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Abstract. In this paper we study the problem of learning graph em-
beddings for dynamic networks and ability to generalize to unseen nodes
called inductive learning. Firstly, we overview the state-of-the-art meth-
ods and techniques of constructing graph embeddings and learning al-
gorithms for both transductive and inductive approaches. Secondly, we
propose an improved model GSM based on GraphSAGE algorithm and
set up the experiments on datasets CORA, Reddit, and HSEcite, which
is collected from Scopus citation database across authors with affiliation
to NRU HSE in 2011-2017. The results show that our three-layer model
with attention-based aggregation function, added normalization layers,
regularization (dropout) outperforms suggested by respective authors
GraphSAGE models with mean, LSTM and pool aggregation functions,
thus giving more insight on possible ways to improve inducting learning
model based on GraphSAGE model.

Keywords: Graph Embeddings, Dynamic Graphs, Inductive Learning
Approach

1 Introduction

Real-world networks are full of useful information that can be extracted to help
solve complex problems in various application fields. To make this goal feasible,
networks have to be transformed into simplified representations called graphs.
Graph-based models are used in a wide range of application areas: social network
analysis [1–3], trade and financial transactions [4], co-authorship networks [5–7],
neural connections in the human brain [8], biochemical protein-protein interac-
tions [9]. There are several conventional ways to operate with graph models,
which are based either on the basic data representation structures of the origi-
nal graph (e.g. adjacency list, incidence or adjacency matrices) or on the graph
representation in vector space over real numbers. In this work we are going to
focus on the latter approach.
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Graph embedding is an effective method to convert the initial graph into a
space of lower dimension. In particular, it learns a mapping from a given graph
to a vector space and optimize it by finding the best possible option to pre-
serve the network properties and graph structural information. The problem of
graph embeddings lies between machine learning task and representation learn-
ing. The problem setting can be broadly divided into four categories: (1) node
classification, (2) link prediction, (3) visualization, and (4) clustering [10, 11].
In this paper, we set the node classification task. The second research problem
aims to obtain the best possible data representations, and it covers supervised,
semi-supervised and unsupervised tasks for learning embeddings. Vector rep-
resentations are more efficient and simple to work with in data science tasks
in comparison to raw graphs, which are limited to a certain subset of machine
learning and statistical models [12].

Most of the existing embedding approaches are mainly designed for static
graphs. In fact, many real-world networks have dynamic nature, e.g. financial
transactions flows, reposts graphs in Facebook, citations in arXiv. In these cases,
it may seem more reasonable to model dynamic graphs considering its changes
over time. These graphs can be called dynamic in terms of either node or edge
temporal data or graph structure. In our case we use the second definition. It
means that instead of considering the dynamics of the internal changing infor-
mation of nodes (or edges), we consider that the graph structure can evolve over
time periods by acquiring, preserving or losing its nodes and edges. In order
to extend the static embedding algorithms, dynamic graphs are often divided
into several snapshots that represent the state of the graph at some time point.
Transductive algorithms are applied to each snapshot independently, however,
the final results still remains unsatisfactory and unfold a promising direction of
further scientific studies. Poor performance is mostly explained by the challenges
needed to overcome while working with dynamic graphs: scalability, efficiency,
stability and flexibility. The following research questions stay open for dynamic
case. What are the effective ways to use only local structure for node embed-
dings instead of the whole graph? How to chose the node’s neighborhood? Which
orders of proximity should be considered? What are the best practices for ag-
gregating information from neighbors?

In this research we propose an improved model GSM (GraphSage attention-
Modified), one of the most effective models with inductive extension, and test it
on the open-source datasets (CORA, Reddit), including our own data collected
from Scopus that we called HSEcite. We demonstrate its performance on multil-
abel classification task. The results of applying our model reveal the significance
of deliberate choice of aggregation functions, normalization and regularization
for GraphSage-based algorithms. We put the experiments for different types of
aggregation functions (mean, max pooling, LSTM, attention-based), apply nor-
malization and dropout (regularization) for layers.

