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0. Introduction

Let G be a simple, simply connected, simply laced algebraic group over C, B ⊂ G a 
Borel subgroup with unipotent radical N .

There is a cluster space A ([3]) and a dual cluster space X ([12]) associated to the 
open double Bruhat cell in the base affine space G/N . We are interested in the following 
functions both playing a crucial role in the study of canonical vector space bases of the 
ring of regular functions H0(G/N , OG/N ) on G/N .

On the one hand, Berenstein–Kazhdan’s decoration function fB defined in [4], a reg-
ular function on A. The decoration function is a crucial part of the construction of a 
decorated geometric crystal and thus intimately connected to the canonical basis Bcan
of H0(G/N , OG/N ) independently constructed by Kashiwara and Lusztig [28,25].

On the other hand, a remarkable vector space basis B, called theta basis, was re-
cently constructed (up to a natural conjecture, see Remark 5.4) by Gross–Hacking–Keel–
Kontsevich [23] using methods in mirror symmetry. An important ingredient in the con-
struction of B is a regular function W on X which we call the GHKK-potential.

By identifying a certain p-map in the sense of [22, Chapter 2] we relate the GHKK-
potential to the decoration function as follows.

Theorem A. There exists a regular map p ∶ A → X such that

fB =W ○ p .

The cluster spaces A and X are unions of open tori A = ⋃Σ TΣ, X = ⋃Σ T̂Σ, which 
are glued via certain birational transformations, called A- and X -cluster mutations, 
respectively. The elements Σ in the common index set of the two dual toric systems 
are called seeds. The families of charts, equip A and X with the structure of a positive 
variety admitting tropicalization as explained in Section 1.4.

The functions fB and W lead to polyhedral parametrization of Bcan and B, respec-
tively, one for each seed Σ: By [23] the integer polyhedral cone

ĈΣ = {x ∈ [T̂Σ]trop ∣ [W ∣T̂Σ
]trop(x) ≥ 0}

parametrizes B. By [4] the tropicalization of the decoration function fB cuts out an 
integer polyhedral cone

CΣ = {x ∈ [TΣ]trop ∣ [fB ∣
TΣ
]trop(x) ≥ 0}

which parametrizes Lusztig’s canonical basis of the base affine space of the Langlands 
dual group of G. The explicit constructions in this paper involve the cones ĈΣ = Ĉi and CΣ = Ci attached to seeds Σ = i coming from reduced words i of w0.

The construction of the theta basis B for the ring of regular functions on an A-
cluster variety due to [23] relies on certain assumptions. In the course of the proof of 
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Theorem A we construct in Proposition 5.2 for any frozen vertex of such a cluster space (A, X) an optimal seed. In [21] Goodearl and Yakimov announced the existence of a 
maximal green sequence. From this, [3, Proposition 2.6.], [23, Theorem 0.19, Lemma 
B.7] and Proposition 5.2 the existence of a theta basis for the partial compactification 
G/N of Gw0,e parametrized by ĈΣ follows. For the convenience of the reader we give 
independently of [21] maximal green sequences for Gw0,e in the appendix.

Theorem A is deduced by studying the interplay of Gross–Hacking–Keel–Kontsevich’s 
polyhedral parametrization Ĉi and the parametrization arising from the tropicalization of 
the Berenstein–Kazhdan decoration function Ci with classical polyhedral parametrization 
of Lusztig’s canonical basis obtained by Lusztig and Kashiwara.

Both Lusztig’s and Kashiwara’s construction yield a family of polyhedral parametriza-
tions, one for each reduced word i of the longest word w0 of the Weyl group of G, by 
the cone of graded i-Lusztig data grLi and the graded string cone grSi, respectively. We 
related grLi and grSi to the functions fB and W by introducing regular function li and 
si on certain tori grLi and grSi, respectively, satisfying

grLi = {x ∈ [grLi]trop ∣ [li]trop(x) ≥ 0},
grSi = {x ∈ [grSi]trop ∣ [si]trop(x) ≥ 0}.

We denote the corresponding objects for the Langlands dual group of G by l∨i , s∨i , grLi
∨, 

grSi
∨, grL∨i and grS∨i .

There are certain toric charts Ti and T̂i of A and X , respectively, attached to every 
reduced word i. Motivated by the Chamber Ansatz due to Berenstein–Fomin–Zelevinsky 
[2] and [5, Equation (4.14)] we introduce explicit torus isomorphisms grCAi ∶ Ti → grLi

∨, 
grNAi ∶ Ti → grSi

∨, gr ĈAi ∶ grSi → T̂i and gr N̂Ai ∶ grLi → T̂i. The terminology grNAi
here stands for graded Neighbour Ansatz.

The interplay between the various parametrizations is summarized in the following 
theorem.

Theorem B (Theorem 6.5, Theorem 7.5, Lemma 8.1). For every reduced word i we have

si =W ∣T̂i
○ gr ĈAi, li =W ∣T̂i

○ gr N̂Ai,

fB ∣
Ti
= s∨i ○grNAi, fB ∣

Ti
= l∨i ○grCAi .

Furthermore, we obtain the following family of commutative diagrams of linear maps 
indexed by reduced words

grS∨i Ci[grNAi]trop
̃

[grCAi]trop
̃ grL∨i

grSi [gr ĈAi]trop
̃ Ĉi grLi .

[gr N̂Ai]trop
̃

(1)
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We obtain Theorem A using Theorem B. By the commutativity of (1) the two candi-
dates for p induced by the maps Ti → T̂i obtained by going around the left square and 
the right square in (1), respectively, coincide.

Another consequence of Theorem B is a lattice isomorphism from the graded string 
cone to the graded cone of Lusztig’s parametrization, recovering a result of Caldero–
Marsh–Morier-Genoud.

There are two natural types of inequalities for both grSi and grLi: One type yields the 
inequalities for a polyhedral parametrization of a canonical basis of the ring H0(N , ON )
of regular functions on the unipotent radical. We call these inequalities the cone inequal-
ities for the sake of this introduction. The other type of inequalities describes the graded 
lift of a polyhedral parametrization of H0(N , ON ) to a polyhedral parametrization of a 
canonical basis of H0(G/N , OG/N ), called here grading inequalities.

We show that under Caldero–Marsh–Morier-Genoud’s map the cone inequalities of 
the graded cone of Lusztig’s parametrization is mapped to the grading inequalities of 
the graded string cone and vice versa. We further give an affine unimodular map between 
the corresponding weight polytopes.

In certain cases, polyhedral parametrizations by a cone of canonical bases of rings 
of regular functions on a variety X lead to flat degenerations of X to the toric variety 
defined by the cone. In the case of flag varieties, an overview of many such cases is given 
in [11].

Theorem B implies that, in the case of the base affine space, the toric fibers appearing 
in the degeneration construction by Caldero ([7]) and Alexeev–Brion ([1]) also appear in 
the degenerations constructed by Gross–Hacking–Keel–Kontsevich ([23]). In the special 
case of G = SLn(C) this was proven previously in [6].

Moreover, toric degenerations associated to the graded cone of Lusztig’s parametriza-
tion and the graded string cone were constructed in [10]. Hence, Theorem B pro-
vides further evidence that there should be a natural connection between a sub-
class of Fang–Fourier–Littelmann’s toric degenerations constructed in [10] and Gross–
Hacking–Keel–Kontsevich’s toric degenerations constructed by cluster duality (see [11, 
10.1]).

1. Background and notations

1.1. Simply-laced Lie algebras

Let g be simple, simply laced complex Lie algebra of rank n, I ∶= [n] ∶= {1, . . . , n}, 
C = (ci,j)i,j∈I its Cartan matrix and h ⊂ g a Cartan subalgebra. We choose simple coroots {ha}a∈I ∈ h and simple roots {αa}a∈I ⊂ h∗ with αa(hb) = ca,b and denote by ∆+ ⊂ h∗ the 
positive roots associated to the simple roots {αa}.

The Weyl group W acts on h∗ via

saµ = µ − µ(ha)αa a ∈ I, µ ∈ h∗.
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For a ∈ I we denote by a∗ the element of I such that

w0(αa) = −αa∗ (2)

The fundamental weights {ωa}a∈I ⊂ h∗ of g are given by ωa(hj) = δa,j . We denote by 
P = ⟨ωa ∣ a ∈ [n]⟩Z the weight lattice of g and by P + = ⟨ωa ∣ a ∈ [n]⟩N ⊂ P the set of 
dominant weights.

The Langlands dual Lie algebra Lg of g is the simple, simply laced complex Lie 
algebra with Cartan matrix C, Cartan subalgebra h∗, simple roots {ha}a∈I , simple co-
roots {αa}a∈I and ha(αb) = ca,b. The fundamental weights of Lg are {ω∨a}a∈I ⊂ h where 
αa(ω∨b ) = δa,b.
1.2. Weyl groups and reduced words

The Weyl group W of g is a Coxeter group generated by the simple reflections sa
(a ∈ I) with relations

s2
i = id,

si1si2 = si2si1 if ci1,i2 = 0 (commutation relation),
si1si2si1 = si2si1si2 if ci1,i2 = −1 (braid relation).

The group W has a unique longest element w0 of length N = #∆+. For a reduced 
expression si1⋯siN of w0 we write i ∶= (i1, . . . , iN) and call i a reduced word (for w0). 
The set of reduced words for w0 is denoted by W(w0).

We have two operations on the set of reduced words W(w0).
Definition 1.1. A reduced word j = (j1, . . . , jN) is defined to be obtained from i =(i1, . . . , iN) ∈ W(w0) by a 2-move at position k ∈ [N − 1] if iℓ = jℓ for all ℓ ∉ {k, k + 1}, (ik+1, ik) = (jk, jk+1) and cik,ik+1 = 0.

A reduced word j = (j1, . . . , jN) is defined to be obtained from i = (i1, . . . , iN) ∈W(w0)
by a 3-move at position k ∈ [N − 1] if iℓ = jℓ for all ℓ ∉ {k − 1, k, k + 1}, jk−1 = jk+1 = ik, 
jk = ik−1 = ik+1 and cik,ik+1 = −1.

We call a total ordering ≤ on ∆+ convex if for β1, β2, β1+β2 ∈∆+ either β1 ≤ β1+β2 ≤ β2
holds or β2 ≤ β1 + β2 ≤ β1. By [35, Theorem p. 662] the set of total convex ordering is 
in natural bijection with the set of reduced words. Namely, for a reduced word i =(i1, . . . , iN) ∈W(w0) the total ordering

αi1 <i si1(αi2) <i . . . <i si1⋯siN−1(αiN )
on ∆+ is convex and every convex ordering on ∆+ arises that way. We write ∆+i ={β1, β2, . . . , βN} for the set of positive roots ordered with respect to the convex ordering <i and throughout identify ∆+i with [N] via
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βk ↦ k. (3)

We make use of the following alternative labeling of ∆+i throughout.

Definition 1.2. For a ∈ I we write {βℓ ∈∆+i ∣ iℓ = a} = {βa,1, . . . , βa,ma} with ma =ma,i ∈ N
and βa,1 <i ⋅ ⋅ ⋅ <i βa,ma .

