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Abstract. By a famous result of K. Saito, the parameter space of the miniversal deformation
of the Ar−1-singularity carries a Frobenius manifold structure. The Landau–Ginzburg mirror
symmetry says that, in the flat coordinates, the potential of this Frobenius manifold is equal to
the generating series of certain integrals over the moduli space of r-spin curves. In this paper
we show that the parameters of the miniversal deformation, considered as functions of the flat
coordinates, also have a simple geometric interpretation using the extended r-spin theory, first
considered by T. J. Jarvis, T. Kimura and A. Vaintrob [JKV01b], and studied in a recent
paper of E. Clader, R. J. Tessler and the author [BCT19]. We prove a similar result for the
singularity D4 and present conjectures for the singularities E6 and E8.

1. Introduction

The Landau–Ginzburg mirror symmetry conjecture originates from an old physical construc-
tion of P. Berglund and T. Hübsch [BH93]. Let us very briefly recall the general statement.

Let N ≥ 1 and let us fix a matrix A = (aij)1≤i,j≤N with non-negative integer entries aij.
Consider the polynomial W (x1, . . . , xN) and its mirror partner W T (x1, . . . , xN), defined by

W (x1, . . . , xN) :=
N∑
i=1

N∏
j=1

x
aij
j , W T (x1, . . . , xN) :=

N∑
i=1

N∏
j=1

x
aji
j .

Suppose that the polynomial W is quasihomogeneous, has an isolated critical point at the origin
and detA 6= 0. Quasihomogeneity means that there exist positive rational numbers q1, . . . , qN
such that

W (λq1x1, λ
q2x2, . . . , λ

qNxN) = λW (x1, . . . , xN),

for each λ ∈ C∗. There are two theories, associated to the polynomial W . They are usually
called the A-model and the B-model.

The A-model is the Fan–Jarvis–Ruan–Witten (FJRW) theory ([FJR13, FJR07, Wit93]) of
the pair (W,GW ), where GW is the maximal group of diagonal symmetries of the polynomial W :

GW :=
{

(λ1, . . . , λN) ∈ (C∗)N
∣∣W (λ1x1, . . . , λNxN) = W (x1, . . . , xN)

}
.

The main object in this theory is the moduli space of W -orbicurves. Recall that an orbifold
curve C with marked points p1, . . . , pn is a (possibly nodal) Riemann surface C with orbifold
structure at each pi and each node. Moreover, we require that the local picture at each node
is {xy = 0}/Zm, for some m ≥ 1, where the action of the group Zm of m-th roots of unity is

given by ζm · (x, y) = (ζmx, ζ
−1
m y), ζm = e

2πi
m . For an orbifold curve C denote by ρ : C → |C| the

forgetful map to the underlying (coarse, or non-orbifold) curve |C|. A W -orbicurve is a marked
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orbifold curve (C; p1, . . . , pn) together with a collection of orbifold line bundles L1, . . . , LN
over C and isomorphisms

φi :
N⊗
j=1

L
⊗aij
j

∼→ ρ∗
(
ω|C|

(∑n

i=1
pi

))
, 1 ≤ i ≤ N,

where ω|C| is the canonical line bundle on |C|. Suppose that the local group at a marked point pi
of C is Zmi , mi ≥ 1. Then the line bundles L1, . . . , LN induce a representation θi : Zmi → (C∗)N .
Our W -orbicurve is called stable if the underlying marked curve (|C|; p1, . . . , pn) is stable and
if for each marked point pi the representation θi : Zmi → (C∗)N is faithful.

In [FJR13] the authors proved that the moduli space of stable W -orbicurves of genus g
with n marked points is a smooth compact orbifold. It is denoted by Wg,n. The moduli
space Wg,n is not connected. Numerical invariants of the representations θi, 1 ≤ i ≤ n, give a
decomposition of the moduli space Wg,n into open and closed components. Consider now the
case g = 0. In [FJR07] the authors constructed a virtual fundamental class on each component
of W0,n and defined the corresponding intersection number. All these intersection numbers for
all components ofW0,n and for all n can be naturally written as the coefficients of a generating
series, which is a formal power series in variables t0, . . . , tµT−1, µ

T ≥ 1, with rational coefficients.
Here the number µT is equal to the dimension of the local algebra

AWT := OCN ,0

/(
∂W T

∂x1
, . . . ,

∂W T

∂xN

)
= C[x1, . . . , xN ]

/(
∂W T

∂x1
, . . . ,

∂W T

∂xN

)
of the singularity ofW T at the origin, where byOCN ,0 we denote the ring of germs of holomorphic
functions on CN at the origin. The generating series of the intersection numbers is denoted by

FFJRW
0,W (t0, . . . , tµT−1) ∈ Q[[t0, . . . , tµT−1]].

In [FJR07] the authors proved that the function FFJRW
0,W satisfies the WDVV equations and,

therefore, defines a Frobenius manifold structure in a formal neighbourhood of 0 ∈ CµT . Frobe-
nius manifolds were introduced and studied in detail by B. Dubrovin in [Dub96]. For a more de-
tailed introduction to the FJRW theory, we refer a reader to the original papers [FJR13, FJR07].

The B-model is the Saito Frobenius manifold structure on the parameter space of a miniversal
deformation of the singularity of the polynomial W . A miniversal deformation (also called a
universal unfolding) of the singularity of W is a deformation

Ws(x1, . . . , xN) = W (x1, . . . , xN) + s0 +

µ−1∑
i=1

siφi(x1, . . . , xN),(1.1)

φi(x1, . . . , xN) ∈ C[x1, . . . , xN ], si ∈ C,
where the polynomials φ0 := 1, φ1, . . . , φµ−1 form a basis of the local algebra AW of W at the
origin and µ is the dimension of AW .

The Frobenius manifold structure on the parameter space Cµ = {(s0, . . . , sµ−1)|si ∈ C} of
the miniversal deformation (1.1) is constructed in the following way. Consider the deformation
Ws(x1, . . . , xN), as a function on CN × Cµ,

Ws(x1, . . . , xN) ∈ OCN×Cµ,0,

and consider the ring

ÃW := OCN×Cµ

/(
∂Ws

∂x1
, . . . ,

∂Ws

∂xN

)
.

