EXTENDED r-SPIN THEORY AND THE MIRROR SYMMETRY FOR THE
A,_1-SINGULARITY

ALEXANDR BURYAK

ABSTRACT. By a famous result of K. Saito, the parameter space of the miniversal deformation
of the A,_;-singularity carries a Frobenius manifold structure. The Landau—Ginzburg mirror
symmetry says that, in the flat coordinates, the potential of this Frobenius manifold is equal to
the generating series of certain integrals over the moduli space of r-spin curves. In this paper
we show that the parameters of the miniversal deformation, considered as functions of the flat
coordinates, also have a simple geometric interpretation using the extended r-spin theory, first
considered by T. J. Jarvis, T. Kimura and A. Vaintrob [JKV01b], and studied in a recent
paper of E. Clader, R. J. Tessler and the author [BCTT9]. We prove a similar result for the
singularity D4 and present conjectures for the singularities Eg and Fg.

1. INTRODUCTION

The Landau—-Ginzburg mirror symmetry conjecture originates from an old physical construc-
tion of P. Berglund and T. Hiibsch [BH93|. Let us very briefly recall the general statement.

Let N > 1 and let us fix a matrix A = (a;j)1<ij<y With non-negative integer entries a;;.

Consider the polynomial W (x1,...,zy) and its mirror partner W1 (xy, ..., xy), defined by
N N N N
W(zy,...,zN) = Z Hx?ij’ WT(zy, ... ay) = Z Hx;lgz
=1 j=1 i=1 j=1

Suppose that the polynomial W is quasihomogeneous, has an isolated critical point at the origin
and det A # 0. Quasihomogeneity means that there exist positive rational numbers ¢, ..., qnx
such that

WAz, APxg, .. AN y) = AW (24, ..., 2N),

for each A € C*. There are two theories, associated to the polynomial W. They are usually
called the A-model and the B-model.

The A-model is the Fan—Jarvis-Ruan-Witten (FJRW) theory ([FJR13, [EJRO7, (Wit93]) of
the pair (W, Gw ), where Gy is the maximal group of diagonal symmetries of the polynomial W:

GW = {(/\177)\1\]) S (C*)N|W(>\1I1,,)\N'TN) - W(le,.”,xN)}-

The main object in this theory is the moduli space of W-orbicurves. Recall that an orbifold
curve C' with marked points py,...,p, is a (possibly nodal) Riemann surface C' with orbifold
structure at each p; and each node. Moreover, we require that the local picture at each node
is {zy = 0}/Z,,, for some m > 1, where the action of the group Z,, of m-th roots of unity is
given by (- (,9) = (Cnr, YY), G = e . For an orbifold curve C' denote by p: C' — |C| the
forgetful map to the underlying (coarse, or non-orbifold) curve |C|. A W-orbicurve is a marked
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orbifold curve (C;p1,...,p,) together with a collection of orbifold line bundles Lq,..., Ly
over C' and isomorphisms

N
o0 Q15 5y (e (S, p)) 1N
j=1

where w¢ is the canonical line bundle on |C|. Suppose that the local group at a marked point p;
of C'is Zy,,, m; > 1. Then the line bundles Ly, ..., Ly induce a representation 6;: Z,,, — (C*)V.
Our W-orbicurve is called stable if the underlying marked curve (|C|; p1,...,p,) is stable and
if for each marked point p; the representation 6;: Z,,. — (C*)" is faithful.

In [FJR13] the authors proved that the moduli space of stable W-orbicurves of genus g
with n marked points is a smooth compact orbifold. It is denoted by Wg,n. The moduli
space Wg,n is not connected. Numerical invariants of the representations 6;, 1 < i < n, give a
decomposition of the moduli space ng into open and closed components. Consider now the
case g = 0. In [EJJRO7] the authors constructed a virtual fundamental class on each component
of Wy, and defined the corresponding intersection number. All these intersection numbers for
all components of Wy, and for all n can be naturally written as the coefficients of a generating
series, which is a formal power series in variables to, ..., t,r_, pul > 1, with rational coefficients.
Here the number u” is equal to the dimension of the local algebra

owr owr owr owr
e 0o (T g (Y

of the singularity of W7 at the origin, where by Ocw o we denote the ring of germs of holomorphic
functions on CV at the origin. The generating series of the intersection numbers is denoted by

Fow (to, ... t,r_1) € Qllto, ..., t,r 1]

In [FJRO7] the authors proved that the function F§p*" satisfies the WDVV equations and,

therefore, defines a Frobenius manifold structure in a formal neighbourhood of 0 € CH". Frobe-
nius manifolds were introduced and studied in detail by B. Dubrovin in [Dub96]. For a more de-
tailed introduction to the FJRW theory, we refer a reader to the original papers [F.JR13| [FJROT].

The B-model is the Saito Frobenius manifold structure on the parameter space of a miniversal
deformation of the singularity of the polynomial W. A miniversal deformation (also called a
universal unfolding) of the singularity of W is a deformation

pn—1

(1]') Ws('xh S 7‘7:]\/) - W(xla s 7xN) + S0 + Zsi(bi(xl?' e ,I'N),
i=1

oi(z1,...,xn) € Clay,...,zNn], s;€C,
where the polynomials ¢ := 1, ¢1,...,¢,—1 form a basis of the local algebra Ay, of W at the
origin and p is the dimension of Ay .

