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We explore whether a root lattice may be similar to the lattice O of integers of a
number field K endowed with the inner product (x, y) := TraceK/Q(x · θ(y)), where θ is
an involution of K. We classify all pairs K, θ such that O is similar to either an even
root lattice or the root lattice Z[K:Q]. We also classify all pairs K, θ such that O is a
root lattice. In addition to this, we show that O is never similar to a positive-definite
even unimodular lattice of rank ≤ 48, in particular, O is not similar to the Leech lattice.
In Appendix B, we give a general cyclicity criterion for the primary components of the
discriminant group of O.
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1. Introduction

Number fields are natural sources of lattices, i.e. pairs (L, b), where L is a free
Z-module of finite rank and b : L × L → Z is a nondegenerate symmetric bilinear
form; see [9]. Namely, let K be a number field,

n := [K : Q] < ∞,
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and let O be the ring of integers of K. We fix a field automorphism

θ ∈ Aut K such that θ is involutive, i.e. θ2 = id. (1.1)

Then the map

trK,θ : K × K → Q, trK,θ(x, y) := TraceK/Q(x · θ(y)) (1.2)

is a nondegenerate symmetric bilinear form such that for every nonzero ideal I in
O, the pair (I, trK,θ) := (I, trK,θ|I×I) is a lattice of rank n.

This construction admits a natural generalization, see [2, 3, 10, Chap. 8, §7],
and references therein. Namely, let J be a nonzero (fractional) ideal of K, let a ∈ K

be a nonzero element such that θ(a) = a, TraceK/Q(ax · θ(y)) ∈ Z for all x, y ∈ J ,
and let

trK,θ,J,a : J × J → Z, trK,θ,J,a(x, y) := TraceK/Q(ax · θ(y)).

Then (J, trK,θ,J,a) is a lattice. The origins of this construction essentially go back to
Gauss. Indeed, for n = 2 and a = 1/NormK/Q(J), it turns into classical Gauss’ con-
struction, which yields correspondence between ideals and binary quadratic forms.

Some remarkable lattices are isometric to the lattices of the form (J, trK,θ,J,a).
For instance, if K is an mth cyclotomic field, then this is so for the root lattices
Ap−1 (with prime p), E6, and E8, where, respectively, m = p, m = 9, and m = 15,
20, 24. If m = 21, this is so for the Coxeter–Todd lattice, and if m = 35, 39,
52, 56, 84, for the Leach lattice. A classification of root lattices isometric to the
lattices of the form (J, trK,θ,J,a) for cyclotomic K is given in [5]. References and
more examples see in [2, 3, 10, Chap. 8, §7]. So, given a lattice (L, b), it arises the
problem of finding out whether it is isometric to (J, trK,θ,J,a) for suitable K, θ, J , a.

Another problem is to find out whether, for a given lattice (L, b) and a nonzero
ideal J of K, there exist θ and a such that (J, trK,θ,J,a) is isometric to (L, b).

Among all nonzero ideals, there is a distinguished one, namely, O itself, for
which a = 1 is a distinguished value suitable for every θ. This leads to the problem
of finding remarkable lattices isometric (or, more generally, similar) to lattices of
the form (O, trK,θ).

This paper is aimed to explore whether (O, trK,θ) may be similar to a root
lattice, in particular, whether (O, trK,θ) itself may be a root lattice. It naturally
conjuncts with our previous publication [22]: both papers stem from our wish to
explore realizations in number fields of objects associated with root systems.

There is a classical construction of geometric representation of algebraic num-
bers, which embeds K into a Euclidean space, see, e.g. [6, Chap. 2, Sec. 3; 24, 6.1.2,
10.3.1]. One can ask in which cases this embedding endows O with a structure of
a lattice (O, bK) isometric to a root lattice. If the latter holds, then necessarily
bK(O ×O) ⊆ Q. In Proposition 2.1 below is proven that this inclusion is equivalent
to the existence of an involutive automorphism θ ∈ AutK such that bK = trK,θ.
Therefore, the construction of geometric representation does not provide a new (in
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comparison with the one we explore here) possibility of naturally endowing O with
a structure of lattice isometric (or even similar) to a root one.

Before formulating our results, we recall some definitions and facts (see [18,
Chap. 4, 7, 10, 19]), and introduce some notation.

• A nonzero lattice is called a root lattice if it is isometric to orthogonal direct sum
of lattices belonging to the union of two infinite series A� (� ≥ 1), D� (� ≥ 4),
and four sporadic lattices Z1, E6, E7, E8, whose explicit description is recalled
in Appendix A below. All lattices in this union are indecomposable (i.e. inex-
pressible as orthogonal direct sums of nonzero summands). By Eichler’s theorem
[19, Theorem 6.4] decomposition of a root lattice as orthogonal direct sum of
indecomposable lattices (called its indecomposable components) is unique.

• Given a lattice (L, b), we denote the orthogonal direct sum of s > 0 copies of
(L, b) by (L, b)s. For (L, b) = Z1, we denote (L, b)s by Zs.

• A characterization of root lattices is given by fundamental Witt’s theorem.

Theorem (Witt [26]; see also [18, Theorem 4.10.6]). A lattice (L, b) is a root
lattice if and only if the following two conditions hold :

(i) the form b is positive-definite;
(ii) the Z-module L is generated by the set {x ∈ L | b(x, x) = 1 or 2}.
• The lattices (L1, b1) and (L2, b2) are called similar (equivalently, one of them is

called similar to the other) if there are nonzero integers m1, m2 such that the
lattices (L1, m1b1) and (L2, m2b2) are isometric.

• A nonzero lattice (L, b) is called a primitive lattice if the positive integer

d(L,b) := gcd{b(x, y) |x, y ∈ L}, (1.3)

is 1. For every nonzero lattice (L, b), the lattice (L, b/d(L,b)) is primitive. Two
lattices (L1, b1) and (L2, b2) are similar if and only if the lattices (L1, b1/d(L1,b1))
and (L2, b2/d(L2,b2)) are isometric. A root lattice is nonprimitive if and only if it
is isometric to Aa1

1 for some a1.

We first consider a special case of the problem, namely, explore whether
(O, trK,θ) may be a root lattice. The following examples show that such cases do
exist.

Example 1.1. Let n = 1. Then we have K = Q, O = Z, θ = id, and TraceK/Q(x) =
x for every x ∈ K. Hence in this case (O, trK,θ) is the root lattice Z1 (which is similar
but not isometric to A1).

