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Abstract—A study is performed of the main approaches to investigating the stochastic process of
population dynamics. Continuous time and space and immovable individuals are used to derive a
denumerable system of integrodifferential equations corresponding to the dynamics of the spatial
momentum of this process. A way to find an approximate solution using the momentum approach is
described.

Keywords: mathematical modeling, integrodifferential equations, mathematical biology.

DOI: 10.3103/S027864192002003X

1. INTRODUCTION

In recent years, computer modeling has become ever more important in different lines of research.
Contemporary information technologies clarify the effect of one natural-science agent or another has on
the final behavior of a considered system. This promotes a better understanding of the dependences
between the objects of a system and helps to coordinate the model with real observations. In this
work, we consider a model of a stationary biological society. This model was proposed in [1, 2] and
studied in e.g., [3–6]. The main aim of this work is to interpret and formalize the specified model from a
mathematical viewpoint and derive the main equations for the dynamics of spatial momentum.

To understand the reasons for the emergence of this model, compare the earlier descriptions of
population dynamics. The simplest and best known models are the Verhulst equation and Lotka–
Volterra equations for one or several continuous- quantity species. They have analytical solutions, and
there are numerical ways of finding solutions for several species. These models are easily extended:
these included seasonality (see [7]) and delays affecting quantities [8]), and of modeling noise using
random perturbations and stochastic integration [8]. However, they cannot describe the spatial structure
of a population, which can substantially affect numbers and the conditions of species coexistence.
Cellular automata with determinate and stochastic rules are used to model spatial dynamics [9], but
investigation of such models is hindered by the complexity of deriving the dependence of automaton
behavior on variations in parameters, and by the need for a great deal of modeling to investigate the
space of parameters and initial-value conditions. Reaction–diffusion equations allow us to describe the
spatial structure of a population with weak intermixing caused by motion [10]), but they cannot describe
immovable populations. The model proposed by Dieckmann and Law solves that problem of modeling
population dynamics for plant societies with complex spatial structures.

The spatial population-dynamics model proposed by Dieckmann and Law requires a multidisci-
plinary approach. Many problems arise in working with this model. These include stating the problem
and selecting the core biological characteristics of the modeled process; implementing the software for
the stochastic process in a bound region; the relation between the spatial-dynamics process in bound
and unbound regions; the statistical test of hypotheses for the bounded-region process; finding solutions
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for the process dynamics; the closure of momentum equations for stochastic point processes (allowing us
to find approximate solutions for the first and second momentum); conditions of existence for solutions;
and ways of seeking solutions for closed momentum equations.

In this work, we review all available results related to the mathematical formalization of this model.

2. DISCRETE POPULATION DYNAMICS:
THE STOCHASTIC SPATIAL DIECKMANN–LAW MODEL

This model was first presented in [1, 2]. It allows us to describe the population dynamics of individuals
who do not move during their lives (e.g., plants). The principles of this model are described locally: all
possible events can be considered on the example of the interaction between two individuals. We set the
following values for one individual at point x0: mortality d (which does not depend on time and other
individuals); lifetime td ∼ Exp(λ = d) of an isolated individual, which is a random variable distributed
exponentially; and time tb ∼ Exp(λ = b) before the birth of a new individual, which is a random variable
distributed exponentially with parameter b.

If a new individual is born, it can appear close to an earlier one: the distance is given by a random
value with given distribution m(x), xb ∼ m(x− x0). Competitive mortality is given by function W (ξ);
for convenience, it is divided into parameter d′ and function w(ξ) normed by 1 (i.e., a function such that
its integral over the entire region is 1). For two individuals, the competitive mortality of one of them is
random variable distributed exponentially with parameter d′w(x0 − x1), td′ ∼ Exp(λ = d′w(x0 − x1)).

Finally, the birth rate and mortality function are assumed to be radially symmetric, while the process
itself is considered in k dimensions, k = 1, 2, 3. To study the global properties of the resulting models, we
postulate that the distribution of individuals does not depend on coordinates and does not change with
translations and rotations (i.e., it is stationary). It is impossible for two individuals to be located at one
point, and an event in which two events occur at the same time cannot have nonzero probability (i.e., we
have a Markov field for k spatial dimensions and one time dimension). The behavior of this process on
set Rk ⊕ R+ can be studied using the theory of stochastic point processes [11].

