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Abstract

Competition for resources is a fundamental characteristic of evolution. Auctions have
been widely used to model competition of individuals for resources, and bidding behav-
iour plays a major role in social competition. Yet, how humans learn to bid efficiently
remains an open question. We used model-based neuroimaging to investigate the neural
mechanisms of bidding behaviour under different types of competition. Twenty-seven
subjects (nine male) played a prototypical bidding game: a double action, with three
“market” types, which differed in the number of competitors. We compared different
computational learning models of bidding: directional learning models (DL), where the
model bid is “nudged” depending on whether it was accepted or rejected, along with
standard reinforcement learning models (RL). We found that DL fit the behaviour best
and resulted in higher payoffs. We found the binary learning signal associated with
DL to be represented by neural activity in the striatum distinctly posterior to a weaker
reward prediction error signal. We posited that DL is an efficient heuristic for valuation
when the action (bid) space is continuous. Indeed, we found that the posterior parietal
cortex represents the continuous action space of the task, and the frontopolar prefrontal
cortex distinguishes among conditions of social competition. Based on our findings, we
proposed a conceptual model that accounts for a sequence of processes that are required
to perform successful and flexible bidding under different types of competition.
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We often deal with situations where buyers and sellers meet
to exchange goods at prices determined by fluctuations in
supply and demand. Perceived market competition influences
human bidding (van den Bos et al., 2008; Fischbacher, Fong,
& Fehr, 2009) and even the value of commodities traded by
non-human animals. For instance, baboons (Henzi & Barrett,
2002) and vervet monkeys (Fruteau, Voelkl, van Damme,
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& Nog, 2009) demonstrate the effect of market competition
on the price of natural currencies such as food or grooming.
Indeed, biological auctions are used to model competition
between species and individuals (Reiter, Kanodia, Gupta,
Nowak, & Chatterjee, 2015). Despite its key importance in
social behaviour and financial modelling, the neural mecha-
nisms of decision-making under market competition are still
unclear. In particular, how do we learn bidding strategies
across different market scenarios? Here, we investigate the
neural mechanisms underlying bidding under different con-
ditions of competition.

The study of bidding behaviour lies at the intersec-
tion of behavioural economics, game theory and cogni-
tive neuroscience. Much previous research has focused on
simple sequential game theoretic paradigms, such as the
ultimatum game (UG; Giith, Schmittberger, & Schwarze,
1982; Sanfey, Rilling, Aronson, Nystrom, & Cohen,
2003). Behavioural studies have shown that competition
in UGs among proposers leads to higher bid offers (Roth,
Prasnikar, Okuno-Fujiwara, & Zamir, 1991), and in gen-
eral, it pushes players towards Nash equilibria with tell-tale
lower rejection rates (Fischbacher et al., 2009). A combina-
tion of fairness concerns and decision errors has been put
forward to explain the effect of competition on offer distri-
butions in UGs (Fischbacher et al., 2009), but it is not clear
how offers are picked in more general settings. In simul-
taneous bidding paradigms, quantal response equilibrium
(McKelvey & Palfrey, 1995), a normative solution concept
from game theory, has been shown to capture behaviour
well. However, this model offers little insight into biologi-
cal learning mechanisms and requires costly computations
based on beliefs about other players. In repeated games,
players typically demonstrate an extended adaptation to
the environment conditions (Fudenberg & Levine, 1998;
Grosskopf, 2003; Roth et al., 1991), and very simple mod-
els have been shown to perform robustly as long as enough
information about other players is provided (Fudenberg &
Levine, 2009). Moreover, behavioural economics experi-
ments show that adaptive learning algorithms explain bar-
gaining behaviour well (Camerer & Ho, 1999; Erev & Roth,
1998; Mookherjee & Sopher, 1994). Thus, a parsimonious
learning model should be suitable for explaining offer dis-
tributions under changing supply and demand conditions.

Previous neuroimaging studies investigated bargain-
ing games, but focused on strategic deception and uncer-
tainty about trustworthiness (Bhatt, Lohrenz, Camerer, &
Montague, 2010, 2012) or examined the influence of loss
contemplation under social contexts in overbidding (Delgado,
Schotter, Ozbay, & Phelps, 2008). In this study, we investi-
gated the neural mechanism of bidding behaviour under dif-
ferent conditions of competition. Subjects played the role of
buyers in a double auction in three different market types,
which differed in levels of supply and demand. To investigate

buyer's decisions, we set the transaction price to equal the
buyer's bid, which in case of acceptance becomes the final
price, while rejection was set to be the worst outcome. This
paradigm is similar to online auctions such as eBay auc-
tion, where multiple buyers bid for a good, and in financial
transactions with buy limit orders (assuming that buyers are
strongly incentivized to acquire the security/good). In these
scenarios, repeated bidding serves to “probe” the market and
estimates its current clearing price in a trial-and-error fash-
ion, and whereby, the buyer learns to bid more efficiently
given the estimated clearing price and her needs.

Although traditionally theoretical accounts of adaptive
learning in decision-making tend to focus on model-free re-
inforcement learning (RL), algorithms that are beyond this
minimal account may be more suitable for bidding. One such
framework that is particularly suitable for bidding, directional
learning (DL), suggests a simple adaptive strategy that takes
into account that the available bids are ordered consistently
(Selten & Buchta, 1994) and requires a representation of a
one-dimensional continuum. According to DL, profitable
bids exhibit a simple Markovian dependence on the immedi-
ately previous outcome: it is adjusted up (down) if it was too
low (high) in the previous period.

To our knowledge, DL models have not been used in
neuroimaging studies to probe the neural correlates of eco-
nomic decision-making. However, numerous functional
magnetic resonance imaging (fMRI) studies have shown
that RL operational variables, such as expected value and
reward prediction error (RPE), can be used to trace neu-
ral correlates of adaptive learning (e.g., Montague, King-
Casas, & Cohen, 2006; Ruff & Fehr, 2014). For example,
neural correlates of RPE have repeatedly been located in
the ventromedial prefrontal cortex (vmPFC) and the ven-
tral striatum (Bartra, McGuire, & Kable, 2013; O'Doherty
et al., 2004). But, such studies often use relatively simple
decision-making tasks, structured specifically to be solv-
able by RL in areasonable time, often with discrete response
policies, while economic tasks involving continuous deci-
sion variables and policies that need to be structured over
such real-value scales have been explored to a lesser extent.
Here, we focus specifically on the neural underpinnings of
DL and RL strategies that drive repeated bidding behaviour
under different types of buyer/seller competition.

2 | MATERIALS AND METHODS

2.1 | Subjects

Twenty-seven subjects (nine males, two left-handed, after
discarding two of the initial 29 subjects due to excessive head
motion) took part in the experiment. All subjects were que-
ried to exclude histories of neurological pathologies. After a
briefing, all subjects gave informed written consent and paid
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upon completion of the task. The protocol was performed in
accordance with the Declaration of Helsinki with approval of
the University Review Board of Higher School of Economics.

2.2 | The double auction paradigm

To probe neural mechanisms of bid learning, we used a
modified version of the double auction, a standard paradigm
in multiplayer game theory where players try to maximize
their respective benefit by means of a single-shot transaction
(Fudenberg & Tirole, 1991). Subjects played the role of buy-
ers in a double auction with first-price sealed bids and with
opponents assigned by repeated random matching, in three
different market types (Figure 1a).

The conditions differed in the number of sellers and
buyers. In the seller competition market (SC), there were
two sellers and one buyer (the subject); in the no competi-
tion market (NC), there were one seller and one buyer (the
subject); and in the buyer competition market (BC), there
were one seller and two buyers (one of them being the sub-
ject). In all market types, the outcome of the transaction
was determined by pitting the highest buyer's bid against
the lowest seller's ask price. If the former was strictly lower
than the latter, then the transaction was not consummated,
and the subject received the disagreement outcome: zero
monetary units (MU). Otherwise, the subject received 70-b
MU, where b is the bid of the subject. Hence, the win/loose
structure was asymmetric: the win from an accepted bid
was dependent on the bid amount, while the loss of fixed
at 10 MU. We focused exclusively on buyer behaviour,
unlike previous studies analysing all players’ behaviour
(Grosskopf, 2003; Giith et al., 1982). The clearing price
was set to be the maximum bid in order to study buyer be-
haviour specifically. In order to treat the task as a complete
information game, we made the common assumption that
all opponents assigned the same utility to the MU and to the
fish. The task is a one-shot game because opponents are as-
signed by repeated random matching. However, given that
subjects play repeatedly in the three market types, this task
also displays attributes of sequential games in the sense that
what is being learned is not the type of one opponent, but
the behaviour of a population of players as a whole. This
topic has been previously explored from the viewpoint of
strategic teaching (Camerer, Ho, & Chong, 2002). A co-
lour-coded buyer's payoff matrix representation of the NC
game normal form is provided as illustration in Figure 2a
(top centre).