The Frobenius manifold structure on the parameter space C* = {(so,...,s,—1)|s; € C} of
the miniversal deformation (1.1 is constructed in the following way. Consider the deformation
Wi(x1,...,2n), as a function on CV x CH,

We(z1,...,on) € Ocnyen o,

~ oW, oW
By o (S0 05)

oxy ' Oxn

Via the natural projection C¥ x C* — CH the ring Ay becomes an Ocu o-algebra. Moreover,
it is a free Ocu g-module with the basis ¢o(z), ..., ¢,—1(x). Denote by Tcu o the space of germs

and consider the ring
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of sections of the holomorphic tangent bundle T'C* to CF at the origin. It is also a free

Ocr p-module with the basis a%)’ e asa ) Let us identify the Ocu g-modules JIW and Tcu o
by identifying the basis elements ¢; and 5=, for each 7. Since Ay is an Ocu o-algebra, this

construction endows the tangent bundle TC“ with a multiplication in a neighbourhood of the
origin.

A metric § Y0, i<p19ij(s)dsids; on C" is defined in the following way. Define a bilinear
form (-,-) on the local algebra Ay, by

1 p(x)g(x)dxy A -+ Nday
x),q(x)) = ——— N o , x),q(x) € Aw,
b)ae) = G [ T p(e).alx) €

where ¢ is a sufficiently small positive number. This bilinear form is symmetric and non-
degenerate [AGV85| Section 5.11]. K. Saito [Sai83] introduced the notion of a primitive form,
which is a nowhere vanishing holomorphic form of top degree on C* in a neighbourhood of the
origin with certain properties. He proved that for such a form ¢ the metric g;;(s) on C*, defined

by

pnp——— 6ila)5 ()¢

g @ri)¥ Joy {| e} TIN5

for sufficiently small s;’s, is flat. Together with the multiplication in TC*, constructed above,
this metric defines an analytical Frobenius manifold structure on C* in a neighbourhood of
the origin. The vector field a%) is the unit of it. Let us call this Frobenius manifold the Saito
Frobenius manifold. The existence of a primitive form was proved in [Sai89]. The primitive
forms for the simple singularities

A, W (z) =z,

D, W(xy,x5) = 27 + 2122,
Eq W (zy,m9) = xf + 23,

E; W (1, x9) = T30 + 3,
Fg W (x1, 22) = 2} + 3,

are given by Adxy A --- Adxy, A € C*. For a more detailed introduction to theory of the Saito
Frobenius manifolds, we refer to the paper [ST08] and to the book [Hert02].

The Landau—Ginzburg mirror symmetry conjecture says that there exists a primitive form ¢
such that the Saito Frobenius manifold, corresponding to the polynomial W, is isomorphic to
the Frobenius manifold given by the function Fiy%V. A precise description of the necessary
primitive form together with the isomorphism is glven, for example, in [HLSW15]. The con-
jecture is proved in certain cases [JKVO0la, [FJR13| [KS11) [MS16, [LLSS17]. A step towards a
proof of the conjecture in the general case was made in [HLSW15|, where the authors managed
to prove the conjecture, assuming that certain small set of correlators in the A- and B-models
agree (see Theorem 1.2 in [HLSW15|] and the paragraph after it).

The Landau—Ginzburg mirror symmetry conjecture provides a beautiful link between the
singularity theory and the geometry of the moduli spaces of curves. However, one can see that
the relation between the A- and B-models, which this conjecture describes, is still not complete.
Consider the parameters s;(t.) of the mmlversal deformation expressed as functions of the flat
coordinates. As far as we know, a description of the functions s;(t.) and also of the primitive
form ¢ in terms of the A-model are not known. Therefore, it is natural to ask the following
question.

Question 1. How to describe the functions s;(t.) and the primitive form ¢ in terms of the
A-model?
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In this note we answer this question in the case of the A,_i-singularity, where N = 1 and

W(z) = 2", r > 2, WI' = W. The mirror symmetry conjecture in this case was proved
in [JKVO0Ia]. The primitive form is trivial, so our question is only about the functions s;(t.).
We have 1 = r—1 and the function .7-"5 W (o, ..., t,_3) can be described as the generating series

of the so-called r-spin intersection numbers. The r-spin theory possesses a certain extension,
which was first considered in [JKV01b] and then studied in [BCT19] from the point of view of
integrable hierarchies. The generating series F**({,...,¢,_1) of the extended r-spin intersec-
tion numbers depends on the old variables ty,...,t._o and also on an additional variable t,_;.
We prove that, up to certain rescaling parameters, the function s;(to,...,t._2) is equal to the

) o . ext
coefficient of (t,_1)" in the series gf 1

In [BCT19] E. Clader, R. J. Tessler and the author derived a topological recursion relation
for the generating series of the extended r-spin intersection numbers with descendents. This
equation immediately implies certain WDVV type equations for the function F***. We show
that the mirror symmetry for the A,_;-singularity together with the Saito formulas for the
Frobenius manifold structure in the coordinates s; can be simply derived from these equations.

We also answer Question (1| for the singularity D4 and propose conjectural answers for the
singularities Fg and Fg.

