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1 Introduction
An independent set in a graph is an arbitrary set of its pairwise nonadjacent vertices. An independent set in a
graph ismaximal if it ismaximal under inclusion.We shall write “i.s.” and “m.i.s.” to abbreviate, respectively,
the phrases “independent set(s)” and “maximal independent set(s)”. The number of maximal independent
sets in a graph𝐺 is usually denoted bymi(𝐺).

The problem of enumeration of i.s. and m.i.s. in various classes of graphs has been extensively studied.
The amount of literature on this subject is constantly increasing. In thewell-knownpaper [7],MoonandMoser
had evaluated the maximal possible number of m.i.s. in 𝑛-vertex graphs and described the corresponding
extremal graphs. Such graphs were found to be disconnected. In [3], a similar result for connected graphs
was obtained. In [4, 5, 6, 8], the maximal possible numbers of m.i.s. were obtained for triangle-free graphs,
unicyclic graphs, bipartite graphs, and for 𝑛-vertex trees, respectively.

The lower estimate for the number of i.s. in the class of all 𝑛-vertex trees is well known and is attained
on the 𝑛-path. At present, some lower estimates for the number of i.s. for trees of fixed size are available. For
example, in [2] a sharp lower estimate for the number of i.s. in trees of diameter at most 5 was proposed. The
paper [1] gives asymptotically attainable lower estimates for the number of i.s. in trees of diameter 6 and 7.

A sharp lower estimate for the number of m.i.s. in the class of all 𝑛-vertex trees is the constant 2, which
is attained on the (𝑛 − 1)-star. Dainyak [1] obtained sharp upper and lower estimates for the number of m.i.s.
in trees of fixed diameter. Moreover, his lower bound is also a constant, which depends only on the diameter
of the tree. An extensive survey of the results on enumeration of independent sets in graphs and on related
topics may be found in [1].

Two leaves of a tree are called twin-leaves if they have a common neighbor. The trees with twin-leaves
were excluded from consideration because the removal / addition of such leaves from the tree does not alter
the number of m.i.s.; the problem of the description of extremal trees of a given size with admissible twin-
leaves turns out to be much simpler. Hence in what follows we shall consider trees without twin-leaves. An
𝑛-vertex tree 𝑇 without twin-leaves is called minimal if it contains the smallest number of m.i.s. among all
such trees. In the present paper we completely describe all minimal 𝑛-vertex trees for any 𝑛.

*Corresponding author: Dmitriy S. Taletskii, Lobachevsky State University of Nizhny Novgorod, e-mail: dmitalmail@gmail.com
Dmitriy S. Malyshev, National Research University Higher School of Economics, e-mail: dsmalyshev@rambler.ru

Authenticated | dsmalyshev@rambler.ru author's copy
Download Date | 2/12/20 7:22 AM



54 | D. S. Taletskii, D. S. Malyshev, Trees without twin-leaves

2 Definitions, notation, and transformations of graphs

2.1 Standard definitions and notation

Avertex adjacent to a leaf of a forest is called a preleaf vertex. For a two-vertex tree, both its vertices are preleaf
vertices.

By 𝑃𝑛 we shall denote a simple path on 𝑛 vertices.
Given a graph 𝐺 and its vertex 𝑣, by mi+(𝐺, 𝑣) we denote the number of m.i.s. in the graph 𝐺 which

contain the vertex 𝑣. For a graph 𝐺 and its vertex 𝑣, by mi−(𝐺, 𝑣) we denote the number of m.i.s. in the
graph𝐺 which do not contain the vertex 𝑣.

2.2 Transformations of trees and their properties

By a union of trees𝑇1 and𝑇2wemean a tree obtained from the disjoint union of the trees𝑇1 and𝑇2 by addition
of a new vertex of degree two which is adjacent to a preleaf of the tree 𝑇1 and a preleaf of the tree 𝑇2. The set
of all possible unions of trees 𝑇1 and 𝑇2 will be denoted by 𝑢(𝑇1, 𝑇2).

The following result is clear.

Lemma 1. If in a tree 𝑇 a preleaf of a vertex 𝑣 is adjacent to a leaf 𝑣󸀠, thenmi(𝑇) = mi+(𝑇, 𝑣) +mi+(𝑇, 𝑣󸀠).
Lemma 2. For any tree 𝑇 ∈ 𝑢(𝑇1, 𝑇2),

mi(𝑇) = mi(𝑇1) ⋅mi(𝑇2).
Proof. Assume that 𝑇 is obtained from 𝑇1 and 𝑇2 by addition of a vertex𝑤 adjacent to a preleaf 𝑣1 of the tree
𝑇1 and a preleaf 𝑢1 of the tree 𝑇2. We denote by 𝑣󸀠1 the leaf of the tree 𝑇1 adjacent to the vertex 𝑣1. By 𝑢󸀠1 we
denote the leaf in the tree 𝑇2 obtained in the same manner. The following relations hold:

mi(𝑇1) ⋅mi(𝑇2) = (mi+(𝑇1, 𝑣1) +mi+(𝑇1, 𝑣󸀠1)) ⋅ (mi+(𝑇2, 𝑢1) +mi+(𝑇2, 𝑢󸀠1)),
mi(𝑇) = mi−(𝑇, 𝑤) +mi+(𝑇, 𝑤) = mi−(𝑇, 𝑤) +mi+(𝑇1, 𝑣󸀠1) ⋅mi+(𝑇2, 𝑢󸀠1).

Each m.i.s. of the tree 𝑇 which does not contain the vertex 𝑤must contain at least one of the vertices 𝑣
and 𝑢. Hence

mi−(𝑇, 𝑤) = mi+(𝑇1, 𝑣1) ⋅mi+(𝑇2, 𝑢1) +mi+(𝑇1, 𝑣1) ⋅mi−(𝑇2, 𝑢1) +mi−(𝑇1, 𝑣1) ⋅mi+(𝑇2, 𝑢1)
= mi+(𝑇1, 𝑣1) ⋅mi+(𝑇2, 𝑢1) +mi+(𝑇1, 𝑣1) ⋅mi+(𝑇2, 𝑢󸀠1) +mi+(𝑇1, 𝑣󸀠1) ⋅mi+(𝑇2, 𝑢1).

Therefore,mi(𝑇) = mi(𝑇1) ⋅mi(𝑇2).
Assume that 𝐹 is a forest with 𝑠 connected components that contains 𝑎0 ≥ 2 m.i.s. Consider the forest 𝐹𝑘
obtained by addition of a 𝑘-path with the endpoint 𝑥 to the forest 𝐹 and addition of 𝑠󸀠 ≤ 𝑠 edges such that
for any 𝑖 ∈ 1, 𝑠 there is at most one edge connecting 𝑥 with the vertices of the 𝑖th connected component. We
denote by 𝑎𝑘 the number of m.i.s. in the forest 𝐹𝑘, write 𝑎−1 in place of mi+(𝐹1, 𝑥), and write 𝑎−2 in place of
mi−(𝐹1, 𝑥). We assume that not only the forest𝐹 is fixed, but also the vertices of the components of this forest
with which𝑥 is connected. If𝐹 is augmentedwith paths𝑃𝑟 and𝑃𝑞 is succession and arbitrary and if this gives
us a forest, then by 𝑎𝑟,𝑞 we denote the number of m.i.s. in the resulting graph. The notation 𝑎−1,𝑘, 𝑎𝑘,−1, 𝑎−1,−1
have the same meaning as 𝑎−1.
Lemma 3. The following results hold.