3. DERIVING DYNAMIC EQUATIONS

Let us consider possible events in a closed bound set D with a small diameter that can exist in short
time interval δt. If the initial-value condition of the stochastic point process is Φt, the probabilities of the
birth and death in this set during this time interval are

f+(x+|Φt) = P(x+ ∈ Φt+δt/Φt ∩D) =

⎡
⎣b ∑

x0∈Φt

m(x0 − x+)|D|

⎤
⎦ δt+ o(δt)

and

f−(x−|Φt) = P(x− ∈ Φt/Φt+δt ∩D) = Nt(D)

⎡
⎢⎢⎣d+ d′

∑
x0∈Φt

x0 �=x−

w(x0 − x−)

⎤
⎥⎥⎦ δt+ o(δt)

respectively.

Let ΔNδt(D) be a random variable equal to the variation in quantity in region D during time interval
δt. Then it is equal to the difference between f+ and f−:

ΔNδt(D) =

⎡
⎢⎢⎣b

∑
x0∈Φt

m(x0 − x+)|D| −Nt(D)

⎡
⎢⎢⎣d+ d′

∑
x0∈Φt

x0 �=x−

w(x0 − x−)

⎤
⎥⎥⎦
⎤
⎥⎥⎦ δt+ o(δt).
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We take the expectations of both sides and divide them by δt and |D|. We then have relation

EΔNδt(D)

δt|D| = bE
∑

x0∈Φt

m(x0 − x+)− d

|D|E
∑

x0∈Φt

1lD(x0)−
d′

|D|E
∑

x0,x−∈Φt

x0 �=x−

x−∈D

w(x0 − x−) + ot(1).

Moving to the limit as the diameter of region D tends to zero (diam(D) → 0), and considering the
definitions of the first and second factorial momentum, we find that

Δg1(x1, t)

δt
= b

∫
m(x0 − x1)g1(x0, t)dx0 − dg1(x1, t1)

−d′
∫

w(x0 − x1)g2(x1, x2, t)dx0 + ot(1).

The process is stationary, so we may assume that the second moment depends only on the relative
distance, and the value of the first moment in the spatial coordinates is constant. Translation δt → 0
yields the dynamic equation for the first moment:

∂g1(t)

∂t
= (b− d)g1(t)− d′

∫
w(ξ)g2(ξ, t)dξ.

The same procedure can be used to find the dynamic equation for an arbitrary moment. We take n
closed bound disjoint regions D1, . . . ,Dn such that their shape and size are the same and the diameter
is small, and we consider the probabilities of the variation in quantity in these regions. Our concern
is random variable Δ[Nδt(D1) . . . Nδt(Dn)], which is equal to the variation in quantity in domains
D1, . . . ,Dn during time interval δt. Since the process is stationary, it follows that

ΔNδt(D1) = ΔNδt(Dk) ∀k = 2, . . . , n.

In light of this and the Markov property, we obtain the relation

Δ[Nδt(D1) . . . Nδt(Dn)] = nΔNδt(D1)Nδt(D2) . . . Nδt(Dn) + o(δt).

Using the expression for ΔNδt(D), we obtain the equation for the dynamics of variation:

Δ[Nδt(D1) . . . Nδt(Dn)] = nNδt(D2) . . . Nδt(Dn)

×

⎡
⎢⎢⎢⎢⎢⎣
b

∑
x0∈Φt

x+∈D1

m(x0 − x+)|D1| −Nδt(D1)

⎛
⎜⎜⎜⎜⎜⎝
d+ d′

∑
x0∈Φt

x0 �=x−

x−∈D1

w(x0 − x−)

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦
δt+ o(δt).

