrical varieties.

We suggest a new approach to studying the electrical varieties by introducing
a new complete electrical invariant, the data equivalent to the response matrix.
Consider the medial graph of Γ. The “star-triangle” transformation of the
original graph corresponds to the “Yang-Baxter” mutation in the medial graph.
It turns out that the Ohm law defines an operator which solves the Local Yang-
Baxter equation with spectral parameters related by the Zamolodchikov map -
a solution for the Zamolodchikov set-theoretical equation. This map was known
for a long time, it has been used earlier in connection to (2 + 1) integrability in
[12] and it is different from the one used in [3]. We will call our operator the
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Ohm-Yang-Baxter operator and denote it by φ.1 Using the Ohm-Yang-Baxter
operator and the medial graph of Γ we will define a vertex integrable statistical
model and a matrix-valued function MB on T which is the boundary partition
function of our vertex statistical model.

In the paper we will show that this statistical model gives an equivalent
description of the electric variety at least for some important class of electrical
networks introduced in [1]. This class of networks is special because the inverse
problem for these networks can be solved, namely, given the response matrix
one can recover the conductivity function of the network. The graph of such
a network is called the standard graph in [1]. We will give precise formulas
relating the matrices MR and MB and solve the inverse problem for MB giving
therefore a new solution for the inverse problem of the electrical networks on
the standard graphs.

In [3] the authors in fact introduced a one-parameter family of Lie groups
which are deformations of the Unipotent group. The group for the value of the
parameter equal to 1 is the Electrical Lie group we mentioned above. In our
paper we define a representation of the group in this family for the value of
the parameter equal to −1 in the symplectic group using the data coming from
electrical networks and our boundary partition functions belong to it. Remark-
ably, this representation has been studied before in statistical phisycs [17]. The
family of these Lie algebras will be studied from our point of view in a coming
publication.

The medial graph of the standard graph turns out to be exactly the pseudo-
line arrangement for a certain reduced word for the longest permutation used
in [2]. It allows us to compare our approach to the theory of the electrical
varieties for these networks to the theory of the Lusztig varieties discovering all
the features we listed above with the appropriate modification.

• the solution of the Local Yang-Baxter equation coming out of the Ohm
law is in fact the deformation of the Lusztig solution

• the matrices MB belong to the symplectic group and are the deformation
of the unipotent upper triangular matrices

• for n even the partition function MB gives an embedding of the variety
T to the symplectic group Sp(n)

• the Temperley-Lieb algebra TL(0) at a root of unity of which the nil
Temperley-Lieb algebra is a degeneration

• the “Plücker coordinates” will be constructed making the algebra of func-
tions of the variety T a cluster like algebra which is the deformation of
the cluster algebra of functions on the Lusztig variety

1After this work was finished we had found out that the construction of the Ohm-Yang-
Baxter operator was known to S. Serggev and is contained in his unpublished manuscript
[16]
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• the discrete Toda system analog naturally acts on the electrical variety
defined by the rectangular lattice and the standard graphs.

Concluding the introduction we will point out two things. Firstly, almost all
of the items on the list above also appeared in the work [3], [9], [10]. However
the connection of them to our work needs to be investigated. This will be done
in the coming work.

Secondly, a different statistical model approach to the electrical varieties
via the dimer models was developed and the cluster algebra structure on the
electrical varieties was introduced in [13] and [14]. Our statistical model is an
integrable model of the vertex type and we use its specific properties to derive
the features listed above. Combining all these points of view and establishing
the precise relationship between them should be an interesting task, we hope to
return to it later.

The paper is organized as follows: the sections 1 and 2 serve to introduce
the definition of the electrical variety and the notion of the vertex statistical
model. The major results of the paper are situated in the sections 3 and 4. Part
of the material in the sections 5 and 6 will be known to experts. We included
it as an illustration of our point of view on the idea that the electrical varieties
are the deformation of the Lusztig varieties.

2 The definition of the electrical variety

The definition of electrical variety has appeared already in [13], [11], and [3], so
we just recall it here.

Suppose we are given a pair (Γ, γ), where Γ is a connected graph, a subset
of its vertices is labelled as the boundary vertices or nodes, the rest are forming
the set of the internal vertices and γ is a function from the set E(Γ) of edges
of Γ to real numbers. It defines an electrical network with the conductivity
function γ on Γ if γ takes positive values.

Let us denote by N(Γ) the set of graphs which can be obtained out of Γ by
applying the local star-triangular transformation or its inverse which are pictured
below:

Figure 1: Star-triangular transformation

Note that these transformations change the number of internal vertices by
one.
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For a graph Γ′ obtained from Γ by such a transformation and a function γ
on the set of edges of Γ define a function γ′ on the edges of Γ′ as follows: the
value of γ′ on all the edges is the same as the value of γ except for the new
edges a′1, a

′
2, a
′
3 which replace the edges a1, a2, a3 where

γ(ai)γ(a′i) = γ(a1)γ(a2) + γ(a1)γ(a3) + γ(a2)γ(a3) =
γ(a′1)γ(a′2)γ(a′3)

γ(a′1) + γ(a′2) + γ(a′3)

i = 1, 2, 3.

Definition 2.1. We will say that (Γ′, γ′) and (Γ, γ) are related by the star-
triangular mutation.

Let m = |E(Γ)|.

Definition 2.2. The electrical variety T associated with the pair (Γ is a collec-
tion of charts {tk ∼= (R+)m} labelled by the elements of the set N(Γ). Two
points γ and γ′ in the charts labelled by Γ and Γ′ are glued together by the
above maps if the pairs (Γ, γ) and (Γ′, γ)′ are related by the star-triangular
mutation.

Definition 2.3. Suppose (Γ, γ) is a connected electrical network, with n vertices
numbered v1, ..., vn. The Kirchhoff matrix K = K(Γ, γ) is the n × n matrix
constructed as follows.

• If i 6= j then Kij = −
∑
γ(e), where the sum is taken over all edges e

joining vi and vj . If there is no edge joining vi to vj , then Kij = 0.

• Kii =
∑
γ(e), where the sum is taken over all edges e with one endpoint

at vi and the other endpoint not vi.