I) 𝑎𝑛 < 𝑎𝑛+1 < 2 ⋅ 𝑎𝑛 for any 𝑛 ≥ 1.
II) 𝑎𝑛+2 ≤ 2 ⋅ 𝑎𝑛 for any 𝑛 ≥ 0.
III) If 𝐹 is a tree, then 𝑎2 ≥ 32 ⋅ 𝑎0.
IV) If each connected component of a forest 𝐹 contains at least two vertices, then 2 ⋅ 𝑎0 > 𝑎1. If 𝐹 is a tree

and if a neighbor 𝑦 ∈ 𝑉(𝐹) of a vertex 𝑥 is not a preleaf, then 𝑎1 > 𝑎0.
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Proof. I) By Lemma 1,we have 𝑎𝑛+1 = 𝑎𝑛−1+𝑎𝑛−2, 𝑎𝑛 = 𝑎𝑛−2+𝑎𝑛−3. Moreover, fromLemma 1 and the inequality
𝑎0 ≥ 2 it also follows that 𝑎𝑛 > 𝑎𝑛−2, 𝑎𝑛−1 > 𝑎𝑛−3, which gives 𝑎𝑛 < 𝑎𝑛+1. We have 𝑎𝑛−1 ≤ 𝑎𝑛, and hence
𝑎𝑛+1 < 2 ⋅ 𝑎𝑛.

II) By Lemma 1, we have 𝑎𝑛+2 = 𝑎𝑛 + 𝑎𝑛−1. Next, 𝑎𝑛 ≥ 𝑎𝑛−1 for any 𝑛, and so 𝑎𝑛+2 ≤ 2 ⋅ 𝑎𝑛 for 𝑛 ≥ 0.
III) Let 𝑦 be a neighbor of the vertex 𝑥 in the tree 𝐹. By Lemma 1, we have 𝑎2 = 𝑎0 + 𝑎−1 and 𝑎0 =

mi−(𝐹, 𝑦) +mi+(𝐹, 𝑦), and besides, 𝑎−1 = mi(𝐹 \ {𝑦}) ≥ max(mi+(𝐹, 𝑦),mi−(𝐹, 𝑦)). As a result, 𝑎−1 ≥ 𝑎02
and 𝑎2 ≥ 1.5 ⋅ 𝑎0.

IV) Since 𝑎1 = 𝑎−1 + 𝑎−2 and 𝑎−2 ≤ 𝑎0, 𝑎−1 ≤ 𝑎0, we have 2 ⋅ 𝑎0 ≥ 𝑎1. The equality here is possible only if
𝑎0 = 𝑎−1 = 𝑎−2. By 𝑇1, . . . , 𝑇𝑠 we denote all connected components of the forest 𝐹, and by 𝑧𝑖 the neighbor of
the vertex 𝑥 in the tree 𝑇𝑖. It is clear that 𝑎0 = 𝑠∏𝑖=1mi(𝑇𝑖) and 𝑎−2 = 𝑠∏𝑖=1mi(𝑇𝑖) − 𝑠∏𝑖=1mi−(𝑇𝑖, 𝑧𝑖). Therefore, the
equality 𝑎−2 = 𝑎0 is possible only if 𝑠∏𝑖=1mi−(𝑇𝑖, 𝑧𝑖) = 0; i.e., when one of the connected components of the

forest 𝐹 contains precisely one vertex. Hence 2 ⋅ 𝑎0 > 𝑎1.
Assume that 𝐹 is a tree and that a neighbor 𝑦 ∈ 𝑉(𝐹) of the vertex 𝑥 is not a preleaf. We denote by

𝑇󸀠1, . . . , 𝑇󸀠𝑝 all connected components of the forest 𝐹 \ {𝑦}, and denote by 𝑧󸀠𝑖 the neighbor of the vertex 𝑦 in
the tree 𝑇󸀠𝑖 . Hence

𝑎1 = 𝑎−1 + 𝑎−2 = mi(𝐹 \ {𝑦}) +mi+(𝐹, 𝑦) = 𝑝∏𝑖=1 mi(𝑇󸀠𝑖 ) +mi+(𝐹, 𝑦),
𝑎0 = mi−(𝐹, 𝑦) +mi+(𝐹, 𝑦) = 𝑝∏𝑖=1 mi(𝑇󸀠𝑖 ) − 𝑝∏𝑖=1 mi−(𝑇󸀠𝑖 , 𝑧󸀠𝑖 ) +mi+(𝐹, 𝑦).

It is clear that |𝑉(𝑇󸀠𝑖 )| ≥ 2 andmi−(𝑇󸀠𝑖 , 𝑧𝑖) > 0 for any 𝑖, because𝑦 is not a preleaf of the tree𝐹. Therefore,
𝑎1 > 𝑎0.
2.3 Some additional definitions and notation

By𝑅𝑛 we denote the graph obtained from the path𝑃𝑛 by adding 𝑛 numbered vertices and 𝑛 numbered edges,
moreover, for any 𝑖 ∈ 1, 𝑛 the edge with number 𝑖 connects the 𝑖th added vertex and the 𝑖th vertex of the path
starting from one of the endpoints of the path.

By 𝑅󸀠3 we denote the graph 𝑃6 and by 𝑅󸀠4 we mean the graph obtained by joining the endpoint of the
4-path with the vertex of degree two of the other 4-path. It is clear that mi(𝑅3) = mi(𝑅󸀠3) = 5 and mi(𝑅4) =
mi(𝑅󸀠4) = 8.

Fig. 1: The graphs 𝑅3 and 𝑅󸀠4.
By 𝑅𝑎,𝑏 we denote the tree obtained from 𝑅𝑎 and 𝑅𝑏 by addition of the vertex adjacent to a vertex of

degree two of the tree 𝑅𝑎 and to the vertex of degree two of the tree 𝑅𝑏. Similarly, by 𝑅𝑘1,𝑘2,...,𝑘𝑠 we denote the
tree consisting of the subtrees 𝑅𝑘1,𝑘2,...,𝑘𝑠−1 and 𝑅𝑘𝑠 connected in the same manner.

Fig. 2: The tree 𝑅1,2,3
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A subtree 𝑇󸀠 of a tree 𝑇 will be called extreme if only one vertex of the subtree 𝑇󸀠 is adjacent to vertices
from 𝑉(𝑇) \ 𝑉(𝑇󸀠). This vertex of the subtree 𝑇󸀠 will be called a contact vertex. A subtree 𝑅𝑘1,𝑘2,...,𝑘𝑠 will be
called extreme if among its vertices only a vertex of degree two of its subtree 𝑅𝑘𝑠 (if 𝑠 = 1 and 𝑘1 = 1, then
of degree one) is connected with one or several vertices of the original tree. A path 𝑃𝑙 will be called extreme
if one of its endpoints has degree one, while all the remaining vertices have degree two in the initial tree.
Note that it is not envisaged that the concept of an extreme tree will be applied to paths, and hence we will
be using the more restrictive definition of an extreme path.

Fig. 3: An extreme subtree 𝑅2,1 and an extreme 3-path.
We say that an extreme subtree 𝑇󸀠 of a tree 𝑇 is adjacent to an 𝑙-path (𝑥1, . . . , 𝑥𝑙) if 𝑥1, . . . , 𝑥𝑙 ∈ 𝑉(𝑇) \

𝑉(𝑇󸀠), the vertex 𝑥1 is adjacent to the contact vertex of the subtree 𝑇󸀠, and if the degrees of all vertices
𝑥1, . . . , 𝑥𝑙 in the tree 𝑇 are equal to two. Besides, we assume that in the set 𝑉(𝑇) \ 𝑉(𝑇󸀠) the contact ver-
tex of the subgraph 𝑇󸀠 has a unique neighbor— the endpoint of the 𝑙-path.