The task can be formalized within the framework of
Markov decision processes as a 4-tuple (S, A, R, T = p(s; | s)),
R =p(rls, a)), denoting, respectively, the set of states consist-
ing of the three market types S={“SC”, “NC”, “BC”}, the set
of actions consisting of all possible bids A = {0, 0.1, ..., 10},
the state transitions probabilities, which are trivial because
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each market type evolves independently (p(s; | 5;) = 6;, where
s; denotes market type i and §;; is the Kronecker delta); and
the state-action-conditional reward probabilities R = p(r | s,
a), which depend on the behaviour of the opponents such that
r = 10—a (where a is the action or bid) if the bid a overbids all
opponent bids and ask prices depending on the market type,
and r = 0 otherwise.

Crucially, here the behaviour of the opponent is unknown
a priori and can be assume to be internally represented as a
probability distribution over competitor buyers’ bids and sell-
ers’ ask prices. The form of this probability distribution is a
decisive factor determining bidding behaviour, but under the
modest assumption that subjects believe there exists a natural
clearing price characteristic of each market with a reasonably
small variance, we can model it approximately as a Gaussian
distribution with centre at the estimated clearing price. For
example, in a simple auction with one buyer and one seller,
the buyer would hold an estimate of the (possibly varying)
seller's ask price and would try to maximize profit by choos-
ing the lowest possible bid that does not fall below the seller's
ask price. Then, a strategy consisting of simply tracking com-
petitor buyers’ bids and sellers’ ask prices would motivate a
DL-type and not RL-type algorithms (see Figure 2a).

2.3 | Task description

Subjects were informed that they were participating in a
game investigating decision-making. The game paradigm
required buyers to fix their bids in advance. Their task was
to buy fish on a market using a 10-point Likert scale with
increments of 0.1 MU. The initial position of the cursor on
the Likert scale was randomized across trials. Collected fish
led to a payoff: p = 10—b, where b was the bid value in task
MU, and 10 represented the maximum endowment the player
could make use of in every transaction. Opponents were pre-
recorded human subjects replayed by a computer. In each
trial, subjects played in one of the market types, which were
looped throughout the experiment (24 blocks of 3 market
types) in the order determined by a fixed sequence without
repetition (of SC, NC and BC). One of the six possible se-
quences was pseudo-randomly and independently assigned
to each subject.

At the beginning of a trial, a MARKET stage (dura-
tion = 5s, Figure la) informed subjects of the market type
in the current trial. Next, a LOTTERY (duration = 2s) stage
consisted of a lottery determining whether subjects would be
allowed to enter the market or not. In one of every six tri-
als, subjects were not allowed to enter the market and had to
move to the next trial. Otherwise, subjects entered the market
and the CHOICE stage started. During the CHOICE stage
(self-paced, but with a prompt to answer quicker after 15s),
subjects had to purchase (by bidding) fish in a market using
a 101-point slider scale. The feedback screen (OUTCOME,
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trial consisted of four stages: market type announcement, lottery,

Task design and behavioural results. (a) Each

bid selection and game outcome feedback. During the market
announcement stage (MARKET), the subject was informed of the
market type of the current trial. The next stage (LOTTERY) indicated
whether the subject would go forth to the next stage or be redirected to
the beginning of the next trial. In the former case, a Likert scale was
displayed, and the subject had to choose her bid by sliding a vertical bar
(CHOICE). Finally, the game outcome stage (OUTCOME) signalled
whether the bid was accepted (ACCEPTED) or rejected (REJECTED).
(b) Upper: behavioural learning dynamics of bids across all subjects.
Lower: pairwise differences of bid sizes among market types. Box
“hinges” represent first and third quartiles. (c) Bid adjustments were
contingent on the previous trial's outcome of the same market type.
[Colour figure can be viewed at wileyonlinelibrary.com]

duration = 6s) displayed the outcome of the transaction and
the profit earned. In BC trials, when the competitor outbid
the subject, that bid was made visible to the subject. Sellers’
ask prices were never disclosed. All inter-stimulus intervals
were jittered between 5s and 7s following a uniform distri-
bution of duration 2s. The LOTTERY stage was included to
assess the subject's differential neural response to being re-
jected from each market type. However, we found no differ-
ences in this respect.

Every subject played 24 trials of each market type (72
in total). The duration of each trial depended on the bid se-
lection time and ranged from 21s to 61s, with an average of
39s. The total duration of the experiment was approximately
50 min.

The instructions explicitly informed subjects that they
would play against prerecorded human players who had
played the same game before against other human opponents.
Our design precluded subjects from trying to manipulate
their opponents’ behaviour in a sophisticated manner (Bhatt
et al., 2010; Camerer et al., 2002). In each trial, the actions of
the subjects’ opponents were matched according to the trial
order of each market type (repeated random matching). Once
inside the scanner but before the scanning started, subjects
were trained on 6-10 trials, encompassing all market types
(at least two trials of each market type). The training phase
ended after subjects successfully and consistently manipu-
lated the button box by placing their intended bid and then
reported understanding the task.

After scanning, subjects were rewarded according to the
following reward scheme (Roth et al., 1991): a fixed com-
pensation of 300 Russian rubles (~5 USD) for participation,
in addition to a bonus equal to the sum of the profit earned
in three random trials multiplied by 15 MU (~5-12 USD in
total).

The prerecorded data were recycled from a previous
pilot study that implemented the same paradigm. Its de-
sign was identical to that of the present study with the
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following exceptions: 32 subjects played with real oppo-
nents in anonymous groups on desktop computers with
conventional keyboards, and they played against each
other, simultaneously, in the same room. The game was
programmed in z-Tree (Fischbacher, 2007). Subject roles
were randomly assigned to buyer or seller throughout the
duration of the experiment. Both seller and buyer had to
set their respective ask prices and bids beforehand. The
total number of trials amounted to 240 (40 periods with 6
rounds per period). In a post-experiment check, we found

Trial

that the behaviour of buyers in the prerecorded data was in-
distinguishable from the behaviour of buyers in the current
participant cohort.

2.4 | Stimulus presentation and
response collection

The visual stimuli were projected with an LCD projector
onto a rear screen. This screen was reflected by a mirror at-
tached to the MRI head coil, subtending approximately 20
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degrees of visual angle. The task was programmed using
Presentation software (version 18.0, Neurobehavioral
Systems). Responses were collected through three response
buttons: the right thumb shifted the cursor to the right, the
right index shifted it to the left and the left thumb confirmed
bid choices.

2.5 | Computational algorithms of
adaptive learning

We implemented, fitted, tested and simulated six learning
algorithms, including model-free and model-based RL and
DL algorithms, with ad hoc parameters (Table 1). The data
set consisted of the aggregated sequence of all trials played
by the 27 subjects with the same prerecorded opponents. The
important parameters were the learning rate (a measure of
how much weight was given to recent feedback with respect
to older feedback) and the randomness of choice, embodied
in the inverse temperature of the softmax function (a measure
of degree of action selection randomness) for RL algorithms,
and in the dispersion parameters for DL algorithms. The dis-
persion parameters could be specific to the upper or lower
side of the preferred bid and to the previous trial outcome
contingency. The performance of the null algorithm, consist-
ing of assigning uniform probability to all outcomes, was
also computed as benchmark.

In our task, there is only one state (each of the market
types), unlike typical scenarios for RL agents, where the
phase space comprises many states. The “native” action
space consisted of 101 bid sizes. Although schemes for RL
on continuous spaces have been proposed (Doya, 2000; Van
Hasselt & Wiering, 2007), we opted to use a coarse “binned”
representation of the native action space for our RL models,
fitting multiple candidate algorithms informed by task-spe-
cific assumptions. For the DL algorithms, we used the native
action space.

To design the computational learning algorithms, based
on preliminary data and heuristic reasoning, we devised a
conceptual learning model of repeated bidding. The model
requires at least three computational processes: (a) recogni-
tion of the different market types, (b) an internal representa-
tion of bid space and (c) model-based learning optimizing
bid choices.

