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ABSTRACT
Consider (m + 1)-dimensional, m � 1, diffeomorphisms that have a
saddle fixed pointOwithm-dimensional stable manifoldWs(O), one-
dimensional unstable manifold Wu(O), and with the saddle value σ
different from 1. We assume thatWs(O) andWu(O) are tangent at the
points of some homoclinic orbit and we let the order of tangency
be arbitrary. In the case when σ < 1, we prove necessary and suffi-
cient conditions of existence of topological horseshoes near homo-
clinic tangencies. In the case when σ > 1, we also obtain the criterion
of existence of horseshoes under the additional assumption that the
homoclinic tangency is simple.

1. Introduction

Homoclinic orbit, or Poincaré homoclinic orbit, is an orbit that is bi-asymptotic to a saddle
periodic trajectory. By its definition, any homoclinic orbit belongs to the intersection
Ws�Wu of the stable and unstable manifolds of the corresponding periodic orbit. Depend-
ing on whether this intersection is transverse or non-transverse, the homoclinic orbit is
called transverse or non-transverse, respectively. The latter case is called also the homoclinic
tangency.

In fact, the possibility of existence of homoclinic orbits in multidimensional dynamical
systems was discovered byH.Poincaré as early as in the end of the nineteenth century. Now,
more than a century after Poincaré, the presence of transverse Poincaré homoclinic orbits
is regarded as the universal criterion for chaos, i.e. for presence of complicated dynamics.
Actually, the set � of nonwandering orbits from a small neighbourhood U of a transverse
homoclinic orbit has nontrivial structure: in particular, it contains countably many peri-
odic and homoclinic orbits, continuum Poisson stable orbits, etc. The collection of such
results can be referred to as the Poincaré–Birkhoff–Smale–Shilnikov theory. One of the
main results of this theory states that the set � is uniformly hyperbolic and admits a com-
plete description in terms of symbolic dynamics [30,32], andmoreover, it is locally maximal
[30], i.e. the largest closed invariant set in U.
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The problem of studying behaviour of trajectories near a nontransversal homoclinic
orbit becomes much more complicated and, moreover, it cannot be solved as complete
description, especially when nearby systems are considered. The point here is that arbi-
trarily small smooth perturbations of any system with homoclinic tangency can lead to the
appearance of homoclinic and periodic orbits of any order of degeneracy, see e.g. [15,16].
Therefore, a special attention should be paid to those problems which are related to the
study of characteristic features of homoclinic structures and their principal bifurcations.

A problem of such type was studied first in the famous paper by N.K. Gavrilov and L.P.
Shilnikov [1]. In that paper, three-dimensional (3D) flows (and thus, two-dimensional (2D)
diffeomorphisms) with quadratic homoclinic tangencies were considered andmany impor-
tant homoclinic phenomena were discovered. In particular, all quadratic tangencies with
σ < 1 were partitioned into two classes with respect to the type of the structure of the set�
of trajectories from a small neighbourhood U = U(O � �0) of the orbit �0 homoclinic to
the saddleO : namely, the first class corresponds to the trivial structure of� (in which case
� = O � �0), and for the second class, there are nontrivial hyperbolic subsets in �. In [1],
it has been developed an effective technique based on geometric and analytical conditions
for the existence of such subsets. This technique also allows one to describe these subsets
in terms of symbolic dynamics. In [4,13], these methods were generalized for multidimen-
sional systems with homoclinic tangencies of arbitrary finite orders in the sectionally dissi-
pative case (i.e. with σ < 1). In particular, in [13], the classification results for homoclinic
tangencies (with respect to the structure of the set�) were presented, and in [4], nontrivial
non-uniformly hyperbolic subsets were proved to exist in � and their symbolic dynamics
was described.1 As for topological horseshoes, certain conditions on their existence near
arbitrary homoclinic tangencies were established in [21,22] for the case of 2D dissipative
diffeomorphisms.

In this paper, we examine multidimensional diffeomorphisms with homoclinic tangen-
cies to a saddle fixed point whose unstable invariant manifold is one-dimensional (1D). We
consider the problem on the structure of the set � of orbits lying entirely in a sufficiently
small neighbourhood of a non-transverse homoclinic orbit.

It is worth saying that this problem, unlike the one in the case of transverse homoclinic
orbit, has several fundamental peculiarities as follows. First: the problem does not allow a
simple univalent answer (in contrast to the case of transverse homoclinic orbit); actually, we
can distinguish and classify two totally different situations: either the set� has trivial struc-
ture, or� contains infinitely many horseshoes. Second: if one proposes additional conditions
in topological terms (e.g. assuming the homoclinic tangency to be isolated or one-sided, see
Definition 2.2 from Section 2), then one may obtain classification results only in the cases
when σ < 1 (see Theorem 2.3 and Corollary 2.4), or when σ > 1 for 2D diffeomorphisms
(see Corollary 2.5). As the example from Section 2.5 shows, inmultidimensional cases with
σ > 1, some additional assumptions are required. Therefore, we suppose that the homo-
clinic tangencies under consideration are simple by terminology of [18,19], see Section 2.2.
This additional assumption allows us to obtain some important classification results for the
case σ > 1 (see Theorems 2.12, 2.13).

Throughout this paper, we assume the following. Let f be an (m + 1)-dimensional Cr-
diffeomorphism, r � 2, with a hyperbolic fixed pointO which has multipliers λ1,… , λm, γ
such that

0 < |λm| ≤ · · · ≤ |λ2| ≤ |λ1| < 1 < |γ | (1)
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and

σ ≡ |λ1||γ | �= 1,

σ here is called the saddle value. We assume also that f has a homoclinic orbit �0 to O at
which the m-dimensional stable manifold, Ws, and 1D unstable manifold, Wu, of O are
tangent, and this tangency can be arbitrary (in particular, we let the tangency be of any
finite or even infinite order, see statements of Theorems 2.3, 2.12 and 2.13).

LetU be a small neighbourhood of the contourO� �0 and� be the set of f-orbits lying
entirely in U. The main problem is to study the structure of the set �.

We consider the following two different general cases:2

(1) the sectionally dissipative case, where σ < 1, and
(2) the sectionally saddle case, where σ > 1.

The sectionally dissipative case is a very popular topic in chaotic dynamics, and many
relevant results have been obtained for this case. Among numerous papers concerning it,
we would like to mention especially the pioneering papers by Gavrilov and Shilnikov [1]
andNewhouse [25] which have caused actually a big interest in the study of the correspond-
ing problems. One of the most important results here is that bifurcations of such systems
can lead to appearance of periodic attractors, see [1,3,19,25,28].Moreover, the famousNew-
house phenomenon [25] takes place here: namely, there exist open regions (calledNewhouse
regions) in which systems with infinitely many periodic attractors are dense.