Dividing both sides by n|D1| . . . |Dn|δt and taking the expectation of both sides, we obtain

EΔ[Nδt(D1) . . . Nδt(Dn)]

n|D1| . . . |Dn|δt
= E

⎡
⎢⎢⎣Nδt(D2) . . . Nδt(Dn)

|D2| . . . |Dn|

⎛
⎜⎜⎝b

∑
x0∈Φt

x+∈D1

m(x0 − x+)

⎞
⎟⎟⎠
⎤
⎥⎥⎦

− E

⎡
⎢⎢⎢⎢⎢⎣
Nδt(D1) . . . Nδt(Dn)

|D1| . . . |Dn|

⎛
⎜⎜⎜⎜⎜⎝
d+ d′

∑
x0∈Φt

x0 �=x−

x−∈D1

w(x0 − x−)

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦
+ ot(1).
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We decompose the right-hand side of the relation into three parts and use the definition of indicators.
Our goal is to obtain sums over reliably different points in order to move on to factorial moments
afterwards. For the right-hand side, we obtain

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b

|D2| . . . |Dn|
∑

x0∈Φt

x+∈D1
x2∈D2,...,xn∈Dn
x0 �=xk∀k=2,...,n

m(x0 − x+)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+ E

⎡
⎢⎢⎢⎢⎢⎣

b

|D2| . . . |Dn|
∑

k=2,...,n
x+∈D1

x2∈D2,...,xn∈Dn

m(xk − x+)

⎤
⎥⎥⎥⎥⎥⎦

− E

⎡
⎢⎢⎣ d

|D1| . . . |Dn|
∑

x0∈D1
x2∈D2,...,xn∈Dn

w(x0 − x−)

⎤
⎥⎥⎦− E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d′

|D1| . . . |Dn|
∑

x0∈Φt

x−∈D1
x2∈D2,...,xn∈Dn
x0 �=xk∀k=2,...,n

w(x0 − x−)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

− E

⎡
⎢⎢⎢⎢⎢⎣

d′

|D1| . . . |Dn|
∑

k=2,...,n
x−∈D1

x2∈D2,...,xn∈Dn

w(xk − x−)

⎤
⎥⎥⎥⎥⎥⎦

(1)

The initial two terms of Eq. (1) correspond to the birth rate; the third, to unconditional mortality; and
the last two, to competitive mortality. Moving on to the limit as the size of the regions tends to zero, we
obtain the relation

1

n

Δgn(x1, . . . , xn, t)

δt
= b

∫
m(x0 − x1)gn(x0, x2, . . . , xn, t)dx0

+ b
∑

k=2,...,n

m(xk − x1)gn−1(x2, . . . , xn, t)

− dgn(x1, . . . , xn, t)− d′
∫

w(xn+1 − x1)gn+1(x1, . . . , xn+1, t)dxn+1

− d′
∑

k=2,...,n

w(xk − x1)gn(x1, . . . , xn, t) + ot(1).

Moving to the limit as δt → 0 and applying changes ξ1 = x2 − x1, . . . , ξn−1 = xn − x1, we obtain
the dynamic equations

1

n

∂gn(ξ1, . . . , ξn−1, t)

∂t
= b

∫
m(ξ0)gn(ξ1 − ξ0, . . . , ξn−1 − ξ0, t)dξ0

+ b
∑

k=1,...,n−1

m(ξk)gn−1(ξ2 − ξ1, . . . , ξn−1 − ξ1, t)− dgn(ξ1, . . . , ξn−1, t)

− d′
∫

w(ξ0)gn+1(ξ1, . . . , ξn, t)dξn − d′
∑

k=2,...,n

w(ξk)gn(ξ1, . . . , ξn−1, t).

For the second moment in particular, we have the equation

1

2

∂g2(ξ1, t)

∂t
= b

∫
m(ξ0)g2(ξ1 − ξ0, t)dξ0 + bm(ξ1)g1(t)− dg2(ξ1, t)

− d′w(ξ1)g2(ξ1, t)− d′
∫

w(ξ2)g3(ξ1, ξ2, t)dξ2.
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For the third moment, we have the equation

1

3

∂g3(ξ1, ξ2, t)

∂t
= b

∫
m(ξ0)g2(ξ1 − ξ0, ξ2 − ξ0, t)dξ0 + b

(
m(ξ1) +m(ξ2)

)
g2(ξ2 − ξ1, t)

− dg3(ξ1, ξ2, t)− d′
(
w(ξ1) + w(ξ2)

)
g3(ξ1, ξ2, t)− d′

∫
w(ξ3)g4(ξ1, ξ2, ξ3, t)dξ3.