The Schur complement MR(Γ, γ) in the Kirchhoff matrix associated with
pair (Γ, γ) to the submatrix of the internal vertices of Γ is called the response
matrix [1]. Its role in the theory of electrical networks is described in the
introduction. If it does not lead to confusion we will denote the response matrix
simply by MR. Note that due to the properties of the Schur complement the
matrix MR is singular because the Kirchhoff matrix is singular.

The response matrix has many remarkable properties. The following will be
especially important for us

Proposition 2.4. The matrix MR does not change under star-triangular muta-
tions of the pair (Γ, γ) and therefore it defines a function on T with values in
matrices.

3 Electrical varieties as vertex statistical models

3.1 Vertex statistical models

The definition below is the usual definition from statistical mechanics adapted
to our situation.

6
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Definition 3.1. By a vertex statistical model, the vertex model for short, we
mean a pair (N,X), where N is a finite directed graph without directed cycles
and multiple edges situated in the disk whose set of vertices V is divided into
two subsets, the internal vertices V0 and the boundary vertices V1, and X is a
collection of 2 × 2 matrices Xa with the elements in some ring, one for each
internal vertex a ∈ V0. The boundary and the internal vertices are situated on
the boundary and in the internal of the disk respectively. The boundary vertices
have the degree one and the internal vertices have degree 4. We assume also
that each internal vertex has in-degree 2 and out-degree 2, and the incoming
edges and the outgoing edges are adjacent, as shown in the figure 2.

Figure 2: Cross

For each cross as above there are four ways a path can traverse through
the vertex: NS, NE, and WS, WE, then the rows of the matrix Xa can be
viewed as the weights of these paths through it.

Since the graph is directed the boundary vertices are naturally divided into
the sources and the sinks.

Definition 3.2. The boundary partition function MB for such a vertex model
(N,X) is a matrix whose rows are labelled by the sources, the columns are
labelled by the sinks. Given a source i and a sink j define (MB)ij as the sum
of the weights of all the paths between i and j.

We will offer now a different way of calculating the matrix MB which shows
that this matrix is indeed a boundary partition function of a vertex statistical
model. Let us call a strand a path which goes through each internal vertex from
the North to the South or from the West to the East. Let us number all the
strands of the graph N . Then to each internal vertex a which is the intersection
of say the i-th and the j-th strands we assign a block matrix (Xa)ij which is
the identity matrix except the submatrix with i-th and j-th rows and columns
which is Xa.

Since the graph N does not have directed cycles there is a natural partial
order on the vertices: a > b if there is an oriented edge connecting b to a.
Consider the product of the matrices (Xa)ij (over the ordered set of vertices)
in which the order of the factors agrees with the order of the vertices who label
the factors

M =
∏
a∈V0

(Xa)ij .

7
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Lemma 3.3. The matrix M is well defined and moreover M = MB.

Proof. Although this statement is well known we propose here our interpretation
of its proof.

First, note that from the construction of the matrices (Xa)ij it is clear that
if two vertices a and b are not comparable in the partial order then the matrices
(Xa)ij and (Xb)

kl commute, hence the matrix M is well defined.
Now consider the sum of the weights of the paths going from a source vertex

to a sink vertex. The matrix elements of (Xa)ij define the weights of all the
ways a path can travel along the strands intersecting at a. At each point there
are four such ways as the figure 2 shows, and we will identify them with the
matrix elements of (Xa)ij as shown before

ϕL =

Å
WE WS
NE NS

ã
. (3.1)

It is clear now that to each such path we can find a unique summand in the
expression of the appropriate matrix element of M .

We can perform the following local transformation on our vertex model. It
changes the graph N as follows:

Figure 3: Yang-Baxter mutation

That is, it moves the line k through the intersection point of the lines i and
j. Here we denote a vertex by the labels of the lines which intersect at this
vertex.

Suppose also that we find three matrices (Xa′), (Xb′), (Xc′) such that the
following Local Yang-Baxter equation holds:

(Xa)ij(Xb)
ik(Xc)

jk = (Xc′)
jk(Xb′)

ik(Xa′)
ij .

The upper indices as usual show the pairs of indices in Cn the appropriate
operator acts on. Our transformation replaces the matrices Xa, Xb, Xc in the
set X by the primed matrices Xa′ , Xb′ , Xc′ . The rest of the network data
remains unchanged.
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Definition 3.4. Such a transformation of the vertex model (N,X) we will call
the Yang-Baxter mutation.

Denote by N(N,X) the set of all vertex models obtained from (N,X) by
the Yang-Baxter mutations.

Proposition 3.5. If the weigth matrix Xa satisfies the local Yang-Baxter equa-
tion then the Yang-Baxter mutation does not change the boundary partition
function MB.

Proof. This is obvious due to lemma 3.3. Indeed, the products of the local
vertex matrices for both vertex models coincide as a consequence of the local
Yang-Baxter equation.

3.2 Directed graph associated to electrical network

We will show now how to associate a vertex model in the above sense to an
electrical network. First we will define a directed graph (naturally) related to
an electrical network.

Suppose Γ is a planar graph with no loops, with n external nodes; Γ is
embedded in the plane so that the nodes v1, v2, ..., vn are in clockwise order
around a circle C and the rest of Γ is in the disc D bounded by C.

Recall the construction of the medial graph ΓM of Γ. It depends on the
embedding of Γ in the disc. For each edge e of Γ let me be its midpoint. Place
2n points t1, t2, ...t2n on C so that:

t1 < v1 < t2 < t3 < v2 < t4 < ... < t2n−1 < vn < t2n

The vertices of ΓM are the points me for all edges e in Γ and the points ti
for i = 1, 2, ..., 2n.

If e and f are edges in Γ with a common vertex which are incident to the
same face, the interval joining me and mf will be an edge in ΓM . For each
point tj on the boundary circle, there is one edge as follows: the point t2i is
joined by an edge to me where e is the edge whose endpoint is vi which comes
first after the line vit2i in clockwise order around vi; the point t2i−1 is joined by
an edge to mf where f is the edge whose endpoint is vi which comes first after
the line vit2i−1 in counter-clockwise order around vi as shown on the picture 4.