Remark. In a work in preparation [GKT|, M. Gross, T. L. Kelly and R. J. Tessler study open
FJRW wnvariants and provide a similar interpretation of the flat coordinates for the Frobenius
manifold for the Landau—Ginzburg models (C,Z,,z") and (C?,Z, X Zs,x" + y*) and their mir-
rors. In the former case, their results using open r-spin invariants are analogous to the results
appearing here.

Plan of the paper. In Section [2] we formulate precisely the statement of the Landau-Ginzburg
mirror symmetry for the A,_;-singularity. The main result of the paper, Theorem [3.1, which
describes the geometric interpretation of the functions s;(t.), is contained in Section 3} In
Section |4 we show how to derive the mirror symmetry for the A, _;-singularity from the WDVV
type equations for the function F**. In Section [5| we answer Question [1| for the singularity D,
and propose conjectural answers for the singularities Fg and Fj.

2. LANDAU-GINZBURG MIRROR SYMMETRY FOR THE A,_;-SINGULARITY

In this section we present a more detailed description of the Landau—Ginzburg mirror sym-
metry for the singularity A, ;: W(x) = 27, r > 2. We would also like to fix a notation for the

r-th root of —1, 6, := e, which we will often use in the rest of the paper.

2.1. A-model. The FJRW theory of the singularity W (x) = 2" can be equivalently described
using the r-spin theory ([Chi08, [JKV01a], see also [BCT19, Section 2]). An orbifold curve
(C;p1,...,pn) is called r-stable, if the coarse underlying marked curve |C] is stable and the
isotropy group is Z, at every marked point and node. Consider a list of integers 0 < aq, ..., q, <
r—1. An r-spin structure with the twists aq, ..., a,, on an r-stable orbifold curve (C;p, ..., pn)
is an orbifold line bundle L over C' together with an isomorphism

¢: L 5 P*W|C| <— Z¢:1 aiPi) )

and such that the isotropy groups at all markings act trivially on the fiber of L. Recall that
by p: C — |C| we denote the forgetful map to the underlying coarse curve |C|. The moduli
space of r-stable orbifold curves of genus g with an r-spin structure with the twists aq,..., a,

is denoted by M“T . It is non-empty if and only if 29 — 2 — > «; is divisible by r, and in

g;01 ..,
this case it is a smooth compact orbifold of complex dimension 39 — 3 + n.
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Let us describe now the construction of the virtual fundamental class on ﬂ;/; in the

genus 0 case. We assume that

(2.1) r <Za,~+2>.

Denote by C — Ml/r . the universal curve and by £ — C the universal line bundle. It is

0;aq,...,x
straightforward to check that for any r-stable curve (C;py,...,p,) and an r-spin structure

(L = Ch: L 5 prug (— > aipi))
on C' the cohomology group H°(C, L) vanishes and, therefore, the cohomology group H'(C, L)

has dimension M This implies that R'7,L is a vector bundle over mé;/;ﬂl,...,an and
we denote the dual to it by W,

.0

W= (R'n.L)".
It is called the Witten bundle. The top Chern class of it,
i i—(r—2
(2.2) cw = e(W) € Hieew (M(l]./al N ,Q) : degew = 2204 (r ),
T, .

is called the Witten class. It satisfies an important vanishing property which is called the
Ramond vanishing: ¢y = 0, if a; = r — 1, for some 1.

The FJRW intersection numbers for the singularity A, _; are also called r-spin intersection
numbers or r-spin correlators. They are obtained by integrating Witten’s class against -classes
on the moduli space ﬂé{;h,_.,an. Denote by L; the line bundle over Mé/;% whose fiber over
an r-stable curve C' is the cotangent space to the coarse curve |C| at the i-th marked point.
The r-spin correlators in genus 0 are defined by

n r-spin n
(2.3) <H Tai,di> = 7’/1/ cw Hz/zfi, dy,...,d, >0.
i=1 Mol i=1

05007 5.+ an

Because of the Ramond vanishing, this correlator is equal to zero, if a; = r — 1, for some 7. A
correlator (I 7a,.q,) "™ is defined to be zero, if the divisibility condition is not satisfied.
Correlators (J] 7a,.0) ™ are called primary correlators and also denoted by (J]74,)" ™. To
be precise, the FJRW intersection numbers for the singularity A,_; coincide with the primary
r-spin correlators ([] 74,)" "™, where 0 < a; < r — 2.

The FJRW generating series .7:0F, W in our case is also denoted by F™P'" and defined by

n r-spin Hn ;
Fromin, ) =3 3 < > ST

n>3 0<aq,...,an<r—2 \i=

where tg,...,t._o are formal variables. From formula (2.2) for the degree of Witten’s class

it follows that the series F"*P" is a polynomial in to,...,t,_s which satisfies the following
homogeneity condition:
(2.4) Frsm (Nt N L NP eg) = NEPRETSPIN (4 L tly), A € CF

63]:7‘fspin

The polynomial F"-*PI" satisfies the property = Oa+p,r—2 and also the following system

Ottty
of equations:

aSJrr-spin 83Fr-spin 63]:'1"-spin anr-spin
25) Y > 0<a,By,0<r-2
u+v=r v=r

L, OLads0t, OO et DD, Dt, D 5D

which are called the WDVV equations. Therefore, the function F7*P" defines a Frobenius
manifold structure on C"! in the coordinates t, ..., ¢, with the metric n = (744)0<a.s<r—2,
given by 7,3 = da+p.,r—2, and the unit vector field 6%.
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It is worth to mention that the polynomial F™P® is uniquely determined by the homogeneity
condition (2.4), the WDVV equations (2.5)) and the following initial conditions:

-spi _spi 1
(2.6) (TaTﬁTvy P = Oartf+vyr—25 <7'1~2sz12 = r

This was already shown by E. Witten in [Wit93], but we would also like to mention the pa-
per [PPZ19, Section 1.2], which contains a very short and clear proof of this fact.