In Section 2 we give the basic definitions and formalize the problem. Sec-
tion 3 provides an overview of transductive graph embedding methods. The
CNN, GAE and most notable algorithms for inductive learning embeddings on
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dynamic graphs are listed in Section 4. Finally, Section 5 contains the set up
of experiments and discussion of the results.

2 Notation and basic definitions

First, we denote the basic definitions. Let us assume the input of representation
learning algorithm being an undirected graph denoted as follows:

Definition 1. Graph is an unordered pair G = (V,E), where V is a set of
vertices v ∈ V , and E is a set of edges e ∈ E.

Matrix A will be associated with binary adjacency matrix of size n x n. We
also make an assumption that the algorithms can take an input of a real-valued
matrix of vertex attributes which represent its metadata X ∈ Rk·|V |, where
k is a number of attributes. Hence, the goal of embedding is to leverage the
information from matrices A and X to map each vertex into a vector v ∈ Rd,
d << |V |. We denote the first-order and second-order proximities the same way
as Cai et al. [12]:

Definition 2. The first-order proximity s
(1)
ij between vertices i and j is called

the weight of the edge eij, which in simple case equals Ai,j.

Hence, let s
(1)
i = [s

(1)
i,1 , s

(1)
i,2 , . . . , s

(1)
i,|V |] define the first-order proximity between vi

and other vertices. The more two connected vertices are similar, the greater is
the weight of their common edge.

Definition 3. The second-order proximity s
(2)
ij between vertices i and j is a

similarity between s
(1)
i and s

(1)
j , is and js neighbourhoods.

For comparison of nodes’ neighbourhoods s
(1)
i and s

(1)
j cosine similarity, Jaccard

index or any other applicable measure can be considered. The proximity between
two nodes equals to zero in case they do not share common neighbours. The
above-mentioned definitions of proximities will help us to express the meaning
of embedding.

Definition 4. Graph embedding learns a mapping f : i → i ∈ Rd, where
d << |V |. The function’s objective is to produce the similarity between i and
j preserving the first- and second-order proximities of nodes i and j as much as
possible.

Formally, Leskovec J. and Zitnik M. [13] defined the following steps:

1. Denote an encoder (such function φ(u) that maps a node u into a d-dimen–
sional vector u ).

2. Define a similarity function for nodes of initial graph.
3. Optimize parameters of the encoder: similarity(u, v) ≈ φTuφv.
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We expect the vertices which are close to each other in the original graph get
a close representation in the vector space. Generally, embeddings methods use
various notions of closeness between nodes: connectivity, common neighbours,
similarity of local structure. For instance, if we assume the weight of an edge as
a good measure of proximity, it approximately equals to the scalar product of
nodes’ embeddings. Hence, the angle between vectors of close nodes should be
minimal. The loss function will take the form:

L =
∑

(u,v)∈V xV

||φTuφv −Au,v||2.

Alternatively, we can define the node’s higher-order neighbourhoods (k-hop neigh-
bours). We discuss these differences in detail in subsection dedicated to random
walk-based methods. We also have to provide the essential definitions for gener-
alization to the dynamic case.

Definition 5. Dynamic graph is a sequence of static graphs over discrete time
steps called snapshots, i.e. G = {G1, . . . , GT }, where Gt = (Vt, Et), T – the
number of snapshots.

We assume the set up with expanding graphs, allowing new vertices to join the
dynamic graph Vt ⊆ Vt+1 and to add edges to existing vertices Et ⊆ Et+1. The
disappeared vertices and edges can remain as part of the graph with zero weight
to others, but we use the datasets with evolving structures with all previous
connections included. By considering embeddings on dynamic graph, we extend
the notion for dynamic graph embedding.

Definition 6. Dynamic graph embedding is a time-series of mapping functions
F = {f1, , fT } on dynamic graph G = {G1, . . . , GT }, such that ft corresponds
to a graph embedding for Gt and all mappings preserve the proximity measure
respectively to their graphs.