As it is true for any medial graph the internal vertices of ΓM are of degree 4.
The strand, as in section 3.1, is a path in ΓM which connects two nodes of ΓM

and goes straight through any internal vertex. This defines a perfect matching
on the set of nodes of ΓM and an orientation on any strand as well. Indeed
each strand has the endpoints labelled by the unique pair of distinct numbers
between 1 and 2n. We will think of this pair as defining the direction going
from the smaller to the larger label. Thus the medial graph has the orientation
defined by the order on the set of nodes.

9
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Figure 4: Network

The conductivity function γ on the edges of Γ translates into a function on
the vertices of ΓM , which we denote by the same letter γ.

The graph ΓM has an important additional structure: its vertices are natu-
rally coloured by one of two colours, black or white. If the vertex belongs to an
edge of Γ then the line this edge belongs to breaks the strands which intersect in
the vertex in two possible ways: either the sources of the strands sit in different
half planes bounded by that line or in the same. In the first case we colour the
vertex black and in the second white, see figure 4.

3.3 The Ohm-Yang-Baxter operator

The next step in the construction of the vertex model is to define the set of
matrices X labelled by the vertices of the graph MΓ which solve the Local
Yang-Baxter equation. This will be done using the major feature of electrical
networks, the Ohm law.

The graph ΓM is a directed graph whose internal vertices are identified with
the edges of Γ. The conductivity function γ therefore is a function on the set
of the vertices of ΓM .

Recall that the vertices of ΓM are coloured either by the black or by the
white colour. We will describe the two types of variables one can attach to the
vertices of ΓM so that the Ohm law

U2 − U1 = RI

will produce linear operators acting on these sets of variables.
Consider a white vertex in ΓM as the pictures below show. We introduce

additional variables on the 2-faces of the medial graph corresponding to the
2-faces of the initial graph as shown on figure 3.3. We demand that the values

10
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I1 and I2 satisfying the condition

I = I1 − I2.

This is always possible due to the Kirchhoff law at internal vertices of the initial
network graph.

Remark 3.6. The function on the faces defined by Ij ’s is unique up to an
additive constant and is called the conjugate harmonic function to the harmonic
function on the vertices defined by Ui’s.

I1

U2U1 R

I2
y′x′

y x

Figure 5: White vertex

For a white vertex we define the set of edge variables by the equations

x = U2 − I1;

y = I1 − U1;

x′ = I2 − U1;

y′ = U2 − I2.

Rewrite the Ohm law in these variables:

x+ y = R(y − x′).

This equation together with the identity

x+ y = x′ + y′

defines the map ψ : (x, y) 7→ (x′, y′)Å
x′

y′

ã
=

Å
−1/R 1− 1/R

1 + 1/R 1/R

ãÅ
x
y

ã
. (3.2)

which depends on the parameter R. For black vertices we define the set of edge
variables by the equations:

x = I2 − U1;

y = U1 − I1;

x′ = U2 − I1;

y′ = I2 − U2.
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I1

U1

U2

R I2

y′

y

x′

x

Figure 6: Black vertex

The Ohm law

1

R
(U2 − U1) = I2 − I1

together with the identity

x+ y = x′ + y′

defines the map φ : (x, y) 7→ (x′, y′)Å
x′

y′

ã
=

Å
R 1 +R

1−R −R

ãÅ
x
y

ã
(3.3)

which depends on the parameter R as well. These operators are related as
follows

φ(− 1

R
) = ψ(R) (3.4)

We have the following theorem

Theorem 3.7. The operator φ(r) satisfies the following local Yang-Baxter equa-
tion

φ12(x1)φ13(x2)φ23(x3) = φ23(x′3)φ13(x′2)φ12(x′1),

where φij is a 3 × 3 diagonal block matrix those ij-block is φ and the rest is
the identity matrix and

x′1 =
x1x2

x1 + x3 − x1x2x3
;

x′2 = x1 + x3 − x1x2x3;

x′3 =
x3x2

x1 + x3 − x1x2x3
.

Proof. The author of [15] gives a list of the solutions to the Local Yang-Baxter
equation in dimension two. One on the list is the operator φ.
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The following is the key statement for our approach to the theory of electrical
networks.

Corollary 3.8. The operator φ solves the following form of the Local Yang-
Baxter equation

φ12(R1)ψ13(R2)φ23(R3) = ψ23(R′3)φ13(R′2)ψ12(R′1)

where the parameters Ri and R′i, i = 1, 2, 3 are related by the identity:

RjR
′
j = R′1R

′
2 +R′2R

′
3 +R′3R

′
1 =

R1R2R3

R1 +R2 +R3

Proof. Trivial check.

3.4 Vertex model of electrical network

Now we are ready to summarize our construction.

Definition 3.9. For an electrical network (Γ, γ) define the vertex model asso-
ciated to it as (ΓM ,X) where the set of matrices X is made of the operators
ψ(γ(v)) if the vertex v is white and the operators φ(γ(v)) if the vertex v is
black.

Example 3.10. In the picture 4 the sources are the nodes labelled 1, 2, 3, 5, 7,
the rest of the nodes are the sinks. The internal vertices are coloured in white
or black, indicating whether we use the operator ψ or φ to calculate the weights
of paths through the internal vertices.

We can introduce as before the set of all vertex models N(ΓM ,X) obtained
out of (ΓM ,X) by the Yang-Baxter mutations, in addition the Yang-Baxter
transformation should turn the black vertices into white ones and vice versa.

Putting together all the pieces we have the following

Theorem 3.11. For a given electrical network (Γ, γ) the boundary partition
function of the associated vertex model is a function on the electrical variety
defined by (Γ, γ).

Proof. This is the direct consequence of the fact that φ and ψ solve the local
Yang-Baxter equation 3.8.

4 Electrical varieties of standard graphs

In this section we will study the electrical variety defined by an important set
of graphs, the standard graphs, introduced in [1]. Their importance is due
to the fact that the inverse problem of recovering the conductivities from the
response matrix can be solved by the explicit algorithm [1]. For the electrical
variety defined by the standard graph the partition function MB has a number
of remarkable properties. We will state and prove them in this section.
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4.1 Standard graphs

The standard graph is defined in [1] and is denoted by Σn. The first few of
them are figured in 7 below.

