THE GEOMETRY OF QUADRANGULAR CONVEX PYRAMIDS

YURY KOCHETKOV

Abstract

A convex quadrangular pyramid $A B C D E$, where $A B C D$ is the base and E - the apex, is called strongly flexible, if it belongs to a continuous family of pairwise non-congruent quadrangular pyramids that have the same lengths of corresponding edges. $A B C D E$ is called strongly rigid, if such family does not exist. We prove the strong rigidity of convex quadrangular pyramids and prove that strong rigidity fails in the self-intersecting case. Let $L=\left\{l_{1}, \ldots, l_{8}\right\}$ be a set of positive numbers, then a realization of L is a convex quadrangular pyramid $A B C D E$ such, that $|A B|=l_{1},|B C|=l_{2},|C D|=l_{3},|D A|=l_{4},|E A|=l_{5},|E B|=l_{6},|E C|=l_{7},|E D|=l_{8}$. We prove that the number of pairwise non-congruent realizations is $\leqslant 4$ and give an example of a set L with three pairwise non-congruent realizations.

1. Introduction

A polyhedron M in the three dimensional space \mathbb{R}^{3} is called flexible (see [2], 4]), if there exists a continuous family of polyhedra $M_{t}, 0 \leqslant t$, where
(1) $M_{0}=M_{t}$;
(2) polyhedra M_{t} have the same combinatorial structure, as M;
(3) corresponding faces of M and M_{t} are congruent;
(4) angles between (some) faces of M and corresponding faces of M_{t} are different.

A not flexible polyhedron is called rigid. The Cauchy Rigidity Theorem states that a convex polyhedron is rigid (see [2], 4]). However, a non-convex polyhedron can be flexible [1].
We introduce a notion of the strong flexibility and the strong rigidity.
Definition 1.1. A polyhedron M in the three dimensional space \mathbb{R}^{3} is strongly flexible, if there exists a continuous family of polyhedra $M_{t}, 0 \leqslant t$, where
(1) $M_{0}=M$;
(2) polyhedra M_{t} have the same combinatorial structure, as M;
(3) corresponding edges of M and M_{t} are equal;
(4) some face(s) of M and the corresponding face(s) of M_{t} are not congruent.

A not strongly flexible polyhedron is called strongly rigid.
Remark 1.1. A cube is rigid, but strongly flexible. A triangular pyramid is, of course, rigid and strongly rigid.
A convex quadrangular pyramid is the simplest polyhedron (after triangular pyramid). We will prove the following statement.
Theorem 3.1. A convex quadrangular pyramid is strongly rigid.
A non-convex quadrangular pyramid is also strongly rigid (Consequence 3.1.), but strong rigidity fails in the self-intersecting case (Example 3.1.).
Our quadrangular pyramids will be labelled, i.e. A, B, C, D will be vertices of base in order of going around it and E will be the apex. For a given set L of positive numbers $L=\left\{l_{1}, \ldots, l_{8}\right\}$ we ask about the existence of a labelled quadrangular pyramid $A B C D E$ such that $|A B|=l_{1},|B C|=l_{2},|C D|=l_{3},|D A|=l_{4},|E A|=l_{5}$, $|E B|=l_{6},|E C|=l_{7}$ and $|E D|=l_{8}$. Such pyramid will be called a realization of the set L.

Theorem 4.1. The number of pairwise non-congruent realizations of a set L is $\leqslant 4$.
We give an example (Example 4.1.) of the set with three pairwise non-congruent realizations.

2. Strong flexibility

Theorem 2.1. A generic polyhedron in \mathbb{R}^{3} is strongly rigid.
Proof. In what follows by k-face of a polyhedron we will understand a face with k vertices. Let the number of k-faces of a polyhedron M be $n_{k}, k=3,4, \ldots, m$. Then it has $e=\frac{1}{2} \sum_{i=3}^{m} i \cdot n_{i}$ edges and

$$
v=r+2-\sum_{i=3}^{m} n_{i}=\frac{\sum_{i=3}^{m}(i-2) \cdot n_{i}}{2}+2
$$

vertices. Let us assume that some m-face rigidly belongs to $x y$-plane and some edge of this face is rigidly fixed. Then vertices of this face have $2(m-2)$ degrees of freedom and all other vertices have $3(v-m)$ degrees of freedom. Thus, all vertices have in sum

$$
2(m-2)+3(v-m)=\frac{3 \cdot \sum_{i=3}^{m}(i-2) \cdot n_{i}}{2}-m+2
$$

degrees of freedom. But we have relations also:

- lengths of all edges are fixed - $(r-1)$ relations;
- vertices of each face are contained in one plane - $(i-3)$ relations for each i-face.