Let 𝑇 be a tree, 𝑇󸀠 be an extreme subtree of 𝑇, and 𝑥 be a contact vertex. Next, let 𝑇󸀠󸀠 be some tree with
selected vertex 𝑦. We say that we replace 𝑇󸀠 by 𝑇󸀠󸀠 in the tree 𝑇 if we remove from 𝑇 all the elements of the
set 𝑉(𝑇󸀠) and add 𝑇󸀠󸀠 and all its edges of the form 𝑦𝑧, where 𝑧 ∈ 𝑉(𝑇) \ 𝑉(𝑇󸀠) and 𝑥𝑧 ∈ 𝐸(𝑇). In what
follows such replacements will be applied to some pairs (𝑇󸀠, 𝑇󸀠󸀠), where 𝑇󸀠󸀠 is a simple path or a tree of the
form𝑅𝑘1,...,𝑘𝑠 , and as a contact vertex𝑦we take either an endpoint of the path or a preleaf of a vertex of degree
two (of degree one if 𝑠 = 1 and 𝑘1 = 1) of the tree𝑅𝑘1,...,𝑘𝑠 . Besides, such replacements will be applied to trees
without twin-leaves in order to preserve the number of vertices and the absence of twin-leaves, and in order
to reduce the number of m.i.s.

A tree 𝑇 will be called 𝑇∗-selected if 𝑇 is a union of two its extreme subtrees of which one is isomorphic
to 𝑇∗. A tree will be called 𝑅1⋁𝑅2-selected if it is either 𝑅1-selected or 𝑅2-selected. The main idea of the
present paper is to show that all nontrivial minimal trees are 𝑅1⋁𝑅2-selected. This result will enable one to
characterize them.

Given a tree 𝑇, we construct the tree 𝑍(𝑇) as follows. The vertex set of 𝑍(𝑇) is the set of vertices in 𝑇 of
degree at least three. Two vertices of the tree 𝑍(𝑇) are connected by edge if they are either adjacent in 𝑇 or
the path in 𝑇 between them consists of some vertices of degree two.

A vertex 𝑣 of a tree 𝑇 of degree at least three will be called extreme if it is a leaf in the tree 𝑍(𝑇). If
in addition 𝑣 is also an endpoint of one of the paths of largest length in 𝑍(𝑇), then such a vertex is called
a terminal vertex. It is clear that each extreme vertex is adjacent to at least two extreme paths.

By a change of an extreme vertex 𝑥 by a subtree 𝑇̂ with selected vertex 𝑦 in a tree 𝑇 we mean the removal
of some extreme paths adjacent to 𝑥 (their choice will be clear from the context) and also of the vertex 𝑥
and all leaves adjacent to it. After this, the tree is augmented with the subtree 𝑇̂ and its selected vertex is
connected with all vertices which were initially adjacent to the vertex 𝑥 and were not removed from the tree
in the process of this transformation. The constraints on (𝑇̂, 𝑦) are precisely the same as on (𝑇󸀠󸀠, 𝑦). This
transformation will be applied in a way to preserve the number of vertices and the absence of twin-leaves,
but the number of m.i.s. will be reduced.
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3 Structure of minimal trees
In the following two subsections we prove several structural lemmas on the absence of special fragments in
minimal trees.

3.1 Some constraints on the extreme subgraphs

Lemma 4. A minimal tree cannot contain a subgraph of one of the following types:
1) an extreme 5-path;
2) an extreme 4-path not adjacent to a preleaf.

Proof. By a forest 𝐹 we shall mean the result of removing all vertices of the extreme subgraph under con-
sideration. Assume that some minimal tree contains an extreme 5-path. We replace its first 4-subpath by the
subgraph 𝑅2. It is clear that the result of this transformation does not contain twin-leaves. By Lemma 1, the
initial tree contains 𝑎3 + 𝑎2 m.i.s., while the result has 𝑎3 + 𝑎1 m.i.s. (we apply Lemma 1 to the leaf of the
subtree 𝑅2 not adjacent to its contact vertex); moreover, 𝑎2 > 𝑎1 by assertion I of Lemma 3.

Fig. 4: Local transformation of the 5-path.

Let us prove the second assertion of the lemma. Assume that some minimal tree contains an extreme 4-
path such that the vertex adjacent to this path is not a preleaf vertex. We replace this vertex by the subgraph
𝑅2. It is clear that result of the transformation does not contain twin-leaves. By Lemma 1 the initial graph
contains 𝑎4 = 𝑎2 + 𝑎1 m.i.s., while the resulting graph has 𝑎2 + 𝑎0 m.i.s. (we applied Lemma 1 to the leaf of
the subtree 𝑅2 adjacent to the neighbor of its contact vertex). By assertion IV of Lemma 3, 𝑎1 > 𝑎0.
Lemma 5. A minimal tree cannot simultaneously contain:
1) two extreme 4-paths;
2) two extreme subgraphs 𝑅3,
3) two extreme subgraphs 𝑅𝑘 and 𝑅𝑠, 𝑘, 𝑠 ∈ {2, 3, 4}, each of which is adjacent to a 2-path.

Proof. By a forest 𝐹 we shall mean the result of removing all vertices of both extreme subgraphs and (in the
third case) the four vertices of both 2-paths adjacent to these vertices. Let us prove the first assertion. Assume
that aminimal tree contains two extreme 4-paths (in general, such pathsmay be adjacent to the same vertex).
By Lemma 4 (case 2), each of these paths is adjacent to a preleaf vertex. We replace the first 3-subpath of the
first path by the subgraph𝑅2 and replace the first 3-subpath of the second path by the subgraph𝑅1. It is clear
that result of the transformationdoes not contain twin-leaves. Then the initial graph contains𝑎4,4m.i.s.,while
the resulting graph containsmi(𝑅1) ⋅mi(𝑅2) ⋅ 𝑎0,0 = 6 ⋅ 𝑎0,0 m.i.s. by Lemma 2.

Fig. 5: Local transformation of the two 4-paths.
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Moreover, by Lemma 1 and assertion III of Lemma 3,

𝑎4,4 = 𝑎2,2 + 𝑎2,1 + 𝑎1,2 + 𝑎1,1 ≥ 1.5 ⋅ 𝑎2,0 + 1.5 ⋅ 𝑎0,1 + 1.5 ⋅ 𝑎1,0 + 𝑎1,1
≥ 2.25 ⋅ 𝑎0,0 + 1.5 ⋅ 𝑎0,0 + 1.5 ⋅ 𝑎0,0 + 𝑎0,0 > 6 ⋅ 𝑎0,0,

hence the number of m.i.s. was reduced.
Let us prove the second assertion. Assume the contrary. We replace the extreme subgraphs by the sub-

graphs 𝑅1,1 and 𝑅2,1. It is clear that the resulting graph does not contain twin-leaves, because they are not
contained in the original tree. The initial graph has 4 ⋅𝑎2,2+2⋅𝑎0,2+2⋅𝑎2,0+𝑎0,0m.i.s. (we applied Lemma 1 to
the “middle” leaves of the subgraphs𝑅3), while by Lemma 2 the new graph hasmi(𝑅1) ⋅mi(𝑅2) ⋅𝑎2,2 = 6⋅𝑎2,2
m.i.s. By assertion II of Lemma 3,

2 ⋅ 𝑎0,2 + 2 ⋅ 𝑎2,0 ≥ 𝑎2,2 + 𝑎2,2 = 2 ⋅ 𝑎2,2 ≥ 𝑎2,2,
and hence the total number of m.i.s. was reduced.