Figure 7: Standard graphs

The medial graphs for n = 3 and n = 4 will look like the figure 8 below
with the black and white vertices indicated

Figure 8: Medial graphs

Convention: we will always label the strands and the vertices of the graph
ΣM
n as the picture 8 shows. Moreover we label by n−i+1 the unlabelled end of

the strand labelled by i. These are the sources and the sinks of ΣM
n respectively.

Proposition 4.1. The set of graphs N(ΣM
n ) is exactly the set of pseudo-line

arrangements corresponding to reduced words for the longest permutation of
Sn modulo 2-moves introduced in [2]. In particular the graph ΣM

n corresponds
to the reduced word 12...(n− 1)12...(n− 2)12....1.

Proof. Clear from the figure 8.

Example 4.2. With the labelling of the vertices as in the figure 8 for n = 2
we get the pseudo-line arrangement for the word 121 and for n = 3 the one for
123121.
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4.2 The connection between MR and MB

Consider the graph Σn. Here we will prove one of our main results that for any
electrical network on Σn the response matrix MR can be recovered from the
boundary partition function MB and visa-versa.

Recall that MR is a symmetric matrix for which the sum of the entries in
each row is zero. On the other hand it is easy to see from the construction of
the matrix MB that the sum of the entries in each column equal to 1.

First we will describe the connection between the vector of the currents
I = (I1, ..., In), the vector of the potentials U = (U1, ..., Un) and the vector
of our new face variables J = (J1, ..., Jn) which follows from the Ohm law and
the Kirchhoff law.

Introduce the matrix Sn of size n× n

Sn =

à
1 0 . . . 0 −1
−1 1 0 . . . 0
0 −1 1 . . . 0

. . .
0 . . . 0 −1 1

í
. (4.5)

Introduce also the shuffle matrix T2n of size 2n× 2n which moves the compo-
nents U of the vector (J, U) through the components J putting Ui in front of
Ji for all 1 ≤ i ≤ n.

Example 4.3. Here are the matrices S3 and T6

S3 =

Ñ
1 −1
−1 1

−1 1

é
, (4.6)

T6 =


1

1
1

1
1

1

 . (4.7)

The labelling of the input and the output vertices in the medial graph of Σn

is given as follows. The first n components of the vector

S2nT2n

Å
J
U

ã
(4.8)

label the inputs and the other n components label the outputs.
The picture 9 illustrates it for n = 2. The variables I, J , and U are
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Figure 9: Edge variables

connected by the following equations. First is the definition of the response
matrix of our electrical network

I = MRU.

The other is our definition of the face variables J

I = SnJ.

Finally the definition of our partition function gives

(MB, Id)S2nT2n

Å
J
U

ã
= 0. (4.9)

where Id is the identity matrix of the size n× n.

Example 4.4. For n = 2 it takes the form

MB

Ñ
U1 − J3

J1 − U1

U2 − J1

é
=

Ñ
U2 − J2

J2 − U3

U3 − J3

é
, (4.10)

The above leads to the key observation

Lemma 4.5. The matrices

W1 = (Sn,MR)

and

W2 = (MB, Idn)S2nT2n

define the same point in the Grassmanian Gr(n− 1, 2n).
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Proof. The proof is based on the following arguments from linear algebra. Let
us demonstrate that the systems

W1

Å
J
U

ã
= 0 and W2

Å
J
U

ã
= 0

are equivalent. The left one is a linear system of rank n − 1. Each solution
of the left system satisfies the right one. The only thing to calculate the rank
of the right one. The matrix T2n is non-degenerate. The matrix S2n has the
one-dimensional left-kernel generated by the vector (1, 1, . . . , 1). The matrix
MB is an invertible matrix such that

(1, . . . , 1)MB = (1, . . . , 1).

Hence there is an only one-dimensional left null-space for the matrix W2 gener-
ated by the vector (1, . . . , 1). Hence the rank of W2 is n− 1.

Let S∗n be the upper left (n− 1)× (n− 1) submatrix Sn, W
+
2 be the upper

(n − 1) × 2n submatrix of W2 and W ∗2 be the upper left (n − 1) × (n − 1)-
submatrix of W2. We also use the notation M∗R for the upper (n − 1) × n
submatrix of MR and W [

2 for the right upper (n − 1) × n-submatrix of the
expression

S∗n(W ∗2 )−1W+
2 .

Then we have

Theorem 4.6.

M∗R = W [
2 (4.11)

Proof. To prove the statement we transform the matrix W2 to have the same
upper left block as the matrix W1. The fact that they represent the same point
of the grassmanian G(n− 1, 2n) proves that they coinside. We then recall that
the last line of MR is recovored from the condition

(1, . . . , 1)MR = 0.

We finish this subsection with a couple of remarks.

Remark 4.7. Our theorem should be helpful for calculating the response matrix.
Being the Schur complement the response matrix requires inverting (n2/2 +
O(n)) × (n2/2 + O(n)) matrix. The above theorem says one needs to invert
the (n− 1)× (n− 1) matrix MJ

B,0 to calculate the response matrix.
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Remark 4.8. According to [1] the response matrix of an electrical network has
some interesting positivity properties. Namely all the so called circular minors
have the same sign. The results we have presented in this section suggest that
the boundary partition function associated to an electric network also has some
special positivity properties. We plan to study this in a future publication.

The appearance of the Grassmanian G(n− 1, 2n) we saw above should be
compared to the way it appears in [11]. This could lead to identifying precisely
the place of our complete electrical invariant MB in the earlier work on the
electrical varieties.

4.3 Symplectic group

Recall that the boundary partition function MB is the product of the operators
φ(r), the solutions for the local Yang-Baxter equation. The matrix MB for the
standard graph Σ2 4.2 for example is the following product

MB = φ23(−1/r3)φ13(r2)φ12(−1/r1). (4.12)

For the graph Σk, k > 2 the matrix MB takes the form

MB =
∏
i<j

φij((−1)i+jr
(−1)i+j

ij ) (4.13)

where the product is over the pairs (ij) such that i < j and the order of the
factors is defined by the lexicographic order on the pairs (ij).