Example 1.2. Let n = 2 and let K be a 3rd cyclotomic field: K = Q(
√−3). Let

θ be the complex conjugation. Then O = Z + Zω, where ω = (1 +
√−3)/2, and

TraceK/Q(x) = x + θ(x) = 2Re(x) for every x ∈ K. (1.4)

This shows that (O, trK,θ) is a root lattice isometric to A2; see [22].
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Example 1.3. Let n = 2 and let K be a 4th cyclotomic field: K = Q(
√−1). Let

θ be the complex conjugation. Then O = Z + Z
√−1, and formula (1.4) still holds.

This shows that (O, trK,θ) is a root lattice isometric to A2
1; see [22].

Our first main result, Theorem 1.1 below, yields the classification of all pairs
K, θ for which (O, trK,θ) is a root lattice.

Theorem 1.1. The following properties of a pair K, θ are equivalent :

(a) (O, trK,θ) is a root lattice;
(b) K, θ is one of the following pairs :

(b1) K = Q, θ = id;
(b2) K = Q(

√−3), θ is the complex conjugation;
(b3) K = Q(

√−1), θ is the complex conjugation.

We then address the general problem of classifying all pairs K, θ such that the
lattice (O, trK,θ) is similar (but not necessarily isometric) to a root lattice (L, b).
It appears that such pairs are far from being exhausted by Examples 1.1–1.3. We
obtain their complete classifications in both “unmixed” cases, namely, when the
Z-module L is generated by the set {x ∈ L | b(x, x) = 1} and when it generated by
the set {x ∈ L | b(x, x) = 2}. The first case is precisely the one in which (L, b) is
isometric to Zn. The second is the one in which every indecomposable component
of (L, b) is not isometric to Z1; the latter property, in turn, is equivalent to the
evenness of the lattice (L, b). Our next two main results, Theorems 1.2 and 1.3
below, yield these classifications. In these theorems, m denotes the unique positive
integer such that

TraceK/Q(O) = mZ (1.5)

(such m exists because TraceK/Q : O → Z is a nonzero additive group homomor-
phism).

Theorem 1.2. The following properties of a pair K, θ are equivalent :

(a) (O, trK,θ) is similar to Zn;
(b) (O, trK,θ) is similar to An

1 ;
(c) (O, trK,θ/m) is isometric to Zn;
(d) (O, 2trK,θ/m) is isometric to An

1 ;
(e) K is a 2ath cyclotomic field for a positive integer a, and θ is the complex

conjugation if a > 1, and θ = id if a = 1.

If these properties hold, then n = 2a−1 and m = n.
In (e), let ζ2a ∈ K be a 2ath primitive root of unity, and let xj := ζj

2a . Then the
set of all indecomposable components of the root lattice (O, trK,θ/m) coincides with
the set of all its sublattices

Zxj , 0 ≤ j ≤ 2a−1 − 1.

For every j, the value of trK,θ/m at (xj , xj) is 1.
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Theorem 1.3. The following properties of a pair K, θ are equivalent :

(a) (O, trK,θ) is similar to an even primitive root lattice.
(b) (O, trK,θ/m) is an even primitive root lattice.
(c) n is even and (O, trK,θ/m) is isometric to A

n/2
2 .

(d) K is a 2a3bth cyclotomic field for some positive integers a and b, and θ is the
complex conjugation.

If these properties hold, then n = 2a3b−1 and m = n/2.
In (d), let ζ2a and ζ3b ∈ K be respectively a primitive 2ath and 3bth root of

unity, and let xi,j := ζi
2aζj

3b . Then the set of all indecomposable components of the
root lattice (O, trK,θ/m) coincides with the set of all its sublattices

Zxi,j + Zxi,j+3b−1 0 ≤ i ≤ 2a−1 − 1, 0 ≤ j ≤ 3b−1 − 1.

For all i, j, the values of trK,θ/m at (xi,j , xi,j), (xi,j+3b−1 , xi,j+3b−1 ), and
(xi,j , xi,j+3b−1 ) are, respectively, 2, 2, and −1.

Note that if K is a dth cyclotomic field, and θ is the complex conjugation,
then for d = 2a, the similarity of (O, trK,θ) to Z2a−1

was observed in [4, Proposi-
tion 9.1(ii)], and for d = 2 · 3b, the similarity of (O, trK,θ) to A3b−1

2 can be deduced
from [4, Proposition 9.1(i)].

Since E8 is the unique (up to isometry) positive-definite even unimodular lattice
of rank 8 (see [19, §6]), Theorem 1.3 solves in the negative for n = 8 the existence
problem of a lattice (O, trK,θ) similar to a positive-definite even unimodular one.
Our last main result, Theorem 1.4 below, shows that as a matter of fact the following
more general statement holds.

Theorem 1.4. Every positive-definite even unimodular lattice of rank ≤ 48 is not
similar to a lattice of the form (O, trK,θ).

Corollary 1.1. Every lattice (O, trK,θ) is not similar to the Leech lattice.

Theorem 1.4 excludes many lattices from being similar to lattices of the form
(O, trK,θ): recall [19, Chap. 2, §6] that if Φ(r) is the number of pairwise nonisometric
positive-definite even unimodular lattices of rank r, then Φ(8) = 1, Φ(16) = 2,
Φ(24) = 24, Φ(32) ≥ 107, Φ(48) ≥ 1051.

This paper is organized as follows. Theorems 1.1–1.4 are proved, respectively, in
Secs. 3–6. Section 2 contains several general auxiliary results used in these proofs
and in the proof of Theorem B.1 (see below). At the end of this paper, two short
appendices are placed. Appendix A recalls the explicit description of indecompos-
able root lattices. Appendix B contains a general cyclicity criterion for the primary
components of the discriminant group of (O, trK,θ) (Theorem B.1). In the first
stage of this project, we used another approach to finding a classification of all
pairs K, θ such that (O, trK,θ) is similar to an indecomposable even root lattice.
This approach led us to only a partial answer, see [21, Theorems 4, 5] (in contrast,
in the present paper we obtain a complete classification, see Theorems 1.2 and 1.3).
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However, within this approach we obtained and applied a general cyclicity criterion,
which may be useful for other applications. Therefore, we consider it worthwhile to
publish it in Appendix B as Theorem B.1.