2.5.1 | Model-free RL

First, we modelled participants’ decisions using a Rescorla—
Wagner (RW) like model-free RL algorithm which learned
to ascribe, maintain and update values attached to actions
(Sutton & Barto, 1998). Here, the problem lies solely in
choosing a single bid repeatedly. The basic action-value up-
dating equation was

Qm,t+1 )« Qm,t O +a (r— Qm,t (1)) s

where Q,,, (i) is the action-value function with a value for each
possible bid i given market type m at trial ¢, and « is the learn-
ing rate regulating the speed of action-value updating. Action
values were learned independently for each of the three market
types. The policy for selecting a bid in each trial was a conven-
tional softmax function,

PQulD)
Y c5 P

where P,,(i) is the probability of choosing bid i in market type
m, f3 is the inverse temperature parameter regulating the ran-
domness in action selection, and B is the space of actions (bids).
Clearly, such naive algorithm would perform very poorly given
that it neglects the incentive structure of the game and the
low ratio of samples (trials) to possible actions. Therefore, we
binned the 101 actions into 11 uniform tiles (which speeds up
learning), and we initialized the action-value function distribu-
tion for each market type with a modified Beta distribution fit
to the subject-pooled first trial bids (Figure 2b, upper left). This
furnishes efficient priors based on the subject's pregame beliefs
about market types. Conventional Beta distributions are param-
eterized with two shape parameters and are defined on the real
interval [0, 1], and their definite integral equals 1, but in our
task the action-value space spanned the interval [0, 10], and the
sum of action values is not constrained. Thus, we rescaled both
the support (from [0, 1] to [0, 10]) and the range of the Beta
distribution to yield a usable prior for the Q,, functions.

Pm(i)=

2.5.2 | Model-based RL with
counterfactual learning

Other models are more suitable when relevant prior infor-
mation is known about the task structure that can be cru-
cial to solve complex tasks where model-free RL becomes
unwieldy. We used counterfactual learning, which can be
regarded as an extension of model-free RL where the value
function is updated contingent not only on the currently
chosen action feedback, but also on non-chosen actions
based on a model about the contingent rewards of foregone
actions. This model is derived from the observation that in
auctions, any bid lower than the ask price of the seller (and
thus lower any previously accepted bid) would have been
also accepted, had it been chosen. Value updating occurs
for actions that were not chosen, but which are neverthe-
less updated based on the assumption that they would have
been updated had they been chosen. Here, counterfactual
learning is carried into effect explicitly as a model-based
RL algorithm which asymmetrically updates through the
RW or delta rule the whole domain of bid choices every
time a bid is selected, conditional on both the bid value
and the feedback. Overall, it can be considered a hybrid of
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value function and model-based algorithm. Although the
RW and delta rule refer essentially to the same concept of
gradient-based incremental learning, from here we will use
the more general designation delta rule because the name
RW is historically associated exclusively to value-based
learning.

We applied the following rule sketch: for every bid b
selected, if it is accepted (rejected), increase (decrease) the
value of the action-value function for all actions i which sat-
isfy i > b. This, however, does not specify how much to de-
crease or increase the value of actions. We chose to update
values conditioned on the outcome of the current transaction
only for the higher or lower range of bids for accepted and
rejected trials respectively, as follows.

If b accepted: forall i < b,Q,,,,, ()< 0,,, ()
foralli>b,Q, ., ()< Q,, )+a(r—0,, @)

If b rejected: for all i < b, 0, ., () < Q,,, (D+a (0-0,,, (i)
foralli > b, Q,, .1 ()« 0,, @)

where a is the learning rate, and r; is the counterfactual re-
ward, that is, the reward the player would have received had
she selected the bid i. For the current trial bid b, r; =r, =1,
the reward actually obtained. The action-value function dis-
tribution was initialized for each market type with a Beta dis-
tribution fit to the pooled first trial bids.

2.5.3 | DL: a value-free, model-based
learning algorithm

DL is a learning mechanism suggested for repeated games
(Selten & Buchta, 1994). DL requires an a priori knowledge
about the structure of the environment, and it is suitable only
under specific circumstances: the space of feasible actions
should be a totally ordered set (all its elements satisfy some
mutual relationship by which they can be unambiguously
characterized by a single index), and there should exist a
unique optimal action associated to each game environment
at each time point. Our task satisfies these conditions: bids
are ordered respect to a magnitude of interest (bid size or bid
value), and in each market scenario, there is a noisy clearing
price whose average may or may not exhibit a time-depend-
ent drift. If the game environment is not stationary, DL will
track the optimal price with some lag. The optimal action will
depend in general on the utility functions of players (which
comprises social preferences), and on the choice randomness
of competitor buyers and sellers, but assuming that typical
sellers (buyers) entertain reasonably stationary ask prices
(bids), the optimal bid should be approximately the unique
minimal bid below which all other bids are rejected.

The DL scheme is effectively a myopic policy that oper-
ates without the need of action-value functions, by nudging
the bids up or down depending on a directional signature

(DS): whether the previous bid was accepted or rejected.
This allows to model the payoff structure of choices around
the optimal action, which is markedly asymmetric in our
study because overbidding entails a reduction in the profit
proportional to the overbid, but underbidding entails zero
profit. The difference between RL and DL is apparently the
small implementation detail of whether to cache actions
or values, but it's a fundamental difference (Daw, Niv, &
Dayan, 2005).

In every trial of market type m, DL is implemented by
picking a bid from a unimodal probability distribution P,,(b)
centred in the preferred bid (the lowest accepted bid esti-
mate). If the selected bid is accepted (rejected), then the pre-
ferred bid is increased (decreased). The preferred bid for the
first trial of each market type was set to equal the mean of the
pooled first trial bids. Unlike RL algorithms, DL algorithms
lack the notion of expected value and therefore of RPE. In the
DL algorithm, the variables tracking currently estimated ac-
tion values are not conventional expected values, but rather,
an estimation of the value of the maximum reward obtain-
able, namely the preferred bid value (PBV). Computing an
expectation over a probability distribution of values associ-
ated with actions is not possible in a DL algorithm because
there is no action-value function over which a measure can be
integrated, but PBVs can be interpreted as a rough equivalent
of the conventional expected values of RL algorithms. Thus,
it is possible to define a pseudo-RPE signal as a RPE where
the expected value is assumed to be the currently preferred
bid.

This framework still leaves unspecified how much to de-
crease or increase the preferred bid, so we devised and fitted
three adaptive learning algorithms based on DL.

2.5.4 | DL delta rule with Gaussian noise

This is perhaps the simplest conceivable DL model. We can
update values conditioned on the outcome of the current
trial by making the gain depend on the PBV and the reward
received: A, .1 <A, +a (r—AmJ), where «a is a gain akin
to the learning rate in RL, A, , is the preferred bid at trial 7,
m is the market type (SC, NC, or BC), and r is the reward.
Here, the policy for bid selection accounts for noisy deci-
sion-making by means of a Gaussian distribution function

_("‘Am)2
of bids around the preferred bid: P, (i) = \/21—26 202

where o is the standard deviation and A,,, which is equal to
the preferred bid for market type m, is the mean.

s

2.5.5 | Naive DL with asymmetric
leptokurtic noise

This algorithm consists of simply “nudging” the bid up and
down, but taking into account, the incentive structure of the
game by doing it asymmetrically with respect to the two sides
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of the preferred bid. Contingent on the outcome of the trans-
action, the preferred bid is updated as follows:

If accepted, A,, ;41 <A, + n,,, and if rejected,

We chose ad hoc a leptokurtic probability distribution
function to model the noise around the preferred bid be-
cause it fits the data better than the Gaussian distribution (see
Figure Ic). The distribution of bids (Figure 1c) is markedly
asymmetric and non-Gaussian, specifically with fatter tails

and a thinner peak.
—|i=Am|

. 1
Pm(l)= ;e om

ZlizAm|

P, ()= 2%,8 @

and for the rest of (rare) cases, where P, (i) is the Laplace
distribution of bids i for market type m, and o,,, 6, and ¢, are
parameters proportional to the standard deviation of the
(asymmetric) Laplace distribution. This is similar to the
“RW (rew/pun)” algorithm of Guitart-Masip et al. (2012), but
with the important difference that here the updates occur in
the action space instead of in the value space. This captures
the intuition that the tail above the preferred bid after rejec-
tions is fatter than the tail below the preferred bid after
acceptances.

for i > A,, after previous trial rejection,

for i < A,, after previous trial acceptance,

2.5.6 | DL delta rule with asymmetric
leptokurtic noise

This algorithm incorporates both the asymmetric leptokurtic
policy distribution and the delta rule-based updating of the
preferred bid. This was the best-fitting algorithm (Figure 3a,
Table 1). It included an additional parameter k which ac-
counted for a different proportion of trials with explorative
(risky) versus exploitative (safe) bids.