Via the natural projection CN × Cµ → Cµ the ring ÃW becomes an OCµ,0-algebra. Moreover,
it is a free OCµ,0-module with the basis φ0(x), . . . , φµ−1(x). Denote by TCµ,0 the space of germs
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of sections of the holomorphic tangent bundle TCµ to Cµ at the origin. It is also a free

OCµ,0-module with the basis ∂
∂s0
, . . . , ∂

∂sµ−1
. Let us identify the OCµ,0-modules ÃW and TCµ,0

by identifying the basis elements φi and ∂
∂si

, for each i. Since ÃW is an OCµ,0-algebra, this
construction endows the tangent bundle TCµ with a multiplication in a neighbourhood of the
origin.

A metric 1
2

∑
0≤i,j≤µ−1 gij(s)dsidsj on Cµ is defined in the following way. Define a bilinear

form 〈·, ·〉 on the local algebra AW by

〈p(x), q(x)〉 :=
1

(2πi)N

∫
⋂N
i=1

{∣∣∣ ∂W∂xi ∣∣∣=ε}
p(x)q(x)dx1 ∧ · · · ∧ dxN∏N

i=1
∂W
∂xi

, p(x), q(x) ∈ AW ,

where ε is a sufficiently small positive number. This bilinear form is symmetric and non-
degenerate [AGV85, Section 5.11]. K. Saito [Sai83] introduced the notion of a primitive form,
which is a nowhere vanishing holomorphic form of top degree on Cµ in a neighbourhood of the
origin with certain properties. He proved that for such a form ζ the metric gij(s) on Cµ, defined
by

gij(s) :=
1

(2πi)N

∫
⋂N
i=1

{∣∣∣ ∂Ws∂xi

∣∣∣=ε}
φi(x)φj(x)ζ∏N

i=1
∂Ws

∂xi

,

for sufficiently small si’s, is flat. Together with the multiplication in TCµ, constructed above,
this metric defines an analytical Frobenius manifold structure on Cµ in a neighbourhood of
the origin. The vector field ∂

∂s0
is the unit of it. Let us call this Frobenius manifold the Saito

Frobenius manifold. The existence of a primitive form was proved in [Sai89]. The primitive
forms for the simple singularities

Ar W (x) = xr+1,
Dr W (x1, x2) = xr−11 + x1x

2
2,

E6 W (x1, x2) = x41 + x32,
E7 W (x1, x2) = x31x2 + x32,
E8 W (x1, x2) = x51 + x32,

are given by λdx1 ∧ · · · ∧ dxN , λ ∈ C∗. For a more detailed introduction to theory of the Saito
Frobenius manifolds, we refer to the paper [ST08] and to the book [Hert02].

The Landau–Ginzburg mirror symmetry conjecture says that there exists a primitive form ζ
such that the Saito Frobenius manifold, corresponding to the polynomial W , is isomorphic to
the Frobenius manifold given by the function FFJRW

0,WT . A precise description of the necessary

primitive form together with the isomorphism is given, for example, in [HLSW15]. The con-
jecture is proved in certain cases [JKV01a, FJR13, KS11, MS16, LLSS17]. A step towards a
proof of the conjecture in the general case was made in [HLSW15], where the authors managed
to prove the conjecture, assuming that certain small set of correlators in the A- and B-models
agree (see Theorem 1.2 in [HLSW15] and the paragraph after it).

The Landau–Ginzburg mirror symmetry conjecture provides a beautiful link between the
singularity theory and the geometry of the moduli spaces of curves. However, one can see that
the relation between the A- and B-models, which this conjecture describes, is still not complete.
Consider the parameters si(t∗) of the miniversal deformation expressed as functions of the flat
coordinates. As far as we know, a description of the functions si(t∗) and also of the primitive
form ζ in terms of the A-model are not known. Therefore, it is natural to ask the following
question.

Question 1. How to describe the functions si(t∗) and the primitive form ζ in terms of the
A-model?
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In this note we answer this question in the case of the Ar−1-singularity, where N = 1 and
W (x) = xr, r ≥ 2, W T = W . The mirror symmetry conjecture in this case was proved
in [JKV01a]. The primitive form is trivial, so our question is only about the functions si(t∗).
We have µ = r−1 and the function FFJRW

0,W (t0, . . . , tr−2) can be described as the generating series
of the so-called r-spin intersection numbers. The r-spin theory possesses a certain extension,
which was first considered in [JKV01b] and then studied in [BCT19] from the point of view of
integrable hierarchies. The generating series F ext(t0, . . . , tr−1) of the extended r-spin intersec-
tion numbers depends on the old variables t0, . . . , tr−2 and also on an additional variable tr−1.
We prove that, up to certain rescaling parameters, the function si(t0, . . . , tr−2) is equal to the

coefficient of (tr−1)
i in the series ∂Fext

∂tr−1
.

In [BCT19] E. Clader, R. J. Tessler and the author derived a topological recursion relation
for the generating series of the extended r-spin intersection numbers with descendents. This
equation immediately implies certain WDVV type equations for the function F ext. We show
that the mirror symmetry for the Ar−1-singularity together with the Saito formulas for the
Frobenius manifold structure in the coordinates si can be simply derived from these equations.

We also answer Question 1 for the singularity D4 and propose conjectural answers for the
singularities E6 and E8.

Remark. In a work in preparation [GKT], M. Gross, T. L. Kelly and R. J. Tessler study open
FJRW invariants and provide a similar interpretation of the flat coordinates for the Frobenius
manifold for the Landau–Ginzburg models (C,Zr, xr) and (C2,Zr × Zs, xr + ys) and their mir-
rors. In the former case, their results using open r-spin invariants are analogous to the results
appearing here.

Plan of the paper. In Section 2 we formulate precisely the statement of the Landau-Ginzburg
mirror symmetry for the Ar−1-singularity. The main result of the paper, Theorem 3.1, which
describes the geometric interpretation of the functions si(t∗), is contained in Section 3. In
Section 4 we show how to derive the mirror symmetry for the Ar−1-singularity from the WDVV
type equations for the function F ext. In Section 5 we answer Question 1 for the singularity D4

and propose conjectural answers for the singularities E6 and E8.

2. Landau-Ginzburg mirror symmetry for the Ar−1-singularity

In this section we present a more detailed description of the Landau–Ginzburg mirror sym-
metry for the singularity Ar−1: W (x) = xr, r ≥ 2. We would also like to fix a notation for the

r-th root of −1, θr := e
πi
r , which we will often use in the rest of the paper.