Conventions, terminology, and notation
Given a lattice (L, b) of rank r > 0, we canonically embed L in the vector space
V = L ⊗Z Q over Q and extend b to a nondegenerate symmetric bilinear form
V ×V → Q, still denoted by b. If (L, b) = (O, trK,θ), then r = n and V is naturally
identified with K. If M is a submodule of the Z-module L, then (M, b|M×M ) is
called a sublattice of (L, b) and denoted just by M .

For every s ∈ Z, we put

(L, b)[s] := {x ∈ L | b(x, x) = s}. (1.6)

Thus (L, b) is an even lattice if and only if (L, b)[s] = ∅ for all odd s.
discr(L, b) is the discriminant of (L, b), i.e.

discr(L, b) := det(b(ei, ej)) ∈ Z, (1.7)

where e1, . . . , er is a basis of L over Z (the right-hand side of (1.7) does not depend
on the choice of basis).

L∗ is the dual of L with respect to b, i.e.

L∗ := {x ∈ V | b(x, L) ⊆ Z} ⊇ L. (1.8)

The discriminant group of (L, b) is the (finite Abelian) group L∗/L.
discrK/Q := discr(O, trK,id) is the discriminant of K/Q.
TraceK/Q(x) and NormK/Q(x) are, respectively, the trace and norm over Q of

an element x ∈ K.
c and d are, respectively, the codifferent and different of K/Q, i.e.

c is the dual of O with respect to trK,id, (1.9)

d := c−1 := {x ∈ K |xc ⊆ O} (1.10)

(c is a fractional ideal of K, O ⊂ c, and d is an ideal of O) [14, 20].
If a and b are nonzero ideals of O and a is prime, then ordab is the highest

nonnegative integer t such that at ⊇ b.
Kθ := {x ∈ K | θ(x) = x}.
μK is the (finite cyclic) multiplicative group of all roots of unity in K.
ϕ is Euler’s totient function.
z stands for the complex conjugate of z ∈ C.
Given a field F , its multiplicative group is denoted by F×.

2. Generalities

In this section, several auxiliary results are collected. We do not claim priority
for all of them and give a reference always when we know it. At the same time, we
prove all the statements, wanting to make this paper reasonably self-contained, and
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because our proofs, while being rather short, provide somewhat more information
than can be found in the literature.

Lemma 2.1. The following properties of a prime p are equivalent :

(i) TraceK/Q(x) ∈ pZ for all x ∈ O.
(ii) TraceK/Q(xp) ∈ pZ for all x ∈ O.

Proof. (i) ⇒ (ii) is clear. We shall prove the inclusion

TraceK/Q(xp) − (TraceK/Q(x))p ∈ pZ for every x ∈ O, (2.1)

which readily implies (ii) ⇒ (i). The set of all field embeddings K ↪→ C contains
exactly n elements σ1, . . . , σn, and for every x ∈ K, we have

TraceK/Q(x) = x1 + · · · + xn, where xi := σi(x) (2.2)

(see, e.g. [13, Chap. 12]). From (2.2) we deduce the existence of a symmetric poly-
nomial f = f(t1, . . . , tn) in variables t1, . . . , tn with integer coefficients such that

TraceK/Q(xp) − (TraceK/Q(x))p = (xp
1 + · · · + xp

n) − (x1 + · · · + xn)p

= p · f(x1, . . . , xn). (2.3)

Let si = si(t1, . . . , tn) be the elementary symmetric polynomial in t1, . . . , tn
of degree i. Then f may be represented as a polynomial with integer coefficients
in s1, . . . , sn (see, e.g. [17, Chap. V, Theorem 11]). Since, for x ∈ O, we have
si(x1, . . . , xn) ∈ Z for all i, this implies that f(x1, . . . , xn) ∈ Z. The latter inclusion
and (2.3) yield (2.1).

Corollary 2.1. The lattice (O, trK,id) is even if and only if the integer m is even.

Proof. This follows from (1.5) and Lemma 2.1 with p = 2.

Lemma 2.2. Let (L, b) be a nonzero lattice of rank r.

(i) If e1, . . . , er is a basis of the Z-module L and s1, . . . , sr are the invariant factors
of the matrix (b(ei, ej)) (see [11, (16.6)]), then the group

r⊕
i=1

Z/siZ

is isomorphic to the discriminant group of (L, b). In particular, s1 · · · sr =
|discr(L, b)| is the order of the latter group.

(ii) discr(L, b) = d r
(L,b)discr(L, b/d(L,b)).

(iii) If (L, b) = (O, trK,θ), then

(iii1) d(L,b) = m (in particular, d(L,b) is independent of θ);
(iii2) n ≡ 0 mod m.
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(iv) The discriminant group of (O, trK,θ) is isomorphic to O/d (in particular, up to
isomorphism, this group is independent of θ). Its order is equal to |disc K/Q|
(cf. [4, Corollary 2.4])).

(v) Let (L, b/d(L,b)) be an even lattice. Then (L, b) is also an even lattice, and if,
moreover, (L, b) = (O, trK,θ), then

(v1) n ≡ 0 mod 2 and n/2 ≡ 0 mod m;
(v2) n ≡ 0 mod 4 for θ = id.

Proof. (i) Let e∗1, . . . , e
∗
r be the basis of V dual to e1, . . . , er with respect to b,

i.e. b(ei, e
∗
j ) = δij . In view of (1.8), since L = Ze1 ⊕ · · · ⊕ Zen, we have L∗ =

Ze∗1 ⊕ · · · ⊕ Ze∗n. On the other hand, ei =
∑r

j=1 b(ei, ej)e∗j , i.e. (b(ei, ej)) is the
change-of-basis matrix for passing from e∗1, . . . , e

∗
n to e1, . . . , en. Since the Smith

normal form of this matrix is diag(s1, . . . , sr), this implies the claim.
(ii) This follows from (1.3) and (1.7).
(iii1) Since θ(O) = O, and 1 ∈ O, we have {x · θ(y) |x, y ∈ O} = O. Combining

this with (1.2), (1.3), (1.5), we obtain the desired equality.
(iii2) This follows from (iii1) and (1.3) because

trK,θ(1, 1) = TraceK/Q(1) = n. (2.4)

(iv) It follows from θ(O) = O and formulas (1.2), (1.8), (1.9), (1.10) that c is
the dual of O with respect to trK,θ. Therefore, the discriminant group of (O, trK,θ)
is c/O. By [11, (4.15), p. 85], the latter group is isomorphic to cd/Od. Since cd = O

and Od = d, this proves the first claim.
By (i), the order of the discriminant group of (O, trK,id) is |disc K/Q|. Since,

by the first claim, this group is isomorphic to the discriminant group of (O, trK,θ),
this proves the second claim.