2.2. B-model. A miniversal deformation of the singularity W (z) = 2" is given by
r—2
Wi(z) =a" + Z s, s, € C.
i=0

Let us choose ¢ = —02rdz to be the primitive form in the Saito construction. So we get the
following formula for the metric:

~ 5 oW,
2mi =€ Oz ox

1 ot , it .
9ij(8) = 5— o (—0:r)dx = 0:r Res;—oo P 0<i4,j<r—2.

Flat coordinates for the metric g;;(s) can be explicitly constructed in the following way (see
e.g. [Dub03, page 112]). Consider the series

1

k(z) :=Wy(x)r =2+ 0.

Introduce functions T(sg, ..., S—2), 1 < a < r —1, as the first non-trivial coefficients of the
expansion of x in terms of k(x):
1 /(T Ys) T %(s) T (s)
=k+ - o Ok™).
T +T(k t— Tt +kr_1+()
It is not hard to see that the functions 7%(s) are polynomials in the variables s, ..., s,_2. They

are flat coordinates for the metric g;;(s).
The Landau-Ginzburg mirror symmetry conjecture for the singularity A,_; was proved
in [JKVO01a]. Tt says that the change of variables

to(T*) =0Tt 0<a<r-—2

defines an isomorphism between the Saito Frobenius manifold and the Frobenius manifold,
given by the potential F™*P'" and the unit vector field a%)'

3. EXTENDED 7-SPIN THEORY AND THE FUNCTIONS ;(t.)

In this section we describe a certain extension of the r-spin theory and prove that the func-
tions s;(t,) are given by the generating series of extended r-spin intersection numbers.

The moduli space M;gh__,an is actually well defined for all integers aq,...,«, and there

are canonical isomorphisms M;/;" T /V;/gl
In [JKVO1b] the authors noticed that the construction of Witten’s class on M(l);/;wan, described
in the previous section, works in the case, when a; = —1 for some ¢, and 0 < o; < r — 1 for
j # i. Following [BCT19], we refer to this theory as the extended r-spin theory. So for all

n > 2 and integers 0 < ay, ..., q, < r — 1, satisfying the divisibility condition

(3.1) r (Za,-+1),

there is well-defined Witten’s class

_pn» 1 all differences a; — f5; are divisible by r.

(32) cw € Hdegcw (ﬂl/r Q) ’ deg ew = 220-% - (7' — 1)

0;—1,a1,...,an r



EXTENDED r-SPIN THEORY AND THE MIRROR SYMMETRY FOR THE A,_;-SINGULARITY 7

Extended r-spin correlators are defined by

n T-spin n
(3.3) <Tl HTai,di> = r/w ew [[vds, dio.. dn>0.
i=1 i=1

MO 1,aq

.....

The correlator (3.3)) is defined to be zero, if the d1V1Slbility condition (3.1)) is not satisfied. The
Ramond vanishing doesn’t hold in the extended theory: for example, in [BCT19, Lemma 3.8]

r-spin 1

the authors showed that (7_777,) =1
Let t,_1 be a formal variable and introduce the generating series

n r-spin __
F*to, ...ty Z Z <7'_1H7ai> HZT;, P

n>2 0<aq,...,an<r—1

From formula ([3.2]) it follows that the series F*' is a polynomial in t,...,t,_ 1 satisfying the
following homogeneity property:

(3.4) F N0, N7y, M) = NV FE™ (g, 8y, .. 1), A€ C™

Let us now consider the polynomial F**' as a polynomial in t,_; with the coefficients
from Q[tg,...,t,—2]. Consider also the parameters of the miniversal deformation s;(t.), ex-
pressed as functions of the flat coordinates tg,...,t,_o. The main result of the paper is the
following theorem.

Theorem 3.1. We have
) a ext
si(t) = (—rb,)"Coef Of—’ 0<i<r—2.
r—1 r_1

Before we prove the theorem, let us present an alternative description of the flat coordinates
for the Saito Frobenius manifold for the A, _j-singularity. Define functions v, (So, ..., Sq_2),
1<a<r—1,by

@

Va(s) := — Resyeoo (Wi(2)7) .

It is not hard to see that v,(s) is a polynomial in sg, $1, ..., s,_2 of the form v,(s) = Sr—a-1t
O(s?). Therefore, the functions v;(s),...,v,_1(s) can serve as coordinates on C"~! in a neigh-
bourhood of the origin.

Lemma 3.2. We have o
Va(s) =—=T""%s), 1<a<r-—1.
r

Proof. We only have to check the following identity:

a ko

(3.5) v=k— 2 vals) L o),

For a Laurent series A = >."" __a;(s)x", a;(s) € C[sq, ..., s,_»], denote

A= Zaixi, A =A—- A, resA :=a_;.

