
A
s

E
a

b

c

a

A
R
R
1
A
A

K
C
J
T
G
Q
R

1

p
k
a
t
i
t
s
n
a
n

w
T

h
1

Applied Soft Computing 65 (2018) 214–229

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

 hybrid method of 2-TSP and novel learning-based GA for job
equencing and tool switching problem

hsan Ahmadia,∗, Boris Goldengorina,b, Gürsel A. Süera, Hadi Mosadeghc

Department of Industrial and Systems Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA
Mathematics and Statistical Sciences Department, College of Liberal Arts and Sciences, University of Colorado Denver, Denver, CO 80217, USA
Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran

 r t i c l e i n f o

rticle history:
eceived 4 June 2017
eceived in revised form
9 December 2017
ccepted 30 December 2017
vailable online 3 January 2018

eywords:
ombinatorial optimization

ob scheduling
ool switches
enetic algorithm
-learning

a b s t r a c t

One of the well-known problems in single machine scheduling context is the Job Sequencing and Tool
Switching Problem (SSP). The SSP is optimally sequencing a finite set of jobs and loading restricted subset
of tools to a magazine with the aim of minimizing the total number of tool switches. It has been proved
in the literature that the SSP can be reduced to the Job Sequencing Problem (JSeP). In the JSeP, the
number of tool switches from the currently processed job to the next job depends on the sequencing
of all predecessors. In this paper, the JSeP is modeled as a Traveling Salesman Problem of Second Order
(2-TSP). We call the induced JSeP by 2-TSP as the Job Sequencing Problem of Second Order (2-JSeP) with a
different objective function formulation from JSeP and prove that 2-JSeP is NP-hard. Then the Assignment
Problem of Second Order (2-AP) and Karp-Steele patching heuristic are incorporated to solve 2-JSeP. The
obtained solution, however, does not guarantee the optimal sequence and are used to seed a Dynamic
Q-learning-based Genetic Algorithm (DQGA) to improve the solution quality. Q-learning, which is a kind
of reinforcement learning method, is used to learn from the experience of selecting the order of mutation
einforcement learning and crossover operators in each generation of the genetic algorithm. The computational results on 320
benchmark instances show that the proposed DQGA is comparable to the state-of-the-art methods in
the literature. The DQGA even outperforms the existing methods for some instances, as could improve
the reported “best-known solutions” in notably less time. Finally, through the statistical analysis, the

comp
performance of DQGA is

. Introduction and background

The Flexible Manufacturing Systems (FMS) containing Com-
uter Numerical Control (CNC) machines are able to process various
inds of jobs when the tools required for processing the jobs are
vailable in the machine’s magazine. The magazine has C slots for
ools and each tool occupies one slot. C is also known as the capac-
ty of the magazine and no job requires more than C tools. If the
ools required by a job are not on the machine’s magazine, a tool
witch, i.e. removing one of the existing tool and then inserting a
ew one, is necessary [1]. Usually, tool switching is time consuming
nd therefore, finding a sequence of the jobs minimizing the total
umber of tool switches is an important issue within the FMS.
In this paper, we investigate how to find the sequence of jobs
ith the objective of minimizing the total number of tool switches.

his problem is known as the Job Sequencing and Tool Switching

∗ Corresponding author.
E-mail address: ea162814@ohio.edu (E. Ahmadi).

ttps://doi.org/10.1016/j.asoc.2017.12.045
568-4946/© 2018 Elsevier B.V. All rights reserved.
ared with those of non-learning genetic algorithms.
© 2018 Elsevier B.V. All rights reserved.

Problem (SSP) [1] and is applicable to different areas such as com-
puter memory allocation [2,3], metalworking industry [4] chemical
manufacturing plant, insurance company, pharmaceutical pack-
aging [5] and mailroom insert planning [6,7]. Another important
application of SSP is in the electronics industry [8–11], where dif-
ferent types of printed circuit boards (PCBs) need to be processed on
a component assembly machine. The different PCBs can be trans-
lated to jobs and the different electronic components, which are
required to be loaded into the feeder of the machine, can be trans-
lated to tools. In addition, Shirazi and Frizelle [12] investigated
the real-world application of known methods of solving SSP in
seven different companies in aerospace, CNC producers, and tooling
industries.

Tang and Denardo [1] discussed that the SSP can be represented
by the following two sub-problems.
1. The Job Sequencing Problem (JSeP), which is a scheduling problem
to identify an optimal sequence of jobs to be processed on the
machine.

https://doi.org/10.1016/j.asoc.2017.12.045
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2017.12.045&domain=pdf
mailto:ea162814@ohio.edu
https://doi.org/10.1016/j.asoc.2017.12.045

ft Com

2

T
T
b
b

h
r
J
t
p
a
e
s
[
b
i
o

i
J
r
t
v
t
[
r
T
m
t
g
h

a
t
t
u
s
i
c

i
p
T
h
p
h
t
b
r
p
r
[

n
o
o
s
i

l

E. Ahmadi et al. / Applied So

. The Tool Replacement Problem (TRP), indicates uploading the
required tools to support the processing of the provided
sequence of jobs (see JSeP), with the aim of minimizing the total
number of tool switches.

Tang and Denardo [1] showed that given a sequence of jobs,
RP can be solved by applying a greedy algorithm called Keep
ool Needed Soonest (KTNS) in polynomial time. Therefore, SSP can
e reduced to JSeP, which is combinatorial, and in fact the JSeP
ecomes the main problem to be addressed.

Crama et al. [13] proved that the JSeP is NP-hard. Several studies
ave considered JSeP and modeled the problem with exact algo-
ithms. Laporte et al. [14] have reported the optimality of solved
SeP for some benchmark instances up to 25 jobs with respect to
heir Integer Linear Programming (ILP) models. Yanasse et al. [15]
roposed an enumeration scheme based on partial orders that was
ble to improve the lower bound for the SSP instances. Catanzaro
t al. [16] have investigated 3 other ILP formulations and report
ome improvements of the lower bounds compared to Laporte et al.
14] counterparts. Furrer and Mütze [6] proposed a branch and
ound algorithm to deal with multiple objectives of the JSeP includ-

ng minimization of the number of tool switches and the number
f machine stops over time.

A stream of literature for solving JSeP is dedicated to develop-
ng heuristic and meta-heuristic techniques. Bard [17] formulated
SeP as a nonlinear integer program and solved with a dual-based
elaxation heuristic to find a good local solution for instances con-
aining at most 25 jobs. Al-Fawzan and Al-Sultan [18] proposed a
ariety of tabu search algorithms and made a comparison to iden-
ify a better algorithm over some random test instances. Denizel
19] developed a Lagrangean decomposition approach for JSeP and
epresented its superior performance up to 30 jobs against that of
ang and Denardo [20]. Konak et al. [21] proposed two tabu search
ethods to deal with the JSeP. Their methods are evaluated using

he instances of Tang and Denardo [20], Denizel [19] and randomly
enerated instances up to 210 jobs. Their methods were able to find
igh-quality solutions in reasonable time.

Amaya et al. [4] proposed a memetic algorithm coupled with
 genetic algorithm and a hill climbing procedure. Their compu-
ational results showed that the combined algorithm is superior
o the individual ones. In another study, Amaya et al. [22] eval-
ated the combination of the memetic algorithm with three local
earch techniques, hill climbing, tabu search, and simulated anneal-
ng. They concluded that memetic algorithm works better with hill
limbing than other methods.

Crama et al. [13] proposed several heuristics based on travel-
ng salesman problem (TSP) and then assessed their computational
erformances. Hertz et al. [23] also presented a heuristic based on
SP with a different definition of “distance” between tools. They
ave shown that their heuristic is superior to the method pro-
osed by Crama et al. [13]. Chaves et al. [24] also proposed a hybrid
euristic based on the biased random key genetic algorithm and
he clustering search. They have conducted experiments over the
enchmark instances of Yanasse et al. [15], Crama et al. [13], and
eported better solution quality for some instances. Paiva et al. [25]
roposed an Iterated Local Search (ILS) meta-heuristic and their
esults show the superiority of their method over Crama et al.
13],Yanasse et al. [15] and Catanzaro et al. [16] counterparts.

Ghiani [26] formulated JSeP as a TSP in a particular case when the
umber of tools needed to process each job equals to the capacity
f the magazine. The authors showed that for a given sequence
f N jobs (1, 2, . . ., i − 1, i, j, j + 1, . . ., N), the total number of tool

witches between job i and job j depends on the predecessor of job
, i.e. (1, 2, . . ., i − 1).

In this paper, we formulate the JSeP as Traveling Salesman Prob-
em of Second Order (2-TSP) introduced by Jäger and Molitor [27].
puting 65 (2018) 214–229 215

In the case of JSeP, the 2-TSP measures the number of tool switches
by considering the current job and its predecessor while the TSP
reduction just considers the current job to be switched to the next
one. In other words, given the sequence (i, j, k), the 2-TSP mea-
sure the number of tool switches required in transition from job j
to job k by considering both job i and job j, not only job j. There-
fore, in comparison with the TSP, the 2-TSP provides an improved
definition of “distance”, i.e. number of tool switches, between two
successive jobs. We call the induced JSeP by 2-TSP as Job Sequencing
Problem of Second Order (2-JSeP) with a different objective func-
tion formulation from JSeP and prove that 2-JSeP is NP-hard. By
means of computational study, we also show that finding a solution
to the corresponding 2-JSeP will be a better approximation to the
unknown optimal solution of the JSeP compared to its counterpart
solution returned by the TSP reduction of JSeP. The approximat-
ing solution within the proposed 2-JSeP model will be found by
Assignment Problem of Second Order (2-AP) proposed by Jäger and
Molitor [27] and Karp-Steele patching heuristic [28]. The solution
found is utilized to supply a proposed dynamic Q-learning-based
genetic algorithm (DQGA) to solve JSeP.

In a genetic algorithm (GA), selecting type of operators and their
sequence has always been a concern. Starkweather et al. [29] exten-
sively compared six types of crossover genetic operators on TSP and
concluded that adding a mutation operator might change the per-
formance of an algorithm. In a classical GA, the crossover operator
is applied before executing the mutation operator (CM). However,
a modified GA can be implemented with reverse order of operators,
i.e. first mutation is applied and then crossover (MC). In this paper,
a Q-learning procedure, which is a kind of reinforcement learning
method, is utilized to learn from the experience of selecting the
order of mutation and crossover operators in each generation of
the GA. The results of the proposed DQGA are compared with non-
learning algorithms of DGA-CM and DGA-MC, in addition to the
state-of-the-art methods in the literature.

The rest of the paper is organized as follows. In Section 2, we
first discuss more details of the JSeP specifications and then for-
mulate the 2-JSeP. In Section 3, a heuristic method is presented to
quickly solve 2-JSeP. The proposed DQGA seeded by the 2-JSeP is
also presented in this section. In Section 4, we define all necessary
parameters for our DQGA. In Section 5, the results of the computa-
tional experiments with 320 benchmark instances of Crama et al.
[13] and Catanzaro et al. [16], are reported and compared with the
state-of-the-art method proposed by Paiva et al. [25]. The statistical
analysis to identify the dominant algorithm between DQGA, DQGA-
CM and DQGA-MC is also covered in Section 5. Finally, conclusions
and possible future research directions related to this study are
covered in Section 6.

2. Problem formulation

In this section, we first describe the JSeP in more depth and then
formulate the 2-JSeP.

2.1. Job sequencing problem

JSeP consists of a set of jobs J =
{

1, 2, . . ., n
}

which require
to be processed on a single machine. There is a set of tools T ={

1, 2, . . ., m
}

available for the machine and each job j requires a
specific subset Tj⊆ T of tools be loaded on the machine before being
processed. The magazine capacity is C, i.e., the number of available

slots, and each tool occupies one slot. It is assumed that C < m, oth-
erwise the problem is trivial [30]. The JSeP is the problem of finding
an optimal sequence of jobs minimizing the total number of tool
switches. An example of the JSeP borrowed from Tang and Denardo

216 E. Ahmadi et al. / Applied Soft Computing 65 (2018) 214–229

Table 1
An example of the JSeP [1] with magazine capacity of 4 slots.