To make connection with the Lusztig varieties it is convenient to consider
the alternative version for the boundary partition function. There are two forms
of the Yang-Baxter equation

R12R13R23 = R23R13R12,

and

Ř12Ř23Ř12 = Ř23Ř12Ř23,

where

R̃ = PR,

and P is the transposition operator.
Introduce the operators φ̌ij = Pijφij , where Pij is the transpostion operator

in positions i and j, and define as before the product

MB =
∏
i<j

Pijφ̌ij((−1)i+jr
(−1)i+j

ij ).
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over the pairs (ij) in the lexicographic order. Moving all the permutation
operators to the left we obtain

MB =
∏
i<j

Pij

∏
i<j

φ̌j−i j−i+1((−1)i+jr
(−1)i+j

ij ).

Define the matrix M̌B by the following formula

M̌B =
∏
i<j

φ̌j−i j−i+1((−1)i+jr
(−1)i+j

ij ). (4.14)

Example 4.9. For the graph Σ2 this matrix takes the form:

M̌B = φ̌12(−1/r3)φ̌23(r2)φ̌12(−1/r1). (4.15)

We put the above calculations into the following

Proposition 4.10. MB = ω0M̌B, where ω0 is the longest element of the sym-
metric group represented by the matrixà

0 . . . 0 1
0 . . . 1 0

. . .
0 1 . . . 0
1 0 . . . 0 0

í
. (4.16)

Theorem 4.11. The modified boundary partition function M̌B of an electrical
variety preserves the bilinear form

Ωn =
∑

1≤i<j≤n
xi ∧ xj (4.17)

which is symplectic for even n.

Proof. The operator φ̌i i+1(r) belongs to the symplectic group Sp(n) for 1 ≤
i ≤ n− 1 and even n:

φ̌i i+1(r)TΩnφ̌i i+1(r) = Ωn. (4.18)

The form Ωn and the operator φi i+1(r) are given by the following matrices:

Ωn =
∑
i<j

eij −
∑
i>j

eij ;

φ̌i i+1(r) = Id+ r(−ei + ei+1)(ei + ei+1)T = Id+ rai.
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where eij is the matrix unit and ei is the standard basis vector. It is clear that:

Ωnaj = −(ej + ej+1)(ej + ej+1)T ;

aTj Ωn = (ej + ej+1)(ej + ej+1)T ;

aTj Ωnaj = 0.

Therefore

M̌T
BΩnM̌B = Ωn. (4.19)

After the change of the basis

vi = v′i − v′i+1, 0 < i < n

vn = v′n

the form Ωn will be given by the matrixà
0 1 0 . . . 0
−1 0 1 . . . 0
0 −1 0 . . .
. . . . . . 0 1
0 0 . . . −1 0

í
. (4.20)

which is known to be symplectic for even n.

Remark 4.12. The proof above works for any electrical network with the even
number of nodes n, in other words the partition function of any such a vertex
model belongs to the symplectic group Sp(n).

When n is odd the partition function MB also has interesting properties,
namely its determinant is equal to 1, hence it belongs to the group SL(n), and
the sum of the matrix elements in every columns is equal to 1 as we already
have mentioned.

4.4 Temperley-Lieb algebra and the Electrical Lie algebra

Following [2] introduce an associative algebra with the generators u1, ..., un−1

and with the relations defined by the following equations satisfied for arbitrary
r1, r2, r3:

(1 + r1ui)(1 + r2uj) = (1 + r2uj)(1 + r1ui),

if |i− j| ≥ 2,
(1 + r1ui)(1 + r2uj)(1 + r3ui) =

(1 +
r2r3

r1 + r3 − r1r2r3
uj)(1 + (r1 + r3 − r1r2r3)ui)(1 +

r1r2

r1 + r3 − r1r2r3
uj)

if |i− j| = 1.
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Comparing the coefficients of identical monomials in ri’s on both sides we
obtain

uiuj = ujui, |i− j| > 1

u2
i = 0

uiujui = −ui, |i− j| = 1

This makes our algebra the Temperley-Lieb algebra specialized at the root of
unity q = i. We will denote it by TL(0).

Therefore we have

Proposition 4.13. The matrices

ai = φ̌ii+1(1)− Id

where φ̌ii+1 are the operators from 4.14 form a representation of the algebra
TL(0).

Proof. Recall that the operator φ̌(r) satisfies the following form of the local
Yang-Baxter equation.

(φ̌12(r3))(φ̌23(r2))(φ̌12(r1)) = (φ̌23(r′3))(φ̌12(r′2))(φ̌23(r′1))

r′1 =
r3r2

r1 + r3 − r1r2r3
;

r′2 = r1 + r3 − r1r2r3;

r′3 =
r1r2

r1 + r3 − r1r2r3
.

Using the calculation above conclude the result.

Remark 4.14. The Lusztig solution to the Local Yang-Baxter equation used in
[2] is related in the same way to the nil-Temperley-Lieb algebra, a degeneration
of our Temperley-Lieb algebra.

Remark 4.15. It turns out that the representation of the Temperley-Lieb alge-
bra TL(0) at a root of unity q = i related to the Ohm-Yang-Baxter operator
φ appears in the studying of the XXZ model in statistical physics [17]. It is
also related to the symplectic Lie algebra. The explicit formula for the genera-
tors ui of TL(0) in terms of the symplectic algebra generators is given in [17]
6.11, 6.12.

Recall that the Electric Lie group was inroduced in [3] as a member of a
one-parameter family of Lie groups with the Lie algebras given by the generators:

e1, e2, ..., en
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and the relations:
[ei, ej ] = 0, if |i− j| ≥ 2

[ei, [ei, ei±1]] = −2µei

Namely the Electric Lie group ELn corresponds to the value of the parameter
µ = 1. Clearly it is a deformation of the Unipotent group which corresponds to
the value of the paramenter µ = 0.

It was proved in [3] that for n even ELn is isomorphic to the symplectic
group Sp(n).

Proposition 4.16. The matrices MB belong to a representation of the Lie
group from the above family which corresponds to the value of the parameter
µ = −1.