We want to use the results from [BCT19, Section 4]. In [BCT19, Lemma 4.2] we considered
the polynomial Ly = 2" + Z:;g fi[o]zi and in [BCT19, page 147] we introduced the variables
v; = Tes (Zéﬁ), 1 <1 <r—1. We can identify fi[o] = s; and z = z, then we get EO = Ws. By
[BCT1Y, equation (4.22)], we have

r—1

(3.6) rtl (Wj), _yhaed res (W;tl) Wer = O(z™).

T ‘ r v,

a=
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From the equation before equation (4.20) in [BCT19] and [BCTI19, Lemma 4.2] it follows that

J— r+1
(3.7) vr_a:%aires< st>, I<a<r-—1.
r Ve

Combining (3.6)) and ({3.7]), we obtain
r—1

(we) -3 = k}a _ 0.
1

a=

1
It remains to note that (W;) = k — z, and identity (3.5) becomes clear. The lemma is
proved. U

Proof of Theorem [3.1. The theorem is a consequence of the following stronger statement:

B a ]:ext

(3.8) W) = 5, —

tr_1=—7r0rx
Let us prove it.

Similarly to the proof of Lemma[3.2] we want to use the results from [BCTT19, Section 4]. We
again identify fi[o} = s, z=xand Ly = W,. In [BCTTY, Section 4] we have the variables T;,
1> 1,and t§, 0 <a<r—1,d > 0. Let us set 75,41 = 0, t¢; = 0, and denote t* :=t§. We
have the following relation [BCT19, equation (4.7)]: -

3(a+l) 1

t*=(a+1)(—r)2e 2T, 4, 0<a<r-—2.
Let us use the following notations:

ﬁr—spin - f'r—spin

Text o ext
|ta»—>t°‘ ? F =F ’ta»—>ta :

Since &2 _ Ve, 1 <a <r—1[BCT1Y, Lemma 4.2], we get

o0T0T,
82.%T'Spin 3(atl)
OtO9ta—1 a(—r)2C+D =0, 1<a<r-1
Together with the formulas % =179 and v, = — 9774 this implies that

t(l

:/\r—at‘“ where 0<a<r—2 and )\ngr(_r)ﬁ.

Proposition 4.10 in [BCT19| says that

DF 1 Ao
atr—l = r—2 Ws ( 0 t 1) .
T<_7ﬂ) 2(r+1) —Tro,

We compute

o f’ext B o f‘ext t_O t1 tr—o X\ by i O JFext
atril tr-—1=-2 B atril )\:’ >\;71 T )\% ’ )\T a A: atr_l tr—1=x
Y
Therefore,
1 gFe 1 OF
W - r—2 Wi ( ° ) = =W ( = ) )
)‘r at?“*l tr_1=z r(_r)2(r+1> —7"(97« atrfl tr_1=z _Ter

which proves equation ((3.8]). O
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4. MIRROR SYMMETRY AS A CONSEQUENCE OF THE WDVYV TYPE EQUATIONS

In the previous section we saw that the functions s;(t.) appear as the coefficients of the
gﬁ j Now we want to show that the Saito formulas for the multiplication and the
metric in the coordinates s; can be naturally deduced from the WDVV type equations for the
polynomial Ft,

Introduce formal variables t,q4, 0 < a < r —1,d > 0, and let ¢,y := t,. Consider the

generating series

n r-spin n
. T, taa,
- — =1 "&4,d4
L M E E < Tai,d¢> l n! ’
1

n>3 0<aq,...,an<r—2 \i1=
dl?"'7dn20

n r-spin Hn .
P =Y, Y <H> e
i=1 )

n>2 0<aq,...,an<r—1
di,...,dn>0

polynomial

In [BCT19, equation (4.26)] the authors proved the following topological recursion relation:

82 Fext 82 Fr-spin 82 Fext 8 Fext 82 Fext
. 4. + ) Ogavﬁgr_17 paqzo
(%aap-ﬁ-latﬁ,q ptv—=r—2 ata,patu,ﬂ @tv,Oatﬂyq ata,p 8tr—1,08tﬂ,q

These relations can be equivalently written as the following equations between differential 1-
forms:

Fext 2 Fr—spin Fext Fext Fext
d(a >: 0 d(a )+0 d<a >, 0<a<r-—1, p=>0.
ptv=r—2

Dtopit OtarOtno \ Otuo ) " Otay \0t_10

Taking the exterior derivative of the both sides and setting p = 0 and ¢, >; = 0, we obtain the
following relation:

82 JT_'r—spin a Fext 8 ]:'ext a JT_'ext
P I = <a<r-—
> d(ataatu>Ad<6tV)+d<ata>/\d(atr_l) 0, 0<a<r-—1,

ptv=r—2

or, equivalently,
(4.1)
83 f‘r-spin 82 fext 82 fext 82 fext 83 fr-spin 82 f‘ext 82 ]_‘ext 82 fext
/H;Q Ot,0tg0t, Ot,0t, - Ot,Ots Ot,_10t, o, 0ta0t, 0t OOt i Ot,Ot, Ot,_10ts’

where 0 < a, 8,7 < r — 1. We call these equations the WDVV type equations for the func-
tion F*'. They already appeared in literature before in the context of open Gromov—Witten
theory [HS12]. For 8 = r — 1, equation (4.1]) looks as follows:

82 feXt 82 feXt 83 J—_'r—spin 82 J’_'ext 82 JT.‘ext 82 JT.‘ext
= -+ ,
OOt Otr1Oty o= 0ta0t,0t, Ot 0t—1  OtaOt, O]

