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THE GEOMETRY OF QUADRANGULAR CONVEX PYRAMIDS

YURY KOCHETKOV

Abstract. A convex quadrangular pyramid ABCDE, where ABCD is the base and E — the apex, is called
strongly flexible, if it belongs to a continuous family of pairwise non-congruent quadrangular pyramids that have
the same lengths of corresponding edges. ABCDE is called strongly rigid, if such family does not exist. We prove
the strong rigidity of convex quadrangular pyramids and prove that strong rigidity fails in the self-intersecting
case. Let L = {l1, . . . , l8} be a set of positive numbers, then a realization of L is a convex quadrangular pyramid
ABCDE such, that |AB| = l1, |BC| = l2, |CD| = l3, |DA| = l4, |EA| = l5, |EB| = l6, |EC| = l7, |ED| = l8.
We prove that the number of pairwise non-congruent realizations is 6 4 and give an example of a set L with
three pairwise non-congruent realizations.

1. Introduction

A polyhedron M in the three dimensional space R
3 is called flexible (see [2], [4]), if there exists a continuous

family of polyhedra Mt, 0 6 t, where

(1) M0 = Mt;
(2) polyhedra Mt have the same combinatorial structure, as M;
(3) corresponding faces of M and Mt are congruent;
(4) angles between (some) faces of M and corresponding faces of Mt are different.

A not flexible polyhedron is called rigid. The Cauchy Rigidity Theorem states that a convex polyhedron is rigid
(see [2], [4]). However, a non-convex polyhedron can be flexible [1].

We introduce a notion of the strong flexibility and the strong rigidity.

Definition 1.1. A polyhedron M in the three dimensional space R
3 is strongly flexible, if there exists a

continuous family of polyhedra Mt, 0 6 t, where

(1) M0 = M ;
(2) polyhedra Mt have the same combinatorial structure, as M ;
(3) corresponding edges of M and Mt are equal;
(4) some face(s) of M and the corresponding face(s) of Mt are not congruent.

A not strongly flexible polyhedron is called strongly rigid.

Remark 1.1. A cube is rigid, but strongly flexible. A triangular pyramid is, of course, rigid and strongly rigid.

A convex quadrangular pyramid is the simplest polyhedron (after triangular pyramid). We will prove the
following statement.

Theorem 3.1. A convex quadrangular pyramid is strongly rigid.

A non-convex quadrangular pyramid is also strongly rigid (Consequence 3.1.), but strong rigidity fails in the
self-intersecting case (Example 3.1.).

Our quadrangular pyramids will be labelled, i.e. A,B,C,D will be vertices of base in order of going around it
and E will be the apex. For a given set L of positive numbers L = {l1, . . . , l8} we ask about the existence of
a labelled quadrangular pyramid ABCDE such that |AB| = l1, |BC| = l2, |CD| = l3, |DA| = l4, |EA| = l5,
|EB| = l6, |EC| = l7 and |ED| = l8. Such pyramid will be called a realization of the set L.
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Theorem 4.1. The number of pairwise non-congruent realizations of a set L is 6 4.

We give an example (Example 4.1.) of the set with three pairwise non-congruent realizations.

2. Strong flexibility

Theorem 2.1. A generic polyhedron in R
3 is strongly rigid.

Proof. In what follows by k-face of a polyhedron we will understand a face with k vertices. Let the number of
k-faces of a polyhedron M be nk, k = 3, 4, . . . ,m. Then it has e = 1

2

∑m

i=3 i · ni edges and

v = r + 2−
m
∑

i=3

ni =

∑m

i=3(i − 2) · ni

2
+ 2

vertices. Let us assume that some m-face rigidly belongs to xy-plane and some edge of this face is rigidly fixed.
Then vertices of this face have 2(m − 2) degrees of freedom and all other vertices have 3(v − m) degrees of
freedom. Thus, all vertices have in sum

2(m− 2) + 3(v −m) =
3 ·∑m

i=3(i− 2) · ni

2
−m+ 2

degrees of freedom. But we have relations also:

• lengths of all edges are fixed — (r − 1) relations;
• vertices of each face are contained in one plane — (i − 3) relations for each i-face.

Thus, the number of relations is

r − 1 +

m
∑

i=3

ni · (i− 3)− (m− 3) =
3 ·∑m

i=3(i − 2) · ni

2
−m+ 2.

We see, that the number of relations equals the number of degrees of freedom, thus, M is strongly rigid. �

Remark 2.1. Only polyhedra with symmetries can be strongly flexible.

3. Strong rigidity of a convex quadrangular pyramid

Theorem 3.1. A convex quadrangular pyramid is strongly rigid.