1.3. Simply-connected algebraic groups

Let G be the simple, simply-connected, complex algebraic group with Lie algebra g. 
Let T ⊂ G be a maximal torus with Lie algebra h. For a ∈ I, let ϕa ∶ SL2 → G be 
the embedding of SL2 corresponding to the simple root αa. We embed the Weyl group 
W ≃ NormG(T )/T of g as a set into NormG(T ) via

sa ↦ s̄a ∶= ϕa (0 −1
1 0 ) ∈ NormG(T ),

xy = x̄ȳ if length(xy) = length(x) + length(y).
(4)

We denote by N and N − the maximal unipotent subgroups of G generated by {ϕa ( 1 t
0 1 ) ∣ a ∈ I, t ∈ C} and {ϕa ( 1 0

t 1 ) ∣ a ∈ I, t ∈ C}, respectively, and set B = TN
and B− = TN −.
1.4. Tropicalization

We recall the notion of (min-plus) tropicalization from [23, Section 2]. Let Gm be the 
multiplicative group. For a torus T = Gk

m we denote by [T ]trop = Hom(Gm, T) = Zk

its cocharacter lattice. A positive (i.e. subtraction-free) rational map f on T , f(x) =∑u∈J cux
u

∑u∈K duxu with cu, du ∈ R+, gives rise to a piecewise-linear map

[f]trop ∶ [T ]trop → [Gm]trop = Z, x↦min
u∈J ⟨x,u⟩ −min

u∈K ⟨x,u⟩ ,
where ⟨⋅, ⋅⟩ is the standard inner product of Zk. We call [f]trop the tropicalization of f . 
More generally, for a positive rational map

f = (f1, . . . , fℓ) ∶ Gk
m ⇢ Gℓ

m

we define its tropicalization as

[f]trop ∶= ([f1]trop, . . . , [fℓ]trop) ∶ [Gk
m]trop → [Gℓ

m]trop.
The function f is called a geometric lift of [f]trop. Note that there are several choices 
of geometric lifts of a piecewise-linear function.
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2. Lusztig’s parametrization

2.1. Lusztig’s parametrization of the canonical basis

We denote by U−q the negative part of the quantized enveloping algebra of g. Let 
i = (i1, . . . , iN) ∈W(w0) be a reduced word and {β1, . . . , βN} = ∆+i . In [28, Section 1] a 
PBW-type basis

Bi = {F (xβ1)
i,β1

⋯F (xβN
)

i,βN
∣ (xβ1 , . . . , xβN ) ∈ N∆+i } ,

of U−q is defined, where

Fi,βj = Ti1⋯Tij−1Fj

is given via the braid group action Ti defined in [29, Section 1.3], X(m) is the q-divided 
power defined by X(m) ∶= Xm

[m][m−1]⋯[2] and [m] ∶= qm−1 + qm−2 + . . . + q−m+1.
By [28, Proposition 1.1.3] Bi is a basis of U−q . The Z[q]-lattice L, defined as the span of 

Bi, is independent of the choice of reduced expression i, as is the induced basis B ∶= π(Bi)
of L/qL, where π ∶ L → L/qL is the canonical projection. There exists a unique basis B
of L whose image under π is B and which is stable under the Q-algebra automorphism 
preserving the generators of U−q and sending q to q−1. We call B the canonical basis
of U−q .

Definition 2.1. For i ∈ W(w0) and x = (x1, . . . , xN) ∈ NN , we denote the element 
F (x1)

i,β1
⋯F (xN )

i,βN
by F x and call x its i-Lusztig datum. Using identification (3) we write

Li = N∆+i = NN

for the cone of all i-Lusztig data. We call Li the cone of Lusztig’s parametrization of the 
canonical basis.

Lusztig’s canonical basis has favorable properties. In particular, it projects to a basis of 
every irreducible finite dimensional U−q -representation. By specializing q = 1 one obtains 
a canonical basis for every irreducible finite-dimensional G-representation Vλ. From this 
we obtain a canonical basis of the ring of regular functions H0(G/N , OG/N ) ≃ ⊕λ∈P+ Vλ, 
which by Lemma 2.8 is parametrized by a graded version of N∆+i as defined in Section 2.3.

2.2. Transition maps and geometric lifting

Using the identification (3) we associate to the cone Li of Lusztig’s parametrization 
the torus

Li = G∆+i
m = GN

m .
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Following [30, 42.2.6] we introduce transition maps.

Definition 2.2. We specify Φi
j ∶ Li ⇢ Lj as follows. If j ∈W(w0) is obtained from i ∈W(w0)

by a 3-move at position k then we set for x = (x1, . . . , xN)
Φi

j x = (x1, . . . , xk−2, xkxk+1
xk−1 + xk+1 , xk−1 + xk+1, xk−1xk

xk−1 + xk+1 , xk+2, . . . , xN) .
If j ∈W(w0) is obtained from i ∈W(w0) by a 2-move at position k we set

Φi
j x = (x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xN) .

For arbitrary i, j ∈ W(w0) we define Φi
j ∶ Li ⇢ Lj as the composition of the transition 

maps corresponding to a sequence of 2- and 3-moves transforming i into j.

Using Definition 1.2 and the identification (3) we define for a ∈ I and i ∈W(w0) the 
positive regular map li,a on Li by

li,a(x) = ma∑
r=1xa,r.

Recalling from Section 1.4 that [Li]trop = ZN we obtain that Lusztig’s parametrizations Li ⊂ ZN are cut out by [li,a]trop:

Lemma 2.3. For reduced words i, j ∈W(w0) we have:

(1) lj,a = li,a ○ Φj
i.

(2) Li = {x ∈ [Li]trop ∣ ∀a ∈ I ∶ [li,a]trop(x) ≥ 0}.
Proof. Statement (1) is a straightforward computation and Statement (2) follows directly 
from the definition. ◻

We emphasize that Lemma 2.3 is simply a reformulation, adapted to our setup, of 
well-known facts about Lusztig’s parametrizations obtained in [30,5].

2.3. Lusztig’s graded parametrization

In this section we provide a geometric lift of the defining inequalities of the graded 
cone of Lusztig’s parametrization of the canonical basis of the ring of regular functions 
H0(G/N , OG/N ) = ⊕Vλ. For this we extend the functions li,a from Li to

grLi ∶= GI
m ×Li

via the canonical projection grLi↠ Li and additionally introduce
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Definition 2.4. Using (2) we denote by {li,-a}a∈[n] the positive rational functions on grLi
satisfying:

(1) For (λ, x) ∈ grLi one has li,−iN (λ, x) = λi∗NxN
−1.

(2) For i, j ∈W(w0) one has lj,-a = li,-a ○(id ×Φj
i) with Φj

i as in (2.2).

Example 2.5. For g = sl3(C) and i = (1, 2, 1) we have (note that iN = i3 = 1, i∗N = 2)

li,−1(λ1,λ2, x1, x2, x3) = λ2x
−1
3 .

For j = (2, 1, 2) we have

li,−2(λ1,λ2, x1, x2, x3) = lj,−2 ○(id ×Φi
j)(λ1,λ2, x1, x2, x3) = λ1

x1x2
x1 + x3

.

We also introduce the analogue of li,a for Lg as follows:

Definition 2.6. For i ∈W(w0) and a ∈ I we set ̌li,a ∶= li,a and define the positive rational 
functions {̌li,-a}a∈[n] on grLi by requiring:

(1) For (λ, x) ∈ grLi one has ̌li,−iN (λ, x) =∏b∈I λciN ,b

b∗ xN
−1.

(2) For i, j ∈W(w0) one has ̌lj,-a = ľi,-a ○(id ×Φj
i) with Φj

i as in (2.2).

Remark 2.7. In Corollary 6.6 we show that li,-a and ̌li,-a are regular.

The functions [li,a]trop cut out Lusztig’s graded parametrization

grLi = {(λ, x) ∈ [grLi]trop ∣ ∀a ∈ −[n] ∪ [n] ∶ [li,a]trop(λ, x) ≥ 0} . (5)

Similarly, we define Lusztig’s graded parametrization associated to Lg as

grL∨i ∶= {(λ, x) ∈ [grLi]trop ∣ ∀a ∈ −[n] ∪ [n] ∶ [̌li,a]trop(λ, x) ≥ 0} .
We have:

Proposition 2.8.

(1) For i, j ∈W(w0) one has

grLj = [id ×Φi
j]trop grLi .

(2) For λ ∈ NI and i ∈W(w0) the set

Li(λ) ∶= {x ∈ [Li]trop ∣ (λ, x) ∈ grLi}
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parametrizes Lusztig’s canonical basis of the irreducible representation V (∑a∈I λaωa).
Before giving the proof, lets us recall that by [28] (see also [5, Proposition 3.6. (i)]) Li

has a crystal structure isomorphic to B(∞) in the sense of [25]. We denote the Kashiwara 
involution defined in [25, Section 8.3] by ∗ and set

ε∗a(x) ∶= εa(x∗) ∶=max
k∈N {ẽkax∗ ∈ Li},

where ẽa is the Kashiwara crystal operator ([25, Section 7.2] corresponding to the simple 
root αa. Since ẽa is defined on the canonical basis B (see [30,5]) we have for i, j ∈W(w0)
and x ∈ Li

εa ([Φi
j]trop x) = εa(x). (6)

Furthermore, by [5, Proposition 3.3 (ii)] we have for x ∈ Li

εi1 (x1, . . . , xN) = x1. (7)

Proof of Proposition 2.8. Statement (1) is a direct consequence of Lemma 2.3, the defi-
nition of the cone of Lusztig’s graded parametrization given in (5) and Definition 2.4.

For statement (2) note that by [25, Proposition 8.2], Lusztig’s canonical basis of the 
irreducible representation V (∑a∈I λaωa) is parametrized by {x ∈ Li ∣ ∀a ∈ I ∶ ε∗a(x) ≤
λa}. It thus suffices to show that for a ∈ I

ε∗a∗(x) ≤ λa∗ ⇔ [li,-a]trop (x) ≥ 0. (8)

For i = (i1, . . . , iN) ∈ W(w0), we define i⋆op ∶= (i∗N , . . . , i∗1). By [5, Proposition 3.3 (iii)]
(see also [28]) we have for x = (x1, . . . , xN) ∈ Li that

x∗ = [Φi⋆op
i ]

trop
(xN , . . . , x1) . (9)

By (6), (7) and (9) we obtain

ε∗i∗N (x) = εi∗N (x∗) = εi∗N ([Φi
i⋆op]trop x∗) = εi∗N (xN , . . . x1) = xN . (10)

From (10) and Definition 2.4 we deduce (8). ◻
Remark 2.9. In general there is no closed explicit description of [li,-a]trop. For arbitrary 
reduced words in type A the explicit form of [li,-a]trop is obtained in [17, Theorem 2.16]
by combinatorial means. For two special classes of reduced words it is obtained in [36] and 
in [37]: In [36, Proposition 7.4] reduced words adapted to the Dynkin quiver Q of g with 
vertex set I satisfying a certain homological condition are treated. By [38, Corollary 3.23]
these are precisely the reduced words i adapted to Q such that ωa spans a minuscule 
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g-representation for every sink a ∈ I. For a different class of reduced words satisfying 
a combinatorial condition called “simply-braided for a ∈ I” (see [37, Definition 4.1]), 
the function [li,-a]trop can explicitly be obtained from the “bracketing rules” in [37, 
Theorem 4.5].