Job 1 2 3 4 5 6 7 8 9 10

Tool 1 1 2 7 6 3 1 3 5 1
4 3 6 5 5 7 2
8 5 7 7 8 4
9 8 9

Table 2
Tool-Job matrix.

Job

Tool 1 2 3 4 5 6 7 8 9 10

1 1 1 0 0 0 0 1 0 0 1
2 0 0 1 0 0 0 0 0 0 1
3 0 1 0 0 0 1 0 1 0 0
4 1 0 0 0 0 0 0 0 0 1
5 0 1 0 0 0 0 1 1 1 0
6 0 0 1 0 1 0 0 0 0 0
7 0 0 1 1 0 0 1 0 1 0
8 1 0 1 0 0 0 0 1 0 0
9 1 0 0 0 0 0 1 0 0 0

Table 3
Example of JSeP after applying dominance rule.

Job

Tool 1 2 3 7 8 10

1 1 1 0‘ 1 0 1
2 0 0 1 0 0 1
3 0 1 0 0 1 0
4 1 0 0 0 0 1
5 0 1 0 1 1 0
6 0 0 1 0 0 0
7 0 0 1 1 0 0

[
s

i
m
s
d
j

T
a
T
d
I
i
s
j
j

i
o
t
f
t
r
e
l
t
a
l

Table 4
The solution of the example shown in Table 2. Symbols ⊕ and ⊗ indicate the tools
that need to be inserted and removed, respectively. Symbol → shows the tool that
is required for processing the job, but had been already loaded on the machine for
previous jobs. So it should not be counted as the number of tool switches.

Job

Tool 7 8 2 1 10 3

1 ⊕ 1 → 1 1 1 1 0
2 0 0 0 0 ⊕ 1 ⊗ 1
3 0 ⊕ 1 1 ⊗ 0 0 0
4 0 0 0 ⊕ 1 1 ⊗ 0
5 ⊕ 1 1 1 ⊗ 0 0 0
6 0 0 0 0 0 ⊕ 1
7 ⊕ 1 ⊗ 0 0 0 0 ⊕ 1
8 0 ⊕ 1 1 1 → 1 1
8 1 0 1 0 1 0
9 1 0 0 1 0 0

1] is shown in Table 1 with the magazine capacity of 4 slots and a
et of 9 tools.

Table 1 gives the required set of tools in columns correspond-
ng to jobs. For example, job 1 requires tools 1, 4, 8 and 9 on the

achine. Another representation of the JSeP can be presented as
hown in Table 2. The corresponding matrix is called Tool-Job inci-
ence matrix A =

[
aij

]
, where aij = 1 if tool i is needed to process

ob j, and 0 otherwise.
In the JSeP, some of the jobs might be dominated by others. In

able 2, for example, job 9 is dominated by job 7 since its tool set (5
nd 7) is the subset of the tool set required by job 7 (1, 5, 7, and 9).
ang and Denardo [1] applied their dominance rule to remove the
ominated jobs without any impact on the final optimal schedule.

n fact, the removed jobs can be added right after the dominant job
n the final solution without any increase in the number of the tool
witches. Table 3 shows the Tool-Job matrix where four dominated
obs 4, 5, 6 and 9 were eliminated through the dominance rule by
obs 3, 2 and 7.

Table 4 shows the global optimal solution to this example which
s calculated by complete enumeration of 6! possible permutations
f all 6 jobs. In Table 4 the symbols ⊕ and ⊗ indicate the inser-
ion and deletion of the corresponding tools with the purpose to
orm the required set of tools for the currently processed job. The
ools which are shown by a preceding arrow indicate that the cor-
esponding tools are preserved in the given sequence of jobs. For
xample, starting from job 7, tools 1, 5, 7, and 9 are needed to be

oaded on the machine which induce the total tool switches equal
o 4. The next job 8 needs the tools 3, 5, and 8 only. Hence, two tools
mong 1, 7, and 9 should be removed and tools 3 and 8 should be
oaded. According to the KTNS rule, tool 1 is preserved because it
9 ⊕ 1 ⊗ 0 → 0 ⊕ 1 ⊗ 0 0
Total tool switches 4 6 6 8 9 11

will be used for job 2. So, tools 7 and 9 would be removed and
tools 3 and 8 are loaded and consequently, the total tool switches
become 6. Likewise, the other jobs are processed and finally, the
total number of tool switches equals 11.

Now the jobs removed through dominance rule can be added
to obtain the final sequence. As described above, jobs 4 and 5 are
inserted after job 3, job 6 is inserted after job 2 and job 9 is inserted
after job 7. An alternative optimal sequence will be {7, 9, 8, 2, 6, 1,
10, 3, 4, 5} with the total tool switches of 11.

2.2. Job sequencing problem of second order

Jäger and Molitor [27] introduced a new combinatorial opti-
mization problem called Traveling Salesman Problem of Second
Order (2-TSP). We applied this concept to formulate the 2-JSeP as
provided by the following Lemma.

Lemma 1. 2-JSeP is NP-hard in the strong sense.

Proof. It has been proven by Jäger and Molitor [27] that 2-TSP is
NP-hard. We try to show that 2-TSP is not more difficult than 2-
JSeP which means 2-TSP is reducible to 2-JSeP in a polynomial time
complexity. For this purpose, let G = (V, A) be a complete directed
graph where a 2-TSP of size (n + 1) is defined with n ≥ 2. Con-
sider V = {v0, v1, · · ·, vn} as the set of vertices, and A =

{(
vi, vj

)}
,

with i, j = 0, 1, · · · , n and i /= j, as the set of arcs with a dis-
tance function d : |V | × |V | → Z

+∪ {∞} such that 0≤ dij < ∞, where
i /= j, and dij =∞ otherwise. In our instance of 2-TSP, it is assumed
that d0j = dj0 = 0 for j = 1, 2, · · · n. Now, consider the cost function
C : |V | × |V | × |V | → Z

+∪ {∞} such that, Cijk =∞ where i = j or i = k
or j = k, and 1≤ Cijk = dij + djk < ∞ otherwise. The problem is finding a
Hamiltonian tour such as

{
v�[0], v�[1], · · ·, v�[n]

}
with minimizing

the second order travel cost

TC =
n−2∑
j=0

C�[j],�[j+1],�[j+2] + C�[n−1],�[n],�[0] + C�[n],�[0],�[1],

where each vertex is visited exactly once, and solution � [·] returns
index of the vertex in our tour.

The reduction is performed here by constructing an instance of
2-JSeP based on the constructed instance of 2-TSP. without losing
the generality, assume the instances of 2-JSeP when the number of
tools needed to process each job equals the capacity of the mag-
azine (|Tj | = C). Let J =

{
j0, j1, · · ·, jn

}
denote the set of jobs such

that |J | = |V |. Also, let Nij be the number of tool switches required
between jobs i and j, where i, j = 0, 1, · · · n. Assign all distance

parameters into number of required tool switches as Nij←− dij.
In this case, j0 represents a dummy node which is dominated by
other jobs. The reduction procedure is performed in the polyno-
mial complexity order of O

(
n2

)
. Here, we define qijk = Nij + Njk as

ft Com

t
i
t
n

Q

w
l
s
t
t∑

t
s
w
c

b
d
s

3

f
m

3

t
2

3

s
a
f
s
w
p

c

f

Z

predecessor of job a. In order to illustrate more details of the patch-
ing algorithm, consider an example of 10 jobs and 10 tools with
given tools-jobs matrix as shown in Table 5 (capacity = 4). TSa,b,c is
calculated and presented in Table A1 of Appendix A.

Table 5
Tools-Job Matrix for JSeP.

Jobs 1 2 3 4 5 6 7 8 9 10

Tools 1 0 0 1 1 0 1 0 0 1 1
2 0 1 0 0 0 0 0 0 0 1
3 0 1 0 0 0 1 0 0 0 0
4 0 0 0 0 0 0 0 0 1 1
5 0 0 0 1 1 0 1 1 1 0
6 1 0 1 0 0 1 1 0 0 0
E. Ahmadi et al. / Applied So

he number of tool switches from job j to job k considering that job
 was the predecessor with i, j, k = 0, 1, · · · n. Our instance construc-
ion of 2-JSeP is completed by minimizing the second order total
umber of tool switches of job sequence

{
j�[0], j�[1], · · ·, j�[n]

}
as

 =
n−2∑
j=0

q�[j],�[j+1],�[j+2] + q�[n−1],�[n],�[0] + q�[n],�[0],�[1],

here solution � [·] returns index of the job in the sequence. Now,
et

{
j�∗[1], j�∗[2], · · ·, j�∗[n]

}
be the optimal solution of the con-

tructed 2-JSeP. It is obvious that the travel cost of optimal Hamil-
onian tour in the 2-TSP instance can be derived in terms of the total
ool switches of optimal sequence in the 2-JSeP instance as TC∗ =

n−2

j=0

C�∗[j],�∗[j+1],�∗[j+2] + C�∗[n−1],�∗[n],�∗[0] + C�∗[n],�∗[0],�∗[1].

Finally, it would be sufficient to transform �* to �*. Therefore,
he equivalent optimal Hamiltonian tour is derived by translating
equence of jobs into a tour of visiting vertices as �∗ [j]←− �∗ [j]
hich is implemented in O (n) complexity, and hence the proof is

omplete. �

The Proof of Lemma 1 provides detailed formulation of 2-JSeP
ased on 2-TSP and vice versa. Therefore, we can utilize algorithms
eveloped for 2-TSP to solve 2-JSeP efficiently. Then the obtained
olution can be used as a good initial seed in GA to deal with JSeP.

. Solution method

In this section, we present a solution approach to solve 2-JSeP,
ollowed by describing the basic concept of DQGA and its imple-

entation.

.1. Assignment-Patching heuristic

Jäger and Molitor [27] proposed an assignment-patching heuris-
ic to solve 2-TSP. We have adopted this heuristic to tackle our
-JSeP as follows.

.1.1. Assignment problem of second order
Assignment Problem of Second Order (2-AP) is a natural exten-

ion of the Assignment Problem (AP). In the AP, we have n workers
nd n jobs and each worker performs one job and each job is per-
ormed by one worker. Now we wish to find an assignment solution
uch that the sum of the costs of the individual assignments of
orkers to the jobs is minimized. On the other hand, 2-AP is a
roblem of finding a two-to-one-mapping f : J × J → J so that the

ost
N∑

i=1

C [i, f (i) , f (f (i))] is minimum. 2-AP can be formulated as

ollows:
Objective function:

 = min
∑
i ∈ V

∑
j ∈ V

j /= i

∑
k ∈ V

k /= i /= j

Cijk.Xijk (1)

Subject to:∑
j ∈ V

j /= i

∑
k ∈ V

k /= i /= j

Xijk = 1 ∀i ∈ V (2)

∑ ∑

i ∈ V

i /= j

k ∈ V

k /= i /= j

Xijk = 1 ∀j ∈ V (3)
puting 65 (2018) 214–229 217

∑
i ∈ V

i /= k

∑
j ∈ V

j /= i /= k

Xijk = 1 ∀k ∈ V (4)

∑
k ∈ V

k /= i

k /= j

Xijk =
∑

k ∈ V

k /= i

k /= j

Xkij ∀i ∈ V , j ∈ V , j /= i (5)

Xijk ∈
{

0, 1
}

(6)

In this model, Xijk is the binary variable which is 1 if pair (i, j),
precedes job k and is 0 otherwise. Cijk is the number of tool switches
from job j to job k given the predecessor is job i.

Equations (2), (3) and (4) mean that each vertex appears exactly
once as the first, second or third vertex in a path of three vertices of a
tour. Equation (5) specifies that if there is a path from (i, j) to k, then
there is another path from k to (i, j). Solving this 2-AP leads to gen-
erate unknown number (Y) of subtours which are locally optimal.
Now, in order to obtain a Hamiltonian tour, the Karp-Steele patch-
ing algorithm [28] is used. This patching algorithm is described in
the next section.