Proof. We will assume that the base ABCD of a quadrangular pyramid ABCDE belongs the the xy-plane,
vertex A is at origin, vertex B has coordinates (1, 0), the quadrangle ABCD belongs to the upper half-plane
and the apex E belongs to the upper half-space. Let coordinates of the vertex D be (a1, b1), of the vertex C —
(a2, b2) and of the vertex E — (a3, b3, c3). Let us assume that ABCDE is strongly flexible and there exists a
continuous deformation A′B′C′D′E′, where

A′ = (0, 0), B′ = (1, 0), C′ = (a2 + x2, b2 + y2), D
′ = (a1 + x1, b1 + y1), E

′ = (a3 + x3, b3 + y3, c3 + z3)

and the following system holds:






































(a1 + x1)
2 + (b1 + y1)

2 = a21 + b21
(a2 + x2 − 1)2 + (b2 + y2)

2 = (a2 − 1)2 + b22
(a2 + x2 − a1 − x1)

2 + (b2 + y2 − b1 − y1)
2 = (a2 − a1)

2 + (b2 − b1)
2

(a3 + x3)
2 + (b3 + y3)

2 + (c3 + z3)
2 = a23 + b23 + c23

(a3 + x3 − 1)2 + (b3 + y3)
2 + c3 + z3)

2 = (a3 − 1)2 + b23 + c23
(a3 + x3 − a1 − x1)

2 + (b3 + y3 − b1 − y1)
2 + (c3 + z3)

2 = (a3 − a1)
2 + (b3 − b1)

2 + c23
(a3 + x3 − a2 − x2)

2 + (b3 + y3 − b2 − y2)
2 + (c3 + z3)

2 = (a3 − a2)
2 + (b3 − b2)

2 + c23

The elimination of variables (see [3]) x3, y3, z3, x2, y2 and y1 from this system gives us a polynomial
R(x1, a1, b1, a2, b2, a3, b3, c3) of degree 3 in variable x1.
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Thus, we have a new system














r0(a1, b1, a2, b2, a3, b3, c3) = 0
r1(a1, b1, a2, b2, a3, b3, c3) = 0
r2(a1, b1, a2, b2, a3, b3, c3) = 0
r3(a1, b1, a2, b2, a3, b3, c3) = 0

where r0, r1, r2, r3 are coefficients of the polynomial R, as polynomial in x1. The elimination of variables
b1, a3, b3, c3 from this system gives us two solutions:

a2 = a1 + 1 and a1 =
a32 − a22 + a2b

2
2 + b22

a22 + b22
.

The second solution gives

b1 =
b2 · (a22 − 2a2 + b22)

a22 + b22
⇒

∣

∣

∣

∣

a2 b2
a1 b1

∣

∣

∣

∣

= −b2 < 0 .

Thus, we have a clockwise rotation from the vector OC to the vector OD, i.e. the quadrangle ABCD is not
convex.

If a2 = a1 + 1, then it is easy to obtain, that b2 = b1, b3 = 1
2
b1 and a3 = 1

2
· (a1 + 1), i.e. the base is a

parallelogram and the apex is just above its center O. Thus, |EA| = |EC| and |EB| = |ED|.
Let ABCDE be strongly flexible and A1B1C1D1E1 be a member of our family. Then A1B1C1D1 is also a
parallelogram with the same lengths of edges. As |E1A1| = |E1C1| and |E1B1| = |E1D1|, then apex E1 is just
above the center O1 of the base. Let |A1O1| > |AO|, then |E1O1| < |EO| (because |E1A1| = |EA|). But then
|B1O1| < |BO|, thus |E1B1| < |EB|. Contradiction. �

Consequence 3.1. A non-convex quadrangular pyramid is strongly rigid.

Proof. Using rotations, shifts and scalings we can assume, that non-convex quadrangle ABCD is in the upper
half-plane, A = (0, 0) and B = (1, 0).

If this pyramid is strongly flexible, then we are in the scope of the second solution of the previous theorem. We
know that the rotation from the vector AB to the vector AC is counter clockwise, but the rotation from the
vector AC to the vector AD is clockwise.

As

b1 =
b2 · (a22 − 2a2 + b22)

a2 + b2
> 0,

then a22 − 2a2 + b22 > 0. The line BC has the equation (a2 − 1)y − b2x+ b2 = 0. As b2 > 0 and

(a2 − 1) · b2(a
2
2 − 2a2 + b22)

a22 + b22
− b2 ·

a32 − a22 + a2b
2
2 + b22

a22 + b22
+ b2 = −b2 · (a22 − 2a2 + b22)

a22 + b22
< 0,

then segments AD and BC intersect. �

Example 3.1. A self-intersecting quadrangular pyramid can be strongly flexible. Here is an example.

Let us consider the self-intersecting pyramid ABCDE: A = (0, 0), B = (1, 0), C = (2, 2), D = (2, 1), E =
(1, 1, 1).