3. String parametrization

3.1. String parametrization of the canonical basis

Let B(∞) be the crystal of U−q in the sense of [25]. Recall that the string parametriza-
tion of the canonical basis corresponding to the reduced word i = (i1, i2, . . . , iN) ∈W(w0)
is given by the set of i-string data of the elements in B(∞). Here the i-string datum
stri(b) ∈ NN of b ∈ B(∞) is determined inductively by

x1 =max{k ∈ N ∣ ẽki1b ∈ B(∞)},
x2 =max{k ∈ N ∣ ẽki2 ẽx1

i1
b ∈ B(∞)},

⋮
xN =max{k ∈ N ∣ ẽkiN ẽxN−1

iN−1 ⋯ẽx1
i1
b ∈ B(∞)}.

Following [5,27] we call

Si ∶= {stri(b) ∣ b ∈ B(∞)} ⊂ NN

the string cone associated to i.

3.2. Transition maps and geometric lifting

Using the identification (3) we associate to the string cone Si the torus

Si = G∆+i
m = GN

m .

Following [5] we further introduce positive rational functions Ψi
j ∶ Si ⇢ Sj such that the 

tropicalization [Ψi
j]trop gives the transition map between the string cones associated to 

reduced words i, j ∈W(w0):
Definition 3.1. We specify Ψi

j ∶ Si ⇢ Sj as follows. If j ∈W(w0) is obtained from i ∈W(w0)
by a 3-move at position k then we set for x = (x1, . . . , xN)

Ψi
j x = (x1, . . . , xk−2, xkxk+1

xk−1xk+1 + xk
, xk−1xk+1, xk+1xk−1 + xk

xk+1 , xk+2, . . . , xN) .
If j ∈W(w0) is obtained from i ∈W(w0) by a 2-move at position k we set
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Ψi
j x = (x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xN) .

For arbitrary i, j ∈ W(w0) we define Ψi
j ∶ Si ⇢ Sj as the composition of the transition 

maps corresponding to a sequence of 2- and 3-moves transforming i into j.

Recall that [Si]trop = ZN . By [5,27], we have on B(∞)
strj = [Ψi

j]trop ○ stri .

In the remainder of this subsection we introduce certain positive functions si,a on Si
and show that the string cone Si ⊂ [Si]trop = ZN is cut out by the functions [si,a]trop.

Definition 3.2. We denote by {si,a}a∈I the positive rational functions on Si satisfying:

(1) For x ∈ Si one has si,iN (x) = xN .
(2) For i, j ∈W(w0) one has sj,a = si,a ○ Ψj

i with Ψj
i as in (2.2).

Remark 3.3. We show in Corollary 7.6 that si,a is regular.

Remark 3.4. By Theorem 6.5 and Theorem 7.5 the function si,a is closely related to the 
function li,-a given in Definition 2.4.

Proposition 3.5. For i ∈W(w0) we have

Si = {x ∈ [Si]trop ∣ [si,a]trop(x) ≥ 0 for all a ∈ I} . (11)

Remark 3.6. In general there is no closed explicit description of the function [si,a]trop. 
Explicit inequalities for the string cone Si are obtained in [27] for a special class of 
reduced words and in [20] for all reduced words in type A (also in [5] for arbitrary 
reduced words but in a less explicit form). In [17] we show that the functions [si,a]trop
recover the string cone inequalities from [20].

Before proving Proposition 3.5 we recall from [24,34] that [Si]trop has the structure 
of a free crystal in the sense of [9] given as follows. For x = (x1, . . . , xN) ∈ ZN = [Si]trop, 
k ∈ [N] and a ∈ I we set

νk(x) ∶= xk + N∑
ℓ=k+1

ck,ℓxℓ ∈ Z,
ε∗a(x) ∶=max{νk(x) ∣ k ∈ [N], ik = a} ∈ Z, (12)
f∗a (x) ∶= (xℓ + δℓ,k(x))ℓ∈[N] ∈ [Si]trop,

where k(x) ∈ [N] is the smallest k with ik = a and νk(x) = ε∗a(x). The maps f∗a and ε∗a
satisfy
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ε∗a = ε∗a ○ [Ψi
j]trop, (13)

[Ψi
j]trop ○ f∗a = f∗a ○ [Ψi

j]trop. (14)

By [34, Theorem 2.5 and its proof] we have for a ∈ I
f∗a Si ⊂ Si . (15)

Lemma 3.7. Denoting the set on the right hand side of (11) by Pi, we have

(1) Pi = {x ∈ [Si]trop ∣ ∀k ∈ [N], ∀ j ∈W(w0) ∶ (Ψi
j(x))k ≥ 0},

(2) (f∗a )−1{x ∈ Pi ∣ ε∗a(x) > 0} ⊂ Pi,
(3) for all x ∈ Pi and a ∈ I ∶ ε∗a(x) ≥ 0,
(4) for all x ∈ Pi ∶ (∀a ∈ I ∶ ε∗a(x) = 0) ⇐⇒ x = (0, 0, . . . , 0).
Proof. The proof of claim (1) is along the lines of [20, Proof of Theorem 5.4] adapted 
to our setup. Note that Pi consists of all x ∈ [Si]trop such that (Ψi

j(x))N ≥ 0 for all 
j ∈ W(w0). We show that any such x satisfies (Ψi

j(x))k ≥ 0 for all k ∈ [N] and for all 
j ∈W(w0).

Suppose this is not the case and let

k =max {ℓ ∈ [N] ∣ ∃ j ∈W(w0) ∶ (Ψi
j(x))ℓ < 0} .

We choose j with (Ψi
j(x))k < 0 and write x′ = Ψi

j(x). Up to 2-moves and 3-moves not 
affecting x′k there exists a reduced word j′ ∈W(w0) which is obtained from j by a 3-move 
at position j with k ∈ {j − 1, j}. Since, by our assumption on k the inequality x′j+1 ≥ 0
holds, we have by Definition 3.1

(Ψi
j′(x))j+1 = (Ψj

j′(x′))j+1 =min {x′j−1, x′j − x′j+1} < 0

contradicting the maximality of k.
Let us now prove claim (2). Assume for x ∈ Pi that we can find a ∈ I such that ε∗a(x) > 0

and (f∗a )−1(x) ∉ Pi. In other words there exists j ∈W(w0) such that (Ψi
j(f∗a )−1x))N < 0. 

Using (14) we see that ((f∗a )−1 Ψi
j x)N < 0. Thus a = iN , (Ψi

j x)N = 0 and 0 = ε∗a(Ψi
j x) =

ε∗a(x) where the last equality uses (13). This contradicts our assumption ε∗a(x) > 0.
For claim (3) note that the definition of Pi implies, together with (13), ε∗a(x) ≥ 0.
Next we assume in contradiction to claim (4) that there exists x ∈ Pi with ε∗a(x) = 0 for 

all a ∈ I and xk ≠ 0. We further assume that k is maximally chosen with this property. 
By claim (1) we have Pi ⊂ ZN≥0 and hence xk > 0. We thus obtain the contradiction 
εik(x) ≥ νk(x) = xk > 0. ◻
Proof of Proposition 3.5. Denoting the set on the right hand side of (11) by Pi we haveSi ⊂ Pi by definition.
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Let x ∈ Pi/ Si minimize ∑k∈[N] xk on Pi/ Si. We show

∀a ∈ I ∶ ε∗a(x) = 0 (16)

as follows. If there exists an a ∈ I with ε∗a(x) > 0 we obtain y ∶= (f∗a )−1(x) ∈ Pi by 
Lemma 3.7(2). Since ∑k∈[N] yk = ∑k∈[N] xk − 1 we conclude from the minimality as-
sumption on x that y ∈ Si. Using (15) we obtain the contradiction x = f∗a (y) ∈ Si. 
Thus (16) holds. But now Lemma 3.7(4) tells us that x = (0, 0, . . . , 0) ∈ Si contradicting 
x ∈ Pi/ Si. ◻
Remark 3.8. The reason we use for a ∈ I the notation ε∗a, f∗a is that we may interpret 
this crystal structure on Si (i ∈ W(w0)) as a realization of the ∗-crystal structure on 
B(∞), where ∗ denotes the Kashiwara involution [25, Section 8.3]. By doing this we get 
an identification for the string polytope Si(λ) (λ ∈ P +) defined in (46) as

B(λ) = {x ∈ B(∞) ∣ εa(x) ≤ ⟨αa,λ⟩ ∀a ∈ I}
in the spirit of [25] (see also Remark 3.10). This is addressed in more detail in [18,19].

Remark 3.9. In the special case that g is of type A, a proof of the equality Si = Pi was 
obtained in [20] using explicit defining inequalities for Si derived in [20].

3.3. Graded string cones

Following [27], we define the graded string cone

grSi ∶= {(λ, x) ∈ ZI × Si ∣λa ≥max
ik=a {xk + N∑

ℓ=k+1
ciℓ,ikxℓ} for all a ∈ I} ,

which parametrizes a basis of H0(G/N , OG/N ) by [27, Proposition 1.5].

Remark 3.10. By [25,34] the string cone Si has a crystal structure isomorphic to B(∞)
with ε∗a(x) given by (12) (see also Remark 3.8). Furthermore, by [25, Proposition 8.2]
Lusztig’s canonical basis of the irreducible representation V (∑a∈I λaωa) is parametrized 
by the set of x ∈ Si such that ε∗a(x) ≤ λa for all a ∈ I. This gives an alternative proof that 
grSi parametrizes Lusztig’s canonical basis of H0(G/N , OG/N ).

In the following we introduce positive functions on

grSi ∶= GI
m × Si,

whose tropicalization cut out grSi:
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Definition 3.11. With the notation of Definition 3.2 we specify for a ∈ I the positive 
functions on grSi

si,a(λ, x) = si,a(x),
si,-a(λ, x) = λa ∑

k∈[N]
ik=a
(x−1k N∏

ℓ=k+1
x
−ciℓ,ik
ℓ )

Example 3.12. For g = sl3(C) and i = (1, 2, 1) we have (note that iN = i3 = 1)

si,1(λ1,λ2, x1, x2, x3) = x3,

si,−1(λ1,λ2, x1, x2, x3) = λ1x
−1
1 x2x

−2
3 + λ1x

−1
3 .

For j = (2, 1, 2) we have

si,2(λ1,λ2, x1, x2, x3) = sj,2 ○(id ×Ψi
j)(λ1,λ2, x1, x2, x3) = x3x1 + x2

x3
,

si,−2(λ1,λ2, x1, x2, x3) = λ2x
−1
2 .