Most of the graph-based methods optimize the mappings as unsupervised
task, using only the information from matrices A and X and generating scores
based on sampled paths or node neighbours. Other models use node labels for
optimization of embeddings during supervised representation learning. In semi-
supervised tasks the data contains labeled and mostly unlabeled instances. Let
L and L∗ be the numbers of labeled and unlabeled objects. Then, we define
[v1 : vL] = [v1, v2, . . . , vL] and [vL+1 : vL+L∗ ] as feature vectors of labeled and
unlabeled objects. The labels are [y1 : yL]. Based on given sample, the goal is to
learn a classifier f : v → v and to use the labeled objects to improve the overall
performance based only on small labeled set. The hypothesis in graph-based
semi-supervised learning implies that nearby nodes tend to have the same labels.
Transductive learning applies this classifier f on unlabeled instances observed
at training time. Inductive learning try to learn a parameterized classifier which
can be generalized on unseen instances. In this research, we are interested in
more complicated inductive case.
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Considering evolving network, a sample above includes only observed objects
called out-of-sample nodes, for which we want to infer the learned embeddings.
For instance, Hamilton et al. [14] suggested inductive node classification for texts
and protein-protein interactions.

The above basic concepts and definitions will be useful for a better under-
standing of the descriptions of the algorithms in the following sections.

3 Related research

Transductive methods imply that nodes or edges can be predicted only for ones
observed during training time and do not naturally generalize to unseen in-
stances. The disadvantages of such kind of task generalization are computational
inefficiency, especially for large graphs. A brief review of existing methods di-
vided to matrix factorization-based methods, random-walk based algorithms,
and deep learning architectures for graphs is presented based on [10–12].

3.1 Matrix Factorization-based methods

Embedding based on the matrix factorization approach uses the properties of the
graph represented in a matrix form, e.g. node pairwise similarity, and is aimed
at decomposition of this matrix into the product of others to get node embed-
ding. In most cases, the algorithm’s input has to be a graph from non-relational
data features in high dimensional space. One can simply use a column vector or
row vector of adjacency matrix as the vector representation of nodes, but the
representation space will be N -dimensional, where N is the number of nodes in
a graph. Therefore, the goal is to form and learn low-rank vector space for the
initial matrix preserving the network’s properties. The most common matrix
factorization-based methods for embeddings are Singular Value Decompo-
sition [15, 16], Non-negative matrix factorization [17], Locally Linear
Embedding [18]. Laplacian Eigenmaps approach try to preserve local dis-
tances and learn manifold structure.The disadvatange of such methods is that it
cannot be applied to large graphs, because they operate on dense matrices. The
generated network representations are obtained through factorizing the Lapla-
cian matrix of the adjacency matrix, therefore it exploits only the first-order
proximity and demonstrates the importance of second-order proximity, which
help preserving network structure. HOPE algorithm preserves high-order prox-
imity and enables to transform the original SVD problem to a generalized one,
but it also requires the whole graph matrix [16]. GraRep is another factoriza-
tion method taking into account local and global structural information [19]. It
uses SVD and transformed transition probability matrix of DeepWalk, concate-
nating the final representations. However, it is not scalable and also requires the
whole graph matrix. LINE [20] preserves the first- and second-order proximities
separately and trains the embeddings by negative sampling, concatenating the
obtained representations, which is a sub-optimal solution. Nevertheless, LINE
adopts shallow structure, for which it is difficult to capture the highly non-linear
graph structure in the network.
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3.2 Random walk-based methods

The idea of random walk based methods is to define a similarity based on stochas-
tically denoted higher-order neighborhoods of nodes. For un–supervised feature
learning task we learn node embeddings such that nodes nearby are close to each
other, preserving similarity from initial graph in d-dimensional vector space. The
advantages of random walk implementation are the efficiency and flexibility, be-
cause we take only a part of node pairs with probabilities of co-occurrences for
training set and provide stochastic definition of similarity [13]. Given any node
u, we learn its feature representation φ(u) predicted by closest nodes from N(u)
– target node’s k-hop neighborhood. Hence, the goal is to find the embedding
of φu such that it predicts close nodes from neighborhood obtained via random
walk simulation.