✲

✻

✁
✁
✁
✁
✁
✁

✟✟✟✟✟✟

q q

q

q

q

A B

C

D
F
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Here F is the projection of the apex E to xy-plane. We will prove that this pyramid belongs to a continuous
family that realizes strong flexibility.

Let A′B′C′D′E′ be a member of this family: A′ = (0, 0), B′ = (1, 0), C′ = (x2, y2), D′ = (x1, y1), E
′ =

(x3, y3, z3). Then






































x2
1 + y21 = 5

(x2 − 1)2 + y22 = 5
(x2 − x1)

2 + (y2 − y1)
2 = 1

x2
3 + y23 + z23 = 3

(x3 − 1)2 + y23 + z23 = 2
(x3 − x1)

2 + (y3 − y1)
2 + z23 = 2

(x3 − x2)
2 + (y3 − y2)

2 + z23 = 3

⇒







































x2
1 + y21 = 5

(x2 − 1)2 + y22 = 5
x1x2 + y1y2 − x2 = 4
x3 = 1
y23 + z23 = 2
x1 + y1y3 = 3
y2y3 = 2

Actually equations of this system are not independent — all variables are functions of y1:

y21y
2
3 − 6y1y3 + y21 + 4 = 0, y2y3 = 2, x1 + y1y3 = 3, x1x2 + y1y2 − x2 = 4, y23 + z23 = 2.

As

(y21y
2
3 − 6y1y3 + y21 + 4)′y1

(y1 = 1, y3 = 1) 6= 0 and (y21y
2
3 − 6y1y3 + y21 + 4)′y3

(y1 = 1, y3 = 1) 6= 0,

then we have continuous family of quadrangular self-intersecting pyramids whose edges have fixed lengths.

4. Realizations

Let lengths of all edges of a labelled quadrangular pyramid ABCDE are given. As there cannot exist a
continuous family of such pyramids, we can ask about the number of them (pairwise non congruent).

Definition 4.1. Let L be a set of eight positive numbers L = {l1, . . . , l8}. A realization of this set is a convex
quadrangular pyramid ABCDE, ABCD — the base, E — the apex, such that

|AB| = l1, |BC| = l2, |CD| = l3, |DA| = l4, |EA| = l5, |EB| = l6, |EC| = l7, |ED| = l8.

We will assume that l1 = 1.

Theorem 4.1. The number of realizations of a set L is 6 4.

Proof. Let a convex quadrangular pyramid ABCDE be in the standard position. Using the notation of the
previous section, we obtain the system







































x2
1 + y21 = l4

(x2 − 1)2 + y22 = l2
(x2 − x1)

2 + (y2 − y1)
2 = l3

x2
3 + y23 + z23 = l5

(x3 − 1)2 + y23 + z23 = l6
(x3 − x2)

2 + (y3 − y2)
2 + z23 = l7

(x3 − x1)
2 + (y3 − y1)

2 + z23 = l8

The elimination of variables x3, y3, z3, x2, y2, y1 gives a polynomial of the forth degree in x1. �

Example 4.1. We can give an example of the set L, which has three realizations.

Let ABCDE be a convex quadrangular pyramid in standard position, where |BC| = 2, |CD| =
√
2, |DA| = 1,

|EA| =
√
2, |EB| =

√
5, |ED| =

√
3 and the length of the edge EC we will define later. Using notation of the
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section 3, we can write the system






























x2
1 + x2

2 = 1
(x2 − 1)2 + y22 = 4
(x2 − x1)

2 + (y2 − y1)
2 = 2

x2
3 + y23 + z23 = 2

(x3 − 1)2 + y23 + z23 = 5
(x3 − x1)

2 + (y3 − y1)
2 + z23 = 3

⇒































x2
1 + y21 = 1

x2
2 + y22 − 2x2 = 3

x1x2 + y1y2 − x2 = 1
x3 = −1
y23 + z23 = 1
x1 − y1y3 = 0

The value of the angle ∠A = α uniquely defines the quadrangle ABCD and also uniquely defines the position
of the apex E. Thus, |EC|2 is the function of α.

the value of α is changed from the minimal value α0 ≈ 0.9449 (here points A, C and D are on one line and
|EC|2 ≈ 7.8284) to the maximal value α1 = 3π/4 (here y3 = −1, z3 = 0 and |EC|2 ≈ 9.3067).

|EC|2 increases on the interval (α0, π/2). The point π/2 is the local maximum: |EC|2 = 9. Then |EC|2 decreases
on the interval (π/2,≈ 1.9404) and in the end of this interval it has the local minimum ≈ 8.9555. After that

|EC|2 increases on the interval (≈ 1.9404, 3π/4). It means that the set L = {1, 2,
√
2, 1,

√
2,
√
5, r,

√
3}, where

8.9555 < r < 9, has three pairwise non-congruent realizations.
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