3.1.2. Patching algorithm
Given the solution of 2-AP containing Y cycles, which is a good

lower bound for optimum 2-JSeP, patching algorithm tries to gener-
ate a Hamiltonian tour. Karp and Steele [28] suggested that in each
step, two cycles containing the most vertex should be patched in
such a way that it has the minimum patching cost. Assume that Y1
and Y2 are two cycles that are going to be patched. For each i and j
in Y1 and k and l in Y2 where i and l succeed j and k respectively, two
arcs (i, k) and (j, l) are inserted and two arcs (i, j) and (k,l) are deleted
with the patching cost of (Ci,k + Cj,l− Ci,j− Ck,l). In fact, patching cost
shows the amount of objective function which is sacrificed through
patching operation.

Jäger and Molitor [27] extended the patching concept to 2-
TSP. Without losing the general idea, we adopted the patching
algorithm for 2-TSP to our 2-JSeP in the following way: for Y1 =
(V1, W1) and Y2 = (V2, W2) consider vertices

{
i, j, k, l

}
∈ V1 and

{n, p, q, t} ∈ V2, arcs (i, j, k) , (j, k, l) ∈ W1 and (n, p, q) , (p, q, t) ∈
W2, then patching is finding a tour with the minimum of following
term out of the M = V1 . V2 total number of possible patches.

(TSi,j,q + TSj,q,t + TSn,p,k + TSp,k,l) − (TSi,j,k + TSj,k,l + TSn,p,q + TSp,q,t) (7)

where TSa,b,c with a ∈ V1∪ V2, b ∈ V1∪ V2, c ∈ V1∪ V2 and
a /= b /= c is the number of tool switches from job b to job c with the
7 1 0 0 0 0 0 0 1 0 0
8 0 0 0 0 1 1 1 1 1 0
9 0 0 1 1 0 0 1 0 0 0
10 0 0 0 0 1 0 0 0 0 1

218 E. Ahmadi et al. / Applied Soft Computing 65 (2018) 214–229

1

2

5

6

8

9
10

Y2

Y3

3

4

7

F
d

f
T
fi
Y
t
o
m
o
p

a
w
n
a
p

1

5

8

2

6

9
10

×
×

×
×

×
×

F

T
C

Fig. 1. 2-AP solution of 2-TSP for 10 jobs.

Solving the 2-AP of this example yielded 3 cycles as shown in
ig. 1. Patching Operation of Y cycles consist of Y − 1 operation of
eletion and insertion of two vertices simultaneously.

In our instance, since Y1 is the largest cycle, it should be selected
or the first patching operation. Y2 and Y3 can be selected arbitrarily.
able 6 shows 12 possible patching for Y1 and Y2. In particular, the
rst raw of Table 6 indicates that two arcs (6,2,10) and (2,10,9) from
1 and two arcs (1,5,8) and (5,8,1) from Y2 should be deleted and
hen four arcs (6,2,8), (2,8,1), (1,5,10) and (5,10,9) are inserted to
btain a tour with 5 unit patching cost. Patching number 9 has the
inimum cost and therefore, it is selected for the second patching

peration (see Fig. 2). This procedure continues until all cycles are
atched and a Hamiltonian tour shown in Fig. 3 is obtained.

Finally, the Hamiltonian tour which is generated by the patching
lgorithm, must be translated to the sequence of the jobs. Therefore,

e numerate all possibilities of the sequences, which equals to n for

 jobs. Considering the number of tool switches, these sequences
re locally optimal, and can lead to a good starting point for our
roposed GA described in the next section.

3

4

7

5

8

×
×

××
×

ig. 3. A possible patching in the second patching operation. Numbers in circles stand for

able 6
alculation of first patching operation.

Possible
Patch #

Cycle1 Cycle2 Deleted Arcs

i j k l n p q t

1 6 2 10 9 1 5 8 1 (6,2,10), (2,10,9), (1
2 6 2 10 9 5 8 1 5 (6,2,10), (2,10,9), (5
3 6 2 10 9 8 1 5 8 (6,2,10), (2,10,9), (8
4 2 10 9 6 1 5 8 1 (2,10,9), (10,9,6), (1
5 2 10 9 6 5 8 1 5 (2,10,9), (10,9,6), (5
6 2 10 9 6 8 1 5 8 (2,10,9), (10,9,6), (8
7 10 9 6 2 1 5 8 1 (10,9,6), (9,6,2), (1,5
8 10 9 6 2 5 8 1 5 (10,9,6), (9,6,2), (5,8
9 10 9 6 2 8 1 5 8 (10,9,6), (9,6,2), (8,1
10 9 6 2 10 1 5 8 1 (9,6,2), (6,2,10), (1,5
11 9 6 2 10 5 8 1 5 (9,6,2), (6,2,10), (5,8
12 9 6 2 10 8 1 5 8 (9,6,2), (6,2,10), (8,1
Fig. 2. Best patching for Y1 and Y2 in the first patching operation with the patching
cost of 0 unit. Numbers in circles stand for the jobs. Arcs with cross sign are deleted
and arcs shown as dash lines are inserted.

3.2. Dynamic Q-learning based genetic algorithm

In order to solve JSeP, we have utilized the GA, which is seeded
by the solutions obtained from solving 2-JSeP. GA is an evolutionary
algorithm based on stochastic search, which is originally proposed
by Holland [31] to solve intractable optimization problems. It is a
nature-inspired technique based on the Darwin’s “survival of the
fittest” that starts with a set of generated potential solutions, called
the population. GA is extensively applied to solve scheduling prob-
lems (See for example [32–34]) and basically attempts to combine
individuals via crossover operators and keep diversity in each pop-
ulation via mutation operators. An advantage of GA is its capability
to perform global search [35]. In a GA, decision variables need to
be coded as an array, i.e., chromosome, and each chromosome has
an associated fitness, which is calculated by use of the objective
function. Chromosomes with better fitness value have more chance
to survive to the next generation and consequently, the algorithm
converges to an optimum or near optimum solution.
3.2.1. Chromosome representation
Chromosome representation is an important issue for the GA in

terms of computational time and also generating a feasible solution.
In the current study, a permutation-based chromosome represen-

1

2

6

9
10

×

 the jobs. Arcs with cross sign are deleted and arcs shown as dash lines are inserted.

Inserted Arcs Patching Cost

,5,8), (5,8,1) (6,2,8), (2,8,1), (1,5,10), (5,10,9) (3 + 4 + 6 + 5)-(3 + 5 + 3 + 2) = 5
,8,1), (8,1,5) (6,2,1), (2,1,5), (5,8,10), (8,10,9) (2 + 5 + 4 + 6)-(3 + 5 + 2 + 2) = 5
,1,5), (1,5,8) (6,2,5), (2,5,8), (8,1,10), (1,10,9) (3 + 4 + 5 + 6)-(3 + 5 + 2 + 3) = 5
,5,8), (5,8,1) (2,10,8), (10,8,1), (1,5,9), (5,9,6) (6 + 4 + 5 + 4)-(5 + 4 + 3 + 2) = 5
,8,1), (8,1,5) (2,10,1), (10,1,5), (5,8,9), (8,9,6) (5 + 4 + 3 + 4)-(5 + 4 + 2 + 2) = 3
,1,5), (1,5,8) (2,10,5), (10,5,8), (8,1,9), (1,9,6) (5 + 3 + 3 + 6)-(5 + 4 + 2 + 3) = 3
,8), (5,8,1) (10,9,8), (9,8,1), (1,5,6), (5,6,2) (3 + 2 + 5 + 4)-(4 + 3 + 3 + 2) = 2
,1), (8,1,5) (10,9,1), (9,1,5), (5,8,6), (8,6,2) (4 + 3 + 4 + 4)-(4 + 3 + 2 + 2) = 4
,5), (1,5,8) (10,9,5), (9,5,8), (8,1,6), (1,6,2) (3 + 2 + 3 + 4)-(4 + 3 + 2 + 3) = 0
,8), (5,8,1) (9,6,8), (6,8,1), (1,5,2), (5,2,10) (4 + 2 + 5 + 4)-(3 + 3 + 3 + 2) = 4
,1), (8,1,5) (9,6,1), (6,1,5), (5,8,2), (8,2,10) (3 + 3 + 3 + 5)-(3 + 3 + 2 + 2) = 4
,5), (1,5,8) (9,6,5), (6,5,8), (8,1,2), (1,2,10) (4 + 3 + 3 + 5)-(3 + 3 + 2 + 3) = 4

E. Ahmadi et al. / Applied Soft Computing 65 (2018) 214–229 219

1 3 7 2 10 8

F

t
I
c
n
n
l
e
T

3

i
s
i
s
t
t
s
s
n
(
n
d
l
u

3

r
t
t
(

F

F

W
i
t
i
n
t

3

o
T
a
a
m
t
a
a
t
f

1 3 7 2 10 8

10 8 1 3 7 2

1

2

Fig. 5. Random cut points.

8 1 3

3 7 2

1

2

Fig. 6. Exchange mapping sections.

7 8 1 3 10 2

10 3 7 2 1 8

1

2

Fig. 7. Final offspring of crossover operator.

1 3 7 2 10 8

1 2 7 3 10 8
ig. 4. Chromosome representation. Each number represents a non-dominated job.

ation, which is common in sequencing problems, has been used.
t covers whole solution space and any permutation of jobs can
orrespond to a feasible solution. Every chromosome constitutes

 (number of non-dominated jobs) genes and each gene holds a
umber which is a label of a job. The sequence of the jobs is the

abel of the genes from the first one to the nth one. Fig. 4 shows an
xample of chromosome representation for the example given in
able 3.

.2.2. Initialization
Seeding is a technique which is used by researchers to increase

nitial population quality and guide the GA towards the optimum
olution [36]. Bentley [37] shows that for TSP problems, the qual-
ty of initial population would affect the running time and the final
olution quality. Therefore, in this paper, seeds are generated in
wo steps by incorporating the solutions obtained from the heuris-
ic described in Section 3.1. The first step consists of all possible
equences which can be obtained from the Hamiltonian tour. This
tep contains n sequences for n jobs. In the second step, (nPop-
) chromosomes are generated by randomly selecting subtours
cycles) and then converting them into the sequence. One should
ote that the subtours do not contain identical jobs and any ran-
om selection will generate a feasible solution. These subtours are

ocally optimal and therefore, lead to obtaining a high-quality pop-
lation as the starting point for GA.

.2.3. Selection strategy
Selection strategy is a procedure that selects individuals for

eproduction by moving them into the mating pool. In this paper,
he roulette-wheel technique is chosen to select parents based on
heir selection probability as given by the equations (8), (9) and
10).

Pind =
Find

Ftot
ind = 1, 2, . . ., nPop (8)

ind =
1

TSind
(9)

tot =
nPop∑

ind=1

Find (10)

here, Pind is the probability of choosing the indth individual; nPop
s the population size; Find is the indth individual fitness; Ftot is the
otal fitness of all individuals in the current generation; and TSind
s the number of tool switches for the indth individual. Is should be
oted that given a sequence of the jobs, TSind is calculated through
he KTNS rule.

.2.4. Genetic operators
The performance of a GA to achieve better schedule depends

n the performance of the genetic operators that are used [38].
herefore, using appropriate operators is fundamental to extend
ny GA. Furthermore, performing genetic operators may produce
n infeasible schedule and, consequently, need to perform a repair
echanism that could be time consuming. Thus, it is more practical

o design the operators that maintain feasibility of the schedule and

void the repair mechanisms [34]. In this paper, we have utilized

 partially-mapped crossover operator (PMX) and a swap muta-
ion operator. The procedure of each operator is described in the
ollowing sections.
Fig. 8. Final offspring of mutation operator.