(v) The first claim follows from (1.3). Let (L, b) = (O, trK,θ). By (iii1), the
lattice (O, trK,θ/m) is even. By (2.4) this implies that n/m is an even integer;
whence (v1). If, moreover, θ = id, then m is even by Corollary 2.1; whence (v2)
because of the second formula in (v1).

Remark 2.1. By Corollary 2.1 and Lemma 2.2(iii1), if an even lattice (L, b) is
isometric to a lattice of the form (O, trK,id), then necessarily d(L,b) is even; in
particular, (L, b) is not primitive. For instance, this shows that (O, trK,id) cannot
be a primitive even root lattice.

For any root lattice (L, b), the form b is positive-definite. Hence if (L, b) and
(O, trK,θ) are similar, then trK,θ is a definite form. The following Lemma 2.3
describes when the latter happens.

Lemma 2.3. The following properties of a pair K, θ are equivalent :

(i) trK,θ is a definite bilinear form;
(ii) trK,θ is a positive-definite bilinear form;
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(iii) either K is a totally real field and θ = id, or K is a CM-field and θ is the
complex conjugation.

Proof. By (2.4), trK,θ(1, 1) > 0; whence (i) ⇔ (ii).
Let r1 (respectively, r2) be the number of real (respectively, pairs of imaginary)

field embeddings Kθ ↪→ C. If θ �= id, then [K : Kθ] = 2 and K = Kθ(
√

a) for
a ∈ Kθ; let s be the number of field embeddings ι : Kθ ↪→ R such that ι(a) < 0.
The signature of (O, trK,θ) is then given by

sign(O, trK,θ) =

{
(r1 + r2, r2) if θ = id,

(r1 + 2r2 + s, r1 + 2r2 − s) if θ �= id;
(2.5)

see [2, Proposition 2.2]. From (2.5) one readily deduces (ii)⇔ (iii).

Note that

if K is a CM-field and θ is the complex

conjugation, then n is even, [Kθ : Q] = n/2,

and (discrKθ/Q)2 divides discrK/Q;

(2.6)

see, e.g. [20, Chap. III, Corollary (2.10)].

Corollary 2.2. For a pair K, θ, if the lattice (O, trK,θ) is similar to a root lattice,
then either K is a totally real field and θ = id, or K is a CM-field and θ is the
complex conjugation.

Lemma 2.4 (cf. [1, Lemma 2]). Let σ1, . . . , σn be the set of all field embeddings
K ↪→ C. Let x ∈ O be an element such that σi(x) is a positive real number for
every i. Then the following hold :

(i) TraceK/Q(x) is a positive integer and

TraceK/Q(x) ≥ n; (2.7)

(ii) the equality in (2.7) holds if and only if x = 1.

Proof. The equalities

TraceK/Q(x) =
n∑

i=1

σi(x), NormK/Q(x) =
n∏

i=1

σi(x) (2.8)

(see, e.g. [13, Chap. 12]) imply that TraceK/Q(x) and NormK/Q(x) are positive
integers. Combining (2.8) with the classic inequality of arithmetic and geometric
means (see, e.g. [23, Sec. 2]), we then obtain the inequalities

TraceK/Q(x) ≥ n · NormK/Q(x) ≥ n · 1 = n. (2.9)

This proves (i).
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If x = 1, then the equality in (2.7) holds by (2.4). Conversely, assume that the
equality in (2.7) holds for some x. In view of (2.9) we then conclude that

NormK/Q(x) = 1 (2.10)

and the equalities in (2.9) hold too. The classic inequality of arithmetic and geo-
metric means tells us that the latter happens if and only if σ1(x) = · · · = σn(x), i.e.
x is a positive integer. From (2.10) and (2.8) we then obtain xn = 1, hence x = 1.
This proves (ii).

The inequality in Lemma 2.5(ii) below can be found in [3, Corollary 4].

Lemma 2.5. Suppose a pair K, θ enjoys one of the following properties :

(TR) K is a totally real field, θ = id;
(CM) K is a CM-field, θ is the complex conjugation.

Then, for every nonzero element x ∈ O, the following hold :

(i) trK,θ(x, x) is a positive integer ;
(ii) trK,θ(x, x) ≥ n and the equality holds if and only if x is a root of unity.

The condition (O, trK,θ/m)[s] �= ∅ (see (1.6)) implies the following:

(a) s ≥ n/m;
(b) if s = 1, then m = n;
(c) if s = 2 and (O, trK,θ/m) is even, then m = n/2,

(d) if s = 4 and (O, trK,θ/m) is even, then m = n/2 or n/4.

Proof. First, we note that if σ : K ↪→ C is a field embedding, then σ(x · θ(x)) is a
positive real number. Indeed, if (TR) holds, then

σ(K) ⊂ R and σ(x · θ(x)) = σ(x2) = (σ(x))2; (2.11)

whence the claim in this case. If (CM) holds, then σ(K) is stable with respect to
the complex conjugation of C and σ(θ(x)) = σ(x) (see, e.g. [25, p. 38]). Therefore,

σ(x · θ(x)) = σ(x)σ(θ(x)) = σ(x)σ(x) = |σ(x)|2, (2.12)

which proves the claim in this case.
In view of this, (i) and the inequality in (ii) follow from (1.2) and Lemma 2.4(i).

By Lemma 2.4(ii), the equality in (ii) holds if and only if

x · θ(x) = 1. (2.13)

Assume that (2.13) holds. Then, in the notation of Lemma 2.4, every complex
number σi(x) has the modulus 1. Since x is an algebraic integer, by Kroneker’s
theorem [15] (see also, e.g. [25, Lemma 1.6]) this implies that x is a root of unity.
Conversely, if x is a root of unity, then, in the above notation, σ(x) is a root of
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unity too, hence the right-hand sides of the equalities in (2.11), (2.12) are equal
to 1. Whence, (2.13) holds. This completes the proof of (ii).