2.1. A-model. The FJRW theory of the singularity W (x) = xr can be equivalently described
using the r-spin theory ([Chi08, JKV01a], see also [BCT19, Section 2]). An orbifold curve
(C; p1, . . . , pn) is called r-stable, if the coarse underlying marked curve |C| is stable and the
isotropy group is Zr at every marked point and node. Consider a list of integers 0 ≤ α1, . . . , αn ≤
r−1. An r-spin structure with the twists α1, . . . , αn on an r-stable orbifold curve (C; p1, . . . , pn)
is an orbifold line bundle L over C together with an isomorphism

φ : L⊗r
∼→ ρ∗ω|C|

(
−
∑n

i=1
αipi

)
,

and such that the isotropy groups at all markings act trivially on the fiber of L. Recall that
by ρ : C → |C| we denote the forgetful map to the underlying coarse curve |C|. The moduli
space of r-stable orbifold curves of genus g with an r-spin structure with the twists α1, . . . , αn
is denoted by M1/r

g;α1,...,αn
. It is non-empty if and only if 2g − 2−

∑
αi is divisible by r, and in

this case it is a smooth compact orbifold of complex dimension 3g − 3 + n.



EXTENDED r-SPIN THEORY AND THE MIRROR SYMMETRY FOR THE Ar−1-SINGULARITY 5

Let us describe now the construction of the virtual fundamental class on M1/r

g;α1,...,αn
in the

genus 0 case. We assume that

r |
(∑

αi + 2
)
.(2.1)

Denote by C → M1/r

0;α1,...,αn
the universal curve and by L → C the universal line bundle. It is

straightforward to check that for any r-stable curve (C; p1, . . . , pn) and an r-spin structure(
L→ C, φ : L⊗r

∼→ ρ∗ω|C|

(
−
∑

αipi

))
on C the cohomology group H0(C,L) vanishes and, therefore, the cohomology group H1(C,L)

has dimension
∑n
i=1 αi−(r−2)

r
. This implies that R1π∗L is a vector bundle over M1/r

0;α1,...,αn
and

we denote the dual to it by W ,

W := (R1π∗L)∨.

It is called the Witten bundle. The top Chern class of it,

cW := e(W) ∈ Hdeg cW
(
M1/r

0;α1,...,αn
,Q
)
, deg cW = 2

∑
αi − (r − 2)

r
,(2.2)

is called the Witten class. It satisfies an important vanishing property which is called the
Ramond vanishing: cW = 0, if αi = r − 1, for some i.

The FJRW intersection numbers for the singularity Ar−1 are also called r-spin intersection
numbers or r-spin correlators. They are obtained by integrating Witten’s class against ψ-classes

on the moduli spaceM1/r

0;α1,...,αn
. Denote by Li the line bundle overM1/r

0;α1,...,αn
whose fiber over

an r-stable curve C is the cotangent space to the coarse curve |C| at the i-th marked point.
The r-spin correlators in genus 0 are defined by〈

n∏
i=1

ταi,di

〉r-spin

:= r

∫
M1/r

0;α1,...,αn

cW

n∏
i=1

ψdii , d1, . . . , dn ≥ 0.(2.3)

Because of the Ramond vanishing, this correlator is equal to zero, if αi = r − 1, for some i. A
correlator 〈

∏
ταi,di〉

r-spin is defined to be zero, if the divisibility condition (2.1) is not satisfied.

Correlators 〈
∏
ταi,0〉

r-spin are called primary correlators and also denoted by 〈
∏
ταi〉

r-spin. To
be precise, the FJRW intersection numbers for the singularity Ar−1 coincide with the primary
r-spin correlators 〈

∏
ταi〉

r-spin, where 0 ≤ αi ≤ r − 2.
The FJRW generating series FFJRW

0,W in our case is also denoted by F r-spin and defined by

F r-spin(t0, . . . , tr−2) :=
∑
n≥3

∑
0≤α1,...,αn≤r−2

〈
n∏
i=1

ταi

〉r-spin ∏n
i=1 tαi
n!

,

where t0, . . . , tr−2 are formal variables. From formula (2.2) for the degree of Witten’s class
it follows that the series F r-spin is a polynomial in t0, . . . , tr−2 which satisfies the following
homogeneity condition:

F r-spin(λrt0, λ
r−1t1, . . . , λ

2tr−2) = λ2r+2F r-spin(t0, t1, . . . , tr−2), λ ∈ C∗.(2.4)

The polynomial F r-spin satisfies the property ∂3Fr-spin
∂t0∂tα∂tβ

= δα+β,r−2 and also the following system

of equations:∑
µ+ν=r−2

∂3F r-spin

∂tα∂tβ∂tµ

∂3F r-spin

∂tν∂tγ∂tδ
=

∑
µ+ν=r−2

∂3F r-spin

∂tα∂tγ∂tµ

∂3F r-spin

∂tν∂tβ∂tδ
, 0 ≤ α, β, γ, δ ≤ r − 2,(2.5)

which are called the WDVV equations. Therefore, the function F r-spin defines a Frobenius
manifold structure on Cr−1 in the coordinates t0, . . . , tr−2 with the metric η = (ηαβ)0≤α,β≤r−2,
given by ηαβ = δα+β,r−2, and the unit vector field ∂

∂t0
.
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It is worth to mention that the polynomial F r-spin is uniquely determined by the homogeneity
condition (2.4), the WDVV equations (2.5) and the following initial conditions:

〈τατβτγ〉r-spin = δα+β+γ,r−2,
〈
τ 2r−2τ

2
1

〉r-spin
=

1

r
.(2.6)

This was already shown by E. Witten in [Wit93], but we would also like to mention the pa-
per [PPZ19, Section 1.2], which contains a very short and clear proof of this fact.

2.2. B-model. A miniversal deformation of the singularity W (x) = xr is given by

Ws(x) = xr +
r−2∑
i=0

six
i, si ∈ C.

Let us choose ζ = −θ2rrdx to be the primitive form in the Saito construction. So we get the
following formula for the metric:

gij(s) =
1

2πi

∫
| ∂Ws∂x |=ε

xi+j

∂Ws

∂x

(−θ2rr)dx = θ2rrResx=∞
xi+j

∂Ws

∂x

, 0 ≤ i, j ≤ r − 2.