Thus, the number of relations is

$$
r-1+\sum_{i=3}^{m} n_{i} \cdot(i-3)-(m-3)=\frac{3 \cdot \sum_{i=3}^{m}(i-2) \cdot n_{i}}{2}-m+2
$$

We see, that the number of relations equals the number of degrees of freedom, thus, M is strongly rigid.
Remark 2.1. Only polyhedra with symmetries can be strongly flexible.

3. Strong rigidity of a convex quadrangular pyramid

Theorem 3.1. A convex quadrangular pyramid is strongly rigid.
Proof. We will assume that the base $A B C D$ of a quadrangular pyramid $A B C D E$ belongs the the $x y$-plane, vertex A is at origin, vertex B has coordinates (1,0), the quadrangle $A B C D$ belongs to the upper half-plane and the apex E belongs to the upper half-space. Let coordinates of the vertex D be $\left(a_{1}, b_{1}\right)$, of the vertex C $\left(a_{2}, b_{2}\right)$ and of the vertex $E-\left(a_{3}, b_{3}, c_{3}\right)$. Let us assume that $A B C D E$ is strongly flexible and there exists a continuous deformation $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$, where

$$
A^{\prime}=(0,0), B^{\prime}=(1,0), C^{\prime}=\left(a_{2}+x_{2}, b_{2}+y_{2}\right), D^{\prime}=\left(a_{1}+x_{1}, b_{1}+y_{1}\right), E^{\prime}=\left(a_{3}+x_{3}, b_{3}+y_{3}, c_{3}+z_{3}\right)
$$

and the following system holds:

$$
\left\{\begin{array}{l}
\left(a_{1}+x_{1}\right)^{2}+\left(b_{1}+y_{1}\right)^{2}=a_{1}^{2}+b_{1}^{2} \\
\left(a_{2}+x_{2}-1\right)^{2}+\left(b_{2}+y_{2}\right)^{2}=\left(a_{2}-1\right)^{2}+b_{2}^{2} \\
\left(a_{2}+x_{2}-a_{1}-x_{1}\right)^{2}+\left(b_{2}+y_{2}-b_{1}-y_{1}\right)^{2}=\left(a_{2}-a_{1}\right)^{2}+\left(b_{2}-b_{1}\right)^{2} \\
\left(a_{3}+x_{3}\right)^{2}+\left(b_{3}+y_{3}\right)^{2}+\left(c_{3}+z_{3}\right)^{2}=a_{3}^{2}+b_{3}^{2}+c_{3}^{2} \\
\left.\left(a_{3}+x_{3}-1\right)^{2}+\left(b_{3}+y_{3}\right)^{2}+c_{3}+z_{3}\right)^{2}=\left(a_{3}-1\right)^{2}+b_{3}^{2}+c_{3}^{2} \\
\left(a_{3}+x_{3}-a_{1}-x_{1}\right)^{2}+\left(b_{3}+y_{3}-b_{1}-y_{1}\right)^{2}+\left(c_{3}+z_{3}\right)^{2}=\left(a_{3}-a_{1}\right)^{2}+\left(b_{3}-b_{1}\right)^{2}+c_{3}^{2} \\
\left(a_{3}+x_{3}-a_{2}-x_{2}\right)^{2}+\left(b_{3}+y_{3}-b_{2}-y_{2}\right)^{2}+\left(c_{3}+z_{3}\right)^{2}=\left(a_{3}-a_{2}\right)^{2}+\left(b_{3}-b_{2}\right)^{2}+c_{3}^{2}
\end{array}\right.
$$

The elimination of variables (see [3]) $x_{3}, y_{3}, z_{3}, x_{2}, y_{2}$ and y_{1} from this system gives us a polynomial $R\left(x_{1}, a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, c_{3}\right)$ of degree 3 in variable x_{1}.