Suppose that (O, trK,θ/m)[s] �= ∅, i.e. there is an element a ∈ O such that
trK,θ(a, a)/m = s. This and (ii) yield (a).

Since, by Lemma 2.2(iii2), n/m is an integer, it follows from (a) that m = n if
s = 1. This proves (b).

Suppose, moreover, that (O, trK,θ/m) is even. Then n/m is even by
Lemma 2.2(v1). This and (a) then imply that m = n/2 if s = 2. This proves
(c). Finally, if s = 4, then (a) implies that n/m = 2 or 4. This proves (d).

Lemma 2.6 (cf. [4, Proposition 9.1(ii)]). Fix a positive integer a. Let K be a
2ath cyclotomic field, let θ be the complex conjugation if a > 1 and θ = id if a = 1,

and let ζ ∈ K be a 2ath primitive root of unity. Then the following hold :

(i) n = 2a−1;
(ii) {ζj | 0 ≤ j ≤ 2a−1 − 1} is a basis of the Z-module O;
(iii) for every elements ζi and ζj of this basis,

trK,θ(ζi, ζj) =

{
n if i = j,

0 if i �= j;

(v) m = n.

Proof. We have n = ϕ(2a) (see [17, Chap. VIII, §3, Theorem 6]); whence (i).
(ii) We have K = Q(ζ); therefore, O = Z[ζ] (see [25, Theorem 2.6]). The latter

yields (ii) because the degree of the minimal polynomial of ζ over Q is n = rankO.
(iii) Since θ is the complex conjugation and ζ is a root of unity, we have the

equalities ζi · θ(ζj) = ζi−j , hence by (1.2),

trK,θ(ζi, ζj) = TraceK/Q(ζi−j). (2.14)

If i = j, then (2.14) and (2.4) yield trK,θ(ζi, ζj) = n.
Let i �= j. The element ζi−j is a primitive 2sth root of 1 for some positive integer

s ≤ a; hence its minimal polynomial over Q is t2
s−1

+ 1 (see [17, Chap. VIII, §3]).
Since 0 ≤ i, j ≤ 2a−1 − 1, we have s ≥ 2. Therefore, the degree of this polynomial
is at least 2. This implies that TraceQ(ζi−j)/Q(ζi−j) = 0. In turn, from this, (2.14),
and the equality

TraceK/Q(x) = [K : Q(x)]TraceQ(x)/Q(x) for every x ∈ K (2.15)

(see, e.g. [27, Chap. II, §10, (9)]), we obtain that trK,θ(ζi, ζj) = 0.
(iv) follows from (iii), (1.3), and Lemma 2.2(iii1).

Lemma 2.7 (cf. [4, Proposition 9.1(i)]). Fix a positive integer b. Let K be a
3bth cyclotomic field, let θ be the complex conjugation, and let ζ ∈ K be a 3bth
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primitive root of unity. Then the following hold :

(i) n = 2 · 3b−1;
(ii) {ζj | 0 ≤ j ≤ 2 · 3b−1 − 1} is a basis of the Z-module O;
(iii) for every two elements ζi and ζj of this basis,

trK,θ(ζi, ζj) =

⎧⎪⎪⎨
⎪⎪⎩

n if i = j,

0 if 3b−1 does not divide i − j,

−n/2 if i �= j and 3b−1 divides i − j;

(iv) m = n/2.

Proof. The same argument as in the proof of Lemma 2.6 yields (i), (ii), and (iv).
(iii) Formula (2.14) still holds and the same argument as in the proof of

Lemma 2.6(iii) yields the validity of (iii) for i = j. Assume now that i �= j. Then
ζi−j is a primitive 3sth root of unity for some positive integer s ≤ b. The degree of
its minimal polynomial over Q is

[Q(ζi−j) : Q] = ϕ(3s) = 2 · 3s−1. (2.16)

Since the 3rd cyclotomic polynomial is t2+t+1, this minimal polynomial is t2·3
s−1

+
t3

s−1
+ 1 (see [17, Chap. VIII, §3]). Given that 2 · 3s−1 − 3s−1 = 1 if and only if

s = 1, from this we infer that

TraceQ(ζi−j)/Q(ζi−j) =

{
0 if s ≥ 2,

−1 if s = 1.
(2.17)

From (i) and (2.16) we obtain that [K : Q(ζi−j)] = [K : Q]/[Q(ζi−j) : Q] =
n/(2 · 3s−1) = 3b−s. This, (2.15), and (2.17) then yield

TraceK/Q(ζi−j) =

{
0 if s ≥ 2,

−n/2 if s = 1.
(2.18)

Clearly, (2.18) is equivalent to (iii) for i �= j.

Given a qth cyclotomic field K and a positive integer r dividing q, we denote
by Kr and Or, respectively, the unique rth cyclotomic subfield of K and its ring
of integers. They are Aut K-stable; for α ∈ AutK, we denote the restriction α|Kr

still by α. If α is the complex conjugation of K, this restriction is the complex
conjugation of Kr.

Lemma 2.8. Let i and j be coprime positive integers. Let K be a ijth cyclotomic
field and let θ be the complex conjugation. Then the following hold :

(i) the natural Q-algebra homomorphism

Ki

⊗
Q

Kj → K, x ⊗ y �→ xy, (2.19)

is an isomorphism;
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(ii) for every x ∈ Ki and y ∈ Kj , the following equality holds :

TraceK/Q(xy) = TraceKi/Q(x)TraceKj/Q(y), (2.20)

(iii) the restriction of homomorphism (2.19) to Oi

⊗
Z Oj is a ring isomorphism

with O, which is also a lattice isometry

(Oi, trKi,θ) ⊗Z (Oj , trKj ,θ) → (O, trK,θ).

Proof. Let ζi ∈ Ki and ζj ∈ Kj be respectively a primitive ith and a primitive jth
root of unity. Then ζiζj is a primitive ijth root of unity, hence K = Q(ζiζj). This
shows that K is the compositum of Ki and Kj ; whence (2.19) is a surjective homo-
morphism. The coprimeness of i and j implies that [K : Q] = ϕ(ij) = ϕ(i)ϕ(j) =
[Ki : Q][Kj : Q]; hence (2.19) is an injective homomorphism. This proves (i).

By definition of the trace of an element of a number field, the left-hand side
of (2.20) is the trace of the Q-linear transformation of K given by multiplication
by xy. In view of (i), it is equal to the trace of the Q-linear transformation of
Q(ζi)

⊗
Q Q(ζj) given by multiplication by x ⊗ y. Hence (see [8, Chap.VII, §5, no.