Flat coordinates for the metric gij(s) can be explicitly constructed in the following way (see
e.g. [Dub03, page 112]). Consider the series

k(x) := Ws(x)
1
r = x+O(x−1).

Introduce functions Tα(s0, . . . , sr−2), 1 ≤ α ≤ r − 1, as the first non-trivial coefficients of the
expansion of x in terms of k(x):

x = k +
1

r

(
T r−1(s)

k
+
T r−2(s)

k2
+ . . .+

T 1(s)

kr−1

)
+O(k−r).

It is not hard to see that the functions Tα(s) are polynomials in the variables s0, . . . , sr−2. They
are flat coordinates for the metric gij(s).

The Landau–Ginzburg mirror symmetry conjecture for the singularity Ar−1 was proved
in [JKV01a]. It says that the change of variables

tα(T ∗) = θr−αr Tα+1, 0 ≤ α ≤ r − 2,

defines an isomorphism between the Saito Frobenius manifold and the Frobenius manifold,
given by the potential F r-spin and the unit vector field ∂

∂t0
.

3. Extended r-spin theory and the functions si(t∗)

In this section we describe a certain extension of the r-spin theory and prove that the func-
tions si(t∗) are given by the generating series of extended r-spin intersection numbers.

The moduli space M1/r

g;α1,...,αn
is actually well defined for all integers α1, . . . , αn and there

are canonical isomorphismsM1/r

g;α1,...,αn
∼=M1/r

g;β1,...,βn
, if all differences αi− βi are divisible by r.

In [JKV01b] the authors noticed that the construction of Witten’s class onM1/r

0;α1,...,αn
, described

in the previous section, works in the case, when αi = −1 for some i, and 0 ≤ αj ≤ r − 1 for
j 6= i. Following [BCT19], we refer to this theory as the extended r-spin theory. So for all
n ≥ 2 and integers 0 ≤ α1, . . . , αn ≤ r − 1, satisfying the divisibility condition

r |
(∑

αi + 1
)
,(3.1)

there is well-defined Witten’s class

cW ∈ Hdeg cW
(
M1/r

0;−1,α1,...,αn
,Q
)
, deg cW = 2

∑
αi − (r − 1)

r
.(3.2)
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Extended r-spin correlators are defined by〈
τ−1

n∏
i=1

ταi,di

〉r-spin

:= r

∫
M1/r

0;−1,α1,...,αn

cW

n∏
i=1

ψdii+1, d1, . . . , dn ≥ 0.(3.3)

The correlator (3.3) is defined to be zero, if the divisibility condition (3.1) is not satisfied. The
Ramond vanishing doesn’t hold in the extended theory: for example, in [BCT19, Lemma 3.8]

the authors showed that
〈
τ−1τ1τ

2
r−1
〉r-spin

= −1
r
.

Let tr−1 be a formal variable and introduce the generating series

F ext(t0, . . . , tr−1) :=
∑
n≥2

∑
0≤α1,...,αn≤r−1

〈
τ−1

n∏
i=1

ταi

〉r-spin ∏n
i=1 tαi
n!

.

From formula (3.2) it follows that the series F ext is a polynomial in t0, . . . , tr−1 satisfying the
following homogeneity property:

F ext(λrt0, λ
r−1t1, . . . , λtr−1) = λr+1F ext(t0, t1, . . . , tr−1), λ ∈ C∗.(3.4)

Let us now consider the polynomial F ext as a polynomial in tr−1 with the coefficients
from Q[t0, . . . , tr−2]. Consider also the parameters of the miniversal deformation si(t∗), ex-
pressed as functions of the flat coordinates t0, . . . , tr−2. The main result of the paper is the
following theorem.

Theorem 3.1. We have

si(t∗) = (−rθr)iCoeftir−1

∂F ext

∂tr−1
, 0 ≤ i ≤ r − 2.

Before we prove the theorem, let us present an alternative description of the flat coordinates
for the Saito Frobenius manifold for the Ar−1-singularity. Define functions vα(s0, . . . , sr−2),
1 ≤ α ≤ r − 1, by

vα(s) := −Resx=∞
(
Ws(x)

α
r

)
.

It is not hard to see that vα(s) is a polynomial in s0, s1, . . . , sr−2 of the form vα(s) = α
r
sr−α−1 +

O(s2). Therefore, the functions v1(s), . . . , vr−1(s) can serve as coordinates on Cr−1 in a neigh-
bourhood of the origin.

Lemma 3.2. We have

vα(s) = −α
r
T r−α(s), 1 ≤ α ≤ r − 1.

Proof. We only have to check the following identity:

x = k −
r−1∑
α=1

vα(s)

α

1

kα
+O(x−r).(3.5)

For a Laurent series A =
∑m

i=−∞ ai(s)x
i, ai(s) ∈ C[s0, . . . , sr−2], denote

A+ :=
m∑
i=0

aix
i, A− := A− A+, resA := a−1.

We want to use the results from [BCT19, Section 4]. In [BCT19, Lemma 4.2] we considered

the polynomial L̂0 = zr +
∑r−2

i=0 f
[0]
i z

i and in [BCT19, page 147] we introduced the variables

vi = res
(
L̂
i/r
0

)
, 1 ≤ i ≤ r − 1. We can identify f

[0]
i = si and z = x, then we get L̂0 = Ws. By

[BCT19, equation (4.22)], we have

r + 1

r

(
W

1
r
s

)
−
−

r−1∑
α=1

α

r

∂

∂vα
res
(
W

r+1
r

s

)
W

α−r
r

s = O(x−r).(3.6)
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From the equation before equation (4.20) in [BCT19] and [BCT19, Lemma 4.2] it follows that

vr−α =
α(r − α)

r + 1

∂

∂vα
res
(
W

r+1
r

s

)
, 1 ≤ α ≤ r − 1.(3.7)

Combining (3.6) and (3.7), we obtain(
W

1
r
s

)
−
−

r−1∑
α=1

vr−α
r − α

1

kr−α
= O(x−r).