Let us prove the third assertion. Assume on the contrary that there exist extreme subgraphs 𝑅𝑘 and 𝑅𝑠,
𝑘, 𝑠 ∈ {2, 3, 4}, each of which is adjacent to a 2-path. We may assume that 𝑘 = 2, for otherwise there would
exist two extreme subgraphs 𝑅3.

The case 𝑠 = 2. It may be assumed without loss of generality that 𝑎2,1 ≤ 𝑎1,2. We replace the first of the
extreme subgraphs𝑅2 by the subgraph𝑅1,1,1 and removeall the vertices of the other extreme subgraph𝑅2. It is
clear that the resulting graphdoesnot contain twin-leaves. The initial graph contains4⋅𝑎2,2+2⋅𝑎2,1+2⋅𝑎1,2+𝑎1,1
m.i.s., where for evaluation we have applied Lemma 1 to the leaves adjacent to the contact vertices of the
extreme subgraphs under consideration. Applying Lemma 2 and Lemma 1 to the leaf 𝑅1,1,1 adjacent to the
contact vertex we find that the resulting graph has mi(𝑅1,1) ⋅ (𝑎2,2 + 𝑎2,1) = 4 ⋅ (𝑎2,2 + 𝑎2,1) m.i.s. So, the
number of m.i.s. was reduced.

The case 𝑠 = 3. We replace the extreme subgraph𝑅3 by the subgraph𝑅2,1,1 and remove all the vertices of
the extreme subgraph 𝑅2. It is clear that the resulting graph does not contain twin-leaves. The initial graph
contains 6 ⋅ 𝑎2,2 + 4 ⋅ 𝑎2,1 + 3 ⋅ 𝑎1,2 + 2 ⋅ 𝑎1,1 m.i.s., where for evaluation we apply Lemma 1 to leaves adjacent
to the contact vertices of the subgraphs𝑅2 and𝑅3. Applying Lemma 2 and Lemma 1 to the leaf𝑅2,1,1 adjacent
to the contact vertex we find that the resulting graph has mi(𝑅2,1) ⋅ (𝑎2,2 + 𝑎2,1) = 6 ⋅ (𝑎2,2 + 𝑎2,1) m.i.s. By
assertion I of Lemma 3 we have 2 ⋅ 𝑎1,2 > 2 ⋅ 𝑎1,1 > 𝑎2,1, and hence the total number of m.i.s. was reduced.

The case 𝑠 = 4. We replace the extreme subgraph 𝑅4 by the subgraph 𝑅2,2,1 and remove all the vertices
of the second subgraph. It is clear that the resulting graph does not contain twin-leaves. The initial graph
contains 10 ⋅ 𝑎2,2 + 5 ⋅ 𝑎1,2 + 6 ⋅ 𝑎2,1 + 3 ⋅ 𝑎1,1 m.i.s., where for evaluation we apply Lemma 1 to the leaves
adjacent to the contact vertices of the subgraphs𝑅2 and𝑅4. Applying Lemma 2 and Lemma 1 to the leaf𝑅2,2,2
adjacent to the contact vertex we find that the resulting graph has mi(𝑅2,2) ⋅ (𝑎2,2 + 𝑎2,1) = 9 ⋅ (𝑎2,2 + 𝑎2,1)
m.i.s. So, it is clear that the total number of m.i.s. was reduced.

Lemma 6. A minimal tree cannot simultaneously contain:
1) an extreme subgraph 𝑅3 and an extreme subgraph 𝑅2 adjacent to a 2-path,
2) an extreme subgraph 𝑅2 adjacent to a 2-path and to an extreme 4-path.

Proof. Let us prove the first assertion of the lemma. Assume the contrary. By the forest 𝐹 we shall mean the
result of removing all vertices of the extreme subgraphs𝑅3 and𝑅2 and of both vertices of the 2-path adjacent
to the extreme subgraph 𝑅2.

Assume that 𝑎0,2 ≤ 𝑎2,0. We replace the subgraph 𝑅3 by the subgraph 𝑅1,1,2 and remove the subgraph 𝑅2
from the graph. It is clear that the resulting graph does not contain twin-leaves. By Lemma 1, the initial graph
contains 4 ⋅ 𝑎2,2 +2 ⋅ 𝑎2,1 +2 ⋅ 𝑎0,2 +𝑎0,1 m.i.s., where for evaluation we apply the lemma to the leaf adjacent to
the contact vertex of the extreme subgraph 𝑅2 and to the leaf adjacent to a neighbor of the contact vertex of
the extreme subgraph 𝑅3. By Lemmas 2 and 1 the resulting graph hasmi(𝑅1,1) ⋅ (𝑎2,2 + 𝑎0,2) = 4 ⋅ (𝑎2,2 + 𝑎0,2)
m.i.s., where for evaluation we apply Lemma 1 to the leaf adjacent to a neighbor of the contact vertex of the
extreme subgraph 𝑅1,1,2. So, the number of m.i.s. was reduced.

Now assume that 𝑎0,2 > 𝑎2,0. We carry out the following symmetric transformation: we replace 𝑅3 by
a 2-path, remove 𝑅2 and the adjacent 2-path (𝑎, 𝑏), and add the graph 𝑅1,1,2 and the edge 𝑥𝑦, where 𝑥 ̸= 𝑎
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is the neighbor of the vertex 𝑏 and 𝑦 is the preleaf of degree two belonging to the subgraph 𝑅2 of the graph
𝑅1,1,2. By Lemmas 2 and 1 the resulting tree hasmi(𝑅1,1) ⋅ (𝑎2,2 + 𝑎2,0) = 4 ⋅ (𝑎2,2 + 𝑎2,0)m.i.s. So, the number
of m.i.s. was reduced.

Let us prove the second assertion of the lemma. Here, by a forest 𝐹 we mean the result of removing all
vertices of the extreme subgraph𝑅2 and both vertices of the 2-path adjacent to the extreme subgraph𝑅2. Note
that one of the endpoints of the extreme 4-path is adjacent to a preleaf by Lemma 4 (case 2). We remove the
subgraph 𝑅2 from the graph and replace the three extreme vertices of the 4-paths by the subgraph 𝑅2,1. The
initial graph contains 2 ⋅ 𝑎2,4 + 𝑎1,4 m.i.s. by Lemma 1, which we apply to the neighboring leaf of the contact
vertex of the extreme subgraph 𝑅2. By Lemma 2, the resulting graph contains mi(𝑅2,1) ⋅ 𝑎2,0 = 6 ⋅ 𝑎2,0 m.i.s.
Next, by Lemma 1 and Lemma 3 (assertions II and III) we have

2 ⋅ 𝑎2,4 = 2 ⋅ 𝑎2,2 + 2 ⋅ 𝑎2,1 ≥ 2 ⋅ 32 ⋅ 𝑎2,0 + 2 ⋅ 𝑎2,0 = 5 ⋅ 𝑎2,0,
𝑎1,4 = 𝑎1,2 + 𝑎1,1 > 2 ⋅ 𝑎0,0 ≥ 𝑎2,0,

and so the number of m.i.s. was reduced.

3.2 Some constraints on extreme vertices

Lemma 7. In aminimal tree each vertexwhich is simultaneously adjacent to two extreme paths𝑃𝑘 and𝑃𝑙, where
𝑘 ≥ 𝑙 ≥ 2, is adjacent to a leaf.