Proposition 3.13. For reduced words i, j ∈W(w0) we have

(1) sj,-a = si,-a ○ Ψi
j,

(2) grSi = {(λ, x) ∈ [grSi]trop ∣ ∀a ∈ −[n] ∪ [n] ∶ [si,a]trop(λ, x) ≥ 0}.
Proof. Statement (1) is a straightforward computation. Statement (2) follows from 
Proposition 3.5. ◻

We introduce the analogues of si,a and grSi for Lg as follows.

Definition 3.14. For a ∈ I we specify on grSi the positive functions ši,a ∶= si,a and

ši,-a(λ, x) = (∏
b∈I

λ
ca,b

b ) ∑
k∈[N]
ik=a
(x−1k N∏

ℓ=k+1
x
−ciℓ,ik
ℓ ) .

Definition 3.15. We introduce the graded string cone of Lg as

grS∨i ∶= {(λ, x) ∈ [grSi]trop ∣ ∀a ∈ −[n] ∪ [n] ∶ [ši,a]trop(λ, x) ≥ 0} .



16 V. Genz et al. / Advances in Mathematics 369 (2020) 107178

4. The cluster spaces of the base affine space

4.1. Generalized minors and the open double Bruhat cell

In the following we identify the weight lattice of g with the group of multiplicative 
characters on T . For a dominant weight λ ∶ T → Gm, we define the principal minor
∆λ ∶ G → A1 to be the function defined on the open subset N −TN ⊂ G by

∆λ(u−tu+) ∶= λ(t) u− ∈N −, t ∈ T,u+ ∈ N .

Let γ, δ be extremal weights such that γ = w1λ, δ = w2λ for some w1, w2 ∈ W , λ ∈ P +. 
Recall the embedding of sets (4) of W into NormG(T ). The generalized minor associated 
to γ and δ is

∆γ,δ(g) ∶=∆λ(w−11 gw2), g ∈ G.

The base affine space G/N is the partial compactification of the open double Bruhat 
cell

Gw0,e ∶= Bw0 B ∩B−
obtained by allowing the generalized minors ∆ωa,ωa and ∆w0 ωa,ωa to vanish (see [3, 
Section 2.6]).

4.2. The cluster ensemble of the open double Bruhat cell

4.2.1. Cluster seeds
Following Fomin–Zelevinsky, Berenstein–Fomin–Zelevinsky and Fock–Goncharov [14,

3,15,12] we recall the definition of the cluster ensemble associated to Gw0,e. We start by 
introducing the notion of a seed.

Definition 4.1. A seed is a datum Σ = (Λ, {⋅, ⋅}, {ek}k∈M , M0), where

(i) Λ is a lattice,
(ii) {⋅, ⋅} is a skew-symmetric Z-valued bilinear form on Λ,
(iii) M0 ⊂M is a finite set,
(iv) {ek}k∈M is a basis of Λ.

We associate to a seed Σ = (Λ, {⋅, ⋅}, {ek}k∈M , M0) a quiver ΓΣ as follows. The vertices {vk}k∈M of ΓΣ are indexed by M . If {ek, eℓ} > 0 then there are {ek, eℓ} arrows with 
source vk and target vℓ in ΓΣ. A vertex vk is called frozen if k ∈ M0 and mutable if 
k ∈M ∖M0.
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Let Σ = (Λ, {⋅, ⋅}, {ek}k∈M , M0) be a seed. For each k ∈ M ∖M0 we define the seed 
µk(ΓΣ) = (Λ, {ek, eℓ}, {e′k}k∈M , M0), called the mutation of Σ at k, by setting

e′j =
⎧⎪⎪⎨⎪⎪⎩
ej +max (0,{ej , ek}) ek if j ≠ k
−ek if j = k.

The quiver µk(ΓΣ) ∶= Γµk Σ, called the mutation of ΓΣ at k, is obtained as follows. The 
vertices and frozen vertices of ΓΣ and µk(ΓΣ) coincide. Furthermore µk(ΓΣ) has the 
same arrows as ΓΣ, except:

(i) All arrows of ΓΣ with source or target vk get replaced in µk(ΓΣ) by the reversed 
arrow.

(ii) For every pair of arrows (h1, h2) ∈ ΓΣ × ΓΣ with

vk = target of h1 = source of h2

we add to µk(ΓΣ) an arrow from the source of h1 to the target of h2.
(iii) If a 2-cycles was obtained during (i) and (ii), the arrows of this 2-cycle get canceled 

in µk(ΓΣ).
(iv) Finally we erase all arrows between frozen vertices.

To a seed Σ = (Λ, {⋅, ⋅}, {ek}k∈M , M0) we assign the A- and X -cluster tori

TΣ ∶= SpecZ[A±1k ∣ k ∈M] and T̂Σ ∶= SpecZ[X±1k ∣ k ∈M].
We also consider the tori

Tuf
Σ ∶= SpecZ[A±1k ∣ k ∈M/M0] and T̂uf

Σ ∶= SpecZ[X±1k ∣ k ∈M/M0]
corresponding to the mutable vertices along with the natural maps

ιΣ ∶ Tuf
Σ ↪ TΣ and πΣ ∶ T̂Σ↠ T̂uf

Σ .

We introduce birational A-cluster transformations µk ∶ TΣ ⇢ Tµk Σ and X -cluster 
transformations µ̂k ∶ T̂Σ ⇢ T̂µk Σ:

µ∗kAℓ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏
j ∶{ej ,ek}>0

A
{ej ,ek}
j

Ak
+ ∏

j ∶{ej ,ek}<0
A
−{ej ,ek}
j

Ak
if ℓ = k,

Aℓ else,
(17)

µ̂∗kXℓ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
X−1k if ℓ = k,

Xℓ (1 +X− sgn{eℓ,ek}
k )−{eℓ,ek} else.

(18)
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For seeds Σ and Σ’ obtained by a sequence of mutations we define µΣ
Σ’ ∶ TΣ ⇢ TΣ’ and 

µ̂Σ
Σ’ ∶ T̂Σ ⇢ T̂Σ′ by composition.
The cluster space A and the dual cluster space X are the schemes obtained by gluing 

the tori (TΣ) and (T̂Σ) via (17) and (18), respectively. The spaces A and X are related 
by a set of maps, which are referred to as p-maps in the literature. We recall the definition 
following [22, Chapter 2]:

Definition 4.2. A p-map is a family p = (pΣ) ∶ A → X of morphisms

pΣ ∶ TΣ → T̂Σ,

which is compatible with mutations, i.e. pΣ’ = µ̂Σ
Σ’ ○ pΣ ○ µΣ

Σ’, and satisfies

(pΣ ○ιΣ(A))k = ∏
ℓ∈M/M0

A{ek,eℓ}ℓ for k ∈M , (19)

(πΣ ○ pΣ(A))k = ∏
ℓ∈M

A{ek,eℓ}ℓ for k ∈M/M0. (20)

If M0 = ∅ holds, i.e. if there are no frozen vertices then there exists a unique p-map. 
For an arbitrary cluster datum as in Definition 4.1 the situation is as follows. For a seed 
Σ we write

TΣ ∶= Tuf
Σ ×T f

Σ, T̂Σ ∶= T̂uf
Σ × T̂ f

Σ.

Written in the torus coordinates of a fixed seed Σ0 any two p-maps p, p′ ∶ A → X defer 
by a morphism δΣ0 ∶ T f

Σ0 → T̂ f
Σ0

, i.e.

pΣ0 = (id × δΣ0) ⋅ p′Σ0 ∶ TΣ0 = G{v mutable}
m ×T f

Σ0 → G{v mutable}
m × T̂ f

Σ0 = T̂Σ0 . (21)

Here ⋅ denotes the multiplication in T̂Σ0 .
Conversely, any mutation compatible family of maps (TΣ ⇢ T̂Σ), with Σ running over 

the set of seeds, is a p-map if it satisfies equations (19) and (20) for a fixed seed Σ0 with 
pΣ0 ∈ Hom(TΣ0 , T̂Σ0):
Lemma 4.3. Let pΣ0 ∈ Hom(TΣ0 , T̂Σ0) satisfy (19) and (20) for Σ = Σ0. Then

p ∶= (µ̂Σ0
Σ ○ pΣ0 ○µΣ

Σ0) ∶ A = (TΣ)→ (T̂Σ) = X
is a p-map. In particular, the map p is regular.

Proof. Associating to the seed Σ0 = (Λ, {⋅, ⋅}, {ek}k∈M , M0) the seed Σdf
0 = (Λ, {⋅, ⋅},{ek}k∈M , ∅) we obtain the cluster spaces Adf and X df . In other words, Σdf
0 is obtained 

from Σ0 by defining all k ∈M to be mutable. Thus, we have TΣ0 = TΣdf
0

and T̂Σ0 = T̂Σdf
0

. 
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Let p′ denote the unique p-map between Adf and X df . Then p′ satisfies (19) and (20). 
Consequently, there exists δΣ0 ∶ T f

Σ0 → T̂ f
Σ0

, satisfying (21).
From (18) we deduce

µ̂Σ0
Σ ○ pΣ0 ○µΣ

Σ0 = µ̂Σ0
Σ ○ (id × δΣ0 ⋅ p′Σ0) ○ µΣ

Σ0 = (id × δΣ0) ⋅ (µ̂Σ0
Σ ○ p′Σ0 ○µΣ

Σ0) .
The claim now follows, since regularity as well as the validity of (19) and (20) is not 
affected by multiplying with id × δΣ0 . ◻
4.2.2. Seeds associated to reduced words

Following [3] we associate to every reduced word i ∈W(w0) a seed Σi. We throughout 
identify

Σi and i,

i.e. we denote the seed Σi also by i. Consequently, we write Ti, T̂i, µi
j and µ̂i

j for TΣi , 
T̂Σi , µΣi

Σj
and µ̂Σi

Σj
, respectively.

The quiver Γi can be described as follows. We denote the vertices of Γi by {vk ∣ k ∈M}, 
where

M ∶= {−1, . . . ,−n} ∪ {1, . . . ,N}. (22)

Using Definition 1.2 we write vℓ = va,r if βℓ = βa,r and set va,0 ∶= v−a. The frozen vertices 
of Γi are

{w−a ∶= va,0 ∣ a ∈ I} ∪ {wa ∶= va,ma ∣ a ∈ I}. (23)

In order to define the arrows in Γi we introduce the following notion. For k ∈ [−n] we 
set ik = −k. For k ∈ M we denote by k+ = k+i the smallest ℓ ∈ M such that k < ℓ and 
iℓ = ik. If no such ℓ exists, we set k+ = N +1. For k ∈ [N], we further let k− be the largest 
index ℓ ∈M with ℓ < k and iℓ = ik.

There is an edge connecting vk and vℓ with k < ℓ if at least one of the two vertices is 
mutable and one of the following conditions is satisfied:

(1) ℓ = k+,
(2) ℓ < k+ < ℓ+, ck,ℓ < 0 and k, ℓ ∈ [N].
Edges of type (1) are called horizontal and are directed from k to ℓ. Edges of type (2) 
are called inclined and are directed from ℓ to k.