Note that the Newhouse phenomenon can be observed not only in the sectionally dissi-
pative case. In general, theNewhouse regions (i.e. open regions in the space ofCr-dynamical
systems, r � 2, in which systems with homoclinic tangencies are dense) exist in any neigh-
bourhood of any system with homoclinic tangency, see [18,26,28,29]. In particular, in the
sectionally saddle case, the Newhouse phenomenon is sometimes related to existence of
infinitely many stable invariant curves [17] and even of infinitely many strange attractors,
e.g. discrete Lorenz-like attractors [6,10–12]. Actually, the condition σ < 1 means that the
so called effective dimension de of the system3 equals 1 [34] (in this case, all k-dimensional
volumes with k � 2 are contracted exponentially under iterations in a neighbourhood of
the homoclinic trajectory), and therefore, only 1D dynamical behaviour is expected here.
In contrast, when σ > 1, the effective dimension may be arbitrary [34].

The content of the paper is as follows. In Section 2, we define and discuss principal
notions and state main results: Theorems 2.3–2.13. In Section 2.1, we discuss the prob-
lem on existence of topological horseshoes in the sectionally dissipative case and state
the main results with respect to this topic (Theorem 2.3 and Corollaries 2.4 and 2.5). In
Section 2.2, we introduce the notion of simple homoclinic tangency and of simple homo-
clinic tangency of ordern. These definitions can be regarded as generalizations of the notion
of simple quadratic (with n= 1) homoclinic tangency introduced in [19].We also give nec-
essary technical details as preliminaries for proofs of main results: namely, properties of
local and global maps are considered in Section 2.3. In Section 2.4, we discuss the problem
on existence of topological horseshoes near simple homoclinic tangencies by paying a spe-
cial attention to the sectionally saddle case (see Theorems 2.12 and 2.13). In Section 3, we
prove Theorems 2.3–2.13.
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2. Definitions and statements of main results

Let us recall first some facts and results concerning homoclinic tangencies.

Definition 2.1: We say that

(i) f possesses trivial dynamics near the homoclinic orbit�0�{�} if� =O� {�}, where
{�} is the set of homoclinic to O orbits which are close to �0;

(ii) f has a topological horseshoe if � contains an f-invariant subset �̃ such that f |�̃
is topologically semi-conjugate to a subshift of finite type with positive topological
entropy;

(iii) f has a hyperbolic horseshoe if �̃ from (ii) contains a uniformly hyperbolic nontrivial
closed invariant set (here ‘nontrivial’ means that the restriction of f on this set has
positive topological entropy).

Let M+ and M− be a pair of points of �0 such that M+ ∈ Ws
loc ∩U0, M− ∈ Wu

loc ∩U0.
Let�+ and�− be sufficiently small neighbourhoods of the pointsM+ andM−, respectively,
and letM+ = fq(M−) for some positive integer q. Denote the map f

∣∣
U0

by T0 and the map
f q

∣∣
�− by T1 (thus, T1(M−) = M+). The map T0 is called the local map because it is defined

in a small neighbourhood of O; while the map T1 is called the global map because it acts
along the global piece of the orbit �0.

The following definition is related to topological classification of (homoclinic)
tangencies.

Definition 2.2: The homoclinic tangency is isolated if, for some neighbourhoods �+ and
�−, the point M+ is a unique intersection point of the curve lu = T1(Wu

loc ∩ �−) ∩ �+

with Ws
loc. We say that the isolated homoclinic tangency is one-sided if Ws

loc divides �+

into two half-parts and the curve lu belongs as a whole to the closure of exactly one half of
�+; otherwise, we will call the isolated tangency topologically crossing. We say that a one-
sided tangency is from below if the point M− is not an accumulation point of the curves
Ti
0 (lu), i = 0, 1, . . ., i.e.,

M− /∈
⋃

i≥0
{Ti

0 (lu)}; (2)

and is from above otherwise, i.e. if

M− ∈
⋃

i≥0
{Ti

0 (lu)}; (3)

(see Figure 1 for illustration).

2.1. Topological horseshoes in the sectionally dissipative case

In this section, we observe topological properties of orbits lying entirely in a small neigh-
bourhood of the homoclinic orbit �0 in the case when σ < 1.

Note first that in the sectionally dissipative case (σ < 1), condition (2) can be regarded
as a certain criterion of trivial dynamics, and the following result confirms this fact.
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Figure . Examples of one-sided homoclinic tangencies: (a) from above, (b) from below, and (c) topolog-
ically crossing.

Theorem 2.3 ([On topological horseshoes in the sectionally dissipative case]): Let
a diffeomorphism f have a homoclinic tangency and σ < 1. Then the following
holds

(1) if the tangency satisfies condition (2) (in particular, when the tangency is from below),
then f possesses the trivial dynamics near �0;

(2) otherwise, if condition (3) holds (in particular, when the tangency is from above), then
f has infinitely many topological horseshoes near �0.

Note that Theorem 2.3 can be regarded as a criterion of existence of topological horse-
shoes in a small neighbourhood of a homoclinic tangency for the case σ < 1. In particular,
it implies that if γ < 0, then horseshoes may not exist only when a part of the manifold
Wu(O) lies inWs

loc(O).
Also note that sometimes without additional assumptions for f in the case σ < 1, we

can say even more than Theorem 2.3 states. For example, the geometry of the problem
is such that infinitely many first return maps Ti = T1Ti

0 : �+ → �− → �+, i = k̄, k̄ + 1,
are defined here. Indeed, the domain of the map Ti

0 : �+ → �− is some strip σ 0
i ⊂ �+

and Ti
0 (σ

0
i ) = σ 1

i ⊂ �− (see Figure 5 and Section 2.3). In turn, the strip σ 1
i is transformed

under T1 into horseshoe-shaped figure T1σ 1
i , see Figure 2.

If the tangency is one-sided from above, see Figure 2(a), each of these first return
maps is, in fact, a (topological) horseshoe map; if the tangency is a topologically crossing,
then every pair of the first return maps may be associated with an appropriate horseshoe
map, see Figure 2(b). Though Theorem 2.3 says nothing about hyperbolicity, neverthe-
less, one can apply some indirect facts, namely Katok Theorem, in order to deduce the
following.

Corollary 2.4: In the case 2 of Theorem 2.3 the set � contains infinitely many hyperbolic
horseshoes.
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Figure . Geometrical horseshoes in the cases of (a) one-sided tangency; (b) topologically crossing tan-
gency.

Proof: In the paper [23] by Katok it was proved (see Corollary 4.3 from [24]) that any C1+α

diffeomorphism on 2D manifold with positive topological entropy has a uniformly hyper-
bolic nontrivial invariant set such that the restriction of the diffeomorphism to this set is
topologically conjugate to a topological Markov chain (a horseshoe). We now may apply
this result to the sectionally dissipative case, i.e. when σ < 1. Indeed, by Theorem 2.3, we
get that the restriction of f to each topological horseshoe has positive topological entropy.
The lattermeans that there are f-orbits having the first Lyapunov exponentL1 positive. Now
the sectional dissipativity also implies that the first return maps near �0 contract exponen-
tionally all 2D volumes. Therefore, all remaining Lyapunov exponents must be negative.
Remark that in the paper [23] by Katok, the proof of Corollary 4.3 for 2D diffeomorphisms
is based just on multidimensional result (Corollary 4.1) on existence of topological horse-
shoes provided that the positive and negative Lyapunov exponents exist and there are no
zero Lyapunov exponents. As we have shown, in the case under consideration, zero Lya-
punov exponents are absent due to the sectional dissipativity.4 �

Thus, in the sectionally dissipative case, relation (2) provides, in fact, the criterion for
trivial dynamics near homoclinic tangency. In contrast, in the case σ > 1 one has totally
different horseshoe geometry, even in dimension two, see Figure 3 for illustration.However,
Theorem 2.3 can be evidently applied to the case σ > 1 for 2D diffeomorphisms, since we
can always consider f−1 instead of f. Then, the following condition

M+ /∈
⋃

i≥0
{T−i

0 (ls)}, (4)

where ls is the curve on �− defined as ls = T−1
1 (Ws

loc ∩ �+) ∩ �−, must be considered
instead (2). Thus, we have the following

Corollary 2.5 ([On topological horseshoes in dimension 2 and σ > 1]): Let f be t2D and
σ > 1. Then the following holds
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Figure . Geometry of horseshoes in the case σ <  (a),(b) and in the case σ >  (c),(d).