It remains to note that
(
W

1
r
s

)
−

= k − x, and identity (3.5) becomes clear. The lemma is

proved. �

Proof of Theorem 3.1. The theorem is a consequence of the following stronger statement:

Ws(x) =
∂F ext

∂tr−1

∣∣∣∣
tr−1=−rθrx

.(3.8)

Let us prove it.
Similarly to the proof of Lemma 3.2, we want to use the results from [BCT19, Section 4]. We

again identify f
[0]
i = si, z = x and L̂0 = Ws. In [BCT19, Section 4] we have the variables Ti,

i ≥ 1, and tαd , 0 ≤ α ≤ r − 1, d ≥ 0. Let us set T≥r+1 = 0, tα≥1 = 0, and denote tα := tα0 . We
have the following relation [BCT19, equation (4.7)]:

tα = (α + 1)(−r)
3(α+1)
2(r+1)

− 1
2Tα+1, 0 ≤ α ≤ r − 2.

Let us use the following notations:

F̃ r-spin := F r-spin
∣∣
tα 7→tα

, F̃ ext := F ext
∣∣
tα 7→tα

.

Since ∂2F̃r-spin
∂T1∂Ta

= va, 1 ≤ a ≤ r − 1 [BCT19, Lemma 4.2], we get

∂2F̃ r-spin

∂t0∂ta−1
a(−r)

3(a+1)
2(r+1)

−1 = va, 1 ≤ a ≤ r − 1.

Together with the formulas ∂2F̃r-spin
∂t0∂ta−1 = tr−1−a and va = −a

r
T r−a this implies that

ta =
1

λr−ar

ta, where 0 ≤ a ≤ r − 2 and λr = θr(−r)
3

2(r+1) .

Proposition 4.10 in [BCT19] says that

∂F̃ ext

∂tr−1
=

1

r(−r)
r−2

2(r+1)

Ws

(
λr
−rθr

tr−1
)
.

We compute

∂F̃ ext

∂tr−1

∣∣∣∣∣
tr−1= x

λr

=
∂F̃ ext

∂tr−1

(
t0
λrr
,
t1
λr−1r

, . . . ,
tr−2
λ2r

,
x

λr

)
by (3.4)

=
1

λrr

∂F ext

∂tr−1

∣∣∣∣
tr−1=x

.

Therefore,

1

λrr

∂F ext

∂tr−1

∣∣∣∣
tr−1=x

=
1

r(−r)
r−2

2(r+1)

Ws

(
x

−rθr

)
⇒ ∂F ext

∂tr−1

∣∣∣∣
tr−1=x

= Ws

(
x

−rθr

)
,

which proves equation (3.8). �
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4. Mirror symmetry as a consequence of the WDVV type equations

In the previous section we saw that the functions si(t∗) appear as the coefficients of the

polynomial ∂Fext

∂tr−1
. Now we want to show that the Saito formulas for the multiplication and the

metric in the coordinates si can be naturally deduced from the WDVV type equations for the
polynomial F ext.

Introduce formal variables tα,d, 0 ≤ α ≤ r − 1, d ≥ 0, and let tα,0 := tα. Consider the
generating series

F r-spin(t∗,∗) :=
∑
n≥3

∑
0≤α1,...,αn≤r−2

d1,...,dn≥0

〈
n∏
i=1

ταi,di

〉r-spin ∏n
i=1 tαi,di
n!

,

F ext(t∗,∗) :=
∑
n≥2

∑
0≤α1,...,αn≤r−1

d1,...,dn≥0

〈
τ−1

n∏
i=1

ταi,di

〉r-spin ∏n
i=1 tαi,di
n!

.

In [BCT19, equation (4.26)] the authors proved the following topological recursion relation:

∂2F ext

∂tα,p+1∂tβ,q
=

∑
µ+ν=r−2

∂2F r-spin

∂tα,p∂tµ,0

∂2F ext

∂tν,0∂tβ,q
+
∂F ext

∂tα,p

∂2F ext

∂tr−1,0∂tβ,q
, 0 ≤ α, β ≤ r − 1, p, q ≥ 0.

These relations can be equivalently written as the following equations between differential 1-
forms:

d

(
∂F ext

∂tα,p+1

)
=

∑
µ+ν=r−2

∂2F r-spin

∂tα,p∂tµ,0
d

(
∂F ext

∂tν,0

)
+
∂F ext

∂tα,p
d

(
∂F ext

∂tr−1,0

)
, 0 ≤ α ≤ r − 1, p ≥ 0.

Taking the exterior derivative of the both sides and setting p = 0 and t∗,≥1 = 0, we obtain the
following relation:∑

µ+ν=r−2

d

(
∂2F r-spin

∂tα∂tµ

)
∧ d
(
∂F ext

∂tν

)
+ d

(
∂F ext

∂tα

)
∧ d
(
∂F ext

∂tr−1

)
= 0, 0 ≤ α ≤ r − 1,

or, equivalently,

∑
µ+ν=r−2

∂3F r-spin

∂tα∂tβ∂tµ

∂2F ext

∂tν∂tγ
+
∂2F ext

∂tα∂tβ

∂2F ext

∂tr−1∂tγ
=

∑
µ+ν=r−2

∂3F r-spin

∂tα∂tγ∂tµ

∂2F ext

∂tν∂tβ
+
∂2F ext

∂tα∂tγ

∂2F ext

∂tr−1∂tβ
,

(4.1)

where 0 ≤ α, β, γ ≤ r − 1. We call these equations the WDVV type equations for the func-
tion F ext. They already appeared in literature before in the context of open Gromov–Witten
theory [HS12]. For β = r − 1, equation (4.1) looks as follows:

∂2F ext

∂tα∂tr−1

∂2F ext

∂tr−1∂tγ
=

∑
µ+ν=r−2

∂3F r-spin

∂tα∂tγ∂tµ

∂2F ext

∂tν∂tr−1
+
∂2F ext

∂tα∂tγ

∂2F ext

∂t2r−1
,(4.2)

and is non-trivial only if 0 ≤ α, γ ≤ r − 2.
Define functions s̃i(t0, . . . , tr−2), 0 ≤ i ≤ r − 2, by

s̃i(t0, . . . , tr−2) := (−rθr)iCoeftir−1

(
∂F ext

∂tr−1

)
.