2.6 | Learning algorithms
optimization and software

Following the usual approach in estimation problems with
a small number of trials, a global objective function (the
log-likelihood of aggregated data) was optimized with
yoked parameters (fixed effects) across all subjects for all
learning algorithms (Daw, O'Doherty, Dayan, Seymour, &
Dolan, 2006). This reduces parameter estimator variances
at the cost of losing the ability to make between-subject
parameters comparisons by pooling together between-sub-
ject and within-subject variability, but this is deemed to
have little impact in the quality of the algorithm simula-
tion predictions (Grinband, Wager, Lindquist, Ferrera, &
Hirsch, 2008), and more importantly, it eschews the inter-
subject variation among parameter estimates which results
in a rescaling of regressors which leads to poor results at
the group-level in fMRI data analysis (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011). Given the scarcity of
within-subject samples and the jagged geometry of the
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FIGURE 3 Algorithm fit scores and correlations with
individual profits during the task. (a) BIC scores averaged within
algorithm classes (DL: models 1-3, RL: models 4-6 in Table 1). Error
bars indicate 95% confidence intervals. (b) Correlation of market
differentiation index with profits averaged across the whole task. The
line slope corresponds to a (Pearson's product-moment) correlation
coefficient of 0.524 (p = 0.003). (c) Scatter plot of subjects” DL-
compliance scores and profits averaged across the whole task. The
line slope corresponds to a correlation coefficient of 0.466 (p = 0.01).
N =27

resulting objective functions, and that the random and
fixed-effects analyses yielded largely consistent results
(Table 1), we preferred this fixed effects comparison over
the alternative of running the numerical optimizer for each
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subject individually in an objective function with multi-
ple local extrema, which can lead to overfitting and bad
performance of the numerical optimizer (but see Wilcox,
2005). For each algorithm agent, negative log-likelihood
functions were constructed by making the agent play all
27 of the subject sessions. The log-likelihood function was

lu (eyoked ID)

27 24
= 2s=1 2n=1 2m=SC, NC, BC log (Pﬂ (bSHIHYOked sn” )) ’

where [, is the log-likelihood function for model p, 0)ycq
is the parameters vector of model p (for example, for naive
RL, Gyoked = (a, f)), and PM is the likelihood of model u choos-
ing a specific bid b given parameters € and feedback f;;, in mar-
ket type m for subject s and block number 7. A numerical local
search optimizer was then run on each of the negative log-likeli-
hood functions, and the found minima were used to recover the
maximum likelihood parameter estimations. Bayesian informa-
tion criterion (BIC) scores were derived from the negative log-
likelihood values (Table 1).

To check for consistency, we also performed separate
optimization routines for each subject objective function:
L,s (6,ID;), with individual free parameters 6, for subject s.
The scarcity of data samples prevented convergence in some
subjects, but converged instances yielded consistent BIC
scores and parameter fits (Table 1).

Because subjects have 101 possible actions and they
play only 60 times in all three market types, convergence
of the model-free RL algorithms is troublesome when pa-
rameters are fitted individually, since values are updated
sparsely and rarely, and often the game ends without sam-
pling all possible states or actions. This is a problem for
algorithm fitting, and in particular, estimating 101 initial
action values depletes all useful degrees of freedom during
optimization. Therefore, either we simplified the initial
action values using a three-parameter (as opposed to 101)
density based on the Beta distribution (for RW-type algo-
rithms; Figure 2b, upper left) or we simply used the first
round bids as initial conditions (for DL-type algorithms;
Figure 2b, upper right).

Data were processed with code written in Python with the
scientific computing packages Numpy (RRID:SCR_008633),
Scipy (RRID:SCR_008058),Matplotlib(RRID:SCR_008624)
and Pandas. Purpose-specific code was written to define the
maximum likelihood functions used to estimate the param-
eters of the learning algorithms. The numerical optimizer
employed was a bound-constrained version of the Broyden—
Fletcher—Goldfarb—Shanno algorithm, a local search tech-
nique which approximates local curvature. This algorithm is
an implementation of a constrained optimizer of multivari-
ate scalar functions belonging to the Python package Scipy.
This optimizer was combined with a basin-hopping heuristic

(scipy.optimize.basinhopping) with at least ten “hops” to off-
set the probability that the optimizer would converge into a
local minimum due to the jagged geometry of the log-likeli-
hood function.

2.7 | fMRI data collection and analysis

2.7.1 | Data acquisition

The fMRI data were obtained using ascending inter-
leaved slice acquisition with gradient echo T2*-weighted
echo-planar imaging (EPI) sequence in a 3T Magnetom
Verio equipped with a 32-channel head coil (Siemens;
Erlangen, Germany). Scanning protocol parameters were
as follows: TE = 30 ms; flip angle = 80°; TR = 2280 m;
slice thickness = 3 mm; no gap; slice matrix = 64 X 64;
number of axial slices = 35; FoV = 192 mm; and voxel
resolution = 3x3x3.7 mm.

High-resolution structural MRI data acquisition used
a T,-weighted MP-RAGE sequence. Parameters were as
follows: TE = 2.47 ms; flip angle = 9°; TR = 1900 ms;
slice thickness = 0.5 mm; slice matrix = 512 X 512 X 176;
number of slices = 176; FoV = 256 mm; and voxel res-
olution = 0.508 x 0.508 X 1 mm. These data were used
for anatomical localization. A corrective routine aimed at
counteracting susceptibility angled through the slice plane
(z-shimming) was performed by the scanner. The slice
angle was tilted a negative 30° with respect to the ante-
rior commissure—posterior commissure axis in the sagittal
plane to reduce the unaccounted spatial components of
the susceptibility gradients (Weiskopf, Hutton, Josephs, &
Deichmann, 2006) and because this allows for better ac-
quisition of the orbitofrontal cortex (Deichmann, Gottfried,
Hutton, & Turner, 2003). The number of volumes acquired
was on average 1,263, corresponding to a duration of ap-
proximately 48 min.

2.7.2 | Preprocessing
Images were processed using SPMI12 (Wellcome
Department of Imaging Neuroscience, Institute of

Neurology, London, UK). Preprocessing of T2*-weighted
volumes consisted of rigid-body model realignment within
each session to a mean volume for head-motion correc-
tion, unwarping of the residual variance using the field
map, slice timing correction centred at TR/2, bias-field
correction, coregistration of T2*-weighted volumes to the
corresponding structural image (T1-weighted volume)
and segmentation and spatial normalization to a standard
T2*-weighted template (Montreal Neurological Institute,
MNI) for group analysis, spatial smoothing with an 8§ mm
Gaussian kernel and high-pass temporal (128s) filtering.
Fieldmaps were acquired using a dual echo 2D gradient
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echo sequence with echoes at 5.19 and 7.65 ms, and repeti-
tion time of 444 ms, and then used with the SPM FieldMap
toolbox to correct EPIs for unwanted dropout due to varia-
tions in spatial magnetic susceptibility (Jezzard & Balaban,
1995; Weiskopf et al., 2006).

2.7.3 | GLM analysis

Eight event-related regressors (delta sticks) were used to
model the onset of the MARKET stage (MARKETxXSC,
MARKETxNC, MARKETxBC), LOTTERY outcome stage
(for won and lost lotteries), CHOICE stage and OUTCOME
stage (ACCEPTED and REJECTED). In addition, five
parametrically modulated delta sticks were constructed:
three for all stages of the task using the preferred bid value
(PBV = 10-PB): MARKET_PBV, LOTTERY_PBYV,
CHOICE_PBV; one for the pseudo-RPE signal at outcome
(OUTCOME_pseudo-RPE) based on the best-fitting DL al-
gorithm; and one for the DS signal (OUTCOME_DS, con-
sisting of + 1 for positive RPEs and -1 for negative RPEs).
Both parametrically modulated and non-modulated stimuli
onset markers were convolved (first-order expansion) with
the canonical hemodynamic response function (HRF) imple-
mented in SPM12 and entered into a general linear model
(GLM). The motion parameters output from the preprocess-
ing realignment routine were added to the design matrix as
covariates to account for residual head-motion effects.

In a separate analysis devoted to analysing the relation-
ship between RPE and DS, two additional GLM regression
matrices with three regressors each were constructed with
the stimulus onset marker OUTCOME and the parametrically
modulated regressors OUTCOME_DS and OUTCOME_
RPE orthogonalized one respect to the other and vice versa
(including other regressors irrelevant to learning processes
did not change the results).

ROI activity in basal ganglia and PPC was extracted with
the SPM extension MarsBar (Brett, Anton, Valabregue, &
Poline, 2002). Masks consisted of 8-mm spheres with cen-
tre in-peak cluster of activity associated with PBV in PPC
(MNI coordinates [+—47,—48,52]), and manually delineated
anatomical subdivisions of basal ganglia were used as in
Palminteri, Khamassi, Joffily, and Coricelli (2015), in both
cases with also their contralateral homologues. Coefficient
estimates (betas) were calculated by averaging over the co-
efficients of all voxels within their ROIs separately for each
subject.