3.2.4.1. Partially-Mapped crossover operator (PMX). To generate off-
spring, two chromosomes would be selected as the parents. Then
two random cut points are selected as represented in Fig. 5 by dash
line.

The genes between two cut points are called mapping sections.
The mapping section of the first parent is copied into the second
offspring, as shown in Fig. 6, and the mapping section of the second
parent is copied into the first offspring. The mapping gens for this
example are: 3 ↔ 8 ↔ 2 and 7 ↔ 1.

The empty genes of offspring 1 and offspring 2 would be filled up
by parent 1 and parent 2, respectively. For example, the first gene
of the offspring 1 would be 1, the same as the first gene of parent
1. However, 1 already exists in offspring 1. So, due to mapping of
7 ↔ 1, we put 7 in the first gene of offspring 1. The fifth gene in
offspring 1 would be 10 which is directly taken from the fifth gene
of parent 1. Finally, the last gene in offspring 1 is 2, which is chosen
from mapping 3 ↔ 8 and 2 ↔ 3. Fig. 7 shows the final offspring.

3.2.4.2. Swap mutation operator. This operator randomly selects
two genes in a chromosome and interchanges the values. For exam-
ple, consider the parent shown in Fig. 8. Suppose that genes two and
four are selected randomly, then these two genes are exchanged
and the corresponding parent is depicted in Fig. 8.

3.2.5. Local search
To present the local search developed in this paper, let us intro-

duce the concept of 0-block and 1-block defined by Crama et al.
[13]. They defined 0-block and 1-block as a maximal subset of con-

secutive 0 and 1, respectively, in a given row of the Tool-Job matrix.
They further discussed that by ignoring the KTNS algorithm, each
1-block in the Tool-Job matrix induces a tool switch. Therefore, the

2 ft Com

n
t

n
f
a
s
W
e
o
i
u
t

a
a
t
1
t
b
t
w
m
w
[
t
a
p

b
a
c

3

w
s
i
o
a
c
w
E
r
X
c
a
[
r

20 E. Ahmadi et al. / Applied So

umber of 1-block in the Tool-Job matrix is an overestimation of
he tool switches.

Paiva et al. [25] proposed a local search method to reduce the
umber of 1-block. We have developed a local search by inspiring

rom their work, embedded in the GA, in the following way: given
 set � of the best solutions in a generation of the GA, the local
earch attempts to group 1-blocks in each row of Tool-Job matrix.

e first identified the rows with two or more 1-blocks and then for
ach selected row, pairs of 1-blocks are grouped in either forward
r backward direction. Finally, all obtained non-worsen solutions
n terms of tool switches, compared to the best solution of the pop-
lation, are added to the current population for further evaluation
o be selected for the next generation.

Let us recall the Tool-Job matrix presented in Table 5. Given
 sequence E = [3, 1, 2, 10, 6, 5, 4, 9, 7, 8] with 15 tool switches,
fter permuting of columns according to the E, the first row of
he Tool-Job matrix would be [1001101100], which contains three
-blocks [3], [10, 6]and [4, 9]. For each pair of 1-blocks

{
i, j

}
, in

he forward direction, block i is moved to before and after of
lock j. Conversely, in the backward direction, block j is moved
o before and after of block i. The decision of forward and back-
ard movement is made randomly. Let us consider a forward
ovement for the first two 1-blocks, i.e.

{
[3] , [10, 6]

}
, which

ould result in two sequences [1, 2, 3, 10, 6, 5, 4, 9, 7, 8] and
1, 2, 10, 6, 3, 5, 4, 9, 7, 8] with 15 and 14 tool switches, respec-
ively. Since both movements resulted in non-worse solutions, they
re added to the current population. The pseudo-code for the pro-
osed local search is presented in Algorithm 1.

The local search is executed once the GA could not improve the
est-obtained solution for a pre-specified number of generations
nd is applied on � percentage of the best solutions within the
urrent population.

.2.6. Similarity function for chromosome removal
To avoid early convergence to local optima, in every generation

e have calculated a similarity rate between each pair of chromo-
omes (including parents and off-springs) and then if similarity rate
s above a threshold �, one of them, i.e. the one with higher number
f tool switches, is removed from the population. This will guar-
ntee that no duplicate chromosomes are in the population. To
alculate the similarity rate between two sequences of Ei and Ej,
e first define an array X = [eh], where eh = 1 if position h in Ei and

j is occupied by the same job and eh = 0 otherwise. Then similarity
ate defined as the summation of two or more consecutive 1 in the

 array, divided by the number of jobs. To illustrate the above pro-

edure, consider two sequences of E1 = [1, 6, 2, 10, 9, 5, 8, 3, 4, 7]
nd E2 = [1, 10, 8, 6, 9, 5, 2, 3, 4, 7] that result in an array of X =
1, 0, 0, 0, 1, 1, 0, 1, 1, 1], which finally ends up with a similarity
ate of

(
5

10

)
= 0.5.
puting 65 (2018) 214–229

3.2.7. Q-learning algorithm
In the context of machine learning, learning techniques can be

categorized into four groups: (1) supervised learning, which takes
place based on a labeled dataset and frequently used for classifi-
cation purpose [39]; (2) unsupervised learning, which is exploring
an unlabeled dataset to identify similar instances and cluster then
into particular class [40]; (3) semi-supervised learning, which is a
process of learning with both labeled and unlabeled datasets [40];
(4) reinforcement learning, which is a learning technique derived
from supervised technique and dynamic programming to simulate
the process of human learning. The learners are able to learn from
their own experience through the feedback that they have received
from the environment. The feedback is in the form of a reward or
penalty, which is earned as a consequence of their action [41].

The Q-learning algorithm is a kind of reinforcement learning
method and is basically proposed to obtain a near-optimal policy
for Markov decision process problems [42,43]. Due to the stochas-
tic nature of the GA, it can be treated as a stochastic process and
a control mechanism, such as Q-learning, can be incorporated to
guide algorithm towards the global optimum solution.

Q-learning algorithm consists of a set of states in the system
and a set of actions allowed in each state. The system is initially
in a state S0 and tacking action a can cause a transition to another
state. The quality of the taken action is then rewarded, and the value
of reward will be used as a base to calculate Q-values associated to
each tuple state-action, which are sorted in a look-up table. The
look-up table is a two-dimensional table that its rows represent
states and its columns stand for actions. In a given state, the action
corresponding to the highest Q-value is called greedy action and
the other actions are called non-greedy actions [44]. The algorithm
should be able to exploit the prior knowledge, i.e. greedy action, to
earn reward and also should explore non-greedy actions for better
future decision. This mechanism is implemented by a parameter
called ε-greedy.

With this consideration, we designed a Q-learning algorithm,
to help with the decision of selecting the sequence of the genetic
operators in each generation. Let us define S as a set of states and
A (i) as a set of actions in state i as follows:

S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 0 ≤ R (a) ≤ �1

2 �1 + 1 ≤ R (a) ≤ �2

3 �2 + 1 ≤ R (a) ≤ �3

4 �3 + 1 ≤ R (a) ≤ �4

5 �4 + 1 ≤ R (a) ≤ nPop

(11)

A (i) =
{

CM first apply crossover then mutation

MC first apply mutation then crossover
(12)

where R (a) denotes the number of chromosomes within the pop-
ulation that are replaced by executing action a. Clearly, R (a) is a
stochastic process that can take integer values in the interval of
[0, nPop]. Q (i, a) is the Q-value associated with state i and action a,
which is updated according to the expression (13).

Q (i, a)←−
(

1 − ˇ
)

Q (i, a)+ ˇ

[
r (i, a, j)+ �max

bεA(j)
Q (j, b)

]
(13)

where r (i, a, j) is the immediate reward received in transition from
state i to state j after taking action a. The parameters ̌ ∈ [0, 1] is
learning rate and � ∈ [0, 1] is discount factor. For more details of
Q-learning algorithm, readers are referred to [44].
In this paper, the immediate reward is composed of two mea-
sures. The first measure accounts for the ability of selected action
for generating off-springs with higher quality in terms of the objec-
tive function. It implies that a set of off-springs with closer cost, i.e.

ft Com

m
e
i

C

w
a
o
f

n

H
e
o
r
(

m
c
u
m

D

w
U

a
b
C

3

s
p
i
c
R
w
r
g
3

3

F
h
m
o
b
g
t
p
a
a
r
r

E. Ahmadi et al. / Applied So

ean tool switches, to the current population is preferred over oth-
rs. Therefore, we have defined a cost distance measure as presented
n (14).

D(a) = 1∑
ind ∈ Popa

TSind

|Popa| −

∑
ind ∈ Pop

TSind

|Pop| + 1

(14)

here Popa is the population of off-springs obtained by applying
ction a, i.e. either CM or MC operators, on the current population
f Pop. The TSind is the number of tool switches (objective function)
or the individual int. Theoretically, CD (a) might become a negative

umber in the case when

∑
ind ∈ Popa

TSind

|Popa| <

(∑
ind ∈ Pop

TSind

|Pop| + 1

)
.

owever, in practice, our observation shows that the operators
mployed in this paper always generate off-springs with a mean
f tool switches higher than the mean of tool switches of the cur-
ent population. Therefore, the value of CD (a) lies in the interval of
0, 1].

The second measure, defined by [45], is a normalized diversity
easure, ranging from 0 to 1, which accounts for the number of

hromosomes with unique objective function values in the pop-
lation of off-springs obtained from executing of action a. This
easure is calculated as shown in equation (15).

V (a) = |U| − 1
|Pop| − 1

(15)

here U ⊆ Popa, and ∀TSind ∈ U and TSind′ ∈
, TSind /= TSind′ ifind /= ind

′
.

Both of the two above-mentioned measures ranging from 0 to 1
nd the higher values are more desired. Therefore, they can linearly
e combined to formulate immediate reward function as r (i, a, j) =
D (a)+ DV (a).

.2.8. Restarting-phase
In order to enforce GA to dynamically and effectively search the

olution space, we have introduced a procedure called restarting-
hase. While running the algorithm, when population converges
nto a local optimum and remains in this situation for a number of
onsecutive non-improving generations, restarting-phase occurs.
estarting-phase is designed to enhance population diversity once
e do not expect to exit from this local optimum solution. In the

estarting-phase, we keep a set of best-obtained solution and then
enerate population based on the procedure described in Section
.1.

.2.9. DQGA flowchart
The flowchart of the proposed DQGA, has been illustrated in

ig. 9. The algorithm starts with the initial solution generated by the
euristic described in Section 3.1. In each generation, Q-learning
ethod is applied to make a decision about selecting an appropriate

perator sequence, i.e. CM or MC. Before evaluating chromosomes
ased on their objective function values to be selected for the next
eneration, the pair of chromosomes are evaluated with respect
o their similarity rate and some of them are removed from the
opulation. So that the chromosomes selected for the next gener-

tion are diverse enough to avoid early convergence. Furthermore,

 local-search and restarting-phase mechanism are also incorpo-
ated to escape out of local optima. The algorithm terminates after
eaching the maximum number of generations.
puting 65 (2018) 214–229 221

4. Experimental design

In this section, parameter tuning is described first and then we
have presented the benchmark instances that are used for evalua-
tion of our algorithm.

4.1. Parameter setting

The mathematical model for 2-AP was solved in CPLEX version
12.6 and all other algorithms are coded and executed in MAT-
LAB R2017a on an Intel

®
CoreTM i7 CPU @3.40 GHz computer with

16 GB of RAM. We have conducted multiple experiments to fig-
ure out the best parameter values for the DQGA. The parameters
are described as follows. nPop considered to be 100 individu-
als, crossover and mutation rates are 0.9 and 0.7, respectively.
Local search is performed after 15 generations of consecutive
non-improving best-obtained solution with � = 20%. In the last 50
generations the local search is performed every 10 generations with
� = 50%. The number of consecutive non-improving generations,
once algorithm immaturely converged, to apply restarting-phase
is 20. The parameter settings of Q-learning algorithm are listed as
follows: the system is initially is state 1, all initial Q-values equals to
0, �1 = 10, �2 = 20, �3 = 35, �4 = 50, ̌ = 0.15, 	 = 0.75, and ε = 0.35. For
similarity rate, � is considered to be 0.8. The stopping criterion is
determined based on the number of generations, which is 350, and
10 replications are considered to run for each benchmark instance.