Proof. Assume on the contrary that there exists a vertex 𝑣 which is adjacent to the extreme paths 𝑃𝑙 and 𝑃𝑘
and which is not adjacent to a leaf. By Lemma 4, 𝑘 ≤ 3 and 𝑙 ≤ 3. By 𝐹 we denote the result of removing the
vertex 𝑣 and all vertices of the extreme 𝑘-path and 𝑙-path from the tree.

The case 𝑘 = 𝑙 = 2. We remove all vertices of both extreme 2-paths and add the subgraph 𝑅2, the edge
incident to 𝑣, and the vertex of degree two of the graph 𝑅2. Since 𝑣 is not adjacent to a leaf, the result of the
transformation does not contain twin-leaves. By Lemma 1, the initial graph contains 𝑎1 + 3 ⋅ 𝑎0 m.i.s., while
in the resulting graph we have 2 ⋅ 𝑎1 + 𝑎0 m.i.s. (we apply the lemma to the terminals of the extreme 2-paths
and to the leaf adjacent to the contact vertex of the subgraph 𝑅2). By Lemma 3 (assertion IV), 2 ⋅ 𝑎0 > 𝑎1.

The case 𝑘 = 3, 𝑙 = 2. We insert the subgraph 𝑅3 in place of the 6-path with the contact vertex 𝑣, which
is composed of the vertices of the extreme 3- and 2-paths. Since 𝑣 is not adjacent to a leaf, the result of the
transformation does not contain twin-leaves. By Lemma 1, the initial graph contains 𝑎4+2⋅𝑎0 = 𝑎2+𝑎1+2⋅𝑎0
m.i.s., while the resulting graph contains 2 ⋅ 𝑎2 + 𝑎0 = 𝑎2 + 2 ⋅ 𝑎0 + 𝑎−1 m.i.s. (here the lemma was applied to
the terminal of the extreme 2-path and to the leaf adjacent to a neighbor of the contact vertex of the subgraph
𝑅2). Since 𝑎0 ≥ 2, we have 𝑎1 > 𝑎−1.

The case 𝑘 = 𝑙 = 3. We insert the subgraph 𝑅2,1 in place of the 7-path with the contact vertex 𝑣, which
is composed of the vertices of the extreme 3-paths. Since 𝑣 is not adjacent to a leaf, the result of the transfor-
mation does not contain twin-leaves. By Lemma 1 (which was applied in succession to the terminals of the
extreme 3-paths), the initial graph contains 3 ⋅ 𝑎2 + 𝑎1 m.i.s., while the resulting graph, as given by Lemma 2,
hasmi(𝑅2) ⋅ 𝑎2 = 3 ⋅ 𝑎2 m.i.s.

So, under the assumption that there exists a vertex simultaneously adjacent to two extreme paths and
not adjacent to a leaf, we showed in all cases that the number of m.i.s. may be reduced.

Lemma 8. In a minimal non-𝑅1-selected tree each extreme vertex has degree at most four.
Proof. Assume on the contrary that the minimal tree contains an extreme vertex 𝑣 of degree at least five.
Then this vertex is adjacent to three extreme paths𝑃𝑎,𝑃𝑏,𝑃𝑐, where 2 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 4 (see Lemma 4, case 1),
and is also adjacent to a leaf by Lemma 7. Since the tree is not 𝑅1-selected, the vertex 𝑣 is not adjacent to an
extreme 3-path. Moreover, 𝑣 is adjacent to at most one extreme 4-path by Lemma 5 (case 1). Therefore, the
only possible cases are as follows: 𝑎 = 𝑏 = 𝑐 = 2 and 𝑎 = 𝑏 = 2, 𝑐 = 4. Here by 𝐹 we mean the result of
removing the vertex 𝑣, the adjacent leaf, and all vertices of the paths 𝑃𝑎, 𝑃𝑏, 𝑃𝑐.
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The case 𝑎 = 𝑏 = 𝑐 = 2. We replace the vertex 𝑣 by the extreme subgraph 𝑅4. Since 𝑣 was adjacent to
a leaf, the result of the transformation does not contain twin-leaves. By Lemma 1, the initial graph contains
𝑎2 +7 ⋅ 𝑎0 m.i.s. (we apply the lemma in succession to the terminal leaves of the three extreme 2-paths), while
the resulting graph has 3 ⋅ 𝑎2 +2 ⋅ 𝑎0 m.i.s. (we apply Lemma 1 to the leaf adjacent to a neighbor of the contact
vertex of the subtree 𝑅4). Recall that by Lemma 3 (assertion II) we have 𝑎2 ≤ 2 ⋅ 𝑎0. So, the number of m.i.s.
was reduced.

The case 𝑎 = 2, 𝑏 = 2, 𝑐 = 4. We replace the vertex 𝑣 by the extreme subgraph𝑅1,1,2. Since 𝑣was adjacent
to a leaf, the result of the transformation does not contain twin-leaves. By Lemma 1, the initial graph contains
2 ⋅ 𝑎2 + 10 ⋅ 𝑎0 m.i.s. (we apply the lemma in succession to the terminal leaves of the two extreme 2-paths, and
then twice apply the lemma to the vertices of the extreme 4-path), while the resulting graph, as obtained by
Lemmas 2 and 1, containsmi(𝑅1,1) ⋅ (𝑎2 + 𝑎0) = 4 ⋅ (𝑎2 + 𝑎0)m.i.s. So, the number of m.i.s. was reduced.

Thus, under the assumption that there exists an extreme vertex of degree at least five, the number of
m.i.s. may be reduced in all possible cases.

Lemma 9. A minimal non-𝑅1-selected tree may contain at most one extreme vertex of degree four.
Proof. Assume that in the minimal tree there exist two extreme vertices of degree four. By Lemma 7, each
of such vertices is adjacent to a leaf and to two extreme paths of which each contains at least two vertices.
We denote the corresponding extreme paths by 𝑃𝑎, 𝑃𝑏 and 𝑃𝑎󸀠 , 𝑃𝑏󸀠 . From symmetry considerations one may
assume that 𝑎 ≤ 𝑏, 𝑎󸀠 ≤ 𝑏󸀠 and 𝑎 ≤ 𝑎󸀠. Hence, by Lemma 4 (case 1) and Lemma 5 (case 1), it may be assumed
that 𝑎 = 𝑏 = 𝑎󸀠 = 𝑏󸀠 = 2 and 𝑎 = 𝑏 = 𝑎󸀠 = 2, 𝑏󸀠 = 4. By𝐹we shall mean the result of removing both extreme
vertices, the adjacent leaves, and all vertices of the extreme paths 𝑃𝑎, 𝑃𝑎󸀠 , 𝑃𝑏, 𝑃𝑏󸀠 .