6]) it is equal to the product of traces of the Q-linear transformations of Q(ζi) and
Q(ζj) given by multiplications by respectively x and y. By the mentioned definition,
the latter product is equal to the right-hand side of (2.20). This proves (ii).

In view of the equality O = OiOj (see [16, Chap. IV, §1, Theorem 4; 25, The-
orem 2.6]) the first statement in (iii) follows from (i). The second follows from the
first in view of (1.2), (2.20), and the definition of tensor product of lattices (see
[19, Chap. 1, §5]).

In the next lemma, we use that if K is totally real, then discrK/Q is positive
(see, e.g. [14, Proposition 1.2a]).

Lemma 2.9. Let K be a totally real number field of degree n > 1 over Q.

(i) If n ≤ 24, then n
√

discrK/Q > n.
(ii) If 3 ≤ n ≤ 75, then n

√
discrK/Q > (n + 1)2/2n.

Proof. This readily follows from [12, Table 2 (Cas Totalement Réel), p. 1].

Lemma 2.10. Let K be a CM-field of degree n > 2 over Q. If n ≤ 48, then
n
√|discr K/Q| > n/2.

Proof. In view of (2.6), we have the inequality

n
√
|discrK/Q| ≥ n/2

√
discrKθ/Q. (2.21)

The claim then readily follows from the lower bounds on the right-hand side of
(2.21), which is obtained by applying Lemma 2.9(i) to the totally real number field
Kθ of degree n/2.
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Proposition 2.1. Let EK be the n-element set of all field embeddings K ↪→ C and
let bK be the Q-bilinear map

bK : K × K → C, bK(x, y) :=
∑

σ∈EK

σ(x)σ(y). (2.22)

Then the following hold :

(i) The Q-linear span of bK(K × K) is a proper subset of R containing Q.
(ii) bK is symmetric and positive-definite.
(iii) Properties (a), (b), (c) listed below are equivalent :

(a) bK(K × K) = Q.
(b) bK(O × O) ⊆ Q.
(c) There is an involutive field automorphism τ ∈ Aut K such that bK = trK,τ .

(iv) If (c) holds, then either K is totally real and τ = id, or K is a CM-field and
τ is the complex conjugation.

Proof. Below we use the notation

ι : C → C, ι(z) := z.

(i) In view of (2.22) and (2.8), for every q ∈ Q, we have bK(q, 1) = nq; whence
the inclusion Q ⊆ bK(K × K).

For every σ ∈ EK , we have ι ◦ σ ∈ EK ; therefore,

ι ◦ EK := {ι ◦ σ |σ ∈ EK} = EK . (2.23)

From (2.22) and (2.23), for every x, y ∈ K, we deduce the following:

bK(x, y) =
∑

σ∈EK

σ(x)σ(y) = bK(y, x)

=
∑

σ∈EK

(ι ◦ σ)(x)(ι ◦ σ)(y) =
∑

δ∈ι◦EK

δ(x)δ(y)

=
∑

δ∈EK

δ(x)δ(y) = bK(x, y);

(2.24)

whence the inclusion bK(K × K) ⊆ R. Since K is countable, while R is not, this
inclusion is proper.

(ii) follows from (2.24) and (2.22).
(iv) follows from (ii) and Lemma 2.3.
(iii) Since O ⊂ K, we have (a)⇒ (b), and since K is the Q-linear span of O, we

have (b) ⇒ (a).
Next, (c) ⇒ (a) because of (1.2).

2050021-14

B
ul

l. 
M

at
h.

 S
ci

. 2
02

1.
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 9
5.

22
1.

48
.1

61
 o

n 
12

/2
1/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



December 7, 2021 7:56 WSPC/1664-3607 319-BMS 2050021

Root lattices in number fields

Conversely, assume that (a) holds. Then we have two nondegenerate Q-bilinear
maps

K × K

bK

��

trK,id

��
Q.

Therefore, by [17, Chap. XIII, §5] and (1.2), there is a nondegenerate Q-linear
map τ : K → K such that

bK(x, y) = TraceK/Q(x · τ(y)) for all x, y ∈ K. (2.25)

We claim that τ is an involutive field automorphism of K; if this is proved, then
(2.25), (1.2) show that (c) holds.

To prove the claim, we notice that using (2.22) and (2.2), we can rewrite (2.25)
as follows: ∑

σ∈EK

σ(x)σ(y) =
∑

σ∈EK

σ(x)σ(τ(y)) for all x, y ∈ K. (2.26)

Since for every σ ∈ EK , the map K× → C×, x �→ σ(x), is a group homomorphism,
by Artin’s theorem on the linear independence of characters [17, Chap. VIII, §4,
Theorem 7], we conclude from (2.26) that

σ(y) = σ(τ(y)) for all σ ∈ EK , y ∈ K. (2.27)

In turn, (2.27) implies that the subfield σ(K) of C is ι-stable and the following
diagram, in which γ := ι|σ(K), is commutative:

K
σ ��

τ

��σ(K)
γ �� σ(K) σ−1

�� K. (2.28)

Since each of the upper arrows in (2.28) is a field isomorphism, τ is a field automor-
phism. Moreover, since τ = σ−1 ◦ γ ◦ σ and γ (being the restriction of involution ι)
is involutive, τ is involutive as well. This completes the proof.

3. When is (O, trK,θ) a Root Lattice?

Proof of Theorem 1.1. In view of Examples 1.1–1.3, the “if” part is clear. To
prove the “only if” one, suppose that (O, trK,θ) is a root lattice. Then by Corol-
lary 2.2, either K is a totally real field and θ = id, or K is a CM-field and θ is the
complex conjugation.

There are two possibilities, which we will consider separately:

(a) The lattice (O, trK,θ) is primitive or, equivalently, at least one of its indecom-
posable components is not isometric to A1.

(b) The lattice (O, trK,θ) is nonprimitive or, equivalently, it is isometric to Aa1
1 for

some a1.
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Our considerations below exploit the fact that

discrA� = � + 1 for every �. (3.1)

We first assume that (a) holds. Then

m = 1. (3.2)

If there is an indecomposable component of (O, trK,θ) isometric to Z1, then
(O, trK,θ)[1] �= ∅. By Lemma 2.5(b), this and (3.2) imply that n = 1, i.e. K = Q

and θ = id.
If every indecomposable component of (O, trK,θ) is not isometric to Z1, then

(O, trK,θ) is an even lattice and (O, trK,θ)[2] �= ∅. By Lemma 2.5(c), from this
and (3.2) we deduce that n = 2, i.e.