(1) if the tangency satisfies condition (4), then f possesses the trivial dynamics near �0;
(2) otherwise, if condition (4) is not satisfied, f has infinitely many topological horseshoes

near �0; moreover, the set � contains infinitely many hyperbolic horseshoes.

Unfortunately, this approach with changing f to f−1 is not suitable in higher dimensions
since the unstable manifold of the point O for f−1 will have dimension greater than 1, i.e.
such diffeomorphisms do not belong to the class of systems under consideration. Therefore,
multidimensional case with σ > 1 requires another technique and certain specification of
the problem, see next subsection.

2.2. Definition of a simple homoclinic tangency

In this section (as in [17,19]), we assume that f satisfies some additional general conditions.
First, we make some assumptions on the multipliers of O. Let these multipliers λ1,… ,

λm, γ be ordered by the rule (1). We call leading (or weak) those multipliers of O that are
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equal to |λ1| in absolute value. Accordingly, other stable multipliers (less than |λ1| inmodu-
lus) are called nonleading (or strong stable).We consider the following generic assumption:

(A) the leading stable multipliers of O are simple.
Then two different types of saddle fixed (periodic) points are defined. Namely,
(A1) the point O is a saddle, i.e. the multiplier λ1 is real and |λ1| > |λj| for j = 2,… ,m;
(A2) the point O is a saddle-focus, i.e. the multipliers λ1 and λ2 are complex conjugate,

λ1 = λeiϕ , λ2 = λe−iϕ , 0 < λ < 1, 0 < ϕ < π and λ > |λj| for j = 3,… ,m.
When the pointO has non-leading stable multipliers, we needmore assumptions. Recall

the following facts.
First, Ws

loc contains the invariant C
r-smooth strong stable manifold Wss

loc ⊂ Ws
loc which

touches at O the eigenspace of Df corresponding to the non-leading multipliers λi. Hence,
dim Wss

loc = m − 1 if A1 holds, and dim Wss
loc = m − 2 if A2 holds. Also, it is well known

(see e.g. [20,32]) thatWs
loc admits invariant Cr-smooth strong stable foliation Fss containing

Wss
loc as a leaf.
Another fact we need (see, for example, [20,27,32]) is that the manifoldWu(O) is a part

of the so-called extended unstable manifold Wue(O). It is a smooth (at least C1+ϵ) invariant
manifold which is tangent at O to the eigenspace of Df corresponding to the leading stable
multipliers, thus, Wue is two- or 3D depending on whether O is a saddle or saddle-focus,
respectively. Though manifold Wue is not uniquely defined, any such a manifold contains
Wu

loc, and moreover, any two such manifolds are tangent to each other at points of Wu
loc.

Thus, at the homoclinic pointM− ∈ Wu
loc, the tangent space toW

ue, denoted by TM−Wue, is
uniquely defined. SinceM+ = T1(M−), we can extendWue up to the homoclinic pointM+.
Denote the tangent space toWue atM+ by TM+Wue. Evidently, TM+Wue = DT1 (TM−Wue)),
where DT1 denotes the linear part of the global map T1 � fq: �− → �+ at the pointM−.

We also consider the following general conditions (the same as in [18,19]):
(B)M+ /∈ Wss

loc and
(C) TM−Wue is transverse to Fss(M+) atM+, where Fss(M+) is the leaf of the foliation Fss

containing the pointM+.

Definition 2.6: A homoclinic tangency satisfying conditions A–C is called simple.

The notion of simple quadratic homoclinic tangency was introduced in [18,19] as a
‘homoclinic version’ of quasi-transversal intersection [27]. Thus, Definition 2.6 is an exten-
sion of this notion to tangencies of any orders when dimWu(O) = 1.

See Figure 4(a) for illustration of conditions A(1), B, and C in the case when the pointO
is a saddle with 2D stable manifold. In Figure 4(b) and (c), two main cases of non-simple
homoclinic tangencies are shown when condition C is violated. The condition of simple
homoclinic tangency in the coordinate form are shown in Section 2.3, see formulas (11)
and (12).

Thus, we generalize the notion of simple quadratic homoclinic tangency introduced in
[19].We can adapt also this definition to arbitrary homoclinic tangencies and, in particular,
to homoclinic tangencies of finite order.

Definition 2.7: Let f be aCr-diffeomorphism under consideration and n be an integer with
1 � n < r. We say that the homoclinic tangency atM+ is of order n if there exist local (near
M+) Cr-coordinates (x1,… , xm, y) such that the corresponding local piece ofWs is written
as y = 0 and the equation for the piece of Wu near M+ can be written (in the parameter
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Figure . (a) An illustration to definition of simple homoclinic tangency for a D diffeomorphism (satis-
fying conditions A–C). (b),(c) Two main cases of non-simple homoclinic tangencies when condition C is
violated: (b) TM−Wue is transverse toWs

loc(O) and touches Fss(M+) and (b) TM−Wue touchesWs
loc(O). Here

vu is a tangent vector toW
u(O) at the pointM+ and vss is a tangent vector to F

ss(M+) atM+.

form) as follows

xi = bit + O(t2), (i = 1, . . . ,m), y = g(t ),

where g(t) is Cr and

g(0) = dg(0)
dt

= . . . = dng(0)
dtn

= 0,
dn+1g(0)
dtn+1 = (n + 1)! d �= 0,

where t is a parameter varying near zero, bi and d are some constants and �|bi| 	 0.
If all derivatives dig(0)/dti vanish for i= 0,… , r, we say that the tangency is of indefinite

order, and for the case r = 
 this tangency is called flat.

By definition, tangencies of odd orders are one-sided, while, tangencies of even orders
correspond to topologically crossing tangencies. Tangencies of small orders have special
names: quadratic for n = 1, cubic for n = 2, and quadric for n = 3. Note that the order
of tangency may depend on the change of coordinates: for instance, quadratic tangency
can be transformed into a tangency of indefinite order by C1-change. Nevertheless, some
properties are invariant under coordinate change: the tangency remains isolated, one-sided,
topologically crossing, etc.