The case 𝑏󸀠 = 2. We replace one of the extreme vertices by the subgraph 𝑅2,1,1, and the other one, by
a 2-path. Since they were adjacent to leaves, the result of the transformation does not contain twin-leaves.
The initial graph contains 9 ⋅ 𝑎0,0 + 3 ⋅ 𝑎2,0 + 3 ⋅ 𝑎0,2 + 𝑎2,2 m.i.s. (Lemma 1 is applied in succession to terminal
leaves of the four extreme 2-paths), and by Lemma 2 the resulting graph hasmi(𝑅2,1) ⋅ 𝑎2,2 = 6 ⋅ 𝑎2,2 m.i.s. By
Lemma 3 (case II) we have

9 ⋅ 𝑎0,0 + 3 ⋅ 𝑎2,0 + 3 ⋅ 𝑎0,2 + 𝑎2,2 > 4 ⋅ 𝑎0,0 + 4 ⋅ 𝑎0,0 + 3 ⋅ 𝑎2,0 + 3 ⋅ 𝑎0,2 + 𝑎2,2
≥ 2 ⋅ 𝑎2,0 + 2 ⋅ 𝑎0,2 + 3 ⋅ 𝑎2,0 + 3 ⋅ 𝑎0,2 + 𝑎2,2 = 5 ⋅ 𝑎2,0 + 5 ⋅ 𝑎0,2 + 𝑎2,2

≥
5
2
⋅ 𝑎2,2 + 52 ⋅ 𝑎2,2 + 𝑎2,2 = 6 ⋅ 𝑎2,2.

The case 𝑏󸀠 = 4. We replace one of the extreme vertices by the subgraph 𝑅2,2,1, and the other one, by
a 2-path. Since they were adjacent to leaves, the result of the transformation does not contain twin-leaves.
The initial graph contains 12 ⋅ 𝑎0,0 +6 ⋅ 𝑎2,0 +4 ⋅ 𝑎0,2 +2 ⋅ 𝑎2,2m.i.s. (Lemma 1 is first applied to the terminal leaf
of the extreme 4-path), and by Lemma 2 the resulting graph hasmi(𝑅2,2) ⋅ 𝑎2,2 = 9 ⋅ 𝑎2,2 m.i.s. The number of
m.i.s. was reduced.

So, under the assumption of the existence of two extreme vertices of degree 4, the number of m.i.s. may
be reduced in all the above cases.

Lemma 10. A minimal tree containing an extreme vertex of degree four cannot contain the following subtrees:
1) an extreme 4-path not adjacent to a given extreme vertex,
2) an extreme subgraph 𝑅3,
3) an extreme subgraph 𝑅2 adjacent to a 2-path.

Proof. Consider an arbitraryminimal tree and its extreme vertex of degree four. By Lemma4 (case 1), Lemma5
(case 1) and Lemma 7 this vertex must be adjacent to the extreme paths 𝑃𝑎 and 𝑃2, where 𝑎 ∈ {2, 4}, and to
a leaf. By 𝐹 we mean the result of removing the extreme vertex of degree four, the adjacent leaf, all vertices
of the extreme paths 𝑃2, 𝑃𝑎, the corresponding extreme subgraph, and (in the third case) the vertices of the
2-path adjacent to the extreme subgraph 𝑅2.

Let us prove the first assertion of the lemma. The case 𝑎 = 4 is impossible by Lemma 5 (case 1). Consider
the case with 𝑎 = 2. We shall assume that some extreme 4-path is adjacent to a nonextreme vertex 𝑣. Then
𝑣 is a preleaf by Lemma 4 (case 2).
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We remove all the vertices of the extreme 4-path and replace the extreme vertex of degree four by the
subgraph𝑅1,2,1. Since the original tree does not contain twin-leaves, the resulting graph also does not contain
twin-leaves. So, by Lemma 2, the graph hasmi(𝑅1,2) ⋅ 𝑎2,0 = 6 ⋅ 𝑎2,0 m.i.s. after the transformation, while by
Lemma 1 there were 3 ⋅ 𝑎0,4 + 𝑎2,4 m.i.s., where for evaluation the lemmawas applied to terminal leaves of the
extreme 2-paths. By Lemmas 1 and 3 (assertions II and III)

3 ⋅ 𝑎0,4 + 𝑎2,4 = 3 ⋅ 𝑎0,2 + 3 ⋅ 𝑎0,1 + 𝑎2,2 + 𝑎2,1 ≥ 3 ⋅ 32 ⋅ 𝑎0,0 + 3 ⋅ 𝑎0,0 + 32 ⋅ 𝑎2,0 + 𝑎2,0
= 7.5 ⋅ 𝑎0,0 + 2.5 ⋅ 𝑎2,0 > 3.5 ⋅ 𝑎2,0 + 2.5 ⋅ 𝑎2,0 = 6 ⋅ 𝑎2,0,

i.e., after the transformation the number of m.i.s. was reduced.
Let us prove the second assertion of the lemma.
The case 𝑎 = 2.We replace the extreme subgraph𝑅3 by the extreme subgraph𝑅2 and replace the extreme

vertex of degree four by the extreme subgraph 𝑅4. Since the original tree does not contain twin-leaves, the
resulting graph also does not contain twin-leaves. The initial graph has 6 ⋅ 𝑎0,2 + 2 ⋅ 𝑎2,2 + 3 ⋅ 𝑎0,0 + 𝑎2,0 m.i.s.
(we apply Lemma 1 to the “middle” leaf of the subgraph 𝑅3 and also to the terminal leaves of 2-paths). As
a result, we have 3 ⋅ 𝑎2,2 + 2 ⋅ 𝑎0,2 + 3 ⋅ 𝑎2,0 + 2 ⋅ 𝑎0,0 m.i.s. (we apply Lemma 1 to the leaves adjacent to the
contact vertices of the subgraphs 𝑅2 and 𝑅4). By Lemma 3 (assertions II–IV),

4 ⋅ 𝑎0,2 + 𝑎0,0 > 𝑎2,2 + 2 ⋅ 𝑎0,2 + 𝑎0,0 ≥ 𝑎2,2 + 2 ⋅ 32 ⋅ 𝑎0,0 + 𝑎0,0 = 𝑎2,2 + 4 ⋅ 𝑎0,0 ≥ 𝑎2,2 + 2 ⋅ 𝑎2,0.
The case 𝑎 = 4. We replace the extreme vertex by the subgraph𝑅1,2 and replace the extreme subgraph𝑅3

by the subgraph 𝑅1,2. Since the original tree does not contain twin-leaves, the resulting graph also does not
contain twin-leaves. The initial graph has 8⋅𝑎0,2+4⋅𝑎2,2+4⋅𝑎0,0+2⋅𝑎2,0m.i.s. (we first we apply Lemma 1 to the
terminal leave of the extreme4-paths),while by Lemma 2 the resulting graphhasmi(𝑅2)⋅mi(𝑅2)⋅𝑎2,2 = 9⋅𝑎2,2
m.i.s. By Lemma 3 (assertion II)

8 ⋅ 𝑎0,2 + 4 ⋅ 𝑎2,2 + 4 ⋅ 𝑎0,0 + 2 ⋅ 𝑎2,0 ≥ 4 ⋅ 𝑎2,2 + 4 ⋅ 𝑎2,2 + 𝑎2,2 + 𝑎2,2 = 10 ⋅ 𝑎2,2,
i.e., after the transformation the number of m.i.s. was reduced.

Let us prove the third assertion of the lemma.
The case 𝑎 = 2. We replace the extreme vertex by the subgraph 𝑅1,2,1 and remove all vertices of the

extreme subgraph 𝑅2. Since the original tree does not contain twin-leaves, the resulting graph also does not
contain twin-leaves. The initial graph contains 2 ⋅ 𝑎2,2 + 3 ⋅ 𝑎0,1 + 6 ⋅ 𝑎0,2 + 𝑎2,1 m.i.s. (we apply Lemma 1 to
the leaf vertices of both extreme 2-paths and the leaf of the subgraph 𝑅2 not adjacent to its contact vertex).
By Lemma 2, the resulting graph hasmi(𝑅1,2) ⋅ 𝑎2,2 = 6 ⋅ 𝑎2,2 m.i.s. Next, by Lemma 3 (assertion II)

2 ⋅ 𝑎2,2 + 3 ⋅ 𝑎0,1 + 6 ⋅ 𝑎0,2 + 𝑎2,1 > 2 ⋅ 𝑎2,2 + 𝑎2,1 + 3 ⋅ 𝑎2,2 + 𝑎2,1 > 6 ⋅ 𝑎2,2.
Hence the number of m.i.s. was reduced.