4.5 The solution of the inverse problem

As we mentioned earlier the inverse problem for an electrical network Γ, γ is
recovering the values of the conductivity function from the known response
matrix MR. It can not be solved in general, however in the case when Γ is the
standard graph there is an explicit algorithm which solves it [1]. The algorithm
is based on the boundary properties of discrete harmonic functions.

In our picture the boundary partition function plays the role of the response
matrix and the inverse problem for it is an interesting task. Finding the solution
of the inverse problem for the Lusztig varieties was an important achievement
in [2].

We present here a simple algorithm for finding the values of the function γ
out of the matrix MB for an electrical network defined on the standard graph
Σn:

Let the internal vertex vij be the intersection of the strands started at the
sources labelled i and j, i < j. By the way we label the boundary vertices,
these strands arrive to the sinks labelled n − i + 1 and n − j + 1 respectively
see figure (8). There is only one path connecting the boundary vertices labeled
j and n − i + 1 which contains the vertex vij , it is the path which runs along
these two strands only. The rest of the paths which connect these two vertices
must be strictly on the right of it as the figure (8) shows. Therefore in the
sum which calculates the matrix entry (MB)j,n−i+1 of 3.1 there is only one
summand which contains the factor γ(vij), the rest will be monomials in γ(vkl)
with either j < k or n − i + 1 < l or both. This provides the step of the
induction. Since (MB)nn = 1− γ(vnn) we obtain the algorithm.

The results of the previous sections together with the above algorithm allow
to prove

Corollary 4.17. The boundary partition function defines an embedding of the
variety T defined by the standard graph Σn into the symplectic group Sp(2n).
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Remark 4.18. Combining this algorithm for the matrix MB with theorem 4.2
we obtain a new solution for the inverse problem for electrical networks on
the standard graphs. Indeed given the response matrix of such a network we
can calculate out of it the boundary partition function MB using 4.2 and then
calculate the conductivities using our algorithm.

5 Electrical varieties as deformation of Lusztig vari-
eties

In this section we will present several properties of the electrical varieties which
show that the theory of the electrical varieties is an interesting deformation
of the theory of the Lusztig varieties. For this purpose we introduce a slight
modification of the electrical variety defined by the standard graph. We simply
ignore the colours on the vertices of the graph ΓM and use the collection X of
matrices made out of the operators φ̌(r) defined earlier in 4.3. We will denote
the resulting variety L1. It is in fact isomorphic to T, but it is more convenient
for studying the connection to the variety L.

5.1 The boundary partition functions for the Lusztig and the elec-
trical varieties

To put the electrical varieties and the Lusztig varieties on the same footing we
will present the latter as a vertex integrable statistical model. In this language
the Lusztig variety is a pair (ΣM

n ,X), with the collection of matrices X made
out of the operators

ϕL(t) =

Å
1 t
0 1

ã
. (5.21)

The operator ϕL(t) satisfies the following local Yang-Baxter equation.

ϕL
12(t3)ϕL

23(t2)ϕL
12(t1) = ϕL

23(t′3)ϕL
12(t′2)ϕL

23(t′1)

where

t′1 =
t2t3
t1 + t3

;

t′2 = t1 + t3;

t′3 =
t1t2
t1 + t3

.

Remark 5.1. Since we use the operators φ̌(r) and ϕL(t) we must reverse the
order of the sinks of the graph ΣM

n as opposed to our earlier convention, see
4.10.
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As such this variety is a vertex model in our definition and it has the boundary
partition function. It is represented by an upper triangular unipotent matrix as
it should be according to [2].

Theorem 5.2. Denote by ML and ML1 the boundary partition functions for the
Lusztig and the electrical varieties defined by the standard graph. The matrix
elements of ML1 are polynomials in the variables γ(v). Denote by M0

L1
the

upper triangular matrix whose matrix coefficients are the homogeneous parts
of the smallest degree of the coefficients of the upper triangular submatrix of
ML1 . Then ML = M0

L1
.

Proof. Call a path in the standard graph non-decreasing if it does not contain
a slant line interval going from the level i to the level i − 1 in the pseudo-line
presentation. The smallest degree homogeneous component of the weight of a
path if it connects the vertices vi and vj , i ≤ j, is |i− j|. It is clear that only
the non-decreasing paths have the smallest degree component in the weight
polynomial.

Comparing the weights of a non-decreasing path defined by the matrix φ
and the weight of this path calculated using the weights defined by the matrix
elements of the matrix (5.21) we see that for a standard graph the smallest
degree component in the weight polynomial of the former is the weight of the
latter. But the non-decreasing paths calculate the upper triangular part of the
boundary partition function for the electrical variety on the one hand and the
boundary partition function of the Lusztig variety on the other hand.

5.2 The cluster coordinates

The important observation made in [2] about the algebra of functions on the
Lusztig variety is the following: introduce the set of variables ML, where L ⊂
[1, n]. Let h = (h1, ..., hm), where 1 ≤ hk ≤ n− 1, be a reduced word for the
longest permutation w0 labelling a chart th = (th1 , . . . , t

h
m) in the variety L. For

each entry hk of h define a Chamber set L ⊂ [1, ..., n] for h, and two integers
i and j by

L = shm . . . shk+1
({1, ..., hk−1})

i = shm . . . shk+1
(hk)

j = shm . . . shk+1
(hk+1)

For example, for h = 213231 and k = 3, we obtain (i, j) = (1, 3) and L = [2, 4].

Theorem 5.3. [2] Let thk be defined by the Chamber Ansatz substitution

thk =
MLML∪{i,j}

ML∪{i}ML∪{j}
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where i, j, L are defined above. Then the point th belongs to the Lusztig
variety L if and only if the variables ML satisfy the following relation

ML∪{i,k}ML∪{j} = ML∪{i,j}ML∪{k} +ML∪{j,k}ML∪{i}

whenever i < j < k and L ∩ {i, j, k} = ∅.

In other words, the Chamber Ansatz translates the gluing functions for the
charts of L into the 3-term classical Plücker relations. In fact there is the inverse
map. Let M(L) be the subset of {ML} formed by those tuples M = (ML) so
that, in addition to the above relations, it satisfies the normalization condition
M∅ = 1, M[1,b] = 1, b = 1, ..., n.