Note that the condition on finite order of homoclinic tangency is needed in order to
establish more detailed properties of the system than those which give us Theorems 2.3
and 2.13.5

Note that conditions B andC are independent of the choice of homoclinic pointsM+ and
M− because of invariance of the involved manifolds and foliations. Moreover, conditions
A–C make very important dynamical sense. Namely, if these conditions are satisfied then
(see e.g. [17])
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� f has a global smooth invariant center manifold Wc which contains the orbits O and �0

as well as all orbits lying entirely in U.

According to [21], this manifold is normally hyperbolic, since f is exponentially con-
tracting along directions transverse to Wc, which correspond, at O, to the u-directions.
Therefore, either dimWc = 2 (if O is a saddle and so, A1 holds) or dimWc = 3 (if O is a
saddle-focus and so, A2 holds). Thus, the problem under consideration allows dimension
reduction to dimension two or three depending on whetherO is a saddle or a saddle-focus,
respectively.

It is worth noting that, in general, one can guarantee onlyC1+ε-smoothness forWc (more
precisely, its smoothness does not exceed the integer part of ln |λi|(ln |λ1|)−1, where i = 2
in case A1, and i = 3 in case A2). Thus, condition D on finite order of homoclinic tan-
gency makes no sense when we consider the restricted system on Wc (formally speaking,
the initial tangency becomes here indefinite). Besides, it is hard to check conditionD unlike
conditions (A)–(C), which involve only first derivatives. Instead, in our approach in the
present paper,6 we will assume that the homoclinic tangency is either simple one-sided or
simple topologically crossing. In these cases, we will obtain certain meaningful results on
existence of horseshoes (topological or even hyperbolic) when σ > 1, see Section 2.4.

2.3. On coordinate forms of T 0 and T 1

For next explanations and calculations, we need ‘good’ analytical expressions for both the
local and global maps T0 ≡ f

∣∣
U and T1 ≡ f q

∣∣
�− . Especially, this is important for the local

map T0, since we consider orbits which are iterated under T0 arbitrarily long and, thus,
we need expressions for Ti

0 with arbitrary large i. Of course, best local coordinates would
be those in which the map T0 has linear form, however, sufficiently smooth linearizing
coordinates not always exist. Therefore, we will use other coordinates (possessing main
properties of linear coordinates) as stated in the following lemma.

Lemma 2.8 ([17]): Let f be Cr (r � 2) and O have multipliers λ1,… , λm, γ satisfying (1).
Then the local map T0 can be written, in some Cr-coordinates (x, u, y) on U, as follows:

(x̄, ū, ȳ) =
(
Âx + h1(x, u, y), B̂u + h2(x, u, y), γ y + h3(x, u, y)

)
, (5)

where eigenvalues of the matrix Â are equal to |λ1| in absolute value, whereas eigenvalues of
B̂ are smaller. Moreover, the functions h1, h2, h3 satisfy the identities

h1(0, 0, y) ≡ 0, h2(0, 0, y) ≡ 0, h3(x, y, 0) ≡ 0,
h1(x, u, 0) ≡ 0, h3(0, 0, y) ≡ 0,
∂h1
∂x

∣∣
x=0,u=0≡ 0,

∂h2
∂x

∣∣
x=0,u=0≡ 0

∂h3
∂y

∣∣
y=0≡ 0.

(6)

The form (5) (with identities (6) satisfied) is called themain normal form of saddle map.

Remark 2.9: If condition A holds, we have in Lemma 2.8 that either x ∈ R
1 and Â = λ1 in

case A1; or x ∈ R
2, Â = λRϕ , where λ = |λ1| and Rϕ = (

cosϕ − sinϕ

sinϕ cosϕ ), in case A2.
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Remark 2.10: If f is 2D, then form (5) of T0 is written as

x̄ = λ1x + h1(x, y)xy, ȳ = γ y + h3(x, y)xy,

where h1(0, y) � 0, h3(x, 0) � 0.

However, we need more information about iterations Tk
0 , especially, for k large. If T0 is

linear, i.e. x̄ = Âx, ū = B̂u, ȳ = γ y, then the situation is trivial. We can write themap Tk
0 :

σ 0
k 
→ σ 1

k either in the direct form x1 = Âkx0, u1 = B̂ku0, y1 = γ ky0 or in the so-called
cross-form x1 = Âkx0, u1 = B̂ku0, y0 = γ −ky1. Evidently, these two forms are equivalent.
Similar cross-form for themap Tk

0 exists also in the nonlinear case [30], and if themap T0 is
written in themain normal form (given by Lemma 2.8), then the corresponding cross-form
of Tk

0 is close to the linear cross-form, as the following lemma shows.

Lemma 2.11 ([17]): Let (xk, uk, yk) = Tk
0 (x0, u0, y0) and the local map T0 be written in

the form (5) with identities (6). Then the following relations take place for large k:

xk − Âkx0 = λ̂kξk(x0, u0, yk),
uk = λ̂kξ̂k(x0, u0, yk),
y0 − γ −kyk = γ̂ −kηk(x0, u0, yk),

(7)

where λ̂ and γ̂ are some constants such that 0 < λ̂ < |λ1| , γ̂ > |γ | and the functions
ξk, ηk, ξ̂k, η̂k are uniformly bounded for all k, as well as derivatives up to order (r − 2).7

In the coordinates from Lemma 2.8, the manifoldsWs
loc(O),Wu

loc(O) as well asWss
loc are

straightened, i.e. they have the following equations:

Ws
loc(O) : {y = 0}, Wu

loc(O) : {(x, u) = 0}, Wss
loc : {x = 0, y = 0}.

Therefore, we assume that the homoclinic points M+ and M− have the following coordi-
nates:M+ = (x+, u+, 0) andM−(0, 0, y−), where y− > 0. Condition B means that ‖x+‖ 	 0.
Thus, in case A1, we have that x+ 	 0, since x ∈ R

1 (and u ∈ R
m−1), and without loss

of generality, we assume that x+ > 0 here; in case A2 we have that x+ = (x+
1 , x+

2 ) and
|x+

1 | + |x+
2 | �= 0, since x ∈ R

2 (and u ∈ R
m−2).

In what follows, we will use in U local coordinates given by Lemma 2.8. Consider in
U small rectangle neighbourhoods �+ = {‖(x − x+, u − u+)‖ � ε0, |y| � ε0} and �− =
{‖(x, u)‖ � ε1, |y − y−| � ε1} of the homoclinic points M+(x+, u+, 0) and M−(0, 0, y−),
respectively. We assume that the constants ε0 > 0 and ε1 > 0 are sufficiently small, so, e.g.
T0�

+��+ = � and T−1
0 �− ∩ �− = ∅.

Evidently, we can propose that any orbit of �, except for O, has intersection points with
�+ and �− (as �0 intersects �+ and �−, any orbit close to �0 must also intersect �+ and
�−). Note that points from �+ can reach �− under iterations of the local map T0. The
set �0 of such initial points on �+ consists of infinitely many disjoint “strips” σ 0

k ⊂ �+,
k = k0, k0 + 1,… , that are defined as σ 0

k = T−k
0 (�−) ∩ �+. Then, we can say that the so-

called successor map T ′
0 : �+ 
→ �− by orbits of the local map T0 is defined on the set �0,

and the range of T ′
0 is the set �1 consisting of infinitely many disjoint “strips” σ 1

k ⊂ �−,
k = k0, k0 + 1,… , such that σ 1

k = Tk
0 σ 0

k (one can also write that σ 1
k = Tk

0 (�+) ∩ �−), see



12 S. GONCHENKO ET AL.

Figure . Towards construction of the strips σ 0
k and σ 1

k = T k
0 (σ 0

k ): (a) for D case and (b) for D case,
where the point O is a saddle-focus.