Of course, we already know that s̃i(t∗) = si(t∗), but we don’t want to use it in this section and
want to show that the Saito formulas for the Frobenius manifold structure in the coordinates s̃i
can be derived directly from the WDVV type equations (4.2).
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Let us begin with the metric. We have to prove that

−Restr−1=∞

 ∂2Fext

∂tα∂tr−1

∂2Fext

∂tβ∂tr−1

∂2Fext

∂t2r−1

 = −rδα+β,r−2, 0 ≤ α, β ≤ r − 2.(4.3)

For this we compute

−Restr−1=∞

 ∂2Fext

∂tα∂tr−1

∂2Fext

∂tβ∂tr−1

∂2Fext

∂t2r−1

 by (4.2)
= − Restr−1=∞

(
∂2F ext

∂tα∂tβ

)
−(4.4)

−
∑

µ+ν=r−2

∂3F r-spin

∂tα∂tβ∂tµ
Restr−1=∞

 ∂2Fext

∂tν∂tr−1

∂2Fext

∂t2r−1

 .

The first term on the right-hand side of this equation is equal to zero, because ∂2Fext

∂tα∂tβ
is a poly-

nomial in tr−1. In order to compute the second term, note that the homogeneity condition (3.4)
implies that the polynomial F ext has the form

F ext =
〈
τ−1τ

r+1
r−1
〉r-spin tr+1

r−1

(r + 1)!
+
〈
τ−1τr−2τ

r−1
r−1
〉r-spin

tr−2
tr−1r−1

(r − 1)!
+O(tr−2r−1).

Since [BCT19, proof of Theorem 4.6]

〈
τ−1τγτ

γ+1
r−1
〉r-spin

=
γ!

(−r)γ
, 0 ≤ γ ≤ r − 1,(4.5)

we obtain

∂F ext

∂tr−1
= − 1

(−r)r
trr−1 +

tr−2

(−r)r−2
tr−2r−1 +O(tr−3r−1).

So the second term on the right-hand side of (4.4) is equal to

− ∂3F r-spin

∂tα∂tβ∂t0
Restr−1=∞

 ∂2Fext

∂tr−2∂tr−1

∂2Fext

∂t2r−1

 =− δα+β,r−2 Restr−1=∞

 tr−2
r−1

(−r)r−2 +O(tr−3r−1)

tr−1
r−1

(−r)r−1 +O(tr−3r−1)

 =

=− rδα+β,r−2.

Thus, equation (4.3) is proved.
Let us now show that the multiplication in the variables s̃i is given by the Saito construction.

For this we have to check that

r−2∑
k=0

xkckij = xi+j mod
∂Q

∂x
,(4.6)

where by ckij, 0 ≤ i, j, k ≤ r − 2, we denote the structure constants of the multiplication in the

variables s̃∗, and Q(t∗, x) := ∂Fext

∂tr−1

∣∣∣
tr−1=−rθrx

. Denote by cγαβ, 0 ≤ α, β, γ ≤ r − 2, the structure

constants of the multiplication in the variables t∗. Clearly, cγαβ = ∂3Fr-spin
∂tα∂tβ∂tr−2−γ

. We compute
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(we follow the convention of sum over repeated Greek indices)

r−2∑
k=0

xkckij =
∂tα
∂s̃i

∂tβ
∂s̃j

cγαβ

r−2∑
k=0

∂s̃k
∂tγ

xk =
∂tα
∂s̃i

∂tβ
∂s̃j

cγαβ
∂Q

∂tγ
=

=
∂tα
∂s̃i

∂tβ
∂s̃j

∑
µ+ν=r−2

∂3F r-spin

∂tα∂tβ∂tµ

∂2F ext

∂tν∂tr−1

∣∣∣∣
tr−1=−rθrx

by (4.2)
=

=
∂tα
∂s̃i

∂tβ
∂s̃j

(
∂Q

∂tα

∂Q

∂tβ
+

1

rθr

∂Q

∂x

∂2F ext

∂tα∂tβ

∣∣∣∣
tr−1=−rθrx

)
=

=
∂Q

∂s̃i

∂Q

∂s̃j
+
∂Q

∂x

(
1

rθr

∂tα
∂s̃i

∂tβ
∂s̃j

∂2F ext

∂tα∂tβ

∣∣∣∣
tr−1=−rθrx

)
=

=xi+j mod
∂Q

∂x
,

which proves formula (4.6).

5. Singularity D4

In this section we give an answer to Question 1 for the singularity D4 = x31 + x1x
2
2. We also

propose conjectural answers for the singularities E6 and E8.
The Landau–Ginzburg mirror symmetry for the polynomial x31 + x1x

2
2 is equivalent to the

mirror symmetry for the polynomial x31 + x32. In order to see it, note, first of all, that the
singularity {x31 + x1x

2
2 = 0} ⊂ C2 is just three lines intersecting at the origin. Therefore, a

linear change of variables transforms this singularity to the singularity {x31 + x32 = 0} ⊂ C2.
Thus, the Saito Frobenius manifolds, corresponding to the polynomials x31 + x1x

2
2 and x31 + x32,

are isomorphic. The mirror partner to the polynomial D4 = x31 + x1x
2
2 is the polynomial

DT
4 = x31x2 +x22. The potential FFJRW

0,DT4
was computed in [FFJMR16] and in Section 5.1 we show

that it is equivalent to the FJRW potential for the polynomial x31 + x32.
In Section 5.2 we describe explictly the B-model for the polynomial x31 +x32 together with the

Landau–Ginzburg mirror symmetry in this case. Then in Section 5.3 we answer Question 1 for
the polynomial x31 + x32 and in Section 5.4 propose conjectures for the singularities E6 and E8.

5.1. A-model. Let us consider the more general case of the polynomial

Wr1,r2(x1, x2) := xr11 + xr22 , r1, r2 ≥ 3.

The dimension of the corresponding local algebra AWr1,r2
is equal to (r1−1)(r2−1). The FJRW

theory for the polynomial Wr1,r2 can be described using the r-spin theory in the following way.
Consider the moduli space M0,n of stable curves of genus 0 with n marked points and denote

by st : M1/r

0;α1,...,αn
→ M0,n the forgetful map, which forgets an r-spin structure together with

an orbifold structure on an orbifold curve. For 0 ≤ α1, . . . , αn ≤ r−1, satisfying the divisibility
condition 2.1, define the cohomology class

cr-spin(α1, . . . , αn) := r · st∗(cW ) ∈ H∗(M0,n,Q)(5.1)

of degree

deg cr-spin(α1, . . . , αn) = 2

∑
αi − (r − 2)

r
.(5.2)

The class cr-spin(α1, . . . , αn) is defined to be zero, if the divisibility condition (2.1) is not satisfied.
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The FJRW intersection numbers for the polynomial Wr1,r2 are given by [FJR13, Theorem
4.2.2])

〈
n∏
i=1

ταi,βi

〉Wr1,r2

=

∫
M0,n

cr1-spin(α1, . . . , αn)cr2-spin(β1, . . . , βn), 0 ≤ αi ≤ r1 − 2, 0 ≤ βi ≤ r2 − 2.