Theorem 5.4. [2] The restriction of the Chamber Ansatz map M onto M(L)
is a bijection between M(L) and the Lusztig variety L. The inverse bijection
between L and M(J) is given

MJ =
∏

k:j∈J, i<j, i6∈J
(thk)−1

whenever J is a chamber set for h.

Example 5.5. Let us illustrate these theorems in the case of the graph ΣM
2 .

The only other graph we can obtain out of it by the Yang-Baxter mutation
corresponds to the word h = (212). The chamber sets are indicated in the
picture 10. The formulas for the Chamber Ansatz and the inverse map are

Figure 10: Chamber Ansatz

given below

t1 =
M∅M12

M1M2
M2 =

1

t1
t′1 =

M1M123

M12M13
M13 =

1

t′1

t2 =
M2M123

M12M23
M23 =

1

t1t2
t′2 =

M∅M13

M1M3
M3 =

1

t′1t
′
2

t3 =
M∅M23

M2M3
M3 =

1

t2t3
t′3 =

M3M123

M13M23
M23 =

1

t′2t
′
3
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The point is that M3 and M23 are chamber sets in both of the charts but
because t2t3 = t′1t

′
2 and t1t2 = t′2t

′
3 they are defined unambiguously.

The 3-term relation takes the form:

M2M13 = M3M12 +M1M23

Quite remarkably similar statements hold for the electrical variety. It was
first observed in [14]. Mimicking the Chamber ansatz from [2] introduce the set

of variables M̂L, where L ⊂ [1, n]. For any h ∈ N(ΣM
k ), the appropriate chart

rh = (rh1 , . . . , r
h
m) and l ∈ [1,m] set

rhl =
M̂LM̂L∪{i,j}

M̂L∪iM̂L∪j

These variables are call the B-variables in [14]. This way to assign the coordi-
nates to the vertices edges and the faces of the local partition of the surface
defined by the graph on it was also used in [13] to state the cluster algebra
nature of the star-triangular transformation.

The next theorem shows that the three term cluster relation between ML

in the algebra of functions of L deforms to a four term cluster relation between
the variables M̂L but the Chamber Ansatz is still invertible.

Theorem 5.6. [14] The point (rhi ) belongs to L1 if and only if the variables

M̂L satisfy

M̂L∪{i,k}M̂L∪{j} = M̂L∪{i,j}M̂L∪{k} + M̂L∪{j,k}M̂L∪{i} + M̂LM̂L∪{i,j,k}

whenever i < j < k and L ∩ {i, j, k} = ∅.
Moreover the restriction of the Chamber Ansatz map to M̂(L) defined in

the same way as M(L) is a bijection between M̂(L) and the variety L1. The

inverse bijection L1 to M̂(L) is given

M̂J =
∏

k:j∈J, i<j, i6∈J
(rhk)−1

whenever J is a chamber set for h and the product is over all k such that i 6∈ J ,
j ∈ J .

Proof. The first statement is proved by a direct calculation.
As for the second statement, the proof from [2] uses only the following

property of the transition functions: if two charts are related by the elementary
transformation ti, tj , tk → t′i, t

′
j , t
′
k then titj = t′kt

′
j and tktj = t′it

′
j . This holds

for the transition maps of the electrical variety 4.21 as well.

Example 5.7. For the electrical variety associated to the same graph ΣM
2 the

Chamber Ansatz formulas are the same as for the Lusztig variety but the 3-term
relation deforms to the 4-term relation:

M2M13 = M3M12 +M1M23 +M∅M123
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This theorem suggests that the theory of the electrical varieties may provide
a non-trivial deformation of the cluster algebra structure introduced in [4].

In the case of the Lusztig variety the variables ML have a nice interpretation
as the minors of a matrix closely related to the partition function of the Lusztig
variety [2]. The interpretation of these variables in the case of the electrical
variety is not known at the moment as far as we understand, however the
theorem 5.1 maybe be helpful in finding it. We plan to study it in a future
publication.

6 Discrete integrable dynamics of electrical varieties

It is natural to study the transformations of the electrical varieties for which
the behaviour of the response matrix is under control. The list of such trans-
formations is known (see for example [8]). The most interesting for us are
the star-triangle transformation and the transformation adjoining an edge to
the graph. In terms of the medial graph this is equivalent to the (local) Yang-
Baxter transformation and the transformation of adding a crossing to the medial
graph.

6.1 General scheme

There is a class of discrete systems of the Toda type related to the Lusztig
variety. These were considered for example in [18] and are related to the box-
ball system, the Painlevé IV equation and many other dynamical systems. The
machinery of the electrical varieties offers a natural generalization of these. We
consider the discrete system produced by commuting actions of a pair of the
symmetric groups each defined by the above transformations of the electrical
variety. This system was elaborated in a series of papers summarized by [19].
We include our calculations here to demonstrate the similarity with the result
of [18]. These actions are the deformations of the actions studied in [18] and in
the appropriate limit recover the action considered in [18], see also [20], [21].

Consider the graph whose medial graph is a ladder made out of two hori-
zontal lines and a bunch of vertical lines as in the picture below. Following [20]
add a crossing to this graph with the operator φ(t) attached to the new vertex
as shown on the figure 11.

Figure 11: Generators π’s
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For a particular choice of t the rectangular network transforms to the rect-
angular network with the new resistances attached to the vertices sitting in the
intersection points of the horizontal and the vertical lines.

For the network as on the figure 12 and the following choice of t

t =
x1x2 − y1y2

x1 + y2 + x1x2y2 + x1y1y2
(6.22)

the network on the figure 12 is equivalent to the network on the figure 13.

Figure 12: 2x2 network

Figure 13: Equivalent network

The transformation of the resistances is given by:

x′1 = x1µ; y′1 = y1µ
−1; x′2 = x2µ

−1; y′2 = y2µ;

and

µ = (x1 + y2 + x1y2(x2 + y1))/(x2 + y1 + x2y1(x1 + y2)).