When m(x) = w(x) and d = 0, we can obtain an analytic solution of the kind gn(x1, . . . , xn, t) =(
b
d′
)n, which corresponds to the simple Poisson point process with intensity b

d′ and yields a nontrivial
equilibrium state for the process of the spatial population dynamics.

4. EQUILIBRIUM AND CLOSING EQUATIONS

Our concern is the possible equilibrium states of the following system for when the derivative of each
moment with respect to time is equal to zero:

(b− d)g1(t)− d′
∫

w(ξ)g2(ξ, t)dξ = 0,

b

∫
m(ξ2)g2(ξ1 − ξ2, t)dξ2 + bm(ξ1)g1(t)− dg2(ξ1, t)

− d′w(ξ1)g2(ξ1, t)− d′
∫

w(ξ2)g3(ξ1, ξ2, t)dξ2 = 0.

We see that the dynamic equations for the nth spatial factorial moment include terms with the
(n+ 1)th spatial moment. To resolve this incongruency, we use the closing technique broadly applied in
physics. The closure of a spatial moment is treated as the expression of the kth moment via momentum
of lower orders.

Closures for the third moment are the most studied closures. The first moment allows us to determine
the mean quantity; the second, how the individuals are clustered and isolated. The closing of the second
moment through the first is uniquely defined and reduced to the Verhulst equation for the expected
density of quantity. This was studied in detail in [12]. There are many ways of closing of the third
moment through the second and the first. They all satisfy the restrictions

(1) lim
|ξ2|→∞

g3(ξ1, ξ2) = g2(ξ1)g1;

(2) lim
|ξ1|→∞

g3(ξ1, ξ2) = g2(ξ2)g1;

(3) if g2(ξ1) = g21 , then g3(ξ1, ξ2) = g31 .

Several candidates for suitable closures of spatial moments were proposed in [12]:

(1) g
(1)
3 (ξ1, ξ2) ≈ g2(ξ1)g2(ξ2)/g1;

(2) g
(2)
3 (ξ1, ξ2) ≈ g2(ξ1)g1 + g2(ξ2)g1 + g2(ξ1 − ξ2)g1 − 2g31 ;

(3) g
(3)
3 (ξ1, ξ2) ≈ 1

2g1

(
g2(ξ1)g2(ξ2) + g2(ξ1)g2(ξ2 − ξ1) + g2(ξ2)g2(ξ2 − ξ1)− g41

)
;

(4) g
(4)
3 (ξ1, ξ2)) ≈

g2(ξ1)g2(ξ2)g2(ξ2 − ξ1)

g31
;

(5) g
(5)
3 (ξ1, ξ2) ≈ αg

(1)
3 + (1− α)g

(3)
3 .
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Integral equations obtained after closing g
(1)
3 and g

(5)
3 were investigated earlier mathematically. In [3,

13, 14], it was shown that substituting the closure of g(1)3 produces a linear integral equation that has no
solutions unless major restrictions are imposed on parameters of the model (relation d = 0 is a necessary
condition).

The closing of g(5)3 produces a nonlinear Hadamard correct integral equation. Sufficient conditions for
the existence of a unique solution to the obtained equation were found in [15]. This shows that selecting
a suitable closure for the third spatial moment is a fairly nontrivial problem.

It is of interest to design a software complex that performs computer simulations of the considered
model and compare the results and numerical solutions to integral equations obtained by closing the
latter.

Note that once the third moment is closed, we cannot distinguish between processes with equal
momentum of the first and second order and different moments of orders higher than two (e.g., the
simple Poisson process and the onepresented in [16]). Our concern is thus closures that providing the
best approximation of the third moment in the context of equations of spatial dynamics. The search for
optimum closures that work over the set of equilibrium solutions to equations of spatial dynamics is thus
an active line of research.