K = Q(
√

c) for a square free integer c. (3.3)

Since the sum of ranks of all indecomposable components of (O, trK,θ) is n, we
infer from n = 2 and (a) that (O, trK,θ) is isometric to A2. This, (3.2), (3.1), and
Lemma 2.2(ii), (iii1), (iv) then imply that

|discrK/Q| = 3. (3.4)

On the other hand, (3.3) yields

discrK/Q =

{
4c if c ≡ 2, 3 mod4,

c if c ≡ 1 mod 4
(3.5)

(see, e.g. [13, Chap. 13, Proposition 13.1.2]). From (3.5) and (3.4) we conclude that
c = −3; whence K = Q(

√−3) and θ is the complex conjugation. This completes
the consideration of case (a).

Now we assume that (b) holds. Then m = 2 and (O, trK,θ/m) is isometric to
Za1 . Hence (O, trK,θ/m)[1] �= ∅. By Lemma 2.5(b), this yields n = a1 = 2, hence
again (3.3) and (3.5) hold. From (3.1) and Lemma 2.2(iv) we obtain |discrK/Q| = 4.
In view of (3.5), this yields c = −1; whence K = Q(

√−1) and θ is the complex
conjugation. This completes the consideration of case (b).

4. When is (O, trK,θ) Similar to Zn?

Proof of Theorem 1.2. Since Zn is primitive, we have (a) ⇔ (c). If a lattice
(L, b) is isometric to Z1, then (L, 2b) is isometric to A1. This yields implications
(a) ⇔ (b) and (c) ⇔ (d).

(a) ⇒ (e) Suppose that (O, trK,θ) is similar to Zn. Then, by Corollary 2.2,
either K is a totally real field and θ = id, or K is a CM-field and θ is the complex
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conjugation. Since (O, trK,θ/m) and Zn are isometric, and the Z-module Zn is
generated by Zn[1], we deduce from Lemma 2.5(b) that

m = n, (4.1)

and (4.1) implies by Lemma 2.5(ii) that

O is the Z-linear span of μK . (4.2)

Suppose that the order of the cyclic group μK is divisible by an odd prime p.
Then there is x ∈ μK which is a pth primitive root of unity. The minimal polynomial
of x over Q is tp−1 + tp−2 + · · · + 1, hence

TraceQ(x)/Q(x) = −1 and [Q(x) : Q] = p − 1 ≥ 2. (4.3)

Since TraceK/Q(x) = [K : Q(x)]TraceQ(x)/Q(x), we obtain from (4.3) that

0 < TraceK/Q(−x) =
n

p − 1
< n. (4.4)

However, in view of (1.5) and (4.1), the integer TraceK/Q(−x) is divisible by n. This
contradicts (4.4). The obtained contradiction proves that there a positive integer a

such that μK is a cyclic group of order 2a. In view of (4.2), this implies that K is a
2ath cyclotomic field. In particular, it is a CM-field, and therefore, θ is the complex
conjugation. This proves implication (a) ⇒ (e).

(e) ⇒ (c) Let K be a 2ath cyclotomic field for a positive integer a and let θ be the
complex conjugation. By Lemma 2.6 (whose notation we use), n = 2a−1, m = n, and
(O, trK,θ/m) is the orthogonal direct sum of the sublattices Zζj , 0 ≤ j ≤ 2a−1 − 1,
each of which is isometric to Z1. This proves implication (e) ⇒ (c).

The last statement of Theorem 1.2 follows from Lemma 2.6(iii).

5. When is (O, trK,θ) Similar to an Even Primitive Root Lattice?

Proof of Theorem 1.3. The implications (a) ⇔ (b) and (c) ⇒ (b) are clear.
(a)⇒ (d) Suppose that (O, trK,θ) is similar to an even primitive root lattice

(L, b). Then, by Corollary 2.2, either K is a totally real field and θ = id, or K is a
CM-field and θ is the complex conjugation. Since (O, trK,θ/m) and (L, b) are isomet-
ric, and (L, b) is an even lattice generated by (L, b)[2], we deduce from Lemma 2.5(c)
that

m = n/2, (5.1)

and (5.1) implies by Lemma 2.5(ii) that O is the Z-linear span of μK . Hence K is
a cyclotomic field and θ is the complex conjugation.

There is an odd prime p dividing the order of μK : otherwise, this order is 2a for
some a, hence m = n by Theorem 1.2, which contradicts (5.1). Thus, we can find
an element x ∈ μK which is a pth primitive root of unity. The same argument as in
the above proof of implication (a) ⇒ (e) of Theorem 1.2 shows that (4.4) holds. In
view of (1.5) and (5.1), the integer TraceK/Q(−x) is divisible by n/2. This and (4.4)
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then yield p − 1 = 2, i.e. p = 3. Thereby we proved that K is a 2a3bth cyclotomic
field for some a ≥ 0, b > 0. Since every 3bth cyclotomic field is simultaneously a
213bth cyclotomic field, we may assume that a > 0. This completes the proof of
implication (a) ⇒ (d).

(d) ⇒ (c) Let K be a 2a3bth cyclotomic field for some a > 0, b > 0. We use the
notation introduced in the paragraph immediately preceding Lemma 2.8 and put

i := 2a, j := 3b, ni := [Ki : Q], nj := [Kj : Q]. (5.2)

By Lemma 2.8(i) we have n = ninj . Hence by Lemma 2.8(iii) there is a lattice
isometry

(Oi, trKi,θ/ni) ⊗Z (Oj , trKj ,θ/(nj/2)) → (O, trK,θ/(n/2)). (5.3)

In view of (5.2) and Lemmas 2.6, 2.7, the lattices (Oi, trKi,θ/ni) and(
Oj , trKj ,θ/(nj/2)

)
are isometric to respectively Zni and A

nj/2
2 . Since the lattices

Z1 ⊗Z A2 and A2 are isometric, the existence of isomorphism (5.3) then implies
that the lattice (O, trK,θ/(n/2)) is isometric to A

n/2
2 . This completes the proof of

implication (d) ⇒ (c).
The last two statements of Theorem 1.3 follow from Lemma 2.6(iii), (iv),

Lemma 2.7(iii), (iv), and Lemma 2.8(ii).