Remark 4.4. The quiver Γi associated to a reduced word i has at most one edge between 
any two vertices v, w. We denote this edge by [v, w] if it exists.
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Example 4.5. Let g = sl3(C) and i = (1, 2, 1). Then Γi looks as follows:

v−2 v2

v−1 v1 v3.

Lemma 4.6. Let j ∈W(w0) be obtained from i ∈W(w0) by a 2-move or a 3-move in posi-
tion k. Then the swapping of the vertex vk with the vertex vk+1 induces an isomorphism 
of quivers Γj ≃ µk−1Γi.

Proof. The statement follows from the construction of Γi and [39, Theorem 3.5]. ◻
Example 4.7. Consider the graph Γi from Example 4.5. Then µ1Γi looks as follows:

v−2 v1 v2

v−1 v3.

Swapping v3 and v2 yields the graph Γ212.

We consider the families (TΣ) and (T̂Σ) of all tori corresponding to seeds Σ which can 
be obtained from a seed Σ = i corresponding to a reduced word i ∈W(w0) by a sequence 
of mutations. By [3] the open double Bruhat cell Gw0,e is covered up to codimension 2
by (TΣ) via

Gw0,e ⇢ TΣ,

g ↦ (∆si1⋯sikωik
,ωik
(g))

k∈M .
(24)

The associated gluing maps are given in Section 4.2.2. We call the pair (A, X) the cluster 
ensemble associated to Gw0,e.

Remark 4.8. We defer from the convention in [3] as follows. The reduced word i for Gw0,e

is denoted by − i in [3]. The quiver Γi is isomorphic to the quiver associated to i in [3], 
i.e. obtained from the quiver associated to − i in [3] by turning around arrows.

We use the following fact later.

Lemma 4.9. For a ∈ I and reduced words i, j ∈W(w0) we have the equality of functions 
in O(T̂i)

ma,i∏
r=0 Xa,r = ma,j∏

r=0 Xa,r ○ µ̂i
j.
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Proof. Without loss of generality we can assume that j is obtained from i by a 3-move 
at position ℓ with vℓ = va,s. The claim then follows since we have for r ∈ [mj

a]

Xa,r ○ µ̂i
j =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xa,r if r < s − 1,
Xa,r(1 + (Xa,s)−1)−1 if r = s − 1,
Xa,r−1(1 +Xa,s) if r = s,
Xa,r−1 if r > s. ◻

5. Gross-Hacking-Keel-Kontsevich potential and Berenstein-Kazhdan decoration 
function

5.1. Gross-Hacking-Keel-Kontsevich potential

Recall from Section 4.1 that the base affine space G/N is the partial compactification 
of the open double Bruhat cell Gw0,e:

G/N = Gw0,e ∪ ⋃±a∈[n]Da,

where Da is the divisor given by the vanishing locus of the functions ∆ωa,ωa for a < 0
and ∆w0 ωa,ωa for a > 0, corresponding to the frozen vertices of Γi by (24).

In [23] a Landau-Ginzburg potential W on the dual cluster space X associated to 
G/N is defined as the sum W = ∑±a∈[n]Wa of certain global monomials Wa attached to 
the divisors Da. We are interested in W ∣

T̂i
since the cone

ĈΣ ∶= {x ∈ [T̂Σ]trop ∣ [W ∣T̂Σ
]trop(x) ≥ 0}

cut out by the tropicalization of W ∣
T̂i

, up to a natural conjecture (see Remark 5.4), 
parametrizes a canonical basis for the ring of regular functions on the partial compacti-
fication G/N of Gw0,e.

Using (23) we have the following definition of Wa, which in [23, Corollary 9.17] is 
shown to be well-defined.

Definition 5.1. If there is no arrow in ΓΣ from the frozen vertex wa to a mutable vertex 
we call Σ optimized for wa and have Wa∣T̂Σ

=X−1wa
.

For certain toric charts we have a closed explicit description of Wa∣T̂i
:

Proposition 5.2. Every frozen vertex wa has an optimized seed. Furthermore, for a ∈ I
and i = (i1, . . . , iN) ∈W(w0) we have
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WiN ∣T̂i
(X) =X−1N , (25)

W−a∣T̂i
(X) = ma−1∑

k=0
k∏

ℓ=0
X−1a,ℓ. (26)

Proof. By definition the quiver Γi is optimized for the frozen vertex viN and (25) follows. 
It remains to show (26) and that for a ∈ I the vertex w−a has an optimized seed.

Let i ∈ W(w0), j ∈ [ma − 1] and let Γ(j)i be the resulting quiver after applying the 
sequence of mutations at the vertices va,1, va,2, . . . , va,j to Γi.

Between two vertices there is at most one arrow in Γ(j)i . Furthermore, we have for 
j ≥ 2

[v0,a, va,j+1], [va,j+1, va,j] ∈ Γ(j)i . (27)

We prove that [v0,a, va,j+1] is the only arrow in Γ(j)i with source v0,a.
Let j be minimal such that there exist an arrow [v0,a, w] in Γ(j)i with w ≠ va,j+1

and w mutable. Then [va,j−1, w] is an arrow of Γ(j−1)i . Note that [va,j−1, w] has to be 
an inclined arrow of Γi. Since w and va,j−1 are mutable, there exists an inclined arrow [w, va,r] in Γi with r < j−1. This arrow stays unchanged under the sequence of mutations 
at va,1, va,2, . . . , va,r−1, creates an arrow [w, va,r−1+s] in Γ(r+s)i for r + s < j and cancels 
the arrow [v0,a, w] in Γ(j)i yielding a contradiction.

Hence, the seed Σ corresponding to Γ(ma−1)
i is optimized for va,0 = w−a. Furthermore, 

from (27) we recursively compute (26). ◻
Example 5.3. Continuing Example 4.5 we have for g = sl3(C) and i = (1, 2, 1)

W−1∣T̂i
(X) =X−1−1 +X−1−1X−11 , W1∣T̂i

(X) =X−13 ,

W−2∣T̂i
(X) =X−1−2 , W2∣T̂i

(X) =X−12 +X−11 X−12 .

Remark 5.4. In [23] a canonical basis for the ring of regular functions on an A-cluster 
variety, called theta basis, is constructed under the assumptions given in [23, Defini-
tion 0.6]. This assumption is called the full Fock–Goncharov conjecture and ensures in 
particular, that the theta basis is naturally identified with the tropical points of the 
corresponding X -cluster variety.

The full Fock-Goncharov conjecture for a partially compactified A-cluster variety fol-
lows from the work of Gross–Hacking–Keel–Kontsevich (specifically [23, Proposition 8.24, 
Proposition 8.25, Proposition 8.27, Lemma 9.10]) assuming

(1) the existence of a green-to-red sequence,
(2) that every frozen vertex has an optimized seed,
(3) the surjectivity of the composition of the projection onto the mutable part with a 

p-map, i.e. the map referred to as p2 in 5.1.
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In the case of double Bruhat cells, Goodearl and Yakimov announced in [21] (see [23, 
Example 0.15]) the existence of a maximal green sequence. For the convenience of the 
reader in the appendix we independently give maximal green sequences for seeds of Gw0,e

associated to certain reduced words. By Proposition 5.2 every frozen vertex of Γi has an 
optimized seed and by [3, Proposition 2.6.] assumption (3) holds.

In conclusion, the full Fock–Goncharov conjecture for Gw0,e holds and there exists a 
theta basis for the partial compactification G/N of Gw0,e parametrized by ĈΣ.

5.2. Berenstein-Kazhdan decorations

In [4, Corollary 1.25], Berenstein and Kazhdan introduced as part of the datum of a 
G-decorated geometric crystal the decoration function fB = ∑a∈±I fB

a on G, where for 
a ∈ I

fB−a(g) = ∆w0 ωa,saωa(g)
∆w0 ωa,ωa(g) , fB

a (g) = ∆w0 saωa,ωa(g)
∆w0 ωa,ωa(g) .

For certain toric charts we have a closed explicit description of fB
a :

Proposition 5.5. For a ∈ I, i = (i1, . . . , iN) ∈W(w0) and A = (Ak)k∈M ∈ Ti we have

fB
iN ∣Ti

(A) = A−1N AN− , (28)

fB−a∣Ti
(A) = ∑

k∈[N]
ik=a

⎛⎜⎜⎝Ak−Ak ∏
ℓ∈M

ℓ<k<ℓ+
A

ciℓ,a
ℓ

⎞⎟⎟⎠
−1

. (29)

Proof. Recall from (24) that we may identify for k ∈M the function ∆si1⋯sikωik
,ωik

on 
Gw0,e with the k-th coordinate function Ak in the ring of regular functions on Ti.

Equality (28) follows directly. For equality (29) we first assume iN = a. By [5, Equa-
tion (5.8)] and [13, Proposition 2.7] we get

fB−a(g) = ∆w0 ωa,saωa(g)
∆w0 ωa,ωa(g) = ∑k∈[N]

ik=a

∏
b∈I∖{a}

∆−ca,b
si1⋯sikωb,ωb(g)

∆si1⋯sikωa,ωa(g)∆si1⋯sik−1ωa,ωa(g) . (30)

The claim follows from (30) using identification (24) since we have for k ∈ [N] and a, b ∈ I
with a ≠ b

saωb = ωb,

∏
ℓ∈M

ℓ<k<ℓ+
∆−ca,iℓ

si1⋯siℓωb,ωb =∏
b∈I
b≠a

∆−ca,b
si1⋯sik−1ωb,ωb .
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In order to establish equation (29) for general i, it is enough to show that the right 
hand side of (29) is invariant under 3-moves. If j is obtained from i by a 3-move at 
position k ∈ [N] replacing (ik−1, ik, ik+1) by (ik, ik−1, ik) with ik = a then by Lemma 4.6
and (17)

µ∗k
⎛⎜⎜⎝A
−1
k−A−1k ∏

ℓ∈M
ℓ<k<ℓ+

A
−ciℓ,a
ℓ +A−1k A−1k+ ∏

ℓ∈M
ℓ<k+<ℓ+

A
−ciℓ,a
ℓ

⎞⎟⎟⎠ = A
−1
k−A−1k ∏

ℓ∈M
ℓ<k<ℓ+

A
−ciℓ,a
ℓ .

If ik ≠ a with cik ≠ 0 the claim follows by symmetry. For cik = 0 there is nothing to 
show. ◻
Example 5.6. Continuing Example 4.5 we have for g = sl3(C) and i = (1, 2, 1)

fB−1∣Ti
(A) = A−2

A−1A1
+ A2
A1A3

, fB
1 ∣Ti
(A) = A1

A3
,

fB−2∣Ti
(A) = A1

A−2A2
, fB

2 ∣Ti
(A) = A−1

A1
+ A−2A3

A1A2
.