5. DYNAMIC EQUATIONS: SYMMETRY OF SCALE

For the population-dynamic process, we can change the coordinate system and use one solution for
the momentum of the process in order to obtain solutions for a family of parameters.

Time scaling. We change the variable as t̃ = τt and obtain the dynamic equations for the first
moment:

∂g1

(
1

τ
t̃

)

∂t̃
= τ(b− d)g1

(
1

τ
t

)
− τd′

∫
w(ξ)g2

(
ξ,

1

τ
t̃

)
dξ.

We obtain the correspondence between solutions and parameters:

t̃ = τt, w̃ = w,

b̃ = τb, d̃′ = τd′,

d̃ = τd, m̃ = m,

g̃n(x1, . . . , xn, t̃) = gn(x1, . . . , xn, τ t). (2)

This scaling provides no new solutions to the equilibrium equations.
Spatial scaling. We change the variable as x̃ = lx and obtain the dynamic equations for the first

moment:

∂g1

(
1

l
x̃1, t

)

∂t
= (b− d)g1

(
1

l
x̃1, t

)
− d′

∫
w

(
1

l
ξ̃

)
g2

(
1

l
ξ̃, t

)
d

(
1

l
ξ̃

)
.

We obtain the dynamic equations for the first moment (where d is the number of measurements):

x̃ = lx, w̃(x̃) = lkw(lx),

b̃ = b, d̃′ =
1

lk
d′,

d̃ = d, m̃(x̃) = lkm(lx),

g̃n(x̃1, . . . , x̃n, t) = lkngn(lx1, . . . , lxn, t). (3)

With normal kernels parametrized by dispersion, this scaling allows us to obtain new solutions within
the family of parameters.
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6. MIXED INITIAL-VALUE CONDITIONS AND PLURALITY
OF SOLUTIONS OF EQUILIBRIUM EQUATIONS

Each stationary process almost certainly contains either zero or an infinite set of points [11]. In
the context of the spatial-dynamic process, the probability of transitioning from one mode to another
during a finite time interval is equal to zero. Equilibrium equations treated as integrodifferential
equations have at least one solution. However, we can investigate the case of mixed initial-value
conditions corresponding to two equilibrium states. Such an initial-value condition remains stationary
and preserves Markov’s property.

We assume there exists a solution to the equilibrium equation for collection b, d, d′, m, w of
parameters. Let us construct a family of equilibrium states for spatial-dynamic processes. We take
solution

g1(x1), g2(x1, x2), . . . , gn(x1, . . . , xn)

to the equilibrium equation.
We select probability p and use the stochastic point process as the initial-value conditions. It

corresponds to the solution to an equilibrium equation with probability p and is equal to zero with
probability 1− p. The resulting point process is in equilibrium with the population dynamics. The
momentum of this process’s areas is

g̃1(x1) = pg1(x1),

g̃2(x1, x2) = p2g2(x1, x2),

and

g̃n(x1, . . . , xn) = pngn(x1, . . . , xn).

The equilibrium equation thus does not provide all possible solutions for equilibrium states. To resolve
this problem, one we can, e.g., add the unconditional birth-rate. This reduces the probability of being
in the zero state up to zero and restores the connectedness of the spatial-dynamic process. If the added
unconditional birth-rate is a simple Poisson flow with intensity ε, the initial two equilibrium equations
take the form

(b− d)g1(t)− d′
∫

w(ξ)g2(ξ, t)dξ = −ε

and

b

∫
m(ξ2)g2(ξ1 − ξ2, t)dξ2 + bm(ξ1)g1(t)− dg2(ξ1, t)

− d′w(ξ1)− g2(ξ1, t)− d′
∫

w(ξ2)g3(ξ1, ξ2, t)dξ2 = −εg1(t).

We plan to prove in the future that the regularized equilibrium equation has only one solution that
uniquely defines the limit point of the regularized process of the population dynamics for arbitrary
stationary initial-value conditions that have Markov’s property.
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