4.2. Benchmark problems

In order to test the performance of the proposed algorithms, 32
datasets each of which consist of 10 instances (total 320 instances),
proposed by Catanzaro et al. [16] and Crama et al. [13], have been
selected. These datasets were also used in Chaves et al. [24] and
Paiva et al. [25] studies. Small instances have 10 and 15 jobs,
medium instances 30 jobs and large instances 40 jobs. Table 7
shows the configuration of each dataset. We will compare our
computational results with the state-of-the-art results reported by
Paiva et al. [25] since their algorithm has superior performance to
all previous studies that used Catanzaro et al. [16] and Crama et al.
[13] datasets.

5. Experimental results

Numerical results are divided into three categories: correlation
of objective functions, performance of algorithms and statistical
analysis.

5.1. Correlation of objective functions

In order to show the appropriateness of formulating the JSeP
as a 2-TSP, which we called it 2-JSeP, rather than formulating as a
TSP, we compared the correlation between 2-JSeP and JSeP versus
TSP and JSeP. To do so, we generated 1000 random sequences for
one instance in each dataset and evaluated the sequences by three
objective functions of JSeP, 2-JSeP and TSP. As it can be seen in
Table 8, there are higher correlations between the objective func-
tions of JSeP and 2-JSeP than JSeP and TSP in all datasets. The
correlation coefficient itself between JSeP and 2-JSeP is relatively
high, on average 0.69 and 0.70 for Catanzaro et al. [16] and Crama
et al. [13] datasets, respectively. It means finding a better solution to
2-JSeP, which is used as an initial population for genetic algorithms,

would be a better solution to JSeP as well.

Fig. 10 also illustrates scatter plots of 1000 randomly generated
sample sequences from instance1 in datB1 for JSeP against 2-JSeP
and TSP.

222 E. Ahmadi et al. / Applied Soft Computing 65 (2018) 214–229

Start

Execute
restarting-phase

Yes Is Restarting-Phase
criterion met ?

Termination?

Initial population pop using
heuristic described in

Section 3.1

Calculation of fitness
value

Sort population according
to TS in ascending order

Is local search
criterion met?Execute local search

Sort population
according to TS in

ascending order

Calculate similarity rate
between selected pair of

chromosomes (i,j)

Delete the chromosome
with higher TS, break ties

randomly

Delete extra chromosomes
from end of the pop to

obtain a population with
nPop size

Rand() ≤ Ɛ Take the greedy action,
break ties randomly

Apply selected operator and
generate off-springs
population of popa

Calculate TS for off-springs
and add popa to pop

Calculate the immediate
reward as a consequence of

taken action

Update look-up table and
move to the next appropriate

state

Take the non-greedy
action, break ties

randomly

Similarity rate (i,j) ≥ θ

Yes

No

Yes

No

No

Yes

No

No

Yes

Are all pairs of
chromosomes (i,j) within

α% of population
checked?

No

Yes

d DQG

5

r

End

Fig. 9. Flowchart of the propose

.2. Algorithms’ performance examination
In order to evaluate computational results of the proposed algo-
ithms, i.e. DGA-CM, DGA-MC and DQGA, we have used the gap
A seeded by solutions of 2-JSeP.

percentage and CPU times as two performance measures. The gap

percentage is calculated as follows:

GAP =
(

SolAlg − Best

Best
× 100

)
% (16)

E. Ahmadi et al. / Applied Soft Computing 65 (2018) 214–229 223

Table 7
Benchmark problems.

Size Dataset #Instances # Jobs # Tools Capacity

Catanzaro et al. [16] Crama et al. [13]

Small datA1 G1C1 10 10 10 4
datA2 G1C2 10 10 10 5
datA3 G1C3 10 10 10 6
datA4 G1C4 10 10 10 7
datB1 G2C1 10 15 20 6
datB2 G2C2 10 15 20 8
datB3 G2C3 10 15 20 10
datB4 G2C4 10 15 20 12

Medium datC1 G3C1 10 30 40 15
datC2 G3C2 10 30 40 17
datC3 G3C3 10 30 40 20
datC4 G3C4 10 30 40 25

large datD1 G4C1 10 40 60 20
datD2 G4C2 10 40 60 22
datD3 G4C3 10 40 60 25
datD4 G4C4 10 40 60 30

205
210
215
220
225
230
235
240
245

130 140 150 160 170

TS
P

150
155
160
165
170
175
180
185
190
195

130 140 150 160 170

Fig. 10. Scatter plots of 1000 sample sequen

Table 8
correlation between objective functions.

Catanzaro et al. [16] Crama et al. [13] datasets

Dataset name JSeP, 2-JSeP JSeP, TSP Dataset name JSeP, 2-JSeP JSeP, TSP

datA1 0.83 0.72 G1C1 0.84 0.76
datA2 0.67 0.56 G1C2 0.78 0.62
datA3 0.62 0.47 G1C3 0.76 0.59
datA4 0.52 0.40 G1C4 0.63 0.48
datB1 0.76 0.59 G2C1 0.62 0.52
datB2 0.62 0.51 G2C2 0.76 0.65
datB3 0.58 0.44 G2C3 0.54 0.42
datB4 0.53 0.33 G2C4 0.63 0.52
datC1 0.79 0.70 G3C1 0.74 0.65
datC2 0.76 0.63 G3C2 0.73 0.65
datC3 0.70 0.51 G3C3 0.67 0.53
datC4 0.62 0.42 G3C4 0.57 0.43
datD1 0.82 0.72 G4C1 0.75 0.67
datD2 0.76 0.66 G4C2 0.72 0.59
datD3 0.76 0.61 G4C3 0.73 0.56

W
a
p
m
t
o
s
t

t

the average best-known solutions. The small datasets of datA and
datD4 0.69 0.52 G4C4 0.67 0.53

here SolAlg indicates the solution obtained by each algorithm
nd Best corresponds to the best-known solutions found by our
roposed algorithms. One should notice that we have set a fixed ter-
ination condition of 350 generations, but we recorded the time of

he best-obtained solution by algorithms, not necessarily the time
f 350 generations. In running DGA-CM, DGA-MC algorithms, all
trategies and parameters are kept the same as DQGA, except that

hey did not have the privilege of Q-learning.

Fig. 11 shows the convergence plot of instance 5 in datC3 with
he effect of the restarting-phase. In iterations 150 and 212, after
ces generated from instance1 in datB1.

applying the restarting-phase, which resulted in enhanced diver-
sity, better solutions have been found.

Fig. 12 depicts how the designed Q-learning algorithm con-
verges to the optimum action within each state. The convergence
here means that the greedy action, i.e. the action corresponding to
the highest Q-value in a given state, will not be changed by fur-
ther iteration. In the early generations (see Fig. 12a) that algorithm
has not been trained, the greedy action might frequently change.
As the algorithm further evolves (see Fig. 12b), the greedy action
in each state emerges with the higher Q-values. However, in some
states, e.g. state 1, two actions of MC and CM are still competing
with each other. Toward end of the run (see Fig. 12c), the algorithm
is converged to the optimal action, which are shown with boxes
corresponding to the largest Q-value in each state.

The results of our algorithms for Catanzaro et al. [16] and Crama
et al. [13] datasets are summarized in Tables 9 and 10, respec-
tively, and compared with those reported in [25]. The tables show
the average solutions (AS) of 10 instances and over 10 replications
within each dataset. They also show the average best solutions
(ABS) and computational time in seconds (T). The bold values in
Tables 9 and 10 indicate that the algorithm could reach or improve
the average best-known solution. We have also reported the results
of the 2-JSeP method, which has been used to seed genetic algo-
rithms with the initial population.

As it can be seen in Table 9, considering the AS and ABS criteria,
the results of our three algorithms for datA datasets are identical
with those of ILS. For datB datasets, all three algorithms could reach
datB contains trivial instances that all algorithms could reach to ABS
without significant computational burden. In datC datasets, DQGA

224 E. Ahmadi et al. / Applied Soft Computing 65 (2018) 214–229

Fig. 11. Convergence plot for instance 5 in dataset datC3 with showing the impact of the restarting-phase.

Fig. 12. Convergence of Q-values represented within look-up tables in generation 5 (a), generation 150 (b) and generation 350 (c) for instance 5 in dataset datC3.

Table 9
Computational results of our three algorithms for Catanzaro et al. [16] datasets in comparison with the results in [25].

Dataset
Name

ILS [25] Proposed Methods

2-JSeP DGA-CM DGA-MC DQGA

AS ABS T ABS T AS ABS T AS ABS T AS ABS T

datA1 12.50 12.50 0.09 12.80 0.13 12.50 12.50 0.15 12.50 12.50 0.16 12.50 12.50 0.17
datA2 10.80 10.80 0.09 11.50 0.12 10.80 10.80 0.16 10.80 10.80 0.17 10.80 10.80 0.17
datA3 10.10 10.10 0.05 10.30 0.13 10.10 10.10 0.19 10.10 10.10 0.18 10.10 10.10 0.19
datA4 10.00 10.00 0.04 10.00 0.17 10.00 10.00 0.23 10.00 10.00 0.20 10.00 10.00 0.22
datB1 26.50 26.50 1.09 29.20 0.60 26.74 26.50 3.04 26.92 26.50 3.57 26.72 26.50 1.62
datB2 21.70 21.70 1.38 23.40 0.59 21.76 21.70 2.26 21.92 21.70 1.68 21.74 21.70 2.12
datB3 19.70 19.70 1.12 20.80 0.61 19.76 19.70 1.83 19.74 19.70 1.34 19.76 19.70 1.39
datB4 19.20 19.20 0.71 19.30 0.62 19.20 19.20 0.93 19.20 19.20 0.32 19.20 19.20 0.79
datC1 99.09 98.90 99.47 110.07 7.35 100.06 99.10 172.39 100.40 99.20 135.52 99.82 98.80 145.29
datC2 82.82 82.50 137.08 94.70 9.00 83.86 83.00 204.79 84.08 82.80 174.37 83.74 82.50 196.09
datC3 66.78 66.60 172.59 77.50 7.51 68.10 67.00 225.68 68.28 67.10 201.83 67.82 66.60 220.32
datC4 51.47 51.30 137.79 58.60 7.78 52.36 51.50 151.10 52.24 51.40 139.40 52.10 51.20 144.89
datD1 198.36 198.00 488.66 216.30 32.63 200.12 198.50 372.79 199.86 198.4 290.29 200.16 198.00 213.43

174
146
116

s
d
d
b
a

T
s
o
t
a
e
g
a

datD2 174.05 173.60 706.13 194.90 36.54 176.30

datD3 146.68 146.20 1069.98 166.10 38.15 149.08

datD4 115.42 115.20 1518.80 135.20 48.08 118.26

hows better performance in which could improve the ABS within
atC1 and datC4. The DQGA algorithm matches the ILS results in
atD1, datD3 and datD4, but outperforms the ILS in datD2. It has also
een shown in Table 9 that the DQGA algorithm requires remark-
bly less computational time for datasets datD than ILS.

Regarding the Crama et al. [13] datasets, it can be observed in
able 10 that our three algorithms were able to reach to the ABS in
mall group datasets of G1 and G2. Again, because of trivial instances
f these groups best known solutions were obtained in an average
ime of 0.71 s. For the medium and large datasets, i.e. groups G3
nd G4, that more computational effort is required, DQGA performs

ither equally or better than DGA-CM and DGA-CM. Within these
roups, DQGA were able to find new ABS for G3C1, G3C2, G3C4, G4C2
nd G4C3, compared to the ILS [25].
.40 409.71 176.36 173.90 380.32 175.68 173.50 485.47

.60 779.72 149.70 147.00 709.51 148.80 146.20 749.28

.30 901.38 119.14 116.50 978.28 117.22 115.20 1138.28

In addition, with respect to the computational time, although
the ILS [25] was coded in different software than DQGA, both ILS
and DQGA were run in computers with similar architecture of RAM
and processor. The average computational time that DQGA needs to
solve large instances of group datD in Catanzaro et al. [16] datasets
is 647 s, while this time for ILS [25] is 946 s. A relatively similar time
gap can also be observed in Crama et al. [13] datasets, as DQGA
takes on average 825 s to solve large instances of group G4, which
is comparable to the 902 s solved by ILS [25].