Figure 5(a) which illustrates the ‘strips’ in 2D case. In Figure 5(b), such a picture is shown
for 3D case, where the point O is a saddle-focus.

In the coordinates of Lemma 2.8, the global map T1 � fq: �− → �+ can be written as
follows

(x̄ − x+, ū − u+) = F(x1, u1, y1 − y−), ȳ = G(x1, u1, y1 − y−), (8)

where Cr-functions F and G are defined on �− and F(0) = 0, G(0) = 0, Gy(0) = 0. Then
we can write the map T1 in the following form

(x̄ − x+, ū − u+) = ax + âu + b(y − y−) + O
(‖(x, u)‖2 + (y − y−)2

)
,

ȳ = cx + ĉu + �(y − y−) + O
(‖(x, u)‖2 + ‖(x, u)‖|y − y−|) ,

(9)

where�(0)= 0 and� ′(0)= 0, since the curve T1(Wu
loc) touchesW

s
loc at the pointM

+, and

det
(
a, â, b
c, ĉ, 0

)
�= 0, (10)

Note that the matrix (10) is the Jacobian matrix for map (9) at the pointM−(x = 0, u =
0, y = y−). It is an (m + 1 × (m + 1)-matrix, so its determinant is well defined.

Note also that, in the coordinates of Lemma 2.8, the foliation Fss has the form {x =
const, y = 0} and the tangent space TMWue to Wue at any point M ∈ Wu

loc is the plane
u = 0. Then condition C means, by (9), that the planes TM+Wue : {(x̄ − x+, ū − u+) =
ax + b(y − y−), ȳ = cx} and Fss(M+) :

{
x̄ = x+, ȳ = 0

}
are transverse (here, the plane

TM+Wue is given in a parameter form where x and (y − y−) are parameters). It means that
the system (0, u − u+) = ax + b(y − y−), 0 = cx has the unique solution. Thus, condition
C reads as

b1 �= 0, c �= 0 in the case A1 (11)
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and as

b21 + b22 �= 0, c21 + c22 �= 0 in the case A2. (12)

2.4. On simple homoclinic tangencies in the sectionally saddle case

In this section, we consider, essentially, themultidimensional sectionally saddle case σ > 1.
Concerning the homoclinic tangencies, we assume that they are simple, i.e. conditions A–C
are fulfilled, and, besides, they are isolated and, accordingly, either one-sided or topologically
crossing tangencies. Note that we do not assume here condition D to be satisfied.

In the case of a topologically crossing tangency, the diffeomorphism f has, of course,
infinitely many topological horseshoes. However,

� if the topologically crossing tangency is simple and the point O is a saddle, i.e.
if conditions A1, B, and C hold, then in U there exist infinitely many hyperbolic
horseshoes.

This fact follows from the Katok theorem, since the problem allows the reduction to
dim = 2 in this situation. Indeed, the 2D global invariant center manifold Wc exists here
(see Section 2.2) and it isC1+ϵ-smooth and, hence, the restricted system f

∣∣
Wc is smooth and

2D.8

The case of one-sided homoclinic tangency (with σ > 1) is more interesting here, because
the systems under conditions A–C can possess both trivial and nontrivial dynamics near
�0 depending on the type of tangency. In order to prove the corresponding results, we
introduce the so-called ‘index of one-sided tangency’ that can take value +1 or −1 and is
defined as follows. For given diffeomorphism f, we take a pair of the homoclinic points
M+(x+, 0) ∈ Ws

loc and M−(0, y−) ∈ Wu
loc and their sufficiently small neighbourhoods �+

and �−. Next, we consider the piece T1(Wu
loc) ∩ �+ of Wu(O) which, by (9), has the

equation

(x̄ − x+, ū − u+) = b(y − y−) + O
(
(y − y−)2

)
, ȳ = �(y − y−), (13)

written in the parametric form, where t = y − y− is a parameter. Since �(0) = 0, � ′(0) =
0, the curve (13) touches the plane y = 0 at t = 0. Let this tangency be one-sided, then we
introduce the index ν0 as follows:

ν0 = sign �(ξ ) at ξ �= 0. (14)

Thus, for the case when γ > 0, the homoclinic tangency (one-sided and isolated) is ‘from
below’ if ν0 = −1, and it is ‘from above’ if ν0 = +1. For the case when γ < 0, the value of
index ν0 depends on the choice of homoclinic points: for example, ν0(M+) = −ν0(f(M+));
it means that we can always take pairs of the homoclinic points so that ν0 = +1. Note that if
the tangency is of even order, then ν0 = sign d. This fact follows directly fromDefinition 2.2.

Theorem 2.12 ([Simple one-sided homoclinic tangencies with trivial dynamics]): Let f
have a one-sided homoclinic tangency satisfying conditions A1, B, and C and such that
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Figure . Examples of simple homoclinic tangencies with trivial dynamics for λ > , γ > .

(1) either γ > 0, ν0 < 0 in the case σ < 1;
(2) or λ1 > 0, cν0 > 0 in the case σ > 1;
(3) or λ1 > 0, γ > 0, c < 0, ν0 < 0 independently on σ .

Then f possesses trivial dynamics near �0, i.e. � = O � �0.

In Figure 6, we show some examples of 2D diffeomorphisms with trivial dynamics near
a simple one-sided homoclinic tangency. We can see that, in all cases, the image T1Tk

0 (σ 0
k )

of any strip σ 0
k (with sufficiently large k) under the corresponding first return map T1Tk

0
does not intersect with σ 0

k . It means that any first return maps near homoclinic orbits have
no nonwandering points and, moreover, we can easily deduce from this, that only the orbits
O and �0 are nonwandering.

Concerning the existence of nontrivial dynamics near one-sided homoclinic tangencies
with σ > 1, one can deduce some sufficient conditions like those that are presented in the
following theorem.

Theorem 2.13 ([Simple one-sided homoclinic tangencies with nontrivial dynamics at
σ > 1]): Let f have a one-sided homoclinic tangency satisfying conditions A–C and let σ >

1.

(1) If the point O is a saddle-focus, i.e. conditions A2 holds, then the set � contains
infinitely many topological horseshoes.

(2) If the point O is a saddle, i.e. A1 holds, then in all such cases, except for the case λ1 >

0, cν0 > 0, the set � contains infinitely many hyperbolic horseshoes.

We prove Theorem 2.12 in Section 3.2 and Theorem 2.13 in Section 3.3.

2.5. An example of diffeomorphismwith a non-simple homoclinic tangency in the
case σ > 1

As one can see from the proof Theorem 2.3, in the sectionally dissipative case σ < 1, condi-
tions A, B, C are not used. In contrast, in the sectionally saddle case σ > 1, these conditions
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seem to be necessary, even for the existence of topological horseshoes. We will illustrate
this fact by considering the following model example of a 3D diffeomorphism g0.