(4.2)

and is non-trivial only if 0 < a, v <r — 2.
Define functions s;(tg, ..., t,—2), 0 <i <r—2 by

ext
Si(to, s tra) = (—TQT)iCOefti—l (8}_ ) ‘

atr—l
Of course, we already know that s;(t.) = s;(.), but we don’t want to use it in this section and

want to show that the Saito formulas for the Frobenius manifold structure in the coordinates s;
can be derived directly from the WDVV type equations (4.2)).
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Let us begin with the metric. We have to prove that

82]:ext 82]:ext
Ot Otr_1 8t56t,«, 1
92 Fext

52
ot:_,

(4.3) —Rest, - = —10asprn 0<a,f<r—2.

For this we compute

82 ]:ext 82 fext

aQIext
<4'4) B ReStr,lzoo Dtodt,_1 Otgdt,_1 by ~ Res R <—> _

a;tf;’: Ot 0ts
82]:ext
Z 83.FT spin Rest Oty 0ty
r—1=00 02 Fext
Pl 8t «0tgot, o
The first term on the right-hand side of this equation is equal to zero, because gt}:?t is a poly—

nomial in ¢,_;. In order to compute the second term, note that the homogeneity condltlon
implies that the polynomial F** has the form

tr+1 t?”*l

Fo< = (117, T+1>T_Spinm + {T1T—aT ) ospin t,,,gﬁ +O0(t~2).
Since [BCT19, proof of Theorem 4.6]
_spi !
(4.5) <T—1TW77_+11 r-spin (_’Vr)w 0<~<r-—1,
we obtain
(fof =— (—170) o+ %t:ﬁ +0(t"73).

So the second term on the right-hand side of (4.4) is equal to

tr—2

OB Fr-spin ataii;(t,l 2 T O(t;=3)
_m R,eStrilzoo W _ — 5&4—[‘3,7‘—2 ReStrilzoo tr 1 N g
e o, - )r =t + Ot 07)

- T5a+,8,r72 .

Thus, equation (4.3)) is proved.
Let us now show that the multiplication in the variables s; is given by the Saito construction.
For this we have to check that

r—2 a@
k ok _ o itj
(4.6) Z::v ci; = 27 mod B
where by cw, 0<1,7,k<r—2 we denote the structure constants of the multiplication in the
variables s, and Q(t,, ) := gtf—exf . Denote by caﬁ, 0<a,B,y <r—2, the structure
" tp_1=—10rx
constants of the multiplication in the variables t,. Clearly, cgﬂ = mf;g%. We compute
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(we follow the convention of sum over repeated Greek indices)

r—2
Ot Ot Js, Oty Ot QR
k k vig o k k v o
l;x “ii T 9%, 05, BZ ~ 05,05, fot,

by

tr_1=—710,x

tr_1=7“9raz>
tr_1:r9Tx>

at 81&5 Z 83 JT_'T spin 82 JT_‘ext
832 83] , 0ta0tgot,, 0t,0t,

00ty (9Q0Q | 1 9Q *F
05, 03; \ Ot, Oty 1, Ox Ot,0ts

0Q0Q , 9Q ( 1 9t, Oty PPFet

T 05,05, Oz \ 10, 05; 05; Ola0ty
=27 mod @
T

which proves formula (4.6)).

5. SINGULARITY Dy

In this section we give an answer to Question [I| for the singularity Dy = 23 + z,23. We also
propose conjectural answers for the singularities Fg and FEg.

The Landau-Ginzburg mirror symmetry for the polynomial x? + x122 is equivalent to the
mirror symmetry for the polynomial 23 + x3. In order to see it, note, first of all, that the
singularity {22 + x,22 = 0} C C? is just three lines intersecting at the origin. Therefore, a
linear change of variables transforms this singularity to the singularity {z3 + 23 = 0} c C2%
Thus, the Saito Frobenius manifolds, corresponding to the polynomials z% + z,23 and 3 + 73,
are isomorphic. The mirror partner to the polynomial Dy = z} + x25 is the polynomial
DT = 2325 +22. The potential Fo FJ was computed in [FFJMR16] and in Section |5.1{ we show

that it is equivalent to the FJ RW potentlal for the polynomial z3 + 3.

In Section we describe explictly the B-model for the polynomial 3 + z3 together with the
Landau-Ginzburg mirror symmetry in this case. Then in Section we answer Question (1] for
the polynomial 3 + 3 and in Section propose conjectures for the singularities Eg and FEj.