Thus, we have a new system

$$
\left\{\begin{array}{l}
r_{0}\left(a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, c_{3}\right)=0 \\
r_{1}\left(a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, c_{3}\right)=0 \\
r_{2}\left(a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, c_{3}\right)=0 \\
r_{3}\left(a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, c_{3}\right)=0
\end{array}\right.
$$

where $r_{0}, r_{1}, r_{2}, r_{3}$ are coefficients of the polynomial R, as polynomial in x_{1}. The elimination of variables $b_{1}, a_{3}, b_{3}, c_{3}$ from this system gives us two solutions:

$$
a_{2}=a_{1}+1 \text { and } a_{1}=\frac{a_{2}^{3}-a_{2}^{2}+a_{2} b_{2}^{2}+b_{2}^{2}}{a_{2}^{2}+b_{2}^{2}} .
$$

The second solution gives

$$
b_{1}=\frac{b_{2} \cdot\left(a_{2}^{2}-2 a_{2}+b_{2}^{2}\right)}{a_{2}^{2}+b_{2}^{2}} \Rightarrow\left|\begin{array}{cc}
a_{2} & b_{2} \\
a_{1} & b_{1}
\end{array}\right|=-b_{2}<0
$$

Thus, we have a clockwise rotation from the vector $\overline{O C}$ to the vector $\overline{O D}$, i.e. the quadrangle $A B C D$ is not convex.
If $a_{2}=a_{1}+1$, then it is easy to obtain, that $b_{2}=b_{1}, b_{3}=\frac{1}{2} b_{1}$ and $a_{3}=\frac{1}{2} \cdot\left(a_{1}+1\right)$, i.e. the base is a parallelogram and the apex is just above its center O. Thus, $|E A|=|E C|$ and $|E B|=|E D|$.
Let $A B C D E$ be strongly flexible and $A_{1} B_{1} C_{1} D_{1} E_{1}$ be a member of our family. Then $A_{1} B_{1} C_{1} D_{1}$ is also a parallelogram with the same lengths of edges. As $\left|E_{1} A_{1}\right|=\left|E_{1} C_{1}\right|$ and $\left|E_{1} B_{1}\right|=\left|E_{1} D_{1}\right|$, then apex E_{1} is just above the center O_{1} of the base. Let $\left|A_{1} O_{1}\right|>|A O|$, then $\left|E_{1} O_{1}\right|<|E O|$ (because $\left|E_{1} A_{1}\right|=|E A|$). But then $\left|B_{1} O_{1}\right|<|B O|$, thus $\left|E_{1} B_{1}\right|<|E B|$. Contradiction.
Consequence 3.1. A non-convex quadrangular pyramid is strongly rigid.
Proof. Using rotations, shifts and scalings we can assume, that non-convex quadrangle $A B C D$ is in the upper half-plane, $A=(0,0)$ and $B=(1,0)$.
If this pyramid is strongly flexible, then we are in the scope of the second solution of the previous theorem. We know that the rotation from the vector $\overline{A B}$ to the vector $\overline{A C}$ is counter clockwise, but the rotation from the vector $\overline{A C}$ to the vector $\overline{A D}$ is clockwise.
As

$$
b_{1}=\frac{b_{2} \cdot\left(a_{2}^{2}-2 a_{2}+b_{2}^{2}\right)}{a^{2}+b^{2}}>0
$$

then $a_{2}^{2}-2 a_{2}+b_{2}^{2}>0$. The line $B C$ has the equation $\left(a_{2}-1\right) y-b_{2} x+b_{2}=0$. As $b_{2}>0$ and

$$
\left(a_{2}-1\right) \cdot \frac{b_{2}\left(a_{2}^{2}-2 a_{2}+b_{2}^{2}\right)}{a_{2}^{2}+b_{2}^{2}}-b_{2} \cdot \frac{a_{2}^{3}-a_{2}^{2}+a_{2} b_{2}^{2}+b_{2}^{2}}{a_{2}^{2}+b_{2}^{2}}+b_{2}=-\frac{b_{2} \cdot\left(a_{2}^{2}-2 a_{2}+b_{2}^{2}\right)}{a_{2}^{2}+b_{2}^{2}}<0
$$

then segments $A D$ and $B C$ intersect.
Example 3.1. A self-intersecting quadrangular pyramid can be strongly flexible. Here is an example.
Let us consider the self-intersecting pyramid $A B C D E: A=(0,0), B=(1,0), C=(2,2), D=(2,1), E=$ $(1,1,1)$.