The 2-JSeP heuristic could find high-quality solutions for both
studied datasets. In Catanzaro et al. [16] datasets, 2-JSeP found solu-

tions with 9.05% gap, on average, with the best-known solutions in
an average computational time of 11.87 s. The same behavior is also
observed in Crama et al. [13] datasets, as 2-JSeP could find solutions

E. Ahmadi et al. / Applied Soft Computing 65 (2018) 214–229 225

Table 10
Computational results of our three algorithms for Crama et al. [13] datasets in comparison with the results in [25].

Dataset
Name

ILS [25] Proposed Methods

2-JSeP DGA-CM DGA-MC DQGA

AS ABS T ABS T AS ABS T AS ABS T AS ABS T

G1C1 13.11 13.10 0.08 13.80 0.10 13.10 13.10 0.21 13.10 13.10 0.20 13.10 13.10 0.20
G1C2 11.20 11.20 0.08 11.40 0.11 11.20 11.20 0.22 11.20 11.20 0.23 11.20 11.20 0.23
G1C3 10.30 10.30 0.06 10.30 0.11 10.30 10.30 0.25 10.30 10.30 0.26 10.30 10.30 0.25
G1C4 10.10 10.10 0.04 10.10 0.09 10.10 10.10 0.22 10.10 10.10 0.21 10.10 10.10 0.22
G2C1 26.63 26.60 0.84 28.80 0.56 26.72 26.60 1.96 26.74 26.60 2.10 26.70 26.60 1.99
G2C2 21.70 21.70 1.09 23.20 0.59 21.72 21.70 1.24 21.70 21.70 1.28 21.70 21.70 1.36
G2C3 20.10 20.10 0.87 20.70 0.61 20.10 20.10 1.08 20.10 20.10 0.65 20.10 20.10 0.94
G2C4 19.60 19.60 0.60 19.60 0.57 19.60 19.60 0.67 19.60 19.60 0.37 19.60 19.60 0.56
G3C1 111.63 106.40 86.81 117.50 6.88 107.56 106.50 187.97 107.72 106.30 191.15 106.88 106.30 162.02
G3C2 88.59 88.30 132.01 99.60 7.71 89.72 88.20 196.20 89.26 88.10 259.08 89.08 88.20 223.16
G3C3 70.71 70.40 173.47 80.50 8.39 71.82 70.60 194.82 71.56 70.50 213.21 71.36 70.40 197.00
G3C4 53.14 52.90 146.81 62.20 8.56 54.24 53.10 198.13 54.08 53.00 171.08 53.64 52.70 166.61
G4C1 199.00 198.40 441.66 219.00 45.64 200.96 198.60 592.19 201.8 199.4 562.10 200.92 198.40 526.47
G4C2 174.04 173.50 665.13 196.20 45.75 175.72 173.30 708.21 176.16 173.30 722.12 176.00 173.30 695.52
G4C3 146.52 146.00 1016.37 166.10 47.38 149.36 145.90 829.78 148.92 146.10 812.04 148.84 145.90 859.65
G4C4 114.18 113.90 1484.97 133.40 48.04 117.40 114.60 1280.20 117.12 114.50 1133.46 116.30 113.90 1219.28

riterio

w
a
t
D

a
t
F
o
a
d
r
T
o
g
a
t
(
i

t
[
D

Fig. 13. Box and whisker plots of Gap% c

ith an average of 8.50% gap with the best-known solution in an
verage 13.81 s. In the next set of paragraphs, we more elaborate on
he performance of DQGA against those non-learning algorithms of
GA-CM and DGA-MC.

In order to conduct a comparison between our three proposed
lgorithms within each dataset, we have visualized the compu-
ational results using box and whisker plots, as illustrated in
igs. 13 and 14 for Catanzaro et al. [16] datasets. Top and bottom
f each box represent the third and the first quartile, respectively;
nd the horizontal line stands for second quartile (median) of the
ata. Outliers are also plotted as cross points. In particular, Fig. 13
epresents the gap percentage that we discussed in equation (16).
he DQGA algorithm has less variability than two other algorithms
f DGA-CM and DGA-MC, as it has a maximum gap of 4.5% (see the
reen box for datC3 dataset). Considering the computational time,
lthough the DQGA algorithm has higher average computational
ime in datD2, datD3 and datD4 datasets than two other algorithms
see Fig. 14), it can be justified by its higher solutions quality found
n these datasets.

The graphical representation of percentage gap and computa-

ional time for each algorithm across all datasets of Crama et al.
13] is depicted in Figs. 15 and 16. These results show that the
QGA performs either better than or equal to two other algorithms.
n for all datasets of Catanzaro et al. [16].

However, this statement is only driven from the graphical repre-
sentations of the results over 10 independent replications. Due to
the randomness properties of the algorithms, we have conducted
paired sample t-test in the following section to investigate their
performances from a statistical viewpoint.

5.3. Statistical analysis

In order to compare the quality of the solutions between three
DQGA, DGA-CM and DGA-MC algorithms, paired sample t-test is
carried out at the significance level of 0.05, which means there
would be difference between performances of the algorithms in
statistical sense if null hypothesis is rejected with p-value smaller
than 0.05. The null hypothesis, i.e., a zero mean difference between
paired observations, and alternative hypothesis are as follows:

H0 :
C
A −
C

B = 0

H1 :
C
A −
C

B /= 0
(17)
Where
C
A stands for the average of the criterion C (time or per-

centage gap) in the algorithm A, i.e. DQGA, and
C
B stands for the

average of the criterion C in the algorithm B, i.e. DGA-CM or DGA-

226 E. Ahmadi et al. / Applied Soft Computing 65 (2018) 214–229

Fig. 14. Box and whisker plots of Time criterion for all datasets of Catanzaro et al. [16].

Fig. 15. Box and whisker plots of Gap% criterion for all datasets of Crama et al. [13].

Fig. 16. Box and whisker plots of Time criterion for all datasets of Crama et al. [13].

E. Ahmadi et al. / Applied Soft Computing 65 (2018) 214–229 227

Table 11
Statistical result of the paired sample t-test for two criteria.

Criterion C Algorithm A Algorithm B Catanzaro et al. [16] datasets Crama et al. [13] datasets

p-value Result p-value Result

Gap (%) DQGA DGA-CM 0.000 H0 Is rejected, DQGA
performs better

0.000 H0 Is rejected, DQGA
performs better

DQGA DGA-MC 0.000 H0 Is rejected, DQGA
performs better

0.000 H0 Is rejected, DQGA
performs better

T (Sec) DQGA DGA-CM 0.892 Fail to reject H0, There is no 0.388 Fail to reject H0, There is no

M
d

D
[
t
p
t
r
[

6

S
P
G
l
o
p
i
t
n
l
2
h

o
t
s
t
o

DQGA DGA-MC 0.011

C. The test is run over the results of all instances for each of two
atabases and the outputs are reported in Table 11.

Regarding the percentage gaps, it is statistically proven that
QGA outperforms DGA-CM and DGA-MC in both Catanzaro et al.

16] and Crama et al. [13] datasets. With respect to the compu-
ational time (T), no significant differences are observed in the
erformance of DQGA and DGA-CM in both datasets, as statistical
est failed to reject the null hypothesis. DGA-MC has shown that
equires less computational effort than DQGA in Catanzaro et al.
16] dataset. However, DQGA found solutions with higher quality.

. Conclusions and future work

In this study, we have addressed the Job Sequencing and Tool
witching Problem (SSP) by hybrid methods of Traveling Salesman
roblem of Second Order (2-TSP) and a Dynamic Q-learning-based
enetic Algorithm (DQGA). It has been shown that SSP is equiva-

ent to the Job Sequencing Problem (JSeP). In the JSeP, the number
f tool switches required to process a job depends upon all of its
redecessors. By utilizing 2-TSP, one predecessor of the current job

s taken into account in transition to the next job, which comparing
o the TSP provides better distance value between two consecutive
odes. We called the induced JSeP by 2-TSP as Job Sequencing Prob-

em of Second Order (2-JSeP) and proved that 2-JSeP is NP-hard. The
-JSeP has been solved using a heuristic and the obtained solutions
ave been considered as an initial population for the DQGA.

In designing a genetic algorithm, the order of executing genetic
perators, i.e. first crossover then mutation (CM) or first mutation

hen crossover (MC), might change the ability of the algorithm in
earching solution space. This motivated us to propose a method
hat enables the genetic algorithm to learn from the experience
f selecting the order of mutation and crossover operators in each
significant difference significant difference
H0 Is rejected, DGA-MC
performs better

0.798 Fail to reject H0, There is no
significant difference

generation. Therefore, a Q-learning procedure, which is a kind of
reinforcement learning method, is designed to help with the deci-
sion of selecting operator’s sequence. In addition, the proposed
genetic algorithm is equipped with a local search, removal of sim-
ilar chromosomes in each generation, as well as a mechanism to
dynamically explore the solution space. These three strategies were
selected to escape from local optima.

The results of the proposed DQGA are compared with the
state-of-the-art method in the literature, as well as with those of
non-learning DGA-CM and DGA-MC algorithms. The computational
results on 320 benchmark instances show that the proposed DQGA
is not only competitive with the current state-of-the-art methods,
but also could improve the reported best-known solutions for some
instances in notably less time. Moreover, the 2-JSeP was able to gen-
erate high quality initial solutions for genetic algorithms, with an
average of 9.05% and 8.50% gap with best-known solutions for two
studied datasets and in an average time of 11.87 and 13.81 s, respec-
tively. Finally, through the statistical analysis, the performance of
DQGA is compared with those of non-learning GAs.

One of the future research directions will be utilizing k-JSeP
approximation model with k as close as possible to the capacity
in the JSeP. In addition, more jobs and different algorithms may
be considered and compared to our proposed model. It would be
also interesting to see the performance of the other meta-heuristic
methods against the proposed DQGA. Moreover, the proposed
approach is quite general, which is applicable to the schedul-
ing problems with sequence-dependent setup time. So, adopting
described techniques to solve this class of problems would be an

interesting future research study.

Appendix A

228

E.
 A

hm
adi

 et
 al.

 /
 A

pplied
 Soft

 Com
puting

 65
 (2018)

 214–229

Table A1
Number of tool twitches for the sequence of (a, b, c). For example, in the first raw the number of tool switches equals 4 for the job sequences (1, 2, 3).