(5.3)

By (5.2) and the divisibility condition (2.1), this intersection number is equal to zero unless
the following constraints are satisfied:

n∑
i=1

(
1− αi

r1
− βi
r2

)
= 1 +

2

r1
+

2

r2
,

n∑
i=1

αi = r1 − 2 mod r1,

n∑
i=1

βi = r2 − 2 mod r2.

(5.4)

The FJRW generating series is equal to

FFJRW
0,Wr1,r2

=
∑
n≥3

∑
0≤α1,...,αn≤r1−2
0≤β1,...,βn≤r2−2

〈
n∏
i=1

ταi,βi

〉Wr1,r2 ∏n
i=1 tαi,βi
n!

,

where tα,β, 0 ≤ α ≤ r1 − 2, 0 ≤ β ≤ r2 − 2, are formal variables. The unit vector of the
corresponding Frobenius manifold is ∂

∂t0,0
and the metric is

ηα1,β1;α2,β2 =
∂3FFJRW

0,Wr1,r2

∂t0,0∂tα1,β1∂tα2,β2

= δα1+α2,r1−2δβ1+β2,r2−2.

Consider now the case r1 = r2 = 3. The function FFJRW
0,W3,3

depends on four variables

t0,0, t1,0, t0,1, t1,1. The metric is antidiagonal in these variables. From constraints (5.4) it fol-
lows that there are only two non-trivial 3-point correlators and only two non-trivial 4-point
correlators:

〈τ1,1τ0,0τ0,0〉W3,3 = 〈τ0,1τ1,0τ0,0〉W3,3 = 1,
〈
τ1,1τ

3
1,0

〉W3,3 =
〈
τ1,1τ

3
0,1

〉W3,3 =
1

3
,(5.5)

which are computed using equations (5.3) and (2.6). Using the argument, similar to the one,
presented in [PPZ19, Section 1.2], one can show that the function FFJRW

0,W3,3
is uniquely determined

by the WDVV equations, the first constraint in (5.4) and the initial conditions (5.5). As a result,
we obtain

FFJRW
0,W3,3

=
1

2
t20,0t1,1 + t0,0t1,0t0,1 +

1

18
t31,0t1,1 +

1

18
t30,1t1,1 +

1

54
t1,0t0,1t

3
1,1 +

t71,1
68040

.(5.6)

Let us compare the potential (5.6) with the FJRW potential for the singularityDT
4 . According

to [FFJMR16, page 183], we have

FFJRW
0,DT4

=
1

12
t2Xt1 −

1

4
t2Y t1 +

1

12
tX2t21 +

a

6
t3XtX2 +

3a

2
tXt

2
Y tX2 + a2t2Xt

3
X2 − 3a2t2Y t

3
X2 +

36a4

35
t7X2 ,

where t1, tX , tY , tX2 are formal variables and a is an explicitly computed non-zero constant.
The unit vector field is ∂

∂t1
. One can directly compute that after the change of variables

t0,0 = t1, t1,0 = βtX + γtY , t0,1 = βtX − γtY , t1,1 = δtX2 ,

with
β = 32/3a1/3, γ = 3 · 31/6a1/3, δ = 6 · 31/3a2/3,

we get

FFJRW
0,DT4

=
1

36 · 31/3a2/3
FFJRW

0,W3,3
.

Therefore, after a rescaling of the metric the FJRW Frobenius manifolds for the polynomials DT
4

and W3,3 become isomorphic.
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5.2. B-model. Consider the following miniversal deformation of the singularity W3,3:

W3,3;s(x1, x2) = x31 + x32 + s1,1x1x2 + s0,1x2 + s1,0x1 + s0,0, si,j ∈ C.

Let us choose the form ζ = 9dx1∧dx2 to be the primitive form, defining the metric gi1,j1;i2,j2(s):

gi1,j1;i2,j2(s) =
1

(2πi)2

∫
∣∣∣ ∂W3,3;s

∂x1

∣∣∣=∣∣∣ ∂W3,3;s
∂x2

∣∣∣=ε
xi1+i21 xj1+j22
∂W3,3;s

∂x1

∂W3,3;s

∂x2

9dx1 ∧ dx2, 0 ≤ i1, i2, j1, j2 ≤ 1.

Then the matrix of the metric in the variables s0,0, s1,0, s0,1, s1,1 is

g(s) =


0 0 0 1
0 0 1 0
0 1 0 0

1 0 0
s21,1
9

 .

A direct computation shows that the change of coordinates

t0,0(s) = s0,0 +
s31,1
54

, t1,0(s) = −s1,0, t0,1(s) = −s0,1, t1,1(s) = s1,1,

defines an isomorphism between the Saito Frobenius manifold for the singularity W3,3 and the
Frobenius manifold given by the potential FFJRW

0,W3,3
and the unit ∂

∂t0,0
.

5.3. Answer to Question 1. In the extended r-spin theory, by the same formula (5.1), we
can define the class

cr-spin(−1, α1, . . . , αn) ∈ H∗(M0,n+1,Q), 0 ≤ α1, . . . , αn ≤ r − 1,

of degree 2
∑
αi−(r−1)

r
. Note also that we have the property [BCT19, Lemma 3.5]

cr-spin(−1, α1, . . . , αn, 0) = π∗cr-spin(−1, α1, . . . , αn),

where π : M0,n+2 →M0,n+1 is the forgetful map, which forgets the last marked point.
Let us define extended intersection numbers for the singularity W3,3 by the formula

〈
τ−1,−1

n∏
i=1

ταi,βi

〉W3,3

:=

∫
M0,n+1

c3-spin(−1, α1, . . . , αn)c3-spin(−1, β1, . . . , βn), 0 ≤ αi, βi ≤ 2.

(5.7)

This correlator is equal to zero unless
n∑
i=1

(
1− αi + βi

3

)
=

2

3
,

n∑
i=1

αi = 2 mod 3,
n∑
i=1

βi = 2 mod 3.(5.8)

Define a series PW3,3(t0,0, t1,0, t0,1, t1,1, x1, x2) by

PW3,3(t, x) :=
∑

n,k1,k2≥0
n+k1+k2≥1

xk11
k1!

xk22
k2!