We denote by CΣ the cone cut out by the decoration function fB:

CΣ = {A ∈ [TΣ]trop ∣ [fB ∣
TΣ
]
trop
(A) ≥ 0} .

6. Lusztig parametrization via cluster varieties

In this section we relate the cone grLi of Lusztig’s graded parametrization to the 
cone Ĉi cut out by the tropicalization of the Gross–Hacking–Keel–Kontsevich potential 
function W introduced in Section 5.1. Dually, we relate the cone grL∨i associated to 
the Langlands dual Lie algebra Lg to the cone Ci cut out by the tropicalization of the 
decoration function fB due to Berenstein–Kazhdan defined in Section 5.2.

Motivated by the Chamber Ansatz due to Berenstein-Fomin-Zelevinsky [2] as well 
as by [5, Equation (4.14)] and [17, Section 5] we introduce the following coordinate 
transformations using the notations of Section 4.2.2 and (2). First, we set for k, ℓ ∈M =−[n] ∪ [N]

!k, ℓ" ∶= −cik,iℓ ⋅
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if k < ℓ < k+,
1
2 if ℓ = k or ℓ = k+
0 else.

(31)

Definition 6.1. We specify gr N̂Ai ∈ Hom(grLi, T̂i) and grCAi ∈ Hom(Ti, grLi) (A =(Ak)k∈M ∈ Ti, (x, λ) ∈ grLi)):
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(gr N̂Ai(λ, x))k =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x−1k+ if k < 0,
xkx

−1
k+ if k, k+ ∈ [N],

xkλ
−1
i∗k if k+ = N + 1,

grCAi(A) = ⎛⎝(A−1a∗,ma∗ )a∈I ,(∏
ℓ∈M

A!ℓ,k"
ℓ )

k∈[N]
⎞
⎠ .

Example 6.2. Let g = sl3(C) and i = (1, 2, 1). Then we have

gr N̂Ai (λ1,λ2, x1, x2, x3) = ( 1
x1

,
1
x2

,
x1
x3

,
x2
λ1

,
x3
λ2
) ,

grCAi (A−1,A−2,A1,A2,A3) = ( 1
A2

,
1
A3

,
A−2

A−1A1
,

A1
A−2A2

,
A2

A1A3
) .

Remark 6.3. In Lemma 8.1 we show that [gr N̂Ai]trop and [grCAi]trop and consequently 
also gr N̂Ai and grCAi are isomorphisms.

The families (gr N̂Ai) and (grCAi) have the following transformation behavior.

Lemma 6.4. For i, j ∈W(w0) the following diagrams commutes.

Ti

µi
j

grCAi grLi
gr N̂Ai

id×Φi
j

T̂i

µ̂i
j

Tj
grCAj

grLj
gr N̂Aj

T̂j.

Proof. Without loss of generality we can assume that j is obtained from i by a 3-move at 
position k with ik = a. Then by Lemma 4.6, the tori T̂j and Tj are obtained from T̂i and Ti
by X -cluster and A-cluster transformation at the 4-valent vertex k−1 of Γi, respectively. 
The commutativity of the diagram then can be checked by direct computation. ◻

We relate the GHKK-potential and the BK-decoration function to the functions li,-a
and ̌li,-a introduced in Definition 2.4 and 2.6, respectively:

Theorem 6.5. For a ∈ ±I and i ∈W(w0) we have

li,-a =Wa∣T̂i
○ gr N̂Ai, (32)

fB
a ∣Ti

= ľi,-a ○ grCAi . (33)
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Proof. For a < 0 equalities (32) and (33) follow directly from Proposition 5.2 and Propo-
sition 5.5, respectively. For a > 0 equality (32) follows directly from Lemma 6.4 and 
Proposition 5.2. In order to show (33) we compute using Lemma 6.4 and Proposition 5.5
for a = iN , A ∈ Ti:

ľi,-a ○ grCAi(A) = (∏
b∈I

A
−ca,b

b,mb
)Aa,ma−1Aa,ma∏

b≠a
A

ca,b

b,mb
= AN−

AN
= fB

a ∣Ti
(A). ◻

As a direct corollary of Theorem 6.5 we obtain:

Corollary 6.6. For a ∈ I the functions li,-a and ľi,-a are regular.

Theorem 6.5 has the following implications for the interplay of parametrizations of 
canonical bases.

Corollary 6.7. We have the following equalities of cones:

Ĉi = [gr N̂Ai]trop(grLi),
grL∨i = [grCAi]trop(Ci).

Proof. The statement follows by the tropicalization of Theorem 6.5. ◻
7. String parametrization via cluster varieties

In analogy to Section 6 we relate in this section the graded string cone grSi to the 
cone Ĉi cut out by the tropicalization of the GHKK-potential function W . Dually, we 
relate the cone grS∨i associated to the Langlands dual Lie algebra Lg to the cone Ci cut 
out by the tropicalization of the BK-decoration function fB.

Motivated by the Chamber Ansatz due to Berenstein–Fomin–Zelevinsky [2] as well 
as by [5, Equation (4.14)] and [17, Section 5] we introduce the following coordinate 
transformations using the notations of Section 4.2.2, (31) and (2).

Definition 7.1. We specify gr ĈAi ∈ Hom(grSi, T̂i) and grNAi ∈ Hom(Ti, grSi) ((λ, x) ∈
grSi, X = (Xk)k∈M ∈ T̂i):

(gr ĈAi(λ, x))k =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ−1−k ∏
ℓ∈[N]

x
ciℓ,ik+!k,ℓ"
ℓ if k < 0,

∏
ℓ∈[N]

x!k,ℓ"
ℓ else,

grNAi(X) = ((X−1a,ma
)
a∈I , (Xk

−1Xk−)k∈[N]) .
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Remark 7.2. In Lemma 8.1 we show that [gr ĈAi]trop and [grNAi]trop and consequently 
also gr ĈAi and grNAi are isomorphisms.

Example 7.3. For g = sl3(C) and i = (1, 2, 1) we have

gr ĈAi (λ1,λ2, x1, x2, x3) = (x1x
2
3

λ1x2
,

x2
λ2x3

,
x2

x1x3
,
x3
x2

,
1
x3
) ,

grNAi (X−1,X−2,X1,X2,X3) = ( 1
X3

,
1
X2

,
X−1
X1

,
X−2
X2

,
X1
X3
) .

The families (gr ĈAi) and (grNAi) have the following transformation behavior.

Lemma 7.4. For i, j ∈W(w0) the following diagrams commutes.

Ti

µi
j

grNAi grSi
gr ĈAi

id×Ψi
j

T̂i

µ̂i
j

Tj
grNAj

grSj
gr ĈAj

T̂j.

Proof. Without loss of generality we can assume that j is obtained from i by a 3-move 
at position k with ik = a. Then by Lemma 4.6, the tori T̂j and Tj are obtained from 
T̂i and Ti by X -cluster and A-cluster transformation at the 4-valent vertex k − 1 of 
Γi, respectively. The commutativity of the left diagram then can be checked by direct 
computation.

The commutativity of the right diagram is obtained as follows. Note first that the 
graph Γi looks locally around k − 1 as follows:

vj2 vk

vj1 vk−1 vk+1,

for some j1, j2 ∈ M ∖ {k − 1, k, k + 1}. Let (λ, x) ∈ grSi. For m ∈ [N] we define ym =∏ℓ∈[N]∖{k−1,k,k+1} x!m,ℓ"
ℓ . Let X ′ = (µ̂i

j ○ gr ĈAi)(λ, x) and X ′′ = (gr ĈAj ○ id ×Ψi
j)(λ, x). 

For m ∈ [N] ∖ {j1, j2, k − 1, k, k + 1} we clearly have

X ′m =X ′′m. (34)

Noting the swapping of k and k + 1 in Lemma 4.6 and the definition of !⋅, ⋅" in (31) we 
have



28 V. Genz et al. / Advances in Mathematics 369 (2020) 107178

X ′′k−1 = x−1k xk−1xk+1 =X ′k−1
X ′′k = ykx−1k−1x−2k+1(xk+1xk−1 + xk) =X ′k

X ′′k+1 = yk+1xk+1(xk+1xk−1 + xk)−1 =X ′k+1.
If j1 ≥ 0, j2 ≥ 0, we have

X ′j2 = yj2x−1k xk−1(1 + x−1k−1x−1k+1xk) =X ′′j2 ,
X ′j1 = yj1x−1k−1(1 +Xk−1Xk+1X−1k )−1 =X ′′j1 .

It remains to show (34) for m ∈ {−n, . . . , −1}. Using Definition 1.2 and va,0 = v−a, the 
following equality holds for any b ∈ I and any reduced word i′ ∈W(w0):

mb,i′∏
r=0
(gr ĈAi′(λ, x))b,r = λ−1b . (35)

By Lemma 4.9 we deduce from (35)

mb,j∏
r=0
(µ̂i

j ○ gr ĈAi(λ, x))b,r = λ−1b . (36)

Setting −m = a ∈ I we obtain

X ′′m = λ−1a
ma,j∏
r=1
((gr ĈAj ○ id ×Ψi

j) (λ, x))−1a,r
= λ−1a

ma,j∏
r=1
(µ̂i

j ○ gr ĈAi(λ, x))−1a,r =X ′m,

where the first equality follows from (35), the third from (36) and the second from what 
has been shown above. ◻

We relate the GHKK-potential and the BK-decoration function to the functions si,-a
and ši,-a introduced in Definition 3.11 and 3.14, respectively:

Theorem 7.5. For a ∈ ±I and i ∈W(w0) we have

si,a =Wa∣T̂i
○ gr ĈAi, (37)

fB
a ∣Ti

= ši,a ○ grNAi . (38)

Proof. For a > 0 equalities (37) and (38) follow directly from Lemma 7.4 together with 
Proposition 5.2 and Proposition 5.5, respectively. We define k(a, s) by vk(a,s) ∶= va,s. For 
a < 0 equality (37) follows from Proposition 5.2 and (X ∈ T̂i)
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s∏
r=0 ∏ℓ∈[N]X

!k(−a,r),ℓ"
ℓ =X−a,s+1 ∏

ℓ≤k(−a,s+1)
X
−ciℓ,−a
ℓ .

To prove (38) we compute using Proposition 5.5

ši,a ○grNAi(A) = (∏
b∈I

A
−c−a,b

b,mb
) ∑

k∈[N]
ik=−a

Ak

Ak−
N∏

ℓ=k+1
(Aℓ−
Aℓ
)−ciℓ,−a = fB

a ∣Ti
(A). ◻

As a direct corollary of Theorem 7.5 we obtain:

Corollary 7.6. For a ∈ I the functions si,a and ši,a are regular.

Theorem 7.5 has the following implications for the interplay of parametrizations of 
canonical bases.

Corollary 7.7. We have the following equality of cones:

Ĉi = [gr ĈAi]trop(grSi), (39)

grS∨i = [grNAi]tropCi.
Proof. The statement follows by tropicalization Theorem 7.5 and Proposition 3.13. ◻
Remark 7.8. For the special case that g is of type A, equality (39) appeared in [31] for 
the lexicographically minimal reduced word and in [6] for an arbitrary reduced word.