Among the most frequently used algorithms is DeepWalk [21], which holds
an idea to use unbiased random walks of fixed-length starting from each node
and creates a matrix of d-dimensional node embeddings using the SkipGram
algorithm. SkipGram is applied to the set of random walks maximizing the
probability of nodes neighbourhood conditioned by node’s embedding. In this
way, nodes with similar neighbourhoods (having large second-order proximity
values) share similar embedding. For input it takes G(V,E), window size w,
embedding size d, the number of walk for each node γ and walk length t. As
a result we obtain a matrix of vertex representations in R|V |∗d. Although it
shows a good performance on different network datasets, it does not clarify the
definition of objective function for preserving graph structural information and
is prone to keep only the second-order node proximity. Recently, there were
suggested modifications of DeepWalk, e.g. Max-Margin DeepWalk [22]– a semi-
supervised model that jointly optimizes the max-margin classifier and the social
representation learning, also holding discriminative characteristics.Another well-
known approach is Node2Vec introduced by Grover and Leskovec [23]. The key
point was to use flexible and biased random walks, searching for trade-off between
exploration of global and local network properties. Thus, authors suggested to
define two parameters: p – return back to the previous node, q – moving outwards
or inwards, the strategies of DFS and BFS. For the input of learning features
algorithm we initialize a graph G = (V,E,W ), d dimensions, walk length l, r
walks per node, context size k, and probabilities of return (p) and In-out (q). As
DeepWalk, this model is scalable and local (does not require the entire graph),
nevertheless, it is a hyperparameter-supervised approach, extending DeepWalk
by introducing two parameters to control random walk sampling, p and q. Given
p = 1, q = 1, we get back to DeepWalk. In addition, DeepWalk use hierarchical
softmax, while Node2Vec is based on negative sampling.

As alternative approach to random walks the diffusion simulations was sug-
gested for graphs. Random walks tend to suffer from producing extra information
by revisiting same node several times, slow spread across the network and in-
efficient generation of proximity statistics [24]. Instead, we apply diffusion-like
process to extract a subgraph of the node’s neighbors – diffusion graph. Then,
we find Euler tour to use it as sequence with more complete information on local
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k-hop neighborhood and all adjacency in the graph in comparison to random
walk methods. This approach was named Diff2Vec [24]. Fast Sequence Based
Embed–ding is a further extension of Diff2Vec – it uses the sequences from
Diff2Vec and use it in the input of single-layer neural network with d neurons
for learning d-dimensional embedding.

3.3 Graph convolutional networks and GAE

Convolutional networks and its modifications for the graphs have been widely
adopted for learning graph embeddings. In general, the differences in approaches
lie in the ways they formulate a similar to image convolution operation for
working on graphs: to define the convolution in the spectral domain or treat
it as neighborhood matching in the spatial set. Concerning the autoencoders
- it is unsupervised models which are composed of two parts, i.e. the encoder
and decoder. The autoencoders aim to minimize the loss function as a differ-
ence between input and output representation while intermediately reducing the
data dimension. In terms of graph embeddings adopting autoencoder models
means their usage for proximity matrix factorization, for e.g., adjacency ma-
trix factorization for the reconstruction process. Such an autoencoder will also
make the nodes with similar neighbourhood sets have similar embeddings. The
following deep learning models are popular for graph embeddings learning: Em-
bedNN [25], SDNE [26].

4 Inductive learning embeddings on dynamic graphs

Most part of the existing methods requires the whole graph with all nodes for
learning the embeddings, because otherwise they cannot generalize on to un-
seen instances. Inductive methods try to overcome this problem, which is espe-
cially relevant for large networks evolving in time. The following techniques are
mentioned and used in the scientific research papers: (1) application of static
embedding algorithms to each snapshot of the dynamic graph and rotational
alignment of the resulting embeddings across all time steps [14]; (2) explicit im-
posing of temporal regularizer in order to ensure temporal smoothness across
embeddings from time snapshots; (3) information propagation [27]; (4) loss op-
timization, which encourages smooth changes between vertices with edges; (5)
learning a mapping from node’s features by imposing a manifold regularizer
obtained from the graph [28]. We are going to list the most effective meth-
ods for inductive learning embeddings problem: Planetoid, DynGEM [29],
Graph2Gauss, DepthLGP [30].