∑
0≤α1,...,αn≤1
0≤β1,...,βn≤1

〈
τ−1,−1τ2,2τ

k1
2,0τ

k2
0,2

n∏
i=1

ταi,βi

〉W3,3 ∏n
i=1 tαi,βi
n!

.

From (5.8) it follows that the series PW3,3 is actually a polynomial in the variables tα,β, x1, x2.
The following result is an analog of Theorem 3.1 for the singularity W3,3.

Theorem 5.1. The function si,j(t∗,∗) is equal to the coefficient of xi1x
j
2 in the polynomial

PW3,3(t∗,∗, 3x1, 3x2).

Proof. We will actually prove a bit stronger statement:

W3,3;s(x1, x2) = PW3,3(t∗,∗, 3x1, 3x2).(5.9)
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The proof is by direct computation. For the left-hand side we have

W3,3;s(x) = x31 + x32 + t1,1x1x2 − t1,0x1 − t0,1x2 +

(
t0,0 −

t31,1
54

)
.

Let us compute the polynomial PW3,3(t, x). From (5.8) it follows that it has the form

PW3,3(t, x) = α1
x31
6

+α2
x32
6

+α3t1,1x1x2+α4t1,0x1+α5t0,1x2+

(
α6t0,0 + α7

t31,1
6

)
, α1, . . . , α7 ∈ Q.

We compute

α1 = α2 =
〈
τ−1,−1τ2,2τ

3
2,0

〉W3,3 =

∫
M0,5

c3-spin(−1, 2, 2, 2, 2)c3-spin(−1, 2, 0, 0, 0) =

=
〈
τ−1τ

4
2

〉3-spin by (4.5)
=

2

9
,

α3 = 〈τ−1,−1τ2,2τ2,0τ0,2τ1,1〉W3,3 =

∫
M0,5

c3-spin(−1, 2, 2, 0, 1)c3-spin(−1, 2, 0, 2, 1).

Denote by π3 : M0,5 →M0,4 and π4 : M0,5 →M0,4 the forgetful maps which forget the third
and fourth marked points, respectively. Then

c3-spin(−1, 2, 2, 0, 1) = π∗4c
3-spin(−1, 2, 2, 1) = −1

3
π∗4ψ1 = −1

3
(ψ1 −D1,4),

where Di,j denotes the cohomology class, Poincaré dual to the divisor in M0,5, whose generic
point is a nodal curve made of two bubbles containing the marked points labeled by {i, j}
and {1, 2, 3, 4, 5}\{i, j}, respectively. Similarly,

c3-spin(−1, 2, 0, 2, 1) = −1

3
π∗3ψ1 = −1

3
(ψ1 −D1,3).

As a result,

α3 =

∫
M0,5

c3-spin(−1, 2, 2, 0, 1)c3-spin(−1, 2, 0, 2, 1) =
1

9

∫
M0,5

(ψ1 −D1,4)(ψ1 −D1,3) =
1

9
.

For the constants α4 and α5 we get

α4 = α5 = 〈τ−1,−1τ2,2τ2,0τ1,0〉W3,3 =
〈
τ−1τ

2
2 τ1
〉3-spin by (4.5)

= −1

3
.

We continue with α6:

α6 = 〈τ−1,−1τ2,2τ0,0〉W3,3 = 1.

For the constant α7 we compute

α7 =
〈
τ−1,−1τ2,2τ

3
1,1

〉W3,3 =

∫
M0,5

c3-spin(−1, 2, 1, 1, 1)2.

Consider the S3-action on M0,5 induced by permutations of the last three marked points.
Clearly,

c3-spin(−1, 2, 1, 1, 1) ∈ H2(M0,5,Q)S3 .

Let us compute this class. The basis of the group H2(M0,5,Q)S3 is given by

D1 = D1,2, D2 = D3,4 +D3,5 +D4,5, D3 = D2,3 +D2,4 +D2,5.

The intersection matrix
(∫
M0,5

ψiDj

)
1≤i,j≤3

is non-degenerate. Using also the integrals∫
M0,5

ψic
3-spin(−1, 2, 1, 1, 1) = −1

3
δi,3, i = 1, 2, 3,
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computed using the topological recursion relations in the extended r-spin theory [BCT19,
Lemma 3.6], we conclude that c3-spin(−1, 2, 1, 1, 1) = −1

3
D1 = −1

3
D1,2. Therefore,

α7 =

∫
M0,5

c3-spin(−1, 2, 1, 1, 1)2 =
1

9

∫
M0,5

D2
1,2 = −1

9
.

Thus, the polynomial PW3,3(t, x) is equal to

PW3,3(t, x) =
x31
27

+
x32
27

+ t1,1
x1x2

9
− t1,0

x1
3
− t0,1

x2
3

+

(
t0,0 −

t31,1
54

)
,

and we can immediately see that the polynomial W3,3;s(x) is obtained from it by the rescaling
xi 7→ 3xi. The theorem is proved. �

5.4. Conjecture for the singularities E6 and E8. The singularities E6 and E8 coincide
with the singularities

W4+m,3(x1, x2) = x4+m1 + x32,

for m = 0 and m = 1, respectively. Similarly to the case of the singularity W3,3, let us define
functions PE6+2m(t, x), m = 0, 1, by

PE6+2m(t, x) :=
∑

n,k1,k2≥0
n+k1+k2≥1

xk11
k1!

xk22
k2!

∑
0≤α1,...,αn≤2+m
0≤β1,...,βn≤1

〈
τ−1,−1τ3+m,2τ

k1
3+m,0τ

k2
0,2

n∏
i=1

ταi,βi

〉W4+m,3 ∏n
i=1 tαi,βi
n!

.

The Landau–Ginzburg mirror symmetry for the singularities E6 and E8, as well as for all
simple singularities, was proved in [FJR13]. Denote by s

E6+2m

i,j (t), 0 ≤ i ≤ 2+m, 0 ≤ j ≤ 1, the
corresponding transformation between the flat coordinates and the parameters of the miniversal
deformation.

Conjecture 5.2. We have

s
E6+2m

i,j (t∗,∗) = Coefxi1x
j
2
PE6+2m(t∗,∗,−(4 +m)θ4+mx1,−3θ3x2).
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