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Preface

This book provides readers with recent non-asymptotic results for approximations
in multivariate statistical analysis. There are many traditional multivariate methods
based on large-sample approximations. Furthermore, in recent years more
high-dimensional multivariate methods have been proposed and utilized for cases
where the dimension p of observations is comparable with the sample size n or even
exceeds it. Related to this, there are also many approximations under
high-dimensional frameworks when p=n ! c 2 ð0; 1Þ or ð0;1Þ.

An important problem related to multivariate approximations concerns their
errors. Most results contain only so-called order estimates. However, such error
estimates do not provide information on actual errors for given values of n, p, and
other parameters. Ideally, we need non-asymptotic or computable error bounds that
relate to these actual errors, in addition to order estimates. In non-asymptotic
bounds, the pair (n, p), as well as other problem parameters, are viewed as fixed,
and statistical statements such as tail or concentration probabilities of test statistics
and estimators are constructed as a function of them. In other words, these results
are applied for actual values of (n, p). In general, non-asymptotic error bounds
involve an absolute constant. If the absolute constant is known, then such an error
bound is called the computable error bound.

Our book focuses on non-asymptotic bounds for high-dimensional and
large-sample approximations. A brief explanation of non-asymptotic bounds is
given in Chap. 1. Some commonly used notations are also explained in Chap. 1.
Chapters 2–6 deal with computable error bounds. In Chap. 2, the authors consider
computable error bounds on scale-mixed variables. The results can be applied to
asymptotic approximations of t- and F-distributions, and to various estimators. In
Chap. 3, error bounds for MANOVA tests are given based on large-sample results
for multivariate scale mixtures. High-dimensional results are also given. In Chap. 4,
the focus is on linear and quadratic discriminant contexts, with error bounds for
location and scale mixture variables. In Chaps. 5 and 6, computable error bounds
for Cornish–Fisher expansions and K-statistics are considered, respectively.
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Next, in Chaps. 7–11, new directions of research on non-asymptotic bounds are
discussed. In Chap. 7, the focus is on high-dimensional approximations for boot-
strap procedures in principal component analysis. Then, in Chap. 8 we consider the
Kolmogorov distance between the probabilities of two Gaussian elements to hit a
ball in Hilbert space. In Chap. 9, the focus is on approximations of statistics based
on observations with random sample sizes. In Chap. 10, the topic is large-sample
approximations of power-divergence statistics including the Pearson chi-squared
statistic, the Freeman–Tukey statistics, and the log-likelihood ratio statistic. Finally,
Chap. 11 proposes a general approach for constructing non-asymptotic estimates
and provides relevant examples for several complex statistics.

This book is intended to be used as a reference for researchers interested in
asymptotic approximations in multivariate statistical analysis contexts. It will also
be useful for instructors and students of graduate-level courses as it covers
important foundations and methods of multivariate analysis.

For many approximations, detailed derivations would require a lot of space. For
the sake of brevity and presentation, we therefore mainly give their outline. We
believe and hope that the book will be useful for stimulating future developments in
non-asymptotic analysis of multivariate approximations.

We are very grateful to our colleagues R. Shimizu, F. Götze, G. Christoph,
V. Spokoiny, H. Wakaki and A. Naumov to be our co-authors for years. Our joint
works are widely used in the book. We express our sincere gratitude to Prof. Naoto
Kunitomo, Meiji University, Tokyo, and Dr. Tetsuro Sakurai, Suwa University of
Science, Nagano, for their valuable comments on various aspects of the content of
this book. We are also grateful to Mr. Y. Hirachi for his assistance in the prepa-
ration of this book.

The research was partially supported by the Ministry of Education, Science,
Sports, and Culture through a Grant-in-Aid for Scientific Research (C), 16K00047,
2016–2018, and results of Chapters 8 and 9 have been obtained under support
of the RSF Grant No. 18-11-00132. The study was done within the framework
of the Moscow Center for Fundamental and Applied Mathematics, Moscow State
University and HSE University Basic Research Programs.

Hiroshima, Japan Yasunori Fujikoshi
Moscow, Russia
April 2020

Vladimir V. Ulyanov
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