Let g0 have a saddle fixed point O with multipliers λ1, λ2, γ such that 0 < λ2 < λ1 <

1 < γ and λ1γ > 1. Let g0 have a quadratic homoclinic tangency at the points of some
homoclinic orbit �0. We assume that the local map T0 is linear and the global map T1 is
model, i.e. T0 has the form (x̄, ū, ȳ) = (λ1x, λ2u, γ y) and T1 is as follows:

(x̄ − x+, ū − u+, ȳ) = (
b1(y − y−), a21x + b2(y − y−), ĉu + d(y − y−)2

)
. (15)

If b1a21ĉ �= 0, themapT1 is diffeomorphism.However, we see that conditionC is violated in
this case: themodelT1 corresponds to the global map (9) with c= 0, i.e. (11) is not satisfied.
We assume that d< 0, i.e. the quadratic homoclinic tangency is ‘from below’. Then it is not
very hard to establish the following dynamical properties of g0.

Proposition 2.14:

(i) If ĉ < 0, then �(g0) is trivial, i.e. �(g0) = O � �0.
(ii) If ĉ > 0 and λ2γ < 1, then �(g0) is trivial, i.e. �(g0) = O � �0

(iii) If ĉ > 0 and λ2γ > 1, then �(g0) contains infinitely many topological horseshoes �k.

Proof: As T0 is linear, the equations of Ws
loc(O) and Wu

loc(O) are y = 0 and (x = 0,
u = 0), respectively. We choose a pair of homoclinic points: M+(x+, u+, 0) ∈ Ws

loc and
M−(0, 0, y−) ∈ Wu

loc assuming that u+ > 0, y− > 0. We consider sufficiently small rectan-
gle neighbourhoods �+{|x − x+| � ε0, |u − u+| � ε0, |y| � ε0)} and �−{|x| � ε1, |u| �
ε1, |y − y−| � ε1)} of the pointsM+ andM−, respectively. In the case under consideration,
the map Tk

0 can be written in the form xk = λk
1x0, uk = λk

2u0, y0 = γ −kyk . Then, we
can write the exact formulas for the strips σ 0

k = T−k
0 (�−) ∩ �+ and σ 1

k = Tk
0 (�+) ∩ �−,

where

σ 0
k = {(x, u, y)∣∣|x − x+| ≤ ε0, |u − u+| ≤ ε0, |y − γ −ky−| ≤ γ −kε1},

σ 1
k = {(x, u, y)∣∣|x − λk

1x+| ≤ λk
1ε0, |u − λk

2u+| ≤ λk
2ε0, |y − y−| ≤ ε1}. (16)

Consider the horseshoe T1(σ 1
k ). By (15), it has the coordinate ȳ in �+ as follows:

ȳ = ĉλk
2u

+(1 + ...) + d(y − y−)2. (17)

Note also that the coordinate y on the strip σ 0
j , by (16), can be written as

y = γ − jy−(1 + ...) > 0 (18)

In the case (i) ĉ < 0, we obtain from (17), since d < 0, that ȳ < 0 for all horseshoes
T1(σ 1

k ). Thus, by (18), we have that T1(σ 1
k ) ∩ σ 0

j = ∅ for all sufficiently large i and j, see
Figure 7(a).

In the case (ii) ĉ > 0 and λ2γ < 1, we obtain from (17), since d< 0, that ȳ ≥ ĉλk
2u+(1 +

ε0) for the coordinate ȳ on T1(σ 1
k ). Thus, if T1(σ 1

k ) ∩ σ 0
j �= ∅, then

ĉλk
2u

+(1 + ε0) ≥ γ − jy−(1 − ε1).
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Figure . Examples of D diffeomorphisms with a non-simple quadratic homoclinic tangency (the case
where T(W

ue) touchesWs
loc) when (a)� is trivial and (b)� contains horseshoes.

As λ2γ < 1, this inequality means that j � k for large j and k. Thus, T1(σ 1
k ) can intersect

the strip σ 0
j with only number j greater than k, in turn, T1(σ 1

j ) can intersect the strip σ 0
i

only if i > j, etc. Evidently, this implies that �(g0) = O � �0.
In the case (iii) ĉ > 0 and λ2γ > 1, we obtain from (17), since d < 0, that the top of the

horseshoe T1(σ 1
k ) (it corresponds to y= y−) has coordinate ȳ satisfying ȳ ≥ ĉλk

2u+(1 − ε0).
Thus, the top of T1(σ 1

k ) is posed from above the strip σ 0
k , since γ −k � λk

2 for large k and
λ2γ > 1. On the other hand, the bottom of the horseshoe T1(σ 1

k ) lies belowWs
loc because

its y-coordinate equals ȳ = ĉλk
2u+ + dε21, which is negative for large k. Thus, we have here

topological horseshoes �k for all sufficiently large k, see Figure 7(b). �

3. Proofs of main results

3.1. Proof of Theorem 2.3

Now we assume only that a diffeomorphism f has a homoclinic tangency of the invariant
manifolds of a saddle fixed point O with multipliers λ1,… , λm, γ ordered by the rule (1)
and such that σ � |λ1||γ | < 1.

In the case under consideration, by Lemma 2.8, we can write the local map T0 in the
following form

x̄ = Ax + ĥ(x, y), ȳ = γ y + h3(x, y), (19)

where x ∈ R
m, y ∈ R

1, A is an (m × m)-matrix with eigenvalues λ1,… , λm. Let us clar-
ify that comparing (19) with (5) the coordinate x here is (x, u) in (5), the matrix A =
diag (Â, B̂) and ĥ = (h1, h2). Then, by (8), the global map T1 takes the form

x̄ − x+ = F(x, y − y−),

ȳ = G(x, y − y−) ≡ cx + �(y − y−) + O(‖x‖2 + ‖x‖|y − y−|) (20)

where (x, y) ∈ �−, (x̄, ȳ) ∈ �+, F(0, 0) = 0, G(0, 0) = 0 and �(0) = � ′(0) = 0.
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If the homoclinic tangency is isolated then the function �(y − y−) vanishes only at
y= y−. Besides, in the case of one-sided tangency, we have that either � � 0 (the tangency
from above’) or � � 0 (the tangency “from below” with γ > 0).