The case 𝑎 = 4. We replace the extreme vertex by the subgraph 𝑅2,2,1 and remove all the vertices of the
extreme subgraph 𝑅2. Since the original tree does not contain twin-leaves, the resulting graph also does not
contain twin-leaves. By Lemma 1 (whichwas first applied to the terminal leaf of the extreme4-path), the initial
graph contains 4 ⋅ 𝑎2,2 + 4 ⋅ 𝑎0,1 + 8 ⋅ 𝑎0,2 + 2 ⋅ 𝑎2,1 m.i.s., while the resulting graph hasmi(𝑅2,2) ⋅ 𝑎2,2 = 9 ⋅ 𝑎2,2
m.i.s. By Lemma 3 (assertion II)

4 ⋅ 𝑎2,2 + 4 ⋅ 𝑎0,1 + 8 ⋅ 𝑎0,2 + 2 ⋅ 𝑎2,1 > 4 ⋅ 𝑎2,2 + 4 ⋅ 𝑎2,2 + 𝑎2,2 = 9 ⋅ 𝑎2,2,
i.e., the number of m.i.s. was reduced.

3.3 Selection of minimal trees

Lemma 11. In a minimal tree there are no extreme subgraphs𝑅𝑘 for 𝑘 ∈ {2, 3, 4}which are adjacent to the path
𝑃𝑙, where 𝑙 ≥ 3.
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Proof. Assume the contrary. By𝐹wedenote the result of removing all vertices of the extreme subgraph𝑅𝑘 and
the 3-subpath 𝑃𝑙 adjacent to it. We replace the extreme subgraph𝑅𝑘 and the two first vertices of the 𝑙-path by
the subgraph𝑅𝑘+1. It is clear that the resulting graph does not contain twin-leaves. According to the Lemma 1
applied in the original graph to the leaf adjacent to the contact vertex of the subgraph 𝑅𝑘, the number of its
m.i.s. is mi(𝑅𝑘−1) ⋅ 𝑎3 + mi(𝑅𝑘−2) ⋅ 𝑎2. According to the Lemma 1 applied in the resulting graph to the leaf
adjacent to a neighbor of the contact vertex of the subgraph 𝑅𝑘+1, the number of its m.i.s. is mi(𝑅𝑘−1) ⋅ 𝑎3 +
mi(𝑅𝑘−2) ⋅ 𝑎1. The number of m.i.s. was reduced, because by Lemma 3 (assertion I) we have 𝑎2 > 𝑎1.
Lemma 12. If 𝑇󸀠𝑠 is the tree obtained by joining by an edge of a vertex of degree two of the subgraph 𝑅2 and the
endpoint 𝑥 of the path with 𝑠+1 vertices, where 𝑠 ∈ {2, 3, 4}, then anyminimal tree does not contain an extreme
subgraph 𝑇󸀠𝑠 with nonpreleaf contact vertex 𝑥.
Proof. By 𝐹 we shall mean the result of removing all vertices of the subtree 𝑇󸀠𝑠 from the minimal tree.

Fig. 6: The trees 𝑇󸀠2, 𝑇󸀠3 and 𝑇󸀠4.
The case 𝑠 = 2. We replace 𝑇󸀠2 by the subgraph 𝑅2,1. The result of the transformation does not contain

twin-leaves, because 𝑥 is not a preleaf. The initial graph contains 2 ⋅ 𝑎3 +2 ⋅𝑎0m.i.s. (we apply Lemma 1 to the
leaf adjacent to the contact vertex of the subtree𝑅2), while by Lemma 2 the resulting graph hasmi(𝑅2) ⋅ 𝑎2 =
3 ⋅ 𝑎2 m.i.s. Hence by Lemma 3 (assertions I and II) we have 2 ⋅ 𝑎3 + 2 ⋅ 𝑎0 > 2 ⋅ 𝑎2 + 2 ⋅ 𝑎0 ≥ 3 ⋅ 𝑎2; i.e., the
number of m.i.s. was reduced.

The case 𝑠 = 3. We replace 𝑇󸀠3 by the subgraph 𝑅4. The result of the transformation does not contain
twin-leaves, because 𝑥 is not a preleaf. The initial graph contains 2 ⋅ 𝑎4 + 2 ⋅ 𝑎0 m.i.s. (we apply Lemma 1 to
the leaf adjacent to the contact vertex of the subtree 𝑅2), while the resulting graph has 3 ⋅ 𝑎2 + 2 ⋅ 𝑎0 m.i.s.
(we apply Lemma 1 to the leaf of the subgraph 𝑅4 adjacent to a neighbor of the contact vertex ). Hence by
Lemma 1 and Lemma 3 (assertion I) we have 2 ⋅ 𝑎4 + 2 ⋅ 𝑎0 = 2 ⋅ 𝑎2 + 2 ⋅ 𝑎1 + 2 ⋅ 𝑎0 > 3 ⋅ 𝑎2 + 2 ⋅ 𝑎0.

The case 𝑠 = 4. We replace 𝑇󸀠4 by the subgraph 𝑅2,2. The result of the transformation does not contain
twin-leaves, because 𝑥 is not a preleaf. The initial graph contains 2 ⋅ 𝑎5 +3 ⋅𝑎0m.i.s. (we apply Lemma 1 to the
leaf adjacent to the contact vertex of the subtree𝑅2), while by Lemma 2 the resulting graph hasmi(𝑅2) ⋅ (𝑎2 +
𝑎0) = 3⋅(𝑎2+𝑎0)m.i.s. (we apply Lemma 1 to the leaf of the subgraph𝑅2,2 adjacent to a neighbor of the contact
vertex of this subgraph). Hence by Lemma 1 and Lemma 3 (assertion I), we have 2 ⋅ 𝑎5 = 2 ⋅ 𝑎3 + 2 ⋅ 𝑎2 > 3 ⋅ 𝑎2
i.e., the number of m.i.s. was reduced.

Thus the number of m.i.s. may be reduced in all cases. Therefore, the assumption was false.

Lemma 13. If 𝑇󸀠󸀠𝑠 is a tree obtained by identifying of one endpoint of a 3-path with a vertex of degree two of the
subgraph 𝑅2 and identifying the other endpoint of the 3-path with the endpoint 𝑥 of a path with 𝑠 + 1 vertices,
where 𝑠 ∈ {2, 3, 4}, then each non-𝑅2-selected minimal tree does not contain an extreme subgraph 𝑇󸀠󸀠𝑠 with the
contact vertex 𝑥.

Proof. Assume the contrary. Then 𝑥 is not a preleaf, because the tree is not 𝑅2-selected. We denote by 𝐹 the
tree from which all vertices of the subtree 𝑇󸀠󸀠𝑠 were removed. There are three cases to consider.

The case 𝑠 = 2.We replace𝑇󸀠󸀠2 by the subgraph𝑅4. The result of the transformation does not contain twin-
leaves, because 𝑥 is not a preleaf. The initial graph contains 𝑎3 + 2 ⋅ 𝑎2 + 2 ⋅ 𝑎0 m.i.s. (we apply Lemma 1 to
the leaf of the subgraph𝑅2 adjacent to the vertex of degree three), the resulting graphhaving 3⋅𝑎2+2⋅𝑎0m.i.s.
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(we apply Lemma 1 to the leaf of the subgraph 𝑅4 adjacent to a neighbor of the contact vertex). By Lemma 3
(assertion I) we have 𝑎3 > 𝑎2, and hence the number of m.i.s. was reduced.