GraphSAGE [14] is a method that generates node embeddings by sampling
node neighborhood and aggregating attributes from its neighbors whil providing
inductive framework supporting node feature usage to efficiently generate graph
embeddings for previously unseen data.

For each vertex v ∈ V we aggregate the information from its neighbors
u ∈ N(v) and itself:
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hkv = σ([Wk ∗AGG(hk−1u ,∀v ∈ N(v)), Bkh
k−1
v ]),

where AGG is a generalized differentiable aggregation function. The details
of this algorithm will be regarded in the next sections.

5 Experimental setup

In the experiments we tested the performance of GraphSAGE model with differ-
ent aggregation function against our model GSM in three tasks: (1) the classifi-
cation of academic articles of HSE into 25 scientific research areas using Scopus
citation database; (2) classification of research papers on Machine Learning top-
ics into 7 sub-categories (CORA dataset); (3) classification of posts placed on
Reddit into 41 different communities. For all experiments we make the predic-
tions for unseen nodes that were not used during the model’s supervised training.

5.1 Baseline

We selected three models as baselines for the empirical results of inductive
benchmark: GraphSage with mean, pooling and LSTM aggregation functions. In
Graph-Sage modified model we used attention-based aggregation function, added
normalization of the two last layers, dropout for the network’s regularization and
Adam optimization method instead of stochastic gradient descent (SGD). The
cross-entropy was used as the loss function for supervised training. The authors
of GraphSAGE used rectified linear units (ReLU) as the non-linearity function,
K = 2 and neighborhood’s samples with sizes 25 and 10. In our experi–ments the
best results were obtained for LeakyReLU non-linearity function, implemented
in PyTorch python module, K = 3 and neighborhood’s samples with sizes 15,
10 and 5. As shown in the table of results, the increase of the depth by one unit
did not significantly affected the results for CORA and Reddit datasets, but it
worked for HSEcite data. The use of one more ‘aggregator-encoder’ bunch was
helpful for the case, when feature matrix is too sparse and the number of features
is significantly more than objects. For providing a fair comparison of results, all
models shares had the same loss function, the way to sample the neighborhood,
and the number of minibatch iterations. The final set of hyperparameters’ val-
ues was formed on early stage through validation tests on the subsets of CORA,
HSEcite and Reddit data, that were discarded from the further analysis.

5.2 Datasets

The experiments were conducted on three evolving graphs, which represents
citation and social networks.

HSEcite. We collected our own dataset from Scopus citation database, gath-
ering all papers, where the author’s affiliation organization was National Re–
search University Higher School of Economics for the time period 2011-2017.
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The dataset consists of 6279 unique articles and 21 601 edges, which indicate
that one paper cited another. It forms undirected and unweighted graph, con-
taining 27836 features for each paper. First, we formed the dictionary of all
keywords mentioned in the articles, and then transformed it to a binarized vec-
tor for each paper, where zero value means the absence of keyword in the article.
In total, there are 25 scientific fields, which were coded from categorical to nu-
merical values and are used as labels in this dataset. We want to predict paper
subject categories in a multilabel classification task.

Cora. The dataset which represents a citation network of Machine Learning
papers. It includes the labels of seven categories: Genetic Algorithms, Theory,
Case Based, Neural Networks, Probabilistic Methods, Reinforcement Learning,
and Rule Learning. In total, the dataset is the corpus of 2,708 labeled papers and
5,429 directed links, where each article cited or was cited by at least one other
article. Besides seven classes, it contains 1,433 features – the number of words
used in paper abstracts and stored in a dictionary. Each paper is described by
a 0/1-valued word vector. The first file contains the paper’s id, word attributes
and class label, while the second one: unique id of cited paper and id of citing
paper.