6.2 Stable point

Let us analyze the general rectangular case. We consider the composition of
several star-triangle transformation of the form

Φ : (t, x, y)→ (t′, x′, y′)

with

t′ = tx/(t+ x+ txy).

The important observation is that the transformation Tx,y : t→ t′ is a Mobius
transformation of hyperbolic type with t = 0 a stable point . The composition
of such transformations

Tx,y = Txn,yn ◦ . . . ◦ Tx1,y1
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is of the same type, it is defined by a triangular matrix, hence for generic choice
of parameters it has two stable points. One of the stable points is 0. We are
interested in the second stable point

t({x1, . . . , xn}, {y1, . . . , yn}).

Let us introduce the matrix of the corresponding affine transformation

A(x, y) =

Å
x 0

1 + xy y

ã
. (6.23)

The stable points of the transformation Tx,y are in one-to-one correspondence
with the eigenvectors of the matrix given by the product

A
(n)
x,y =

∏
i

A(xi, yi) =

Å ∏
i xi 0

Q(n)(x, y)
∏

i yi

ã
, (6.24)

where

Q(n)(x, y) =
n∑

a=1

(
a−1∏
k=1

xk

n∏
k=a+1

yk

)
+ x1yn

n∑
a=1

(
a−1∏
k=1

xk+1

n∏
k=a+1

yk−1

)
.

Remark 6.1. In this representation we see that the transformation has two
stable points if

∏
i xi 6=

∏
i yi.

Lemma 6.2.

t(x, y) =

∏
i xi −

∏
i yi

Q(n)(x, y)
. (6.25)

6.3 Transformation ri

Let us calculate the transformations of the variables X,Y. By virtue of the
star-triangle transformation we have:

ti+1 = tixi/(ti + yi + tixiyi),

x′i = ti + yi + tixiyi,

y′i = xiyi/(ti + yi + tixiyi).

In projective coordinates ui/vi = ti the transformation ti → ti+1 takes the formÅ
ui+1

vi+1

ã
= A(xi, yi)

Å
ui
vi

ã
=

i∏
k=1

A(xk, yk)

Å
u1

v1

ã
. (6.26)

Hence we obtain the formula

ti+1 =
t
∏i

k=1 xk

tQ(i)(x, y) +
∏i

k=1 yk
,
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where t is from equation 6.25. Such expressions define the transformation on
X,Y

x′i = xiti/ti+1; y′i = yiti+1/ti.

Let us work out the formula for ti

1

ti+1
=
Q(i) (

∏n
k=1 xk −

∏n
k=1 yk) +Q(n)

∏i
k=1 yk∏i

k=1 xk (
∏n

k=1 xk −
∏n

k=1 yk)
=

P (i+1)∏n
k=1 xk −

∏n
k=1 yk

.

The expression P (i+1) is in fact a polynomial:

P (i+1) = Q(i)
n∏

k=i+1

xk

+

i∏
k=1

yk

n∑
a=i+1

(
a−1∏

k=i+1

xk

n∏
k=a+1

yk + xi+1yn

a−1∏
k=i+1

xk+1

n∏
k=a+1

yk−1

)

which can be simplified as follows:

P (i+1) =

n∑
a=1

(
a−1∏
k=1

xi+k

n∏
k=a+1

yi+k + xi+1yi

a−1∏
k=1

xi+k+1

n∏
k=a+1

yi+k−1

)
(6.27)

We can now define the transformations rj which act on the j−th and (j+1)−th
rows of a rectangular lattice transforming the parameters in these nodes xj,i and
xj+1,i by the formulas:

rj(xj,i) = xj+1,i
Pj,i

Pj,i+1
;

rj(xj+1,i) = xj,i
Pj,i+1

Pj,i
;

rj(xk,i) = xk,i if k 6= j, j + 1;

where

Pj,i =

n∑
a=1

(
a−1∏
k=1

xj,i+k

n∏
k=a+1

xj+1,i+k

)

+ xj,i+1xj+1,i

n∑
a=1

(
a−1∏
k=1

xj,i+k+1

n∏
k=a+1

xj+1,i+k−1

)
. (6.28)

In these formulas we always suppose the cyclic indices xj+m,i = xj,i+n = xj,i.
In fact,

Pj,i = P (i+1)(xj , xj+1).
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Remark 6.3. The first summand of 6.28 coincides with the formula (2) in [18].

In a similar way one could define the action on the pairs of columns. Let
us denote these transformations by si. In terms of the vertex representation for
the electric network one obtains quite a simple theorem:

Theorem 6.4. The transformations {ri} and {sj} define the actions of the
symmetric groups Sm and Sn, moreover these actions commute with each other.

Remark 6.5. Making the substitution xi = εξi, yi = εζi and passing to the
limit ε→ 0 we recover the situation studied in [18].

Remark 6.6. It can be shown as well that the maps similar to ri act on the
electrical variety corresponding to the standard graph as the figure 14 illustrates.

Figure 14: Action on standard graphs

7 Further developments

We have indicated already a number of ways the results of this paper could be
extended. Now we want to suggest a few areas of possible applications of our
approach to studying the electrical varieties.

There is a natural connection between electrical networks and so called
reversible Markov chains. An example of such a chain is the symmetric graph
random walk which, in each step, jumps to a randomly chosen graph neighbour
at equal probability. This connection is studied in a number of papers and books
see [22]. Interpreting the mathematical structures we have found in this paper
in the setup of the Markov chains might be an interesting task.

There is a very intrinsic relationship between the theory of the electrical net-
works, the Ising model, the dimer model and the Hopfield neural network model.
Just like the random walk model plays the role of the relaxation procedure for
the potential distribution problem of the electric network, the dynamics of the
Boltzmann machine does the same for the network with not necessarily posi-
tive conductivities. We hope that there are similar generalized cluster algebra
structures on varieties of neural networks and Ising non homogeneous models.
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The theory of electrical networks is a part of discrete harmonic analysis. The
methods of the theory of the vertex integrable statistical models we introduced
in this paper may therefore find applications in discrete harmonic analysis as
well.

The challenging problem is to find the interpretation of the Lusztig-type
varieties for the trigonometric solutions for the Zamolodchikov equation from
[15].
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