8. Unimodularity of cones and polytopes

In this section we view all cones as subsets of Rn+N and will refer to them by the 
same name as their integral analogs.

Let m ∈ N and C1, C2 ⊂ Rm be two polyhedral cones. We call a bijection f ∶ C1 → C2 a 
unimodular isomorphism of C1 and C2 if there exists a lattice isomorphism g ∶ Zm → Zm

such that f = g∣
C1

.

Lemma 8.1. We have the following unimodular isomorphisms:

[gr N̂Ai]trop ∶ grLi → Ĉi, (40)

[gr ĈAi]trop ∶ grSi → Ĉi, (41)

[grCAi]trop ∶ Ci → grL∨i , (42)

[grNAi]trop ∶ Ci → grS∨i . (43)
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Proof. Reordering the coordinates on x ∈ [grLi]trop ⊗Z R as

(x1, . . . , xN ,λ1, . . . ,λn)
the definition of [gr N̂Ai]trop yields that the corresponding matrix has integer entries, 
is lower triangular and all diagonal entries are equal to −1, whereas the definition of [grCAi]trop yields that the corresponding matrix has integer entries, is upper triangular 
and all diagonal entries are equal to −1. Hence, [gr N̂Ai]trop and [grCAi]trop are lattice 
automorphisms of Zn+N . Using Corollary 6.7, claim (40) and (42) follow.

Reordering the coordinates on x ∈ [grSi]trop ⊗Z R as

(λ1, . . . ,λn, x1, . . . , xN)
the definition of [gr ĈAi]trop yields that the corresponding matrix has integer entries, is 
upper triangular and all diagonal entries are equal to −1. Hence, [gr ĈAi]trop is a lattice 
automorphism of Zn+N . Using Corollary 7.7 claim (41) follows.

Reordering the coordinates on y ∈ [Si]trop ⊗Z R as

(x1, . . . , xN ,λn,λn−1, . . . ,λ1)
the definition of [grNAi]trop yields that the corresponding matrix has integer entries, 
is upper triangular and all diagonal entries in {−1, 1}. Hence, [grNAi]trop is a lattice 
automorphism of Zn+N . Using Corollary 7.7 claim (43) follows. ◻

Using Lemma 8.1 we deduce a unimodular isomorphism of the graded string cone 
and the graded cone of Lusztig’s parametrization which can be found in the literature 
combining [33, Corollaire 3.5], [8, Lemma 6.3].

Proposition 8.2.

(1) The map [gr N̂A−1i ○ gr ĈAi]trop is a unimodular isomorphism of grSi and grLi. 
Explicitly, it is given by

(λ′, x′) = [gr N̂A−1i ○ gr ĈAi]trop(λ, x),
λ′a = λa∗ ,

x′k = λik − xk − ∑
ℓ>k

cik,iℓxℓ.

(44)

(2) The map [grCAi ○ grNAi
−1]trop is a unimodular isomorphism of grS∨i and grL∨i . 

Explicitly, it is given by
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(λ′, x′) = [grCAi ○grNAi
−1]trop(λ, x),

λ′a = λa∗ ,

x′k = (∑
a∈I

cik,aλa) − xk − ∑
ℓ>k

cik,iℓxℓ.

(45)

Proof. The unimodularity follows from Lemma 8.1. It remains to show the explicit 
description of the maps. We define k(a, s) by vk(a,s) ∶= va,s. Then (44) follows by tropi-
calizing the identities

x′a,r = s−1∏
r=0([gr ĈAi]trop(λ, x))−1a,r = λax

−1
a,s ∏

ℓ>k(a,s)
x
−ciℓ,a
ℓ ,

λ′a =
ma∗∏
r=0 ([gr ĈAi]trop(λ, x))−1a∗,r = λa∗ .

Using grNAi
−1(λ, x) = λ−1a ∏

s>rxa,s equality (45) follows by applying grCAi and trop-
icalizing. ◻

We call two polytopes P1, P2 ⊂ Rm affine unimodular isomorphic if there exists a 
lattice isomorphism g ∶ Zm → Zm and a vector v ∈ Zm such that g(P1) + v = P2.

For λ ∈ NI the polytope

Si(λ) = {x ∈ NN ∣ (λ, x) ∈ grSi} (46)

is called the string polytope of weight λ. For λ ∈NI the polytope

Li(λ) = {x ∈ NN ∣ (λ, x) ∈ grLi}
is called Lusztig’s polytope of weight λ.

Corollary 8.3. For λ = (λ1, . . . , λn) ∈ NN and λ∗ ∶= (λ1∗ , . . . , λn∗), the polytopes Si(λ)
and Li(λ∗) are affine unimodular isomorphic.

Proof. By Proposition 8.2, we have

[gr N̂A−1i ○ gr ĈAi]trop ({λ} × Si(λ)) = {λ∗} ×Li(λ∗)
and the claim follows. ◻
9. Proof of Theorem A

In this section we deduce Theorem A from Theorem 6.5. We set

pi ∶= gr N̂Ai ○D ○ grCAi ∶ Ti → T̂i,
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where D ∶ GI
m ×GN

m → GI
m ×GN

m denotes the regular map given by D(λ, x) = (λ′, x) and

λ′a =∏
b∈I

λ
ca,b

b .

By Theorem 6.5 we have for i ∈W(w0)
fB ∣

Ti
=W ∣

T̂i
○ pi .

Thus, globally fB =W ○ p holds, where p = (pΣ) ∶ A → X is defined as

pΣ ∶= µ̂Σi
Σ ○ pi ○µΣ

Σi ∶ TΣ → T̂Σ. (47)

A priori pΣ is a rational function. It thus remains to show that pΣ is regular. We establish 
the stronger statement that p = (pΣ) is a p-map in the sense of [22, Chapter 2] (see 
Definition 4.2):

Proposition 9.1. The map p = (pΣ) defined by (47) is a p-map.

Proof. By Lemma 4.3 it is enough to verify (19) and (20) for a single seed Σ. We therefore 
assume that Σ = Σi is associated to a reduced word i as described in Section 4.2.2. In 
particular, in (22) we identified the vertices of the quiver associated to Σi with the set 
M = −[n] ∪ [N]. For

k ∈M/M0 = {k ∈ [N] ∣k+ ∈ [N]}
Equations (19) and (20) hold since

(pi x)k = (gr N̂Ai ○D ○ grCAi x)k = (D ○ grCAi x)k(D ○ grCAi x)k+ =
(grCAi x)k(grCAi x)k+

= ∏
ℓ∈M

x!ℓ,k"−!ℓ,k+"
ℓ = xk+

xk−
∏
ℓ∈M

ℓ<k<ℓ+<k+
ciℓ,ik=−1

xℓ ∏
ℓ∈M

k<ℓ<k+<ℓ+
ciℓ,ik=−1

x−1ℓ = ∏
ℓ∈M

x{ek,eℓ}ℓ .

It remains to show (19) for k ∈M0. Suppose that k ∈ −[n]. We have

(pi x)k = (gr N̂Ai ○D ○ grCAi x)k = (D ○ grCAi x)−1k+ = (grCAi x)−1k+
= ∏

ℓ∈M
x−!ℓ,k+"
ℓ = xk (xk+) ∏

ℓ∈M
ℓ<k

k+<ℓ+
ciℓ,ik=−1

x−1ℓ ∏
ℓ∈M

k<ℓ<k+<ℓ+
ciℓ,ik=−1

x−1ℓ .

Assuming that k+ is not contained in M0 we thus obtain for the restriction pi ○ιi of pi
to the torus corresponding to the vertices ℓ ∈M/M0
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(pi ○ιi)k = (xk+) ∏
ℓ∈M/M0
k<ℓ<k+<ℓ+
ciℓ,ik=−1

x−1ℓ = ∏
ℓ∈M/M0

x{ek,eℓ}ℓ .

If k+ is contained in M0 we obtain

(pi ○ιi)k = ∏
ℓ∈M/M0
k<ℓ<k+<ℓ+
ciℓ,ik=−1

x−1ℓ = ∏
ℓ∈M/M0

x{ek,eℓ}ℓ .

It remains to verify (19) for k ∈ [N] with k+ ∉ [N]:
(pi x)k = (gr N̂Ai ○D ○ grCAi x)k = (D ○ grCAi x)k∏

b∈I
x
ci∗

k
,b∗

b∗,mb∗

= ∏
ℓ∈M

x!ℓ,k"
ℓ ∏

b∈I
x
ci∗

k
,b

b,mb
= (xk−)−1 x−1k ∏

ℓ∈M
ℓ<k<ℓ+

ciℓ,ik=−1
xℓ.

Assuming that k− is not contained in M0 we thus obtain for the restriction pi ○ιi of pi
to the torus corresponding to the vertices ℓ ∈M/M0

(pi ○ιi)k = (xk−)−1 ∏
ℓ∈M/M0
ℓ<k<ℓ+<k+
ciℓ,ik=−1

xℓ = ∏
ℓ∈M/M0

x{ek,eℓ}ℓ .

If k− is contained in M0 we obtain

(pi ○ιi)k = ∏
ℓ∈M/M0
ℓ<k<ℓ+<k+
ciℓ,ik=−1

xℓ = ∏
ℓ∈M/M0

x{ek,eℓ}ℓ . ◻

From explicit construction of pi for seeds Σ = Σi associated to reduced words we 
deduce

Proposition 9.2. The map p ∶ A → X is a finite cover. The degree of p equals the deter-
minant of the Cartan-Matrix C = (ca,b).
Proof. By Proposition 8.2 the maps gr N̂Ai and grCAi are isomorphisms. The claim 
follows by inspecting the definition of D. ◻
Example 9.3. For g = sl3(C) and i = (1, 2, 1) we have

p (A−1,A−2,A1,A2,A3) = ( A2
A−1 ,

A−1A3
A−2A2

,
A−2A2
A1A3

,
A−2,A3
A−1 ,

A−1A1
A−2 ) .
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By Theorem 7.5 we obtain that the map p′ ∶ A → X defined by

p′i ∶= gr ĈAi ○D ○ grNAi ∶ Ti → T̂i

also satisfies fB = W ○ p′. We deduce from a computation analogous to the proof of 
Proposition 9.1 that the functions p′ and p coincide.

Remark 9.4. In [16] the first author gives another construction of the map p in type A
as a canonical choice of a p-map p ∶ A → X without referring to the Chamber Ansatz. In 
[16] the map p occurs as a crucial ingredient in the explicit definition of a B(∞)-crystal 
structure on the analogues of Ci ⊂ [Ti]trop and Ĉi ⊂ [T̂i]trop for the reduced double Bruhat 
cell.
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Appendix A. Maximal green sequences

We refer to [26] for an overview over the topic of maximal green sequences. Goodearl 
and Yakimov [21] announced that for G simple, simply connected the cluster algebra of 
the double Bruhat cell Bw0,e possesses a maximal green sequence. For Bw0,e of type A a 
maximal green sequence was constructed in [32]. Following a suggestion of the anonymous 
referee we get the existence of maximal green sequences for double Bruhat cells of type D 
and E which we demonstrate here, details of proofs and more general results appear in 
another paper.