2.74 | fMRI statistics

Temporal serial correlations in fMRI data were removed
using the residuals covariance matrix estimated by the re-
stricted maximum likelihood routine in SPM12 to satisfy the
sphericity assumption needed for doing inference (Starke &
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Ostwald, 2017). Subject-level effects were fitted individually
to their design matrices, and the resulting regression coef-
ficients were taken to a random effects group-level analysis,
where the final coefficients values and statistics were calcu-
lated using the summary statistics trick (Holmes & Friston,
1998). All reported fMRI statistics come from the group
level.

Most decision-making studies model brain activity lasting
less than 4 s with delta sticks, but studies have shown that
this activity often lasts until the motor response (Grinband
et al., 2008). Therefore, to ensure that such effects were not
being ignored, we repeated the same analysis but with box-
car-shaped regressors functions instead of delta sticks. We
found no additional effects.

Activations of learning signals (DS and pseudo-RPE)
in the striatum and outside regions of interest (ROI)
were reported at a voxel-level threshold of p < 0.05 after
voxel-based family-wise error rate (FWER) correction.
Activations were reported in other ROIs and also in orthog-
onalized contrasts (i.e., the second parametric modulator
regressor for a given event in the design matrix) when they
exceeded a voxel-level primary threshold of whole-brain
p < 0.001 uncorrected and a cluster-level extent threshold
of 10 voxels. Because such scheme yields a FWE-corrected
p-value of 0.6-0.9 (Eklund, Nichols, & Knutsson, 2016), it
was used only in regions that previous studies consistently
reported to be involved in value-based decision-making
and mentalizing in interactive play games (Barraclough
et al., 2004; Bartra et al., 2013; Rilling, Sanfey, Aronson,
Nystrom, & Cohen, 2004; Carter, Bowling, Reeck, &
Huettel, 2012), in internal representation of the number
line and manipulation of arithmetic objects (Dehaene,
Molko, Cohen, & Wilson, 2004; Dehaene, Piazza, Pinel, &
Cohen, 2003). These ROIs were orbitofrontal cortex, fron-
topolar and dorsolateral prefrontal cortex, anterior cingu-
late cortex, medial prefrontal cortex and temporo-parietal
junction. Cluster-defining thresholds for all types of activ-
ity inference were appropriately set at p = 0.001 (Eklund
et al., 2016; Flandin & Friston, 2019). Brain regions are
displayed on a standard MNI template. All clusters from
all figures are listed in Tables 2, 3 and 4. Thresholded clus-
ter edges are indicated with black contour lines. Activation
maps were dual-coded (Allen, Erhardt, & Calhoun, 2012),
where significance level and effect size were represented
by means of colour saturation and hue, respectively, with
MATLAB code from Zandbelt (2017).

To localize potential brain regions involved in the com-
putation of the economic transactions, we assessed on a
trial-by-trial basis the correlations between neural data and
model proxy variables. The data set comprising all the game
sequences from all subjects was used to fit the parameters of
each learning algorithm. The fitting process was informed
by plausible assumptions about the players strategies, such



MARTINEZ-SAITO ET AL.

3338
—I—WILEY EJN European ournallofNeuroscience. FENS.

TABLE 2 Neural activity related to market type recognition and expected value (Figure 4)

Contrast (Figure) Region
MARKETxBC vs MARKETxXNC Left SPL
(Figure 4a Left) Right SPL
Right ANG
MARKETXSC vs MARKETxXNC Left SPL
(Figure 4a Right)
CHOICE_PBV (Figure 4b) Left SPL
REJECTED vs ACCEPTED, MDI-modulated, Right SFG
group level (Figure 4c) Left SFG
Right MFC
Right ANG
Right TrIFG
Left MSFG

Cluster p-value Cluster Peak T
FWE-corrected extent k statistic MNI (%, y, z)
0.085 43 5.31 —33 -4648
0.044 53 4.55 36 —46 60
3.92 39 —46 45
0.818 9 3.75 —33-5248
0.630 15 3.99 —47 —48 52
0.031 76 5.05 215919
0.125 47 4.53 —245323
0.582 17 4.46 629 -14
0.301 30 4.26 60 —52 23
0.258 33 4.18 54324
0.528 19 4.11 -3504

Note: Activity is thresholded at p < 0.001 (uncorrected for the whole brain), except for non-orthogonalized contrasts in striatal areas, which are thresholded at FWER
p < 0.05 voxelwise. X, y, z: stereotactic coordinates of the MNI template. Atlas labels were provided by Neuromorphometrics, Inc.

Abbreviations: Alns, anterior insula; ANG, angular gyrus; CblExt, cerebellum exterior; MFC, medial frontal cortex; MFG, middle frontal gyrus; MorG, medial orbital
gyrus; MSFG, superior frontal gyrus medial segment; NAcc, accumbens area; OCP, occipital pole; SFG, superior frontal gyrus; SPL, superior parietal lobule; STG,

superior temporal gyrus; TrIFG, triangular part of the inferior frontal gyrus.

as initializing prior bid values (see section “Computational
algorithms of adaptive learning” for details). We selected
the best algorithm based on BIC scores. Then, we derived
time series of expected values (PBV) and prediction error
(DS, pseudo-RPE) signals from each of the learning algo-
rithms by making each of the artificial bidding agents to
enact human subjects behaviour. This entailed pitting the ar-
tificial bidders against the same sequences of stimuli that the
human subjects played against, and in each trial computing
the proxy variables (PBV, pseudo-RPE, DS) furnished by
their underlying learning algorithm, conditioned on the fact
that they selected the same bids as the human subject they
were enacting.

We standardized all algorithm proxy variables as z-scores
across subjects before entering them as parametric regressors
in the design matrix. In the group-level analysis, we used this
analysis to link between-subject differences to activations
(Haruno et al., 2004).

Finally, a neural model comparison routine based on a SPM
Bayesian model selection module was performed on anatomi-
cal ROIs encompassing striatum and inferior posterior parietal
cortex. To assess the goodness of fit of both DL and RL algo-
rithms to neural activity, we defined GLMs in OUTCOME, in-
cluding either DS or RPE parametric modulators, respectively,
and then estimated them using Bayesian statistics, which pro-
vided a measure of the evidence of the model for each subject.
Log evidence was then fed to a BMS random effect analysis
(Palminteri et al., 2015; Stephan, Penny, Daunizeau, Moran,
& Friston, 2009), which computed the exceedance probability
of each GLM within the anatomical mask.

3 | RESULTS

3.1.1 | Behaviour across market types
indicates heuristic (DL) learning of valuation

Overall, subjects successfully performed the double auc-
tion task under all types of social competition (72.47% of
successful transactions). Transaction rates per market type
were 92.44% (869/940) in SC, 74.68% (702/940) in NC and
50.26% (472/939) in BC market.

To estimate subjects’ beliefs about their human opponents
and each market type prior to learning, we compared the bids
in the first trial of each experimental session. On average,
subjects bid 4.96, 5.13 and 6.55 monetary units (MUs) in the
SC, NC and BC markets, respectively. A one-way ANOVA
test rejected the hypothesis that first mean bids were equal:
Fy13;7 = 1893, p = 6*10®. Thus, subjects discriminated
among market types already before the beginning of the task.
Mean reaction times (RT) were similar across market types
(mean =+ SD): 11.2 + 3.6s, 11.1 + 3.8s and 11.8 + 3.8s for
SC, NC and BC, respectively.