6. When is (O, trK,θ) Similar to a Positive-Definite Even
Unimodular Lattice of Rank ≤ 48?

Proof of Theorem 1.4. Arguing on the contrary, assume that (O, trK,θ) is similar
to a positive-definite even unimodular lattice (L, b) of rank n, where

8 ≤ n ≤ 48 (6.1)

(the first inequality follows from the fact that 8 divides n, see, e.g. [10, Chap. 7, §6,
Corollary 18]). Since (L, b) is unimodular, we have

|disc (L, b)| = 1, (6.2)

and (6.2) implies, by Lemma 2.2(ii), that (L, b) is primitive. Therefore, (L, b) is
isometric to (O, trK,θ). By Lemma 2.3, since (L, b) is positive-definite, the properties
listed in item (iii) of this lemma hold. In view of Lemma 2.2(ii), (iv) and (6.2), we
have

n
√
|disc K/Q| = m. (6.3)

By Lemma 2.2(v), since (L, b) is even, n/2 ≡ 0 mod m. This and (6.3) yield
n
√
|disc K/Q| ≤ n/2. (6.4)

On the other hand, by Lemma 2.9(ii), Lemma 2.10, and (6.1), for n ≤ 48, we have
the inequality

n
√
|disc K/Q| >

{
(n + 1)2/2n > n/2 if K is a totally real field,

n/2 if K is a CM-field,

which contradicts (6.4).
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Appendix A. The Zn, An, Dn, and En Lattices

To be self-contained, here we briefly describe the lattices Zn, An, Dn, and En as
they play a key role in this paper. For details and a discussion of their properties
see [7, 10, 18].

Let Rm be the m-dimensional coordinate real vector space of rows endowed with
the standard Euclidean structure

Rm × Rm → R, ((x1, . . . , xm), (y1, . . . , ym)) :=
m∑

j=1

xjyj . (A.1)

Denote by ej the row (0, . . . , 0, 1, 0, . . . , 0), where the number of 0’s to the left
of 1 is j − 1.

If L is the Z-linear span of a set of linearly independent elements of Rm such
that b(L × L) ⊆ Z, where b is the restriction of map (A.1) to L × L, then (L, b) is
called a lattice in Rm and denoted just by L.

With these notation and conventions, we have:

Zn is the lattice {(x1, . . . , xn) |xj ∈ Z for all j} in Rn.
An is the lattice {(x1, . . . , xn+1) ∈ Zn+1 | ∑n+1

j=1 xj = 0} in Rn+1.
Dn is the lattice {(x1, . . . , xn) ∈ Zn | ∑n

j=1 xj ≡ 0 mod 2} in Rn, n ≥ 4.
E8 is the lattice D8 ∪

(
D8 + 1

2 (e1 + · · · + e8)
)

in R8.
E7 is the orthogonal in E8 of the sublattice Z(e7 + e8).
E6 is the orthogonal in E8 of the sublattice Z(e7 + e8) + Z(e6 + e8).

Each of these lattices except A1 is primitive. Each of them except Zn for every
n is even.

Appendix B. Cyclicity Criterion

Theorem B.1 (Cyclicity Criterion). Let n > 1 and let p be a prime ramified
in K. Then the following properties of O are equivalent :

(i) The p-primary component of the additive group of ring O/d is a cyclic group
(automatically nontrivial).

(ii) The following conditions hold :

(ii1) in O, there is exactly one ramified prime ideal p which lies over p;
(ii2) p is odd, ordp pO = 2, and O/p is the field of p elements.

Proof. Let r1, . . . , rm be all pairwise distinct prime ideals of O ramified in K/Q.
For every ri, there is a prime integer ri and a positive integer fi such that

ri ∩ Z = riZ and |O/rs
i | = rfis

i for every positive integer s (B.1)

(see, e.g. [13, Chap. 12, §2, 3]). We put

ei := ordririO. (B.2)
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As ri is ramified, ei ≥ 2. There are positive integers d1, . . . , dm such that

d = rd1
1 · · · rdm

m (B.3)

(see, e.g. [20, Chap. III, Theorem 2.6]). By Dedekind’s theorem (see, e.g. [20, The-
orem 2.6, p. 199]), we have

di ≥ ei − 1, where the equality holds if and only if ri � ei. (B.4)

By the Chinese remainder theorem (see, e.g. [13, Proposition 12.3.1]), decom-
position (B.3) yields the following ring isomorphism:

O/d ≈ O/rd1
1 ⊕ · · · ⊕ O/rdm

m . (B.5)

As every ri is prime, (B.5), (B.1) imply that (i) is satisfied if and only if the
following two conditions (a) and (b) hold:

(a) there is exactly one i such that ri = p,
(b) the additive group of O/rdi

i is cyclic.

Clearly (a) is equivalent to (ii1). We shall now show that (b) is equivalent to
(ii2) with p = ri and p = ri; this will complete the proof.

Assume that (b) holds. By (B.2), we have rei−1
i ⊇ rei

i ⊇ riO. Hence there are
the ring epimorphisms

O/riO � O/rei

i � O/rei−1
i . (B.6)

Since ri is prime, it is the order of every nonzero element of the additive group of
O/riO. The existence of epimorphisms (B.6) then implies that

ri is the order of every nonzero element of

the additive groups of O/rei

i and O/rei−1
i .

(B.7)

We consider two possibilities stemming from (B.4):

(T) di = ei − 1 (tamely ramified ri);
(W) di ≥ ei (wildly ramified ri).

First, assume that (T) holds. Then from (b), (B.7), and (B.1) we infer that
fi = di = 1, |O/ri| = ri. Hence ei = 2, and, by (B.4), ri is odd. Thus, as claimed,
in this case, (ii2) is fulfilled.

Next, assume that (W) holds. Then rei

i ⊇ rdi

i ; whence there is a ring epimorphism

O/rdi

i � O/rei

i . (B.8)

From (b), (B.7), (B.8), and (B.1) we then infer that ri = |O/rei

i | = rfiei

i contrary
to the inequality ei ≥ 2. Thus, (W) is impossible.

This completes the proof of (b) ⇒ (ii2) with p = ri and p = ri. The converse
implication is immediate.
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