Reddit. The multi-label dataset contains 232 965 nodes, which represent
users posts in online forum Reddit, and 5 376 619 edges. The labels are the com-
munities, so-called ’subreddits’, to which the post belong to. This social network
can be constructed as a post-to-post graph, where the nodes are connected to
each other if the same user left his comments on both posts. For building a graph
there were sampled 50 out of the largest communities. The first 20 days were
used in training subset, 30% - for validation , and the rest - for testing. The
features are also transformed into word vectors, containing the mean embedding
of the post’s title , the mean embedding of all its comments, scores and the
number of comments of the post.

Dataset Network —V— —E— Features Labels

HSEcite Citation 6279 21601 27836 25

CORA Citation 2708 5429 1433 7

Reddit Social 232965 5376619 602 41

Table 1. The datasets description
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5.3 Model framework

In this subsection, we describe the generation of embeddings by modified Graph-
SAGE algorithm (Algorithm 1 ). Assuming the model was trained and its param-
eters are fixed, we apply forward propagation algorithm. We suppose to learn
the parameters of K aggregation functions (K = 3 in our case, while in the
architecture of GraphSAGE the two depth layers were used) and the weight
matrices W k for all k for further propagation between model’s layers. For each
depth layer k ∈ K the function incrementally aggregates information across
neighboring nodes, which is transferred into encoder function. The input of the
algorithm takes the whole graph G(V,E), all features xv,∀vinV . So, k defines
the step from the outer loop, hk stands for a representation of node at the
current step. Each node v aggregate the neighbors and the representations of
nodes hk−1u ,∀u ∈ N(v) into a vector hk−1N(v) . By introducing the subset V0 ⊂ V

we imply that each vertex can be dropped with probability (e.g. p = 0.2). In
fact, in the experiments we used the implementation of the dropout procedure
in PyTorch and Tensorflow. The aggregation depends on the previous iteration
k−1 and k = 0 by the representations. After completing this step, the algorithm
concatenates the aggregated neighbor’s vector hk−1N(v) with the last obtained rep-

resentation of node hk−1v . This vector is transferred into fully connected layer
with the use of any non-linear activation function (e.g., we used LeakyReLU).
The output of this algorithm is denoted through zv, the final representation.

Algorithm 1: GSM embedding generation algorithm (forward propaga-
tion)

Input: Graph G(V,E); input features {xv, ∀v ∈ V }; depth K; dropout
probability p; weight matrices W k, ∀k ∈ {1, . . . ,K}; non-linearity σ,
attention aggregation function AGGk, ∀k ∈ {1, . . . ,K}, neighborhood
function N : v → 2V

Output: Vector representations zv for all v ∈ V
1 h0

v ←− xv, ∀v ∈ V ;
2 for k = 1 . . .K do
3 if k 6= K do
4 ∀v ∈ V : P (v ∈ V0) = p→ V0 ⊆ V do
5 V = V0

6 for v ∈ V0 do

7 h0
N(v) ←− AGGk ({hk−1

u , ∀u ∈ N(v)}) ;

8 hk
v ←− σ(W k · CONCAT (hk−1

v ), hk
N(v));

9 end

10 hk
v ←− hk

v/||hk
v ||2, ∀v ∈ V

11 end

12 zv ←− hk
v∀v ∈ V
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The following aggregation functions were proposed and used by the authors
of GraphSAGE algorithm for k-th layer:

1. Averaging (the weighted average of the neighbors, a linear approximation of
a localized spectral convolution):

AGG =
∑

u∈N(V )

hk−1u

|N(v)|
.

2. Pooling (average or maximum value by element, there is no significant dif-
ference between mean- and max-pooling):

AGG = γ(Qhk−1u ,∀u ∈ N(v)).

3. LSTM (which is not symmetric, but holds larger extensive power):

AGG = LSTM([hk−1u ,∀u ∈ π(N(v))]).