Again, by Lemma 2.11, the map Tk
0 : σ 0

k ⊂ �+ → σ 1
k ⊂ �− can be written in the fol-

lowing cross-form:

xk − Akx0 = λ̂kξ̃k(x0, yk), y0 − γ −kyk = γ̂ −kη̃k(x0, yk), (21)

where (x0, y0) ∈ σ 0
k , (x1, y1) ∈ σ 1

k and 0 < λ̂ < |λ1|, γ̂ > |γ |.
Proof of item 1 of Theorem 2.3: Take some strip σ 1

k ⊂ �−. Then coordinates (x, y) on σ 1
k

satisfy, by (21), the following inequalities:

‖x − Akx+‖ ≤ ‖Ak‖ε0 + O(λ̂k), |y − y−| ≤ ε1

Let the corresponding horseshoeT1(σ 1
k ) intersect a strip σ 0

i for some i. By (21), the coor-
dinates (x, y) on σ o

i satisfy the following inequalities

‖x − x+‖ ≤ ε0, γ −i(y− − ε1) + O(γ̂ −i) ≤ y ≤ γ −i(y− + ε1) + O(γ̂ −i)

Then system (20) with (x, y) ∈ σ 1
k must have a solution (x̄, ȳ) ∈ σ 0

i . Evidently, there is a
constant λ̃ bigger than |λ1|, such that |λ̃γ | < 1 and ‖Ak‖ < λ̃k. Then since T1(σ 1

k ) ∩ σ 0
i �=

∅, it follows from (20) that the equation

γ −iȳ + O(γ̂ −i) = αk(x, y) + �(y − y−), (22)

where ‖αk‖ < λ̃k, y � [y− − ε1, y− + ε1], ‖x− x+‖ � ε0, has a solution ȳ ∈ [y− − ε1, y− +
ε1].

Let the homoclinic tangency satisfy condition (2). If γ > 0 (the main case), it follows
that �(y1 − y−) � 0. Then the Equation (22) can have a solution only if

γ −iȳ + O(γ̂ −i) − αk(x, y) ≤ 0

Since γ > 0, γ̂ > γ , ‖αk‖ < λ̃k and |λ̃γ | < 1, the inequality above can hold only in the
case where i � k. Thus, any horseshoe T1(σ 1

k ) can intersect only those strips σ 0
i whose

numbers i are much larger than k, see Figure 8(a). In its turn, the horseshoe T1(σ 1
i ), again,

can intersect only some strips σ 0
j with j > i, etc. It implies that some backward iterations of

any point from �+ must leave U, except, of course, for homoclinic points {�}��+. Thus,
this implies that � = O � {�} (if �0 is isolated, then {�} = �0).

If γ < 0, condition (2) implies the identity�(y1 − y−)� 0. Evidently, the Equation (22)
can have a solution in this case again only for i � k. �
Proof of item 2 of Theorem 2.3: Now let condition (3) hold. By (20), the equation of the
curve T1(Wu

loc) ∩ �+ has the following parametric form:

x̄ − x+ = F(0, y − y−), ȳ = �(y − y−),
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Figure . Towards the proof of Theorem .: (a) to item  of Theorem .; and (b) to item  of Theorem .
for some degenerate case (for general case see Figure (b)).

where (x̄, ȳ) ∈ �+, y− > 0 and y � [y− − ε1, y− + ε1] is the parameter. Consider first
the case γ > 0. Since (3) holds, it follows that there exist ŷ ∈ [y− − ε1, y− + ε1] and δ0 >

0 such that �(ŷ − y−) > δ0. Consider a strip σ 0
k ⊂ �+. It is posed in �+ at distance ρk

from the plane Ws
loc : {y = 0}, where γ −k(y− − ε1) � ρk � γ −k(y− + ε1). Let k be large

enough, so that δ0 > γ −k. Then the horseshoe T1(σ 1
k ) has a non-empty intersection with

the strip σ 0
k . Indeed, the segment y = ŷ of the strip σ 1

k is mapped under T1 into the segment
ȳ(ŷ) = �(ŷ − y−) + αk(x, ŷ) of the horseshoe T1(σ 1

k ) and thus, ȳ(ŷ) > δ0 − λ̃k for large k.
On the other hand, the top of the horseshoe T1(σ 1

k ), i.e. the T1-image of the segment y =
y− of σ 1

k , has the coordinate ȳ = ȳ(y−) = αk(x, y−) < λ̃k for large k. Thus, we have that
ȳ(ŷ) > ρk ∼ γ −k > ȳ(y−) ∼ λ̃k as k → 
, since λ̃γ < 1.

This implies that in the case when the tangency is one-sided from above, infinitely
many of the first return maps Tk = T1Tk

0 : σ 0
k → σ 0

k will have topological horseshoes, see
Figure 3(b). If the tangency is more degenerate, e.g. as in Figure 8(b) (here�(y− y−)� 0 at
y> y−), one can construct topological ‘bi-horseshoe’, using, for example, the strips σ 0

k , σ
0
k+1

and their horseshoes T1(σ 1
k ),T1(σ 1

k+1).
Evidently, the above arguments cover also the case γ < 0, since we may consider here

only even numbers k.
Concerning the case of topologically crossing tangency, we note that the curve T1Wu

loc
intersects infinitely many strips σ 0

k . Moreover, the strips σ 1
j accumulate toWu

loc. It implies
that (infinitely many) strips σ 0

k intersect horseshoes T1(σ 1
j ) for all sufficiently large

k and j. �

3.2. Proof of Theorem 2.12

As we said before, item (1) of Theorem 2.12 (related to the sectionally dissipative case σ <

1) follows directly from Theorem 2.3. Thus, we need to consider the items (2) and (3) of
the theorem.
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Proof of item 2: Let now f be a diffeomorphism having a one-sided homoclinic tangency
satisfying conditions A1, B, and C with λ1 > 0, cν0 > 0 in the case σ > 1.

Since A1 holds, the local map T0, by virtue of Lemma 2.8, takes the form

(x̄, ū, ȳ) = (
λ1x + h1(x, u, y), B̂u + h2(x, u, y), γ y + h3(x, u, y)

)
,

where x, y ∈ R
1, u ∈ R

m−1 and the matrix B̂ has eigenvalues λ2,… , λm. Then, by
Lemma 2.11, the map Tk

0 : σ 0
k → σ 1

k can be written in the following cross-form (compare
with (7))

xk = λk
1x0 + O(λ̂k), uk = O(λ̂k), y0 = γ −kyk + O(γ̂ −k), (23)

where (x0, u0, y0) ∈ σ 0
k ⊂ �+, (x1, u1, y1) ∈ σ 1

k ⊂ �−, 0 < λ̂ < |λ1| and γ̂ > |γ |. Then,
using (9), we can write the first return map Tk = T1Tk

0 : σ 0
k 
→ �+ as follows:

(x̄ − x+, ū − u+) = b(y − y−) + O
(|λ1|k‖(x, u)‖ + (y − y−)2

)
,

ȳ = c1λk
1x + �(y − y−) + O

(
λ̂k‖(x, u)‖ + |λk

1|‖(x, u)‖|y − y−|
)

,
(24)

Let ȳ be the y-coordinate of some strip σ 0
j ⊂ �+. Then we can write, by (23), that ȳ =

γ − jy1 + O(γ̂ − j), where y1 � [y− − ε1, y− + ε1]. Introduce the new coordinates

ξ = x − x+, ζ = u − u+, η = y − y−.