5.1. A-model. Let us consider the more general case of the polynomial
er,rz (wla ZEQ) = x;l + 1'527 r1,7T2 Z 3

The dimension of the corresponding local algebra A, . isequal to (r;—1)(ro—1). The FJRW
theory for the polynomial W,, ,, can be described using the r-spin theory in the following way.
Consider the moduli space Mo,n of stable curves of genus 0 with n marked points and denote

by st: ﬂé/;an — M., the forgetful map, which forgets an r-spin structure together with
an orbifold structure on an orbifold curve. For 0 < aq, ..., a, < r—1, satisfying the divisibility
condition [2.1] define the cohomology class
(5.1) P () =1 sty (ew) € HY (Mog, Q)
of degree

= (r—2
(5.2) deg P (o, o) = 2220 = (=2

r

The class ¢"*P"(qy, . . ., a,) is defined to be zero, if the divisibility condition (2.1]) is not satisfied.
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The FJRW intersection numbers for the polynomial W,, ., are given by [EJR13, Theorem
4.2.2))

(5.3)
n W7"1u7”2

<Hmi,@.> = [ e ) BB 0Zai <2 0SB <2
i=1 Mo,n

By (5.2) and the divisibility condition ({2.1)), this intersection number is equal to zero unless
the following constraints are satisfied:

(5.4)

- i B 2 2 - -
Z(l—g—é>:1+—+—, Zai:r1—2modr1, Zﬁiz'f’z—QmOd’f’z
i=1 T2 (R i=1 i=1

The FJRW generating series is equal to

Wiy rg n
FFIRW Hizl tai,Bi
0 er ro Tawﬁz n| 9

n>3 0<aq,...,an<r;—2
0<:817 7/37’L<T2 2

where t55, 0 < a <1 —2,0 < S < ry — 2, are formal variables. The unit vector of the

corresponding Frobenius manifold is ati and the metric is
3 TFJRW
B >’ F, 0.Wr o s 5
Nau,Briaz,82 = (9to,03ta1,/313ta2 5, — Yartaz,r1—2Y81+B2,r2—2-
Consider now the case 7y = r; = 3. The function g JWP;V;/ depends on four variables

t0,0,t1,0,t01,t1,1- The metric is antidiagonal in these variables. From constraints (5.4) it fol-
lows that there are only two non-trivial 3-point correlators and only two non-trivial 4-point
correlators:

1% W Wi, Wi, 1
(5.5) (T1am00700) ** = (ToaTi0700) 2 =1, (niamie) * =(maTe1) = 3
which are computed using equations (5.3)) and (2.6)). Using the argument, similar to the one,
presented in [PPZI9, Section 1.2], one can show that the function F57y is uniquely determmed
by the WDVV equations, the first constraint in ([5.4)) and the initial conditions (5 . As aresult,

we obtain

1 1 1 1 if
(5.6) Fommon = §t(2)70t1,1 + to,0t1,0t0,1 + 18t1 ot + 18t0 it + = toto atig o+ 68040

Let us compare the potential (5.6 with the FJRW potential for the singularity DI. According
to [FFJMRI6, page 183], we have

1 1 1 a 3a 36a*
Fopr = : 2tXt1 415?/151 + Etxnf + Etj}tXQ + gtxtf,txz + a* 53t — 3a* Bt + a5 %o,

where t1,tx,ty,tx2 are formal variables and a is an explicitly computed non-zero constant.

The unit vector field is at . One can directly compute that after the change of variables

to,0 = t1, tio = Btx + ty, toq = Btx — ty, t11 = Otxe,

with
/8:32/30/1/37 7:3'31/6a1/3’ 5:6‘2))1/3@2/37
we get
FFIRW _ 1 FJRW
0,DT — 36 - 31/3¢2/3~ O:Wss-

Therefore, after a rescaling of the metric the FJRW Frobenius manifolds for the polynomials DT
and W3 3 become isomorphic.
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5.2. B-model. Consider the following miniversal deformation of the singularity Wj 3:
Wi s.5(21, 29) = f{’ + x% + 5110102 + S0.1%2 + 51071 + S00, Si; € C.

Let us choose the form ¢ = 9dx Adz, to be the primitive form, defining the metric g;, j,.4,.5,(5):

1 x21+zzx31+32
1 2 .. . .
i1 .41:09.7 = —0 e <11.1 < 1.
ginaviz2(8) = 50 / W [ We | Do Oy D01 N A2 0 S, Ju o S
‘T _’W - ox1 o0x2

Then the matrix of the metric in the variables s, 51,0, S0,1, 51,1 1S

000 1
001 0
9)=10 10 o
321

100

A direct computation shows that the change of coordinates

3

s3
to,0(s) = so0 + — 54 t10(s) = —s10, to.1(s) = —s0,1, t11(s) = s11,

defines an isomorphism between the Saito Frobenius manifold for the singularity W33 and the
Frobenius manifold given by the potential Fg ! FJRW and the unit 3 a

5.3. Answer to Question [1} In the extended r-spin theory, by the same formula (5.1]), we
can define the class

r—spin(

c ~1,aq,...,;a,) € H (Mopi1,Q), 0<aq,...,0, <7 —1,
of degree 92 0i=(r=1) ( Y Note also that we have the property [BCT19, Lemma 3.5]
P (1 an, L, 0) = TP (<1 ag, . L, o),

where m: Mo ,12 — Mony1 is the forgetful map, which forgets the last marked point.
Let us define extended intersection numbers for the singularity W3 3 by the formula

(5.7)
n W33
T-1,-1 HTai,ﬂi ::/ 03-Spin(_1’a17”"a ) 3Sp1n< 1 617"‘7&71)7 0 S ai?/Bi S 2.
=1 mo,n-u

This correlator is equal to zero unless

(5.8) zn:<1—ai§&)=§, En:ai:2mod3, iﬁi:2mod3.
i=1 =1

=1

Define a series PW3’3 (to’o, tl’o, t071, tl,lv Zy, l’g) by

5 > 1 B Y
147 . Ty Lo ki1 _k i=1 Loy, B
P 3’3(t7$) = Tl ool <T—1,—17'2,27'2,670,22 Tai,ﬂi> : ! .

n,k1,k2>0 0<ai,...,an<l i=1
n+ki+ko>1 0<p1,...,8n <1

From (5.8)) it follows that the series PY32 is actually a polynomial in the variables t, g, 71, T2.
The following result is an analog of Theorem for the singularity Wj 5.