We suggest to use attention-based aggregation function instead. Among the
benefits of attention is that it gives the opportunity to work with inputs of
variable size, focusing on the most important parts of the input. For computing
a new representation of a single sequence, it is referred to self-attention [31].
The main idea is to compute the representations of each node, following the self-
attention and neighbors attending strategy. Firstly, this operation is efficient,
because it can be parallelized across pairs of neighbors. Secondly, it is not limited
by node’s degree, as far as we can adjust the arbitrary weights of neighbors.
Thirdly, it is applicable to inductive learning tasks.

In the experiments the attention component is a single (feedforward) neural
network layer with weight vector a ∈ R2F ′ and σ non-linear activation function
(e.g. LeakyReLU). The coefficients can be denoted as:

αi,j =
exp(σ(aT,[Whi||Whj ]))∑

k∈Ni
exp(σ(aT,[Whi||Whk]))

,

where | · | - is the concatenation.
The first step is a linear transformation applied to every node, which is parametrized
by a weight matrix W ∈ RF ′·F , where F and F ′ are the numbers of features
for each node in initial (input) and new(output) feature sets. Next, we compute
self-attention on the nodes by calculating attention coefficients, that indicate the
so-called importance of node j−s features to another node i: eij = a(Whi,Whj),

where a : RF ·RF ′ → R.

5.4 Evaluation Metrics

To test the performance of different embedding methods on multilabel classifi-
cation task we report Micro-F1 and Macro-F1 scores. Micro-F1 calculate metrics
globally by counting the total true positives, false positives and false negatives,
while Macro-F1 score calculate metrics for each label, and find their unweighted
mean. 80%/20% train/test split was used. XGBoost classifier was used in the
experiments.
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5.5 Discussion

In fact, the GSM model with attention-based aggregator function performed
the best scores F1-micro and F1-macro on all three datasets (CORA, HSEcite
and Reddit), showing better results in comparison to mean, pool and LSTM
aggregators. One can observe the greater boost in accuracy for HSEcite dataset,
which shows that attention-based aggregator better captures the information
from neighboring nodes for this type of graph structure. All models, GraphSage
and GSM variants, worked fast on CORA dataset with K = 2 and K = 3 depths
due to the sizes of the feature matrix and the dataset. The runtime for the rest
datasets, especially with K = 3 depth, was increased with a factor of 5 − 80x,
that depends on the neighborhood size sampling. In fact, the GSM model with
attention-based aggregator function performed the best scores F1-micro and
F1-macro (0.881 − 0.873 on CORA, 0.694 − 0.691 on HSEcite, 0.918 − 0.911
on Reddit), showing better results in comparison to mean, pool and LSTM
aggregators.

CORA HSEcite Reddit

Algorithm F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro

GraphSAGE-mean 0.866 0.864 0.583 0.581 0.893 0.889
GraphSAGE-pool 0.871 0.869 0.587 0.579 0.911 0.904

GraphSAGE-LSTM 0.873 0.871 0.522 0.519 0.915 0.898
GSM-attention 0.881 0.873 0.694 0.691 0.918 0.911

Table 2. The results of experiments for multilabel classification task

6 Conclusion

In this research we investigated the problem of learning graph embeddings with
respect to its applications in dynamic networks and inductive formalization in
order to generalize to unseen nodes. We presented an overview and the classifi-
cation of the modern methods for graph embeddings and learning algorithms for
both transductive and inductive approaches. Selecting GraphSAGE algorithm
as one of the state-of-the-art approaches for inductive learning, we proposed an
improved model based on GraphSAGE algorithm and set up the experiments on
datasets (CORA, Reddit, HSEcite), including our own data. The results evalu-
ated by F1-micro and -macro metrics show that our model outperforms simple
Graph–SAGE models with mean, LSTM and pool aggregation functions, which
were taken as baselines. The key advantages of GSM model: (i) GraphSAGE-
based model with attention-based aggregation function has the better ability
to generalize not only to unseen nodes, but also to unseen graphs; (ii) the re-
sults were significantly improved in comparison to GraphSAGE on the Reddit
dataset, used in the original paper, CORA and on our own data HSEcite; (iii) we
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showed the significance of deliberate choice of aggregation function, optimiza-
tion method, more normalization layers and regularization (e.g. dropout) for a
certain type of neural network architecture.
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