Recall, that for a quiver Q without frozen vertices, the principal extension is a quiver 
Qprin such that for each vertex v ∈ Q we add a frozen vertex vd and an arrow v → vd. 
A vertex v of a quiver is green if in the principal extension all arrows joining the vertex 
v and frozen vertices are directed from the vertex v to the frozen and red if the all 
arrows joining the vertex v and frozen vertices are directed from the frozen vertex to v. 
A maximal green sequence is a sequence of mutations at green vertices which starts at 
Qprin and terminates at a quiver where all mutable vertices are red.

To get maximal green sequences for the types Dn and E, we consider a more general 
situation.
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We need some notations. For natural numbers k1 ≥ . . . ≥ ks ≥ 2 we denote by Tk1,...,ks

a quiver which is a bouquet of equioriented quivers of types Ak1 , . . . , Aks such that each 
line quiver has one sink and all these sinks are glued together at the root of the bouquet. 
We label the vertices of the bouquet Tk1,...,ks as follows. The unique sink is labeled by 1. 
We then traverse from the sink to the source of Ak1 and assign gradually labels 2, . . . , k1. 
We continue with Ak2 from the sink and assign gradually labels k1 + 1, . . . , k1 + k2 − 1; 
k1 + k2, . . . , k1 + k2 + k3 − 2; and so on until Aks with the labels k1 + . . . + ks−1 − (s − 2) +
1, . . . , k1 + . . . + ks − (s − 1).

Here we depicted T4,3,3,2.

6 8

5 7 9

4 3 2 1

A banner Bm,l of size m × ℓ ((m, ℓ) ∈ Z2≥2) is a quiver which is the product of equior-
iented quivers of type Am and type Aℓ enriched with arrows in each type A2 × A2-
subquiver, such that the added arrows divide the squares into two cyclically ordered 
triangles.

Here is an example of B3,4, where each copy of type A3 is colored red, each copy 
of type A4 is colored blue and the arrows diving the squares are colored black. (For 
interpretation of the colors in the diagrams, the reader is referred to the web version of 
this article.)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅
A multi-banner Tk1,...,ks ◻ Aℓ is defined as follows. We take the equioriented quiver 

of type Aℓ with a single source and single sink and enrich the product Tk1,...,ks ×Aℓ by 
replacing each product of type Aki ×Aℓ with the banner Bki,ℓ. In other words, we take 
the amalgamation of the banners Bk1,ℓ, . . . , Bks,ℓ along Aℓ.

We assign the following labels to the vertices of the multi-banner Tk1,...,ks◻Aℓ. Firstly, 
we place the original bouquet Tk1,...,ks at the source of Aℓ. We place the copy T (2)k1,...,ks
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at the vertex next to the source and so on, the last copy T (ℓ)k1,...,ks
at the sink vertex. We 

label the vertices of the t-the copy T (t)k1,...,ks
, 2 ≤ t ≤ ℓ, by r(t), where r denotes the label 

of the original vertex of the bouquet Tk1,...,ks , 1 ≤ r ≤ k1 + . . . + ks − (s − 1).
Here is an example of T3,2 ◻A4, where the quivers of type A3 in each T3,2 copy are 

colored blue, the quivers of type A2 green, while the arrows corresponding to the type 
A4-quivers in the product are colored red. The arrows we add to the products in the 
banner are colored black.

3 3(2) 3(3) 3(4)

2 2(2) 2(3) 2(4)

4 4(2) 4(3) 4(4)

1 1(2) 1(3) 1(4)

A maximal green sequence for the above example is given by successive mutations at the 
following sequence of vertices read from left to right:

(4(4),3(4),2(4),1(4),4(3),3(3),2(3),1(3),4(4),3(4),2(4),1(4),4(2),3(2),2(2),
1(2),4(3),3(3),2(3),1(3),4(4),3(4),2(4),1(4),4(1),3(1),2(1),1(1),4(2),3(2),
2(2),1(2),4(3),3(3),2(3),1(3),4(4),3(4),2(4),1(4)).

We denote by Tr (r ∈ [ℓ]) the composition of mutations at the following sequence of 
vertices in the multi-banner Tk1,...,ks ◻Aℓ:

Tr ∶= ((k1 + k2 + . . . + ks − s + 1)(r), (k1 + k2 + . . . + ks − s)(r), . . . ,1(r))
Proposition A.1. For a multi-banner Tk1,...,ks ◻Aℓ, the sequence

Tn (Tn−1Tn) . . . (T1T2 . . .Tn)
is a maximal green sequence.

From this proposition we get maximal green sequences for type Dn (n ≥ 4), E6, E7, 
and E8 as follows.

For type Dn, we consider the following labeling of simple roots depicted in the Dynkin 
diagram:
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n − 1

1 2 ⋯ n − 2.

n

Then, for the reduced word

iD ∶= (12 . . . (n − 2)(n − 1)n)n−1 ∈W(w0)
the quiver ΓiD with frozen vertices cut off is the multi-banner Tn−2,2,2 ◻An−1. Therefore 
the maximal green sequence of Proposition A.1 for Tn−2,2,2 ◻ An−2 is a maximal green 
sequence for the Dn-type double Bruhat cell Bw0,e.

We give an example of the graph ΓiD for D5 below. This is the multi-banner T3,2,2◻A3. 
In every copy of T3,2,2 we color the corresponding quiver of type A3 yellow and the 
quivers of type A2 green and blue, respectively. The type A3 quiver along which the 
amalgamation is taken is colored red. The labels of the vertices are the labels used in 
the definition of ΓiD .

v5 v10 v15

v4 v9 v14

v1 v6 v11

v2 v7 v12

v3 v8 v13

A maximal green sequence for the quiver ΓiD is in the example above given by the se-
quence of mutations at the vertices (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 15, 14, 13, 12, 11, 5, 4, 3,
2, 1, 10, 9, 8, 7, 6, 15, 14, 13, 12, 11).

For general Dn a maximal green sequence is given by successive mutation on the 
vertices:

S(1),S(2), . . . ,S(N
n
− 1) , (48)

where we set
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I(k) ∶= (N − kn,N − kn − 1, . . . ,N − (k + 1)n + 1),
S(k) ∶= I(k),I(k − 1), . . . ,I(1).

The reader who prefers not to rely on Proposition A.1 will encounter no difficulty in 
checking that (48) is a maximal green sequence by induction over n.

For type E6, we consider the following labeling of simple roots:

3 2 1 4 5.

6

Then, for the reduced word

iE6 = (123456)6 ∈W(w0)
the quiver ΓiE6

with frozen vertices cut off is the multi-banner T3,3,2 ◻A5. We get the 
following maximal green sequence from Proposition A.1:

(30,29,28,27,26,25,24,23,22,21,20,19,30,29,28,27,26,25,18,17,16,
15,14,13,24,23,22,21,20,19,30,29,28,27,26,25,12,11,10,9,8,7,18,
17,16,15,14,13,24,23,22,21,20,19,30,29,28,27,26,25,6,5,4,3,2,1,
12,11,10,9,8,7,18,17,16,15,14,13,24,23,22,21,20,19,30,29,28,27,
26,25).

We depict the unfrozen part of ΓiE6
below for the convenience of the reader:

v5 v11 v17 v23 v29

v4 v10 v16 v22 v28

v6 v12 v18 v24 v30

v1 v7 v13 v19 v25

v2 v8 v14 v20 v26

v3 v9 v15 v21 v27.

For type E7, we consider the following labeling of simple roots:

4 3 2 1 5 6.

7
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Then for the reduced word

iE7 = (1234567)7 ∈W(w0)
the quiver ΓiE7

with frozen vertices cut off is the multi-banner T4,3,2 ◻ A6. Hence we 
obtain from Proposition A.1 the maximal green sequence

(42,41,40,39,38,37,36,35,34,33,32,31,30,29,42,41,40,39,38,37,36,

28,27,26,25,24,23,22,35,34,33,32,31,30,29,42,41,40,39,38,37,36,

21,20,19,18,17,16,15,28,27,26,25,24,23,22,35,34,33,32,31,30,29,

42,41,40,39,38,37,36,14,13,12,11,10,9,8,21,20,19,18,17,16,15,28,

27,26,25,24,23,22,35,34,33,32,31,30,29,42,41,40,39,38,37,36,7,6,

5,4,3,2,1,14,13,12,11,10,9,8,21,20,19,18,17,16,15,28,27,26,25,24,

23,22,35,34,33,32,31,30,29,42,41,40,39,38,37,36)
We depict the unfrozen part of ΓiE7

below for the convenience of the reader:

v6 v13 v20 v27 v34 v41

v5 v12 v19 v26 v33 v40

v7 v14 v21 v28 v35 v42

v1 v8 v15 v22 v29 v36

v2 v9 v16 v23 v30 v37

v3 v10 v17 v24 v31 v38

v4 v11 v18 v25 v32 v39.

For type E8 we consider the following labeling of simple roots:

5 4 3 2 1 6 7.

8

Then, for the reduced word

iE8 = (12345678)8 ∈W(w0)
the quiver ΓiE8

with frozen vertices cut off is the multi-banner T5,3,2 ◻ A7. Thus from 
Proposition A.1 we obtain the maximal green sequence
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(56,55,54,53,52,51,50,49,48,47,46,45,44,43,42,41,56,55,54,53,52,

51,50,49,40,39,38,37,36,35,34,33,48,47,46,45,44,43,42,41,56,55,
54,53,52,51,50,49,32,31,30,29,28,27,26,25,40,39,38,37,36,35,34,
33,48,47,46,45,44,43,42,41,56,55,54,53,52,51,50,49,24,23,22,21,

20,19,18,17,32,31,30,29,28,27,26,25,40,39,38,37,36,35,34,33,48,
47,46,45,44,43,42,41,56,55,54,53,52,51,50,49,16,15,14,13,12,11,

10,9,24,23,22,21,20,19,18,17,32,31,30,29,28,27,26,25,40,39,38,
37,36,35,34,33,48,47,46,45,44,43,42,41,56,55,54,53,52,51,50,49,

8,7,6,5,4,3,2,1,16,15,14,13,12,11,10,9,24,23,22,21,20,19,18,17,
32,31,30,29,28,27,26,25,40,39,38,37,36,35,34,33,48,47,46,45,44,

43,42,41,56,55,54,53,52,51,50,49).
We depict the unfrozen part of ΓiE8

for the convenience of the reader:

v7 v15 v23 v31 v39 v47 v55

v6 v14 v22 v30 v38 v46 v54

v8 v16 v24 v32 v40 v48 v56

v1 v9 v17 v25 v33 v41 v49

v2 v10 v18 v26 v34 v42 v50

v3 v11 v19 v27 v35 v43 v51

v4 v12 v20 v28 v36 v44 v52

v5 v13 v21 v29 v37 v45 v53
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