Here F is the projection of the apex E to $x y$-plane. We will prove that this pyramid belongs to a continuous family that realizes strong flexibility.

Let $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ be a member of this family: $A^{\prime}=(0,0), B^{\prime}=(1,0), C^{\prime}=\left(x_{2}, y_{2}\right), D^{\prime}=\left(x_{1}, y_{1}\right), E^{\prime}=$ $\left(x_{3}, y_{3}, z_{3}\right)$. Then

$$
\left\{\begin{array} { l }
{ x _ { 1 } ^ { 2 } + y _ { 1 } ^ { 2 } = 5 } \\
{ (x _ { 2 } - 1) ^ { 2 } + y _ { 2 } ^ { 2 } = 5 } \\
{ (x _ { 2 } - x _ { 1 }) ^ { 2 } + (y _ { 2 } - y _ { 1 }) ^ { 2 } = 1 } \\
{ x _ { 3 } ^ { 2 } + y _ { 3 } ^ { 2 } + z _ { 3 } ^ { 2 } = 3 } \\
{ (x _ { 3 } - 1) ^ { 2 } + y _ { 3 } ^ { 2 } + z _ { 3 } ^ { 2 } = 2 } \\
{ (x _ { 3 } - x _ { 1 }) ^ { 2 } + (y _ { 3 } - y _ { 1 }) ^ { 2 } + z _ { 3 } ^ { 2 } = 2 } \\
{ (x _ { 3 } - x _ { 2 }) ^ { 2 } + (y _ { 3 } - y _ { 2 }) ^ { 2 } + z _ { 3 } ^ { 2 } = 3 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
x_{1}^{2}+y_{1}^{2}=5 \\
\left(x_{2}-1\right)^{2}+y_{2}^{2}=5 \\
x_{1} x_{2}+y_{1} y_{2}-x_{2}=4 \\
x_{3}=1 \\
y_{3}^{2}+z_{3}^{2}=2 \\
x_{1}+y_{1} y_{3}=3 \\
y_{2} y_{3}=2
\end{array}\right.\right.
$$

Actually equations of this system are not independent - all variables are functions of y_{1} :

$$
y_{1}^{2} y_{3}^{2}-6 y_{1} y_{3}+y_{1}^{2}+4=0, y_{2} y_{3}=2, x_{1}+y_{1} y 3=3, x_{1} x_{2}+y_{1} y_{2}-x_{2}=4, y_{3}^{2}+z_{3}^{2}=2 .
$$

As

$$
\left(y_{1}^{2} y_{3}^{2}-6 y_{1} y_{3}+y_{1}^{2}+4\right)_{y_{1}}^{\prime}\left(y_{1}=1, y_{3}=1\right) \neq 0 \text { and }\left(y_{1}^{2} y_{3}^{2}-6 y_{1} y_{3}+y_{1}^{2}+4\right)_{y_{3}}^{\prime}\left(y_{1}=1, y_{3}=1\right) \neq 0
$$

then we have continuous family of quadrangular self-intersecting pyramids whose edges have fixed lengths.

4. Realizations

Let lengths of all edges of a labelled quadrangular pyramid $A B C D E$ are given. As there cannot exist a continuous family of such pyramids, we can ask about the number of them (pairwise non congruent).