Theorem 5.1. The function s;;(t..) is equal to the coefficient of xix} in the polynomial
PWS’B (t*,*7 33:17 3$2) .

Proof. We will actually prove a bit stronger statement:

(5.9) Wi s.5(x1, 29) = PpWss (s 321, 322).
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The proof is by direct computation. For the left-hand side we have

t3
Wg’g;s(l') = l'? + .CU% + tl,l.fﬂll'g — t170x1 — t0711'2 -+ (top — 51—211) .
Let us compute the polynomial PW33(¢, z). From ([5.8) it follows that it has the form
1% a3 3 £,
Pt x) = Oé1€+Oé2E+Oé3t1,1$1l‘2+Oé4t1,0$1+045150,1$2+ agloo + 047?’ ;..o € Q.

We compute

a =y = (1.1 _1m0md,y) = / IPIR(—1.2,2. 2, 2)¢F P (—1,2,0,0,0) =

Mo,
4\ 3-spin by 2
= (1173 = 5
3 = <7'_17_17'2,2T2,0T0727'1,1>W3’3 = / C3-spin(_1’ 2, 2, 0, 1)63-spin(_1’ 2, O, 2, 1)
Mo,s

Denote by 73: ﬂo,g) — ﬂo,z; and 7y : ./\_/10,5 — MOA the forgetful maps which forget the third
and fourth marked points, respectively. Then

. . 1
C3-spln<_17 27 27 07 1) - 71_203-513”1(_1’ 27 2? 1) = _gﬂ-zwl = <w1 o D1’4)’

1

3
where D; ; denotes the cohomology class, Poincaré dual to the divisor in M5, whose generic
point is a nodal curve made of two bubbles containing the marked points labeled by {i,j}
and {1,2,3,4,5}\{i, j}, respectively. Similarly,

. 1 1
C3-sp1n(_1’ 2’ 0’ 27 1) = —§W§¢l = —5(1/11 - D1,3).

As a result,
: . 1 1
Qs = / PN (—1,2,2,0,1)c7P"(~1,2,0,2,1) = = / (V1 = Dyg)(1 — Dy 3) = —.
Mo,s 9 Mo,s 9
For the constants ay and a5 we get

3spin by @5) 1
Wis _ <7_717_227_1> spin y _Z

Qg4 = 05 = <7_71,717—2,27—2,07_1,0> 3
We continue with ag:
_ Ws3z _
ag = (T_1,_172,270,0) =1.
For the constant a; we compute
_ 3 \Wsz 3spin(_1 9 1 1. 1)2
ar = (To11memry) = [ P12, L 1,1)%
Mo

Consider the Ss-action on MO,g, induced by permutations of the last three marked points.
Clearly,

P(1,2,1,1,1) € H* (M5, Q)%.
Let us compute this class. The basis of the group H?(M, s, Q)% is given by
Dy = Dy, Dy = D34+ D35+ Dy, Ds = Dy3+ Dys+ Dys.

The intersection matrix ( fﬂo ) @Z),-Dj) is non-degenerate. Using also the integrals
5 1<i,j<3

. 1
wic3—spln(_1,2’171’1) = __6i,37 1= 172a37
Mogs 3
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computed using the topological recursion relations in the extended r-spin theory [BCT19,
Lemma 3.6], we conclude that ¢3*P®(—1,2,1,1,1) = —%Dl = —%Dl,g. Therefore,

. 1 1

a; = APm(—1,2,1,1,1)* = = D2, =——.
3 9 7, P9
Mo,s Mo,s

Thus, the polynomial P"23(t, x) is equal to

3 3 t3
- X1 X xT
PWas(t z) = =L +—+t11 L o= — o=+ (tog — —1’1)

27 27 9 3 3 54
and we can immediately see that the polynomial W3 5.4(2) is obtained from it by the rescaling
x; — 3x;. The theorem is proved. O

5.4. Conjecture for the singularities Fs and FEgs. The singularities Fg and FEg coincide
with the singularities

Wigms(x1, ) = a7 + a3,
for m = 0 and m = 1, respectively. Similarly to the case of the singularity W33, let us define
functions PEo+2m (¢ x), m = 0,1, by

Watm,3
ki ko ’ n
Tt x | J )
Eg42 e 1 2 i=1 "i,Bi
protm(t, x) = E R E T T3 m 2Ty Lm0 02 | | T B T
nkke>0 82 0<ay L an<24+m ’
n+ki+ko>1 0<p1,..,8n<1

The Landau-Ginzburg mirror symmetry for the singularities E¢ and Ey, as well as for all
simple singularities, was proved in [FJR13]. Denote by s; 6+2m( ),0<1<2+m,0<j <1, the
corresponding transformation between the flat coordinates and the parameters of the miniversal
deformation.

Conjecture 5.2. We have

Sf;+2m (t*7*) = Coefzzim%PE(H—Qm (t*,*7 _(4 + m)94+m$17 —3931’2).
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