Next, we wanted to know how the bids and bid ad-
justments evolved over time and across markets. We
tracked the evolution of subjects’ bid choices in each
market (Figure 1b) by fitting a linear mixed-effects
model with random intercepts. Subjects gradually de-
creased bids in SC (beta = —0.027, 553 = —4.44,
p = 5.4*10'6) and increased bids in BC (beta = 0.086,
1597 = 14.264, p = 4*10"40), whereas in NC, we found a
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TABLE 3 Neural activity coding error signals pseudo-RPE and DS (Figure 5)

Cluster p-value

Contrast (Figure) Region FWE-corrected Cluster extent k Peak T statistic MNI (x, y, z)
DS (Figure 5a Left) Left Putamen <0.001 47 7.90 -30-108
Right CblExt <0.001 147 7.70 33 —58 —40
Left MorG <0.001 20 7.68 —24 35 -18
Right Putamen <0.001 35 7.62 30-104
Left CblExt <0.001 83 7.36 —-15-52 -18
Left Caudate <0.001 16 7.30 —-24 —19 23
Right Caudate <0.001 51 7.29 24 -10 26
Right Putamen 6.99 24140
Right CblExt 0.001 9 7.11 6 —70 -33
Right OCP 0.001 12 7.02 18 =100 8
Left Caudate <0.001 13 6.46 211119
Right SPL 0.003 6 6.38 45 —43 60
Pseudo—RPE (Figure 5a Right CblExt <0.001 119 8.49 18 —67 —22
Centre Left) Left OCP <0.001 25 7.26 —12-103 4
Right NAcc <0.001 48 7.18 1217 -11
Right Putamen 7.16 2114 -11
Right Putamen <0.001 14 6.87 30-138
Left SMG 0.003 7 6.81 —57 =34 45
Left MFG 0.001 10 6.66 —36 3530
Left MFG 0.002 9 6.30 —3938 15
Right OCP 0.004 6 6.11 15 -100 11
Left CblExt 0.003 7 6.09 —-12 -52 -22
Ort-pseudo-RPE (Figure 5a Left MFG <0.001 197 5.14 —242063
Centre Right) Right SPL 0.315 29 4.65 27 —6134
Right MFG 0.196 38 4.63 42 14 56
Left SPL 0.023 82 4.58 —21-46 45
Right SFG 0.283 31 4.31 2714 63
Right MFG 0.501 20 4.19 3638 30
Right MFG 0.924 5 4.09 48 41 26
Right ACgG 0.728 12 4.03 1238 11
Left Nacc 0.609 16 4.01 -98 -7
Left Caudate 0.788 10 3.89 —-15-423
Right MFG 0.924 5 3.88 39478
Left ACgG 0.924 5 3.65 -332-11
Ort-DS (Figure 5a Right) Left Caudate 0.070 56 5.36 —27 =726
Left Putamen 4.43 —27-108
Right Caudate 0.227 34 5.06 24 —10 26
Right Putamen 4.15 27 -1011
Right STG 0.057 60 4.87 57 —28 8
Right Caudate 0.543 18 4.71 212015
trend (beta = —0.009, 533 = —2.01, p = 0.045). Notice We reasoned that bid changes should depend directly on
that the decreases in SC and increases in BC are not sym- the subjects learning their success or failure in the previous bid

metric: subjects tended to increase the bids much more they made. Hence, to inquire into the potential causes of bid
than decreasing them. evolution, we examined the effect of the previous trial outcome
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TABLE 4 Neural activity during OUTCOME stage associated with follow-up bid increases (Figure 6)

Cluster p-value

Contrast (Figure) Region FWE-corrected
ACCEPTED bid increase-modu- Right Caudate 0.515
lated (Figure 6a) Right Putamen 0.020
Right Alns
Left MFG 0.764
Left MFG 0.035
Right SMG 0.047
Left Putamen 0.202
Right SFG 0917
Left MSFG 0.806
REJECTED bid increase-modu- Right Putamen 0.818
lated (Figure 6b)

MARKET_BC vs MARKET_NC MARKET_SC vs MARKET_NC

Peak T
Cluster extent k statistic MNI (%, y, z)
16 5.21 18519
59 5.13 188 —11
4.16 3311-18
10 4.70 -335619
51 4.62 -304134
47 4.59 63 =34 19
28 4.50 -218-7
391 24 44 26
3.82 -9500
4.19 2414 -3

Effect size (a.u.)

FIGURE 4 Neural activity related

to market type recognition and expected
value. (a) Left: stronger superior parietal
cortex activity in BC as compared to

NC condition during market entrance
(MARKET_BC vs MARKET_NC). Right:
stronger left superior parietal cortex activity
in SC market as compared to NC market
during market entrance (MARKET_SC vs
MARKET_NC). (b) Activation reflecting
modulation by the preferred bid during

bid choice (CHOICE_PBYV). (¢) Feedback
processing-related activity (outcome stage,
REJECTED vs ACCEPTED) modulated
by individual differences in market
differentiation index in the right medial
frontal cortex (C Left) and frontopolar
cortex (C Right). Activation maps are
thresholded at p < 0.001 uncorrected,
indicated by black contour lines. Clusters
are listed in Table 2. Dual-coded images
represent both significance level and effect
size by means of colour saturation and hue,
respectively. [Colour figure can be viewed
at wileyonlinelibrary.com]
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FIGURE 5 Neural correlates of pseudo-RPE and DS signals based on the best-fitting DL algorithm in anterior putamen and nucleus
accumbens area and posterior putamen during OUTCOME. (a) Correlated activity in the anterior (y = 16) and posterior (y = —10) putamen

was stronger for pseudo-RPE and DS, respectively, during feedback. From left to right columns: pseudo-RPE (p < 0.05, FWER), DS (p < 0.05,
FWER), pseudo-RPE orthogonalized with respect to DS (p < 0.001, unc) and DS orthogonalized with respect to pseudo-RPE (p < 0.001, unc). The
exemplary design matrix illustrates the correspondence between first and second parametric modulators and non-orthogonalized and orthogonalized
regressors, respectively. (b) Barchart of signal estimation (in grand mean percentage) by brain region. Signals were averaged within anatomical ROIs
for basal ganglia (Palminteri et al., 2015) and on an 8-mm sphere in PPC. oDS and oRPE correspond to DS and pseudo-RPE signals after being
orthogonalized with respect to each other, respectively. Activation maps DS and pseudo-RPE are thresholded at p < 0.05 FWER-corrected, whereas
ort-DS and ort-pseudo-RPE at p < 0.001 uncorrected. Clusters are listed in Table 3. [Colour figure can be viewed at wileyonlinelibrary.com]
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(a) ACCEPTED modulated by
bid repetitions in the next trial

Putamen

y=8

%

L -

(b) REJECTED modulated by
bid increases in the next trial

Putamen

FIGURE 6 (a) Neural activity during positive feedback
(ACCEPTED) in dIPFC (Left) and striatal (Right) areas that was
modulated by bid increases in the next trial of the same market

type. (b) Neural activity during negative feedback (REJECTED) in
putamen that was modulated by bid increases in the next trial of the
same market type. Clusters are listed in Table 4. [Colour figure can be
viewed at wileyonlinelibrary.com]

on the current bid. We tracked, on a trial-by-trial basis, the
bid increments from one trial to the next within a given mar-
ket type (Figure 1c). The distribution of these bid increments
conditioned on the outcome of the previous trial displayed a
skewed shape, with opposite skewness for the previous trial-
accept and previous trial-reject bids. Such distribution can be
roughly sketched as an asymmetric accept-down/reject-up rule
or win-stay/lose-shift strategies (Nowak & Sigmund, 1994).
Furthermore, the distributions of bid increments were quali-
tatively invariant across all market conditions, suggesting that
the trial-by-trial learning rule underlying bid adjustments is
independent of the market type. Therefore, we reasoned that
the subjects’ market-dependent bidding trends must be at-
tributed largely to the opponents’ behaviour. This supports a
view where subjects’ learning strategies (or algorithm) do not
change among market types, yet, subjects explicitly recognize
which market type they are in. This is indeed suggested by data
in Figure 1b showing that the bids are rapidly rescaled between
the different market types. We thus inquired what formal learn-
ing algorithm could best account for the learning behaviour and
the evolution of bids (irrespective of the market type): conven-
tional model-free RL algorithms or model-based algorithms
that take into account the structure of the task (see below).

Finally, we examined whether subjects’ ability to bid suc-
cessfully was related to how well they learned to identify the
different market conditions. To get a coarse index of the de-
gree to which subjects distinguished between the three mar-
ket types, we devised the market discrimination index (MDI),
calculated as the difference between the mean bid chosen over
all trials for BC and SC conditions. Buyers who distinguished
more market types, as assessed by the MDI, were more likely to
receive higher profits (Figure 2b). Indeed, we found a correla-
tion between profit earned and the MDI (r = 0.52, Pearson's
product-moment correlation, r = 3.20, df = 27, p = 0.003, 95%
CI=[0.1955,0.7473]). Thus, in our task, better market discrim-
ination is associated on average with higher profit. Because in
our task DL-compliance score predicts profit precisely due to
its ability to adapt quickly by caching preferred bids between
market types, and thence finessing discriminability among
market types, it should be as well correlated with MDI.

The above results gave us a hint that the observed be-
haviour may be accounted for by a DL algorithm of bid
learning, where bids are nudged up or down depending on
previous outcome. Importantly, DL requires a model of the
“action (bid) space” to account for the directionality of bid
adjustments. We also note that the traditional reinforcement
learning schemes and DL differ in the learning signals they
use to update decision-making variables: a continuous re-
ward prediction error (RPE) for RL and a binary error signal
we denote by directional signature (DS) for DL (see Methods
for details). In order to test our hunch that DL is used to learn
bids in our task, we proceeded to test which DL or (and) RL
algorithms could best explain the observed behaviour.