To job c 1 2 3 4 5 6 7 8 9 10 To job c 1 2 3 4 5 6 7 8 9 10

From job (a,b) (1,2) – – 4 5 5 4 5 4 6 5 From job (a,b) (6,1) – 2 2 3 3 – 3 2 3 4
(1,3) – 4 – 3 5 4 4 4 5 5 (6,2) 2 – 2 3 3 – 3 3 3 3
(1,4) – 5 3 – 5 5 4 4 5 6 (6,3) 2 2 – 2 3 – 2 3 3 4
(1,5) – 5 5 5 – 5 4 3 5 6 (6,4) 3 3 2 – 3 – 3 3 3 5
(1,6) – 4 4 5 5 – 5 5 5 6 (6,5) 3 3 4 3 – – 3 3 3 4
(1,7) – 5 4 4 4 5 – 4 5 7 (6,7) 3 4 3 3 3 – – 3 4 6
(1,8) – 4 4 4 3 4 3 – 4 6 (6,8) 2 3 4 3 3 – 3 – 3 5
(1,9) – 6 6 5 5 6 6 5 – 6 (6,9) 4 4 4 3 3 – 4 3 – 4
(1,10) – 5 6 6 6 7 8 7 6 – (6,10) 5 4 5 5 5 – 7 6 5 –
(2,1) – – 4 5 5 4 5 4 6 5 (7,1) – 3 2 2 2 3 – 1 3 5
(2,3) 4 – – 4 6 4 5 6 6 5 (7,2) 3 – 3 3 3 3 – 3 4 5
(2,4) 5 – 4 – 5 5 5 5 5 5 (7,3) 2 3 – 1 3 2 – 3 3 4
(2,5) 5 – 6 5 – 5 5 4 5 5 (7,4) 2 3 1 – 2 3 – 2 2 4
(2,6) 4 – 4 5 5 – 5 5 5 6 (7,5) 2 3 3 2 – 3 – 2 3 4
(2,7) 5 – 5 5 5 6 – 5 6 8 (7,6) 3 3 3 4 4 – – 4 4 5
(2,8) 4 – 6 5 4 5 5 – 5 6 (7,8) 1 3 3 2 2 3 – – 3 5
(2,9) 6 – 6 5 5 6 6 5 – 6 (7,9) 4 4 4 3 3 4 – 3 – 4
(2,10) 5 – 5 5 5 6 7 6 5 – (7,10) 6 5 6 6 6 7 – 7 6 –
(3,1) – 3 – 2 4 3 3 3 4 4 (8,1) – 3 3 3 2 3 2 – 3 5
(3,2) 3 – – 3 5 3 4 5 5 4 (8,2) 3 – 5 4 3 4 4 – 4 5
(3,4) 2 3 – – 3 3 2 3 3 4 (8,3) 3 5 – 3 5 4 4 – 5 6
(3,5) 4 5 – 4 – 5 4 4 4 5 (8,4) 3 4 3 – 3 4 3 – 3 5
(3,6) 3 3 – 4 4 – 4 4 4 5 (8,5) 2 3 4 3 – 4 3 – 3 4
(3,7) 3 4 – 3 3 4 – 3 4 6 (8,6) 4 4 4 5 5 – 5 – 5 6
(3,8) 3 5 – 4 4 5 4 – 4 6 (8,7) 3 4 3 3 3 4 – – 4 6
(3,9) 5 5 – 4 4 5 5 4 – 5 (8,9) 4 4 4 3 3 4 4 – – 4
(3,10) 5 4 – 5 5 6 7 6 5 – (8,10) 6 5 6 6 6 7 8 – 6 –
(4,1) – 4 2 – 4 4 3 3 4 5 (9,1) – 4 3 3 3 3 3 2 – 4
(4,2) 4 – 3 – 4 4 4 4 4 4 (9,2) 4 – 4 3 3 3 4 3 – 3
(4,3) 2 3 – – 3 3 2 3 3 4 (9,3) 3 4 – 2 4 3 3 4 – 4
(4,5) 4 4 4 – – 4 3 3 3 4 (9,4) 3 3 2 – 2 3 2 2 – 3
(4,6) 4 4 4 – 5 – 5 5 5 6 (9,5) 3 3 3 2 – 3 3 2 – 3
(4,7) 3 4 3 – 3 4 – 3 4 6 (9,6) 3 3 3 4 4 – 4 4 – 5
(4,8) 3 4 4 – 3 4 3 – 3 5 (9,7) 3 4 3 3 3 4 – 3 – 6
(4,9) 4 4 4 – 3 4 4 3 – 4 (9,8) 2 3 3 2 2 3 3 – – 4
(4,10) 5 4 5 – 5 6 7 6 5 – (9,10) 4 3 4 4 4 5 6 5 – –
(5,1) – 4 4 4 – 4 3 2 4 5 (10,1) – 3 3 4 4 4 5 4 4 –
(5,2) 4 – 5 4 – 4 4 3 4 4 (10,2) 3 – 3 3 3 3 5 4 3 –
(5,3) 4 5 – 3 – 4 4 5 5 5 (10,3) 3 3 – 3 4 4 4 5 4 –
(5,4) 4 4 3 – – 4 3 3 3 4 (10,4) 4 3 3 – 3 5 4 4 3 –
(5,6) 4 4 4 5 – – 5 5 5 6 (10,5) 4 3 4 3 – 4 4 3 3 –
(5,7) 3 4 3 3 – 4 – 3 4 6 (10,6) 4 4 4 5 5 – 5 5 5 –
(5,8) 2 3 4 3 – 4 3 – 3 4 (10,7) 5 6 5 5 5 6 – 5 6 –
(5,9) 4 4 4 3 – 4 4 3 – 4 (10,8) 4 4 5 4 3 5 5 – 4 –
(5,10) 5 4 5 5 – 6 7 6 5 – (10,9) 4 4 4 3 3 4 4 3 – –

ft Com

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

org/10.1007/978-1-4899-7491-4.
[45] K.Q. Zhu, Z. Liu, in: J.-F. Boulicaut, F. Esposito, F. Giannotti, D. Pedreschi (Eds.),

Population Diversity in Permutation-Based Genetic Algorithm, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004, pp. 537–547, http://dx.doi.org/10.1007/
E. Ahmadi et al. / Applied So

eferences

[1] C.S. Tang, E.V. Denardo, Models arising from a flexible manufacturing
machine, part I: minimization of the number of tool switches, Oper. Res. 36
(1988) 767–777, http://dx.doi.org/10.1287/opre.36.5.767.

[2] G. Ghiani, A. Grieco, E. Guerriero, An exact solution to the TLP problem in an
NC machine, Robot. Comput. Integr. Manuf. 23 (2007) 645–649, http://dx.doi.
org/10.1016/j.rcim.2007.02.011.

[3] C. Privault, G. Finke, K-Server problems with bulk requests: an application to
tool switching in manufacturing, Ann. Oper. Res. 96 (2000) 255–269, http://
dx.doi.org/10.1023/A:1018939132489.

[4] J.E. Amaya, C. Cotta, A.J. Fernández, A memetic algorithm for the tool
switching problem, Hybrid Metaheuristics (2008) 190–202, http://dx.doi.org/
10.1007/978-3-540-88439-2 14.

[5] T. Mütze, Scheduling with few changes, Eur. J. Oper. Res. 236 (2014) 37–50,
http://dx.doi.org/10.1016/j.ejor.2013.11.011.

[6] M. Furrer, T. Mütze, An algorithmic framework for tool switching problems
with multiple objectives, Eur. J. Oper. Res. 259 (2017) 1003–1016, http://dx.
doi.org/10.1016/j.ejor.2016.11.034.

[7] D. Adjiashvili, S. Bosio, K. Zemmer, Minimizing the number of switch
instances on a flexible machine in polynomial time, Oper. Res. Lett. 43 (2015)
317–322, http://dx.doi.org/10.1016/j.orl.2015.04.001.

[8] M. Tzur, A. Altman, Minimization of tool switches for a flexible manufacturing
machine with slot assignment of different tool sizes, IIE Trans. (Inst. Ind. Eng.)
36 (2004) 95–110, http://dx.doi.org/10.1080/07408170490245351.

[9] O.A. Ghrayeb, N. Phojanamongkolkij, P.R. Finch, A mathematical model and
heuristic procedure to schedule printed circuit packs on sequencers, Int. J.
Prod. Res. 41 (2003) 3849–3860, http://dx.doi.org/10.1080/
0020754031000118071.

10] M. Hirvikorpi, K. Salonen, T. Knuutila, O.S. Nevalainen, The general two-level
storage management problem: a reconsideration of the KTNS-rule, Eur. J.
Oper. Res. 171 (2006) 189–207, http://dx.doi.org/10.1016/j.ejor.2004.08.031.

11] P.J.M. Van Laarhoven, W.H.M. Zijm, Production preparation and numerical
control in PCB assembly, Int. J. Flex. Manuf. Syst. 5 (1993) 187–207, http://dx.
doi.org/10.1007/BF01328741.

12] R. Shirazi, G.D.M. Frizelle, Minimizing the number of tool switches on a
flexible machine: an empirical study, Int. J. Prod. Res. 39 (2001) 3547–3560,
http://dx.doi.org/10.1080/00207540110060888.

13] Y. Crama, A.W.J. Kolen, A.G. Oerlemans, F.C.R. Spieksma, Minimizing the
number of tool switches on a flexible machine, Int. J. Flex. Manuf. Syst. 6
(1994) 33–54, http://dx.doi.org/10.1007/BF01324874.

14] G. Laporte, J.J. Salazar-Gonzáles, F. Semet, Exact algorithms for the job
sequencing and tool switching problem, IIE Trans. 36 (2004) 37–45, http://dx.
doi.org/10.1080/07408170490257871.

15] H.H. Yanasse, R. de C.M. Rodrigues, E.L.F. Senne, Um algoritmo enumerativo
baseado em ordenamento parcial para resoluç ão do problema de
minimizaç ão de trocas de ferramentas, Gest. Prod. 16 (2009) 370–381, http://
dx.doi.org/10.1590/S0104-530x2009000300005.

16] D. Catanzaro, L. Gouveia, M. Labbé, Improved integer linear programming
formulations for the job Sequencing and tool Switching Problem, Eur. J. Oper.
Res. 244 (2015) 766–777, http://dx.doi.org/10.1016/j.ejor.2015.02.018.

17] J.F. Bard, A heuristic for minimizing the number of tool switches on a flexible
machine, IIE Trans. 20 (1988) 382–391, http://dx.doi.org/10.1080/
07408178808966195.

18] M.A. Al-Fawzan, K.S. Al-Sultan, A tabu search based algorithm for minimizing
the number of tool switches on a flexible machine, Comput. Ind. Eng. 44
(2002) 35–47, http://dx.doi.org/10.1016/S0360-8352(02)00183-3.

19] M. Denizel, Minimization of the number of tool magazine setups on
automated machines: a lagrangean decomposition approach, Oper. Res. 51
(2003) 309–320, http://dx.doi.org/10.1287/opre.51.2.309.12784.

20] C.S. Tang, E.V. Denardo, Models arising from a flexible manufacturing
machine, part II: minimization of the number of switching instants, Oper. Res.
36 (1988) 778–784, http://dx.doi.org/10.1287/opre.36.5.778.

21] A. Konak, S. Kulturel-Konak, M. Azizoǧlu, Minimizing the number of tool

switching instants in Flexible Manufacturing Systems, Int. J. Prod. Econ. 116
(2008) 298–307, http://dx.doi.org/10.1016/j.ijpe.2008.09.001.

22] J.E. Amaya, C. Cotta, A.J. Fernández-Leiva, Solving the tool switching problem
with memetic algorithms, Artif. Intell. Eng. Des. Anal. Manuf. 26 (2012)
221–235, http://dx.doi.org/10.1017/S089006041100014X.
puting 65 (2018) 214–229 229

23] A. Hertz, G. Laporte, M. Mittaz, K.E. Stecke, Heuristics for minimizing tool
switches when scheduling part types on a flexible machine, IIE Trans. 30
(1998) 689–694, http://dx.doi.org/10.1023/A:1026434104330.

24] A.A. Chaves, L.A.N. Lorena, E.L.F. Senne, M.G.C. Resende, Hybrid method with
CS and BRKGA applied to the minimization of tool switches problem, Comput.
Oper. Res. 67 (2016) 174–183, http://dx.doi.org/10.1016/j.cor.2015.10.009.

25] G.S. Paiva, M.A.M. Carvalho, Improved heuristic algorithms for the job
sequencing and tool switching problem, Comput. Oper. Res. 88 (2017)
208–219, http://dx.doi.org/10.1016/j.cor.2017.07.013.

26] G. Ghiani, A. Grieco, E. Guerriero, Solving the job sequencing and tool
switching problem as a nonlinear least cost Hamiltonian cycle problem,
Networks 55 (2010) 379–385, http://dx.doi.org/10.1002/net.20341.