Then we can write the second equation from (24) in the form

γ − j(y− + η̄) + O(γ̂ − j) = c1λk
1(x

+ξ ) + �(η) + |λ1|kO(η) + O(λ̂k). (25)

Since ξ , η are small, x+ > 0, y− > 0 as well as λ1 > 0 and c1ν0 > 0 (recall that ν0 is the
index defined by (14)), we obtain that Equation (25) can have solutions only in the case
when |γ |− j ≥ λk

1. Since |λ1γ | > 1, this inequality can be fulfilled only if k � j. Thus, any
horseshoe T1(σ 1

k ) can intersect only those strips σ 0
i whose numbers are strictly less than k,

see Figure 6(b). It implies that some forward iteration of any point from �+ must leave U.
Thus, only two orbits, O and �0, will stay always in U. �
Proof of item 3: In the case λ1 > 0, γ > 0, c1 < 0, ν0 < 0, Equation (25) has no solutions at
all, independently of σ , since�(η)� 0 in this case, and, thus, the left-hand and right-hand
sides of (25) have opposite signs. It means that the horseshoes T1(σ 1

k ) do not intersect the
strips σ 0

i , see Figure 6(c), i.e. the dynamics is trivial. �

3.3. Proof of Theorem 2.13

Here f has a one-sided simple homoclinic tangency with σ > 1. The simplicity of tangency
means that conditions A–C hold.
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Proof of item (1): We consider the case where A2 holds, i.e. the point O is a saddle-focus.
Then, by Lemma 2.8, the local map T0 has the form

(x̄, ū, ȳ) = (
λRϕx + h1(x, u, y), B̂u + h2(x, u, y), γ y + h3(x, u, y)

)
,

where x = (x1, x2) and Rϕ = (
cosϕ − sinϕ

sinϕ cosϕ ) is the rotation matrix on the angle ϕ � (0, π).
The global map T1 � fq: �− → �+ has now the form (9), where c = (c1, c2), b = (b1, b2)


and inequalities (12) hold, as well as the function �(y − y−) is a sign-determined function
for y 	 y−.

Consider the first return map Tk = T1Tk
0 : σ 0

k 
→ �+ which can be written now
as

(x̄ − x+, ū − u+) = b(y − y−) + O
(
λk‖(x, u)‖ + (y − y−)2

)
,

ȳ = λk ((c1 cos kϕ + c2 sin kϕ)x1 + (c2 cos kϕ − c1 sin kϕ)x2)

+ �(y − y−) + O
(
λ̂k‖(x, u)‖ + λk‖(x, u)‖|y − y−|

)
. (26)

Let us show that, for infinitely many values of k, these maps Tk are geometrically horse-
shoe maps. Introduce new x-coordinates as ξ1 = x1 − x+

1 , ξ2 = x2 − x+
2 . Then, the second

equation from (26) can be written as

ȳ = λk
(
Ĉ cos(kϕ + θ ) + O(‖ξ‖)

)
+ �(y − y−)

+O
(
λ̂k‖(ξ , u)‖ + λk‖(ξ , u)‖|y − y−|

)
, (27)

where Ĉ = √
(c21 + c22)((x

+
1 )2 + (x+

2 )2) and θ � [0, 2π) is an angle such that cos θ =
(c1x+

1 + c2x+
2 )/Ĉ, sin θ = (c2x+

1 − c1x+
2 )/Ĉ. Note that Ĉ > 0, since conditions B and C

imply, respectively, that (x+
1 )2 + (x+

2 )2 �= 0 and c21 + c22 �= 0.
Consider first the case when �(s) � 0 at |s| � ε1 and γ > 0. Then ȳ from

(27) runs from ȳmin = λk(Ĉ cos(kϕ + θ ) + O(‖ξ‖)) + O(λ̂k) to ȳmax = max|s|≤ε1 �(s) +
O(λk). However, values of the coordinate y on the strip σ 0

k satisfy the inequality

γ −k(y− − ε1) < y < γ −k(y− + ε1).

Evidently, there are such δ0 > 0 and δ1 > 0 that (i) ȳmax > δ0 > 0 for all sufficiently large k
and (ii) for any 0< ϕ < π , there are infinitely many such k that ȳmin < −λkδ1 (since Ĉ > 0
and ‖ξ‖ is small). Thus, the first return map Tk = T1Tk

0 for such k transforms the strip σ 0
k

into the horseshoe Tk(σ 0
k ) such that its top is posed from below σ 0

k and the images of upper
and below sides of the strip σ 0

k are posed from above σ 0
k . Thus, we have that f possesses

infinitely many topological horseshoes. �

Other three cases (�(s) � 0 and γ > 0, �(s) � 0 and γ < 0, �(s) � 0 and γ < 0) are
considered similarly.
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Proof of item (2) of Theorem 2.13: Since λ1 is real here, the first return map Tk = T1Tk
0 :

σ 0
k 
→ �+ can be written now as

(x̄ − x+, ū − u+) = (b1, b2)ᵀ(y − y−) + O
(|λ1|k‖(x, u)‖ + (y − y−)2

)
,

ȳ = cλk
1x + �(y − y−) +

+O
(
λ̂k‖(x, u)‖ + |λ1|k‖(x, u)‖|y − y−|

)
. (28)

Introduce new x-coordinates as ξ = x − x+. Then the second equation from (28) can be
written as

ȳ = cλk
1

(
x+ + O(|ξ |) + O([λ̂/λ1]k)

)
+ �(y − y−).

Consider the model equation γ −ky− = cλk
1x+ + �(s) where s � [ − ε1, ε1] and for some

δ̂ > 0 �(s) ∈ [0, δ̂] or �(s) ∈ [−δ̂, 0] and ν0 = sign�(s)s 	 0. Since |λ1γ | > 1, this model
equation has no solution only in the case where λ1 > 0 and cν0 > 0. In other cases, at least
two solutions exist. Evidently, it gives us the sought result. �

Notes

1. Note thatmethods of [1,4]were applied for detection anddescription of hyperbolic invariant sets
like half-orienable and classical Smale horseshoes in two- and three-dimensional generalized
Hénon maps [7,9,24].

2. We do not consider here the case σ = 1 because it is very specific and has been considered in
details, see e.g. [5,14].

3. The effective dimension of a system generically coincides with the maximal codimension of
admissible bifurcations (for example, it is possible that there appear periodic trajectories with
de multipliers each equal to +1, while more than de such multiplies cannot appear).

4. We thank Dmitry Turaev for letting us know the interesting fact that Katok Theorem can be
directly applied to the sectionally dissipative case. In fact, the corresponding multidimensional
version of Katok Theorem for diffeomorphisms contracting two-dimensional areas was pro-
posed in [31]. In fact, we repeat here the arguments from [31].

5. For example (see [4,8]), these theorems can be extended to provide infinitely many Smale horse-
shoes, and moreover, to provide existence of non-uniformly hyperbolic sets which almost coin-
cidewith thewhole� (and even coincidewith� for a dense set of systems under consideration).

6. Condition D was essentially used in our papers [4,8] to obtain hyperbolic properties of systems
with homoclinic tangencies.

7. Concerning derivatives of order (r − 1), the following estimates hold as k → +
:

‖xk, uk‖Cr−1 = o(|λ1|k), ‖y0‖Cr−1 = o(|γ |−k),

while the derivatives of order r are estimated as follows:

‖xk, uk, y0‖Cr = o(1)k→∞ .

8. Note, however, if the point O is a saddle-focus, i.e. the conditions A2, B and C hold, we can-
not apply the Katok theorem directly, since dim Wc = 3 and, formally, we have on Wc the
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sectionally saddle case again (moreover, the map f |Wc has the saddle-focus fixed point with
dimWs = 2).
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