3.1.2 | Adaptive learning algorithm fits and
model selection

We fitted six adaptive learning algorithms to the behavioural
data. All DL algorithms fitted better than RL algorithms
(Figure 2a), and RL algorithms failed to explain bid evolu-
tion in all market types. We believe this is to a great extent
due to the lack in value-based RL algorithms of the key prior
knowledge underlying the structure of auctions: the asym-
metric ordering of bid values around a preferred bid. Because
of this, RL algorithms would require a large data set to learn
action values to the point where they start being operationally
useful. Since our subjects learned to bid successfully in the
limited number of played trials, we argue that DL is the more
efficient and appropriate learning strategy for our task.

Across all subjects, 74.99% (1586/2115) of the tri-
als matched the behavioural predictions of the best DL
algorithm. Conditioned on the outcome of the previous
trial of the same market type, subjects behaved accord-
ing to the DL algorithm in 76.26% (453/594) and 79.73%
(1133/1421) of trials when their bids were rejected and ac-
cepted, respectively.
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To visualize differences in predictive behaviour, we per-
formed posterior predictive checks of the best-fitting al-
gorithms of RL type and DL type (Figure 2b), that is, we
simulated replicated data under the fitted models and then
compared these to the observed data (Gelman & Hill, 2006).
This confirmed that DL-type algorithms were able to learn
rapidly profitable bids in each market type (Figure 2b, lower
right), whereas RL-type algorithms learned slowly, even
when furnished with ad hoc rules to learn faster (as indicated
by the maxima of action-value functions; Figure 2b, lower
left).

Importantly, subjects with a higher DL-compliance score
(the fraction of trials where they behaved according to DL)
were more likely to receive higher profits (Figure 3c). We
found a between-subjects correlation between the profit
earned and the proportion of trials compliant with DL
(r = 047, Pearson's product-moment, t = 2.74, df = 27,
p =0.011, 95% CI = [0.1204, 0.7113]). To confirm this, we
took the best-fitting DL and the best-fitting RL models and
simulated their bidding against the same prerecorded op-
ponents as the subjects. Only the DL agent's bid evolution
resembled the human one, with progressive increase in the
SC bids and relative invariance of the NC and SC bids (not
shown). Next, we proceeded to determine the neural under-
pinnings of repeated bidding learning.

3.1.3 | Fronto-parietal cortical activity
associated with recognition of the different
market types

To identify the brain regions associated with subjects recog-
nizing the different market types, we analysed the neural ac-
tivity during the MARKET stage of the task, which informs
subjects about the market type at the beginning of each trial.
We found that neural activity in the posterior parietal cor-
tex (PPC) increased when subjects entered the competitive
BC and SC markets (Figure 4a, Table 2) as compared to
NC. The effect remained when the expected reward based
on the preferred bid was regressed out, ruling out that it was
a value-related activation. The other pairwise subtraction
contrasts between market types revealed no differences in
activity.

To further investigate neural activity underlying the rec-
ognition of the different market types, we used the MDI as
a covariate in the group-level analysis. The between-sub-
ject differences were manifested only in the prefrontal ac-
tivity during processing of outcomes (OUTCOME stage,
Figure 4b), specifically in a region bridging the bilateral me-
dial frontal and superior frontal gyrus, adjacent to the fron-
topolar prefrontal cortex (fpPFC) and in mPFC (Figure 4c).
Thus, fronto-parietal activity was associated with the recog-
nition of market types.
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3.1.4 | Posterior parietal cortex activity
associated with the internal representation of
bid space

To find brain areas whose activity encoded an internal rep-
resentation of bid space, we used the preferred bids provided
by the fitted DL algorithm as a covariate regressor at the
CHOICE stage. We found activity modulation in the PPC
(Figure 4b). This indicates that learned preferred bids are
encoded in the PPC. Bids are real numbers, and their rep-
resentation in the PPC is compatible with previous studies
showing evidence for encoding of a number line in PPC
(Dehaene et al., 2003). Moreover, the PPC region associated
with the preferred bid value was also strongly modulated by
both pseudo-RPE and DS signals (Figure 5b).

3.1.5 | Striatal activity associated with trial-
by-trial adaptive learning

In order to identify the neuronal representation of the learn-
ing algorithms used, we compared the explanatory power
of RL and DL algorithms over the neural activity in the two
areas most relevant to the task: striatum and PPC. We cal-
culated the exceedance probability (Stephan et al., 2009)
for each algorithm, given the brain imaging data gathered
from all subjects. The exceedance probability was calcu-
lated using Bayesian model comparison of GLMs regress-
ing the learning signals, DS for DL and pseudo-RPE (the
RPE based on the accepted preferred bids of the DL al-
gorithm, see below) for RL. The analysis confirmed the
explanatory power of the DL algorithm to be stronger than
that of the RL algorithms: the P, (DL) = 0.9533 > P (R
L) = 0.0467. This yields a Bayes factor above 19, which
indicates clearly strong evidence (Kass & Raftery, 1995) in
favour of DL.

Therefore, we used the variables provided by the best-
fitting DL algorithm to search for neural correlates of the
outcome evaluation and learning during the CHOICE and
OUTCOME stages. In particular, we asked whether DL
and RL neural learning signals could be distinguished. We
reasoned that it is unsound to search for correlates of vari-
ables extracted from the ill-fitting RL algorithms (e.g.,,
their RPEs would be grounded on possibly very inaccurate
expected values and thus be poor indicators of learning be-
haviour). Therefore, we instead compared RPE and DS sig-
nals by using the best-fitting DL algorithm and calculating
RPEs based on the reward expected from accepted preferred
bids, which we refer to as pseudo-RPE. We then performed a
whole-brain analysis for the OUTCOME stage and compared
DS and pseudo-RPE.

Neural correlates of both DS and pseudo-RPE were found
in the striatum (Figure 5). Because DS and pseudo-RPE are
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highly correlated, we orthogonalized both regressors with
respect to each other: ort-pseudo-RPE (pseudo-RPE orthog-
onalized with respect to DS) and ort-DS (DS orthogonalized
with respect to pseudo-RPE). Interestingly, ort-DS-related ac-
tivity was found primarily in the posterior putamen, whereas
ort-pseudo-RPE strongly modulated activity of the caudate
and ventral striatum (Figure 5). This is in line with previous
studies reporting that neurons in the caudate nucleus could
play a role in transforming expected reward into a spatially
selective behaviour (Gold, 2003; Kawagoe, Takikawa, &
Hikosaka, 1998; Lauwereyns, Watanabe, Coe, & Hikosaka,
2002).

Our results indicate that both DS and RPE signals are en-
coded in the striatum, but in anatomically dissociated areas,
anterior and ventral regions encode an RPE learning signal,
whereas the dorsal and posterior regions encode a binary DS
learning signal. We further explored averaged signals within
anatomical ROIs. A two-way ANOVA (regions: [posterior
striatum, anterior striatum], learning signal: [ort-DS, ort-
pseudo-RPE]) yielded an interaction (p = 0.0012; F = 11.08,
df = 1). Although both signals are represented concomitantly,
computational algorithm fits suggest that DS is the predomi-
nant learning signal.

Finally, we examined the relationship between learning-re-
lated neural activity during OUTCOME and the behavioural
adjustments. We computed a parametrical regressor modu-
lated by the size of the subsequent adjustments of bids (the
bid in the next trial of the same market type minus the bid
in the current trial). Given that subjects after the accepted
trials usually repeated or sometimes decreased their bids, the
activity of the dorsolateral prefrontal cortex (dIPFC) and the
ventral striatum in accepted trials was associated with sub-
sequent bid repetition (Figure 6a). After the rejected trials,
subjects most often increased or (less frequently) repeated the
bid; activity of the right putamen during rejected trials was
associated with subsequent bid increase (Figure 6b). Thus,
neural activity in the dIPFC and striatum correlated with bid
adjustments.

4 | DISCUSSION

We investigated the neural underpinnings of learning to bid
in double auctions. We found that buyers learned to choose
bids using an effective decision-making heuristic consisting
of directional adjustments contingent on the previous trial
outcome. As opposed to model-free reinforcement learn-
ing, directional learning postulates the existence of a priori
knowledge about the structure of the task. Namely, DL as-
sumes that the action values of bids bear an order relation-
ship; it and stores and updates the value of the preferred bid
on an internal number line. Therefore, DL naturally fits mar-
ket and auction decisions in which prices or quantities are the

main strategic variables. Although one could object that DL
and RL are intimately related, a crucial aspect distinguishes
them: unlike RL, DL does not learn an explicit value function
spanning all actions, but only a single preferred action.