Definition 4.1. Let L be a set of eight positive numbers $L=\left\{l_{1}, \ldots, l_{8}\right\}$. A realization of this set is a convex quadrangular pyramid $A B C D E, A B C D$ - the base, E - the apex, such that

$$
|A B|=l_{1},|B C|=l_{2},|C D|=l_{3},|D A|=l_{4},|E A|=l_{5},|E B|=l_{6},|E C|=l_{7},|E D|=l_{8}
$$

We will assume that $l_{1}=1$.
Theorem 4.1. The number of realizations of a set L is $\leqslant 4$.
Proof. Let a convex quadrangular pyramid $A B C D E$ be in the standard position. Using the notation of the previous section, we obtain the system

$$
\left\{\begin{array}{l}
x_{1}^{2}+y_{1}^{2}=l_{4} \\
\left(x_{2}-1\right)^{2}+y_{2}^{2}=l_{2} \\
\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}=l_{3} \\
x_{3}^{2}+y_{3}^{2}+z_{3}^{2}=l_{5} \\
\left(x_{3}-1\right)^{2}+y_{3}^{2}+z_{3}^{2}=l_{6} \\
\left(x_{3}-x_{2}\right)^{2}+\left(y_{3}-y_{2}\right)^{2}+z_{3}^{2}=l_{7} \\
\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}+z_{3}^{2}=l_{8}
\end{array}\right.
$$

The elimination of variables $x_{3}, y_{3}, z_{3}, x_{2}, y_{2}, y_{1}$ gives a polynomial of the forth degree in x_{1}.
Example 4.1. We can give an example of the set L, which has three realizations.
Let $A B C D E$ be a convex quadrangular pyramid in standard position, where $|B C|=2,|C D|=\sqrt{2},|D A|=1$, $|E A|=\sqrt{2},|E B|=\sqrt{5},|E D|=\sqrt{3}$ and the length of the edge $E C$ we will define later. Using notation of the
section 3, we can write the system

$$
\left\{\begin{array} { l }
{ x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } = 1 } \\
{ (x _ { 2 } - 1) ^ { 2 } + y _ { 2 } ^ { 2 } = 4 } \\
{ (x _ { 2 } - x _ { 1 }) ^ { 2 } + (y _ { 2 } - y _ { 1 }) ^ { 2 } = 2 } \\
{ x _ { 3 } ^ { 2 } + y _ { 3 } ^ { 2 } + z _ { 3 } ^ { 2 } = 2 } \\
{ (x _ { 3 } - 1) ^ { 2 } + y _ { 3 } ^ { 2 } + z _ { 3 } ^ { 2 } = 5 } \\
{ (x _ { 3 } - x _ { 1 }) ^ { 2 } + (y _ { 3 } - y _ { 1 }) ^ { 2 } + z _ { 3 } ^ { 2 } = 3 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
x_{1}^{2}+y_{1}^{2}=1 \\
x_{2}^{2}+y_{2}^{2}-2 x_{2}=3 \\
x_{1} x_{2}+y_{1} y_{2}-x_{2}=1 \\
x_{3}=-1 \\
y_{3}^{2}+z_{3}^{2}=1 \\
x_{1}-y_{1} y_{3}=0
\end{array}\right.\right.
$$

The value of the angle $\angle A=\alpha$ uniquely defines the quadrangle $A B C D$ and also uniquely defines the position of the apex E. Thus, $|E C|^{2}$ is the function of α.
the value of α is changed from the minimal value $\alpha_{0} \approx 0.9449$ (here points A, C and D are on one line and $|E C|^{2} \approx 7.8284$) to the maximal value $\alpha_{1}=3 \pi / 4$ (here $y_{3}=-1, z_{3}=0$ and $|E C|^{2} \approx 9.3067$).
$|E C|^{2}$ increases on the interval $\left(\alpha_{0}, \pi / 2\right)$. The point $\pi / 2$ is the local maximum: $|E C|^{2}=9$. Then $|E C|^{2}$ decreases on the interval $(\pi / 2, \approx 1.9404)$ and in the end of this interval it has the local minimum ≈ 8.9555. After that $|E C|^{2}$ increases on the interval $(\approx 1.9404,3 \pi / 4)$. It means that the set $L=\{1,2, \sqrt{2}, 1, \sqrt{2}, \sqrt{5}, r, \sqrt{3}\}$, where $8.9555<r<9$, has three pairwise non-congruent realizations.

References

[1] R. Connely, A counterexample to the rigidity conjecture for polyhedra, Publications Mathematiques de l'IHES, 1977, 47, 333-338.
[2] R. Connely, Rigidity, in "Handbook of Convex Geometry", North-Holland, 1993, 223-271.
[3] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Springer, 1998.
[4] L.A. Lyusternik, Convex Figures and Polyhedra, N.Y., Dover, 1963.