27] G. Jäger, P. Molitor, Algorithms and experimental study for the traveling
salesman problem of second order, in: Comb. Optim. Appl, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008, pp. 211–224, http://dx.doi.org/10.1007/
978-3-540-85097-7 20.

28] R.M. Karp, J.M. Steele, Probabilistic analysis of heuristics, in: D.B.S.E.L. Lawler,
J.K. Lenstra, A.H.G. Rinnooy Kan (Eds.), Travel. Salesm. Probl., John Wiley &
Sons, Chichester, 1985, pp. 561–573.

29] T. Starkweather, S. Mcdaniel, K. Mathias, W. Darrell, A comparison of genetic
sequencing operators, Proc. Fourth Int. Conf. Genet. Algorithms 1991 (2016)
69–76, 10.1.1.18.4329.

30] J.E. Amaya, C. Cotta, A.J. Fern, A.J.F. Leiva, Hybrid cooperation models for the
tool switching problem, Nat. Inspired Coop. Strateg. Optim. (NICSO 2010) 3
(2010) 39–52, http://dx.doi.org/10.1007/978-3-642-12538-6 4.

31] J.H. Holland, Adaptation in Natural and Artificial Systems, 1975.
32] O. Engin, G. Ceran, M.K. Yilmaz, An efficient genetic algorithm for hybrid flow

shop scheduling with multiprocessor task problems, Appl. Soft Comput. 11
(2011) 3056–3065, http://dx.doi.org/10.1016/j.asoc.2010.12.006.

33] J.S. Neufeld, J.N.D. Gupta, U. Buscher, A comprehensive review of flowshop
group scheduling literature, Comput. Oper. Res. 70 (2016) 56–74, http://dx.
doi.org/10.1016/j.cor.2015.12.006.

34] E. Ahmadi, M. Zandieh, M. Farrokh, S.M. Emami, A multi objective
optimization approach for flexible job shop scheduling problem under
random machine breakdown by evolutionary algorithms, Comput. Oper. Res.
73 (2016) 56–66, http://dx.doi.org/10.1016/j.cor.2016.03.009.

35] Z.-J. Lee, S.-F. Su, C.-C. Chuang, K.-H. Liu, Genetic algorithm with ant colony
optimization (GA-ACO) for multiple sequence alignment, Appl. Soft Comput. 8
(2008) 55–78, http://dx.doi.org/10.1016/j.asoc.2006.10.012.

36] S. Mirshekarian, G.A. Süer, Experimental study of seeding in genetic
algorithms with non-binary genetic representation, J. Intell. Manuf. (2016)
1–10, http://dx.doi.org/10.1007/s10845-016-1204-3.

37] J.L. Bentley, Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, Society for Industrial and Applied Mathematics, 1990.

38] M. Gen, R. Cheng, Genetic Algorithms and Engineering Optimization, Wiley,
2000.

39] J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques, Elsevier,
2011.

40] A. Albalate, W. Minker, Semi-Supervised and Unervised Machine Learning:
Novel Strategies, John Wiley & Sons, 2013.

41] P. Kulkarni, Reinforcement and Systemic Machine Learning for Decision
Making, John Wiley & Sons, 2012, http://dx.doi.org/10.1002/9781118266502.

42] B. Doğan, T. Ölmez, A novel state space representation for the solution of
2D-HP protein folding problem using reinforcement learning methods, Appl.
Soft Comput. 26 (2015) 213–223, http://dx.doi.org/10.1016/j.asoc.2014.09.
047.

43] C.J.C.H. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (1992) 279–292, http://
dx.doi.org/10.1007/BF00992698.

44] A. Gosavi, Simulation-Based Optimization Parametric Optimization
Techniques and Reinforcement Learning, Springer, US, 2015, http://dx.doi.
978-3-540-30115-8 49.

dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1287/opre.36.5.767
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1016/j.rcim.2007.02.011
dx.doi.org/10.1023/A:1018939132489
dx.doi.org/10.1023/A:1018939132489
dx.doi.org/10.1023/A:1018939132489
dx.doi.org/10.1023/A:1018939132489
dx.doi.org/10.1023/A:1018939132489
dx.doi.org/10.1023/A:1018939132489
dx.doi.org/10.1023/A:1018939132489
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1007/978-3-540-88439-2_14
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2013.11.011
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.ejor.2016.11.034
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1016/j.orl.2015.04.001
dx.doi.org/10.1080/07408170490245351
dx.doi.org/10.1080/07408170490245351
dx.doi.org/10.1080/07408170490245351
dx.doi.org/10.1080/07408170490245351
dx.doi.org/10.1080/07408170490245351
dx.doi.org/10.1080/07408170490245351
dx.doi.org/10.1080/07408170490245351
dx.doi.org/10.1080/0020754031000118071
dx.doi.org/10.1080/0020754031000118071
dx.doi.org/10.1080/0020754031000118071
dx.doi.org/10.1080/0020754031000118071
dx.doi.org/10.1080/0020754031000118071
dx.doi.org/10.1080/0020754031000118071
dx.doi.org/10.1080/0020754031000118071
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1016/j.ejor.2004.08.031
dx.doi.org/10.1007/BF01328741
dx.doi.org/10.1007/BF01328741
dx.doi.org/10.1007/BF01328741
dx.doi.org/10.1007/BF01328741
dx.doi.org/10.1007/BF01328741
dx.doi.org/10.1007/BF01328741
dx.doi.org/10.1007/BF01328741
dx.doi.org/10.1080/00207540110060888
dx.doi.org/10.1080/00207540110060888
dx.doi.org/10.1080/00207540110060888
dx.doi.org/10.1080/00207540110060888
dx.doi.org/10.1080/00207540110060888
dx.doi.org/10.1080/00207540110060888
dx.doi.org/10.1080/00207540110060888
dx.doi.org/10.1007/BF01324874
dx.doi.org/10.1007/BF01324874
dx.doi.org/10.1007/BF01324874
dx.doi.org/10.1007/BF01324874
dx.doi.org/10.1007/BF01324874
dx.doi.org/10.1007/BF01324874
dx.doi.org/10.1007/BF01324874
dx.doi.org/10.1080/07408170490257871
dx.doi.org/10.1080/07408170490257871
dx.doi.org/10.1080/07408170490257871
dx.doi.org/10.1080/07408170490257871
dx.doi.org/10.1080/07408170490257871
dx.doi.org/10.1080/07408170490257871
dx.doi.org/10.1080/07408170490257871
dx.doi.org/10.1590/S0104-530x2009000300005
dx.doi.org/10.1590/S0104-530x2009000300005
dx.doi.org/10.1590/S0104-530x2009000300005
dx.doi.org/10.1590/S0104-530x2009000300005
dx.doi.org/10.1590/S0104-530x2009000300005
dx.doi.org/10.1590/S0104-530x2009000300005
dx.doi.org/10.1590/S0104-530x2009000300005
dx.doi.org/10.1590/S0104-530x2009000300005
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1016/j.ejor.2015.02.018
dx.doi.org/10.1080/07408178808966195
dx.doi.org/10.1080/07408178808966195
dx.doi.org/10.1080/07408178808966195
dx.doi.org/10.1080/07408178808966195
dx.doi.org/10.1080/07408178808966195
dx.doi.org/10.1080/07408178808966195
dx.doi.org/10.1080/07408178808966195
dx.doi.org/10.1016/S0360-8352(02)00183-3
dx.doi.org/10.1016/S0360-8352(02)00183-3
dx.doi.org/10.1016/S0360-8352(02)00183-3
dx.doi.org/10.1016/S0360-8352(02)00183-3
dx.doi.org/10.1016/S0360-8352(02)00183-3
dx.doi.org/10.1016/S0360-8352(02)00183-3
dx.doi.org/10.1016/S0360-8352(02)00183-3
dx.doi.org/10.1016/S0360-8352(02)00183-3
dx.doi.org/10.1016/S0360-8352(02)00183-3
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.51.2.309.12784
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1287/opre.36.5.778
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1016/j.ijpe.2008.09.001
dx.doi.org/10.1017/S089006041100014X
dx.doi.org/10.1017/S089006041100014X
dx.doi.org/10.1017/S089006041100014X
dx.doi.org/10.1017/S089006041100014X
dx.doi.org/10.1017/S089006041100014X
dx.doi.org/10.1017/S089006041100014X
dx.doi.org/10.1017/S089006041100014X
dx.doi.org/10.1023/A:1026434104330
dx.doi.org/10.1023/A:1026434104330
dx.doi.org/10.1023/A:1026434104330
dx.doi.org/10.1023/A:1026434104330
dx.doi.org/10.1023/A:1026434104330
dx.doi.org/10.1023/A:1026434104330
dx.doi.org/10.1023/A:1026434104330
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2015.10.009
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1016/j.cor.2017.07.013
dx.doi.org/10.1002/net.20341
dx.doi.org/10.1002/net.20341
dx.doi.org/10.1002/net.20341
dx.doi.org/10.1002/net.20341
dx.doi.org/10.1002/net.20341
dx.doi.org/10.1002/net.20341
dx.doi.org/10.1002/net.20341
dx.doi.org/10.1002/net.20341
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
dx.doi.org/10.1007/978-3-540-85097-7_20
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0145
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
dx.doi.org/10.1007/978-3-642-12538-6_4
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0155
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.asoc.2010.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2015.12.006
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.cor.2016.03.009
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1016/j.asoc.2006.10.012
dx.doi.org/10.1007/s10845-016-1204-3
dx.doi.org/10.1007/s10845-016-1204-3
dx.doi.org/10.1007/s10845-016-1204-3
dx.doi.org/10.1007/s10845-016-1204-3
dx.doi.org/10.1007/s10845-016-1204-3
dx.doi.org/10.1007/s10845-016-1204-3
dx.doi.org/10.1007/s10845-016-1204-3
dx.doi.org/10.1007/s10845-016-1204-3
dx.doi.org/10.1007/s10845-016-1204-3
dx.doi.org/10.1007/s10845-016-1204-3
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0185
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0190
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0195
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
http://refhub.elsevier.com/S1568-4946(18)30001-2/sbref0200
dx.doi.org/10.1002/9781118266502
dx.doi.org/10.1002/9781118266502
dx.doi.org/10.1002/9781118266502
dx.doi.org/10.1002/9781118266502
dx.doi.org/10.1002/9781118266502
dx.doi.org/10.1002/9781118266502
dx.doi.org/10.1002/9781118266502
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1016/j.asoc.2014.09.047
dx.doi.org/10.1007/BF00992698
dx.doi.org/10.1007/BF00992698
dx.doi.org/10.1007/BF00992698
dx.doi.org/10.1007/BF00992698
dx.doi.org/10.1007/BF00992698
dx.doi.org/10.1007/BF00992698
dx.doi.org/10.1007/BF00992698
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-1-4899-7491-4
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49
dx.doi.org/10.1007/978-3-540-30115-8_49

	A hybrid method of 2-TSP and novel learning-based GA for job sequencing and tool switching problem
	1 Introduction and background
	2 Problem formulation
	2.1 Job sequencing problem
	2.2 Job sequencing problem of second order

	3 Solution method
	3.1 Assignment-Patching heuristic
	3.1.1 Assignment problem of second order
	3.1.2 Patching algorithm

	3.2 Dynamic Q-learning based genetic algorithm
	3.2.1 Chromosome representation
	3.2.2 Initialization
	3.2.3 Selection strategy
	3.2.4 Genetic operators
	3.2.4.1 Partially-Mapped crossover operator (PMX)
	3.2.4.2 Swap mutation operator

	3.2.5 Local search
	3.2.6 Similarity function for chromosome removal
	3.2.7 Q-learning algorithm
	3.2.8 Restarting-phase
	3.2.9 DQGA flowchart

	4 Experimental design
	4.1 Parameter setting
	4.2 Benchmark problems

	5 Experimental results
	5.1 Correlation of objective functions
	5.2 Algorithms’ performance examination
	5.3 Statistical analysis

	6 Conclusions and future work
	Appendix A
	References