Analysis of the first bids in each market type revealed that
subjects discriminated among the market types already at the
beginning of the game. Although subjects underestimated
the effect of social competition in the different market types,
they gradually learned to optimize their bidding decisions.
Indeed, the learning curve for each market type exhibited an
incomplete convergence towards the strict Nash equilibrium
predicted for perfectly rational agents. Importantly, the fact
that the RTs did not differ across the market types suggests
that the differences of learning curves in three markets were
not confounded by cognitive effort differences.

Since numerous fMRI studies have demonstrated neural
correlates of RPE in the striatum (e.g., Haruno & Kawato,
2006; O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003;
van den Bos, Talwar, & McClure, 2013), we examined in de-
tail pseudo-RPE and DS-related activity within this region.
We found that the pseudo-RPE signal was observed in the
anterior and ventral striatal areas, whereas the DS signal was
represented in the dorsal posterior striatal areas, particularly in
the posterior putamen. According to the Bayesian model com-
parison analysis, the variability of the striatal activity was ex-
plained by DL better than by RL, supporting the pertinence of
DL-based bidding. This finding concurs with previous sugges-
tions that neural learning signals in motivated decision-making
are not necessarily always RPE-like (Behrens, Hunt, Woolrich,
& Rushworth, 2008, supplement) and that a region of striatum
is involved in learning stimulus—response associations and ac-
tion selection (Jessup & O'Doherty, 2011). Although the co-
existence of complementary yet exclusive value signals is not
exceptional (Daw et al., 2011; Fouragnan, Queirazza, Retzler,
Mullinger, & Philiastides, 2017; Lebreton, Jorge, Michel,
Thirion, & Pessiglione, 2009), the reason underlying the con-
comitant DS and pseudo-RPE signals in the striatum is unclear,
since only DS explains the behaviour of participants. One pos-
sibility is that both learning systems operate concurrently, per-
haps distributed over a broader network, as recent work that
showed multiple distributed RPE valence and surprise repre-
sentations (Fouragnan et al., 2017). In connection with this, it is
interesting to note that the pseudo-RPE signal orthogonalized
w.r.t. the DS signal is conceptually analogous to an unsigned
RPE (RPE “surprise”), that DS is analogous to RPE valence
and that both signals were found to pertain to a common net-
work for the computation of learning signals, in agreement
with Fouragnan et al. (2017). It is also plausible that parallel
computations could be adaptively deployed or left in standby
by an arbitration process which decided which of them con-
trols behaviour (Collins & Koechlin, 2012; Daw et al., 2011).
Although these learning signals are difficult to decorrelate, a
follow-up study could clarify their relationship, in particular,
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whether these signals could be partially ancillary to bidding
behaviour and be part of a hybrid DL-RPE architecture.

Intriguingly, we also found that feedback processing-re-
lated neural activity was parametrically modulated by the
degree of bid adjustment in the next trial in dIPFC and stri-
atum: activity in both regions was associated with bid in-
crease or repetition in the next trial regardless of whether
the bid was previously accepted or rejected (Figure 6a). We
may posit that activity of the dIPFC subserves a cognitive
control mechanism for tracking the preferred bid, and con-
comitantly striatal activity has a role in increasing the value
of the currently preferred bid. This parallels the previously
reported role of the dorsal striatum in updating action values
(Balleine, Delgado, & Hikosaka, 2007; Haruno et al., 2004;
Lauwereyns et al., 2002; Palminteri et al., 2012) and the
parametric working memory encoding in the PFC reported
by Romo, Brody, Hernandez, and Lemus (1999). Activity
predicting bid adjustments after rejection was also present in
the putamen when subjects’ bids were rejected. To account
for the role of the striatum in updating bids instead of val-
ues, we speculate that because the task revolves consistently
around the bid choice, the reference magnitude for updating
values was not the expected reward, but the preferred bid,
as suggested by the best-fitting DL algorithm. Although to
our knowledge, such function has not been attributed to the
striatum in previous studies, it is plausible that at least some
neuronal submodules could compute bids instead of expected
rewards because in our task, the bid is the natural operational
variable (bid size is the only quantity that needs to be tracked)
and is perfectly anti-correlated with reward when accepted.
The activity consistently associated with “nudging up” bids,
and a similar signal reported in the superior PPC (Figure 4b)
lends support to this hypothesis.

The DL-type learning strategy requires a representation of
an internal number line where the preferred bids are stored and
actively updated. Our results indicate that this representation
is implemented in the PPC (Figure 4a). Accordingly, Glischer,
Daw, Dayan, and O'Doherty (2010) also found neural signa-
tures of model-based prediction errors analogous to DS in the
PPC in a Markov decision task, and the superior PPC has been
implicated in directing spatial attention to a representation of
an internal number line (Hubbard, Piazza, Pinel, & Dehaene,
2005). Moreover, we found activity associated with the pre-
ferred bid size in the left superior PPC, which has been also
found to represent the relative value or probability of different
actions (Sugrue, Corrado, & Newsome, 2005). Thus, during
bidding, activity of the superior PPC could not only modulate
attention to the internal number line, but also contribute to
decision-making. Other neuroimaging studies show that the
activities of the superior PPC contribute to working memory
(Koenigs, Barbey, Postle, & Grafman, 2009), arithmetic facts
(Dehaene et al., 2004; Pesenti, Thioux, Seron, & De Volder,
2000) and quick value-based decision-making (Jocham et al.,
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2014). It is also interesting to note that a mechanism affording
the representation of the preferred bid should be very similar
to the neural integrators that have been proposed for explain-
ing oculomotor control (Seung, 1998). Altogether, the supe-
rior PPC could participate in a calculation and representation
of the preferred bid that is transmitted to motor areas to exe-
cute appropriate motor commands.

The ability to recognize market types is also critical for
successful bidding. At the beginning of each trial, activity in
the bilateral superior PPC was stronger in trials with higher
social competition (SC and BC; Figure 4a). This activation
could reflect neural activity monitoring the competitiveness
in the current trial or retrieving relevant information (Vilberg
& Rugg, 2008) about the current market type (i.e., the pre-
ferred bid). Activity in the superior PPC has been previously
implicated in the processing of numerical information needed
for the forthcoming motor selection (Sawamura, Shima, &
Tanji, 2002). Thus, the PPC could set bargaining decisions
into the appropriate social competition context by associating
the specific market type with its associated DL-learned pre-
ferred bid. Therefore, successful bidding could be subserved
by the same computational processes underlying simple ar-
ithmetical calculations (Dehaene et al., 2004) and distance
estimation. Between-subject differences associated with the
ability to distinguish the different market types in our study
affected the activity of the fpPFC and vmPFC. This might
indicate that subjects who distinguished better among market
types, besides earning more profits, exhibited stronger acti-
vation of the higher-order cognitive prefrontal areas associ-
ated with the appraisal of suitable models of the environment
(Boorman, Behrens, Woolrich, & Rushworth, 2009) and
mentalizing (Coricelli & Nagel, 2009; Hampton, Bossaerts,
& O'Doherty, 2008). Congruently with previous fMRI stud-
ies, fpPFC activity might be involved in appraising the be-
haviour of opponents (Koechlin & Hyafil, 2007), whereas
vmPFC activity might be involved in appraising the subject's
own valuation during feedback.

In this study, we used prerecorded opponent data,
which could affect behaviour through social preferences
(van den Bos et al., 2008) and arguably may not allow us
to disentangle precise market-based prior strategies from
feedback-based learning. Although studies using live op-
ponents (e.g., Carter et al., 2012) eschew this limitation,
they cannot control well for variability induced by repeated
mutual feedback, which was necessary in our study to con-
trol the bid variability in each market type. Further studies
are needed to verify the role of feedback-based learning in
double auctions.

In conclusion, while the buyers were bidding under different
levels of supply and demand, their behaviour was explained best
by a simple learning heuristic. Between-subjects higher compli-
ance with DL predicted higher payoffs. Our results suggest that
the PPC encodes an internal representation of a bid space that
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serves as a model on top of which subjects adjust and select
bids, and posterior striatal activity was associated with a sim-
plified learning signal characterized by a binary learning signal.
Individual differences during feedback associated with activity
in the dIPFC and superior PPC indicate the critical role of at
least a rudimentary prior knowledge of the structure of the task
and the differences among market types. In summary, we sug-
gest that a learning heuristic based on a binary learning signal
distinct from the conventional RPE signal solves the problem
of repeated bidding in double auctions. Showing the learning
mechanisms underlying bidding under social competition, this
study paves new pathways for the discovery of neural mech-
anisms engaged in competitive, dynamic, complex decisions.
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