The case 𝑠 = 3. We replace 𝑇󸀠󸀠3 by the subgraph 𝑅2,2. The result of the transformation does not contain
twin-leaves, because 𝑥 is not a preleaf. The initial graph contains 𝑎4 + 4 ⋅ 𝑎2 m.i.s. (we apply Lemma 1 to the
leaf of the subgraph 𝑅2 adjacent to the vertex of degree three), while by Lemma 2 the resulting graph has
mi(𝑅2) ⋅ (𝑎2 + 𝑎0) = 3 ⋅ (𝑎2 + 𝑎0) m.i.s. (we apply Lemma 1 to the leaf of the subgraph 𝑅2,2 adjacent to
a neighbor of the contact vertex of this subgraph). The number of m.i.s. was reduced, because by Lemma 1
and Lemma 3 (assertion I) we have 𝑎4 + 𝑎2 = 2 ⋅ 𝑎2 + 𝑎1 > 3 ⋅ 𝑎0.

The case 𝑠 = 4. We replace 𝑇󸀠󸀠4 by the subgraph 𝑅1,1,2. The result of the transformation does not contain
twin-leaves, because𝑥 is not apreleaf. The initial graphcontains𝑎5+4⋅𝑎2+2⋅𝑎0m.i.s. (weapplyLemma1 to the
leaf vertex of the graph𝑅2 adjacent to a vertex of degree three), the resulting graphhavingmi(𝑅1,1)⋅(𝑎2+𝑎0) =
4 ⋅ 𝑎2 + 4 ⋅ 𝑎0 m.i.s. (we apply Lemma 1 to the leaf of the subgraph 𝑅1,1,2 adjacent to a neighbor of the contact
vertex of this subgraph). By Lemmas 1 and 3 (assertion I) we have 𝑎5 = 𝑎3 + 𝑎2 > 2 ⋅ 𝑎0, so the number of
m.i.s. was reduced.

Thus, the number of m.i.s. may be reduced in all cases. Therefore, the assumption was false.

Lemma 14. If 𝑇󸀠󸀠󸀠𝑠 is a tree obtained by identifying the endpoints of an (𝑠 + 2)-path with vertices of degree two
in two copies of the graph𝑅2, where 1 ≤ 𝑠 ≤ 4 and 𝑥 is an arbitrary internal vertex of the (𝑠+2)-path, then each
minimal non-𝑅2-selected tree cannot contain an extreme subgraph 𝑇󸀠󸀠󸀠𝑠 with the contact vertex 𝑥.

Proof. Assume the contrary. We denote by𝐹 the tree fromwhich all vertices of the subtree𝑇󸀠󸀠󸀠𝑠 were removed.
The case 𝑠 = 1. We remove all vertices of the forest 𝑇󸀠󸀠󸀠1 \ {𝑥} and add the subgraph 𝑅4 and the edge

incident to 𝑥 and to a vertex of degree two of the subgraph 𝑅4. The initial graph contains 4 ⋅ 𝑎1 + 5 ⋅ 𝑎0
m.i.s. (here and in what follows we apply Lemma 1 to the leaves of the subgraphs 𝑅2 which are nearest to
the vertex 𝑥). The resulting graph has 5 ⋅ 𝑎1 + 3 ⋅ 𝑎0 m.i.s. (Lemma 1 was applied to the leaf adjacent to the
contact vertex of the subtree 𝑅4). It is clear that the transformation does not produce twin-leaves in the tree.
By Lemma 3 (assertions I and II) we have 2 ⋅ 𝑎0 ≥ 𝑎2 > 𝑎1; i.e., the number of m.i.s. was reduced.

The case 𝑠 = 2. We remove all vertices of the forest𝑇󸀠󸀠󸀠2 \ {𝑥} and add the graph𝑅2,2 and the edge incident
to a vertex of degree two of the graph 𝑅2,2 and to the vertex 𝑥. The initial graph contains 4 ⋅ 𝑎2 + 2 ⋅ 𝑎1 + 3 ⋅ 𝑎0
m.i.s. By Lemma 2, the resulting graph contains mi(𝑅2) ⋅ (2 ⋅ 𝑎1 + 𝑎0) = 6 ⋅ 𝑎1 + 3 ⋅ 𝑎0 m.i.s. (we also apply
Lemma 1 to the leaf of the graph 𝑅2,2 adjacent to its contact vertex). It is clear that the above transformation
will not result in twin-leaves in the tree. By Lemma 3 (assertion I) we have 𝑎2 > 𝑎1, therefore the number of
m.i.s. was reduced.

The case 𝑠 = 3. Suppose that the vertex 𝑥 is in the middle between the subgraphs 𝑅2. We replace 𝑇󸀠󸀠󸀠𝑠 by
𝑅4,1. The initial graph contains 8 ⋅ 𝑎2 + 𝑎1 m.i.s., and by Lemma 2 the resulting graph hasmi(𝑅4) ⋅ 𝑎2 = 8 ⋅ 𝑎2
m.i.s. So, the number of m.i.s. was reduced. Note that in this case the vertex 𝑥 cannot be a preleaf, because
then the tree would be 𝑅2-selected, and hence the above transformation will not produce twin-leaves in the
tree.

The case 𝑠 = 3. Suppose that the vertex 𝑥 is not in the middle between the subgraphs 𝑅2. The original
graph contains 4 ⋅ 𝑎3 + 2 ⋅ 𝑎2 + 5 ⋅ 𝑎0 m.i.s. We remove all vertices of the forest𝑇󸀠󸀠󸀠3 \ {𝑥} and add𝑅1,1,2 and the
edge incident to a vertex of degree two of the subgraphs 𝑅2 of the graph 𝑅1,1,2 and to the vertex 𝑥. This gives
us a tree without twin-leaves. By Lemma 2, the resulting graph containsmi(𝑅1,1) ⋅ (2 ⋅ 𝑎1 + 𝑎0) = 8 ⋅ 𝑎1 + 4 ⋅ 𝑎0
m.i.s. (we apply Lemma 1 to the leaf adjacent to the contact vertex of the subtree 𝑅1,1,2). By Lemmas 1 and 3
(assertions I and II)

4 ⋅ 𝑎3 + 2 ⋅ 𝑎2 + 5 ⋅ 𝑎0 = 4 ⋅ 𝑎1 + 5 ⋅ 𝑎0 + 2 ⋅ 𝑎2 + 4 ⋅ 𝑎0
≥ 4 ⋅ 𝑎1 + 2.5 ⋅ 𝑎2 + 2 ⋅ 𝑎2 + 4 ⋅ 𝑎0 = 4.5 ⋅ 𝑎2 + 4 ⋅ 𝑎1 + 4 ⋅ 𝑎0 > 8 ⋅ 𝑎1 + 4 ⋅ 𝑎0,

i.e., the number of m.i.s. was reduced.
The case 𝑠 = 4. In this case𝑥 is not adjacent to contact vertices of the extreme subgraphs𝑅2 by Lemma 11.

We removeall vertices of the forest𝑇󸀠󸀠4 \{𝑥}andadd the subgraph𝑅2,3 and the edge incident to𝑥and to a vertex
of degree two of the subgraph𝑅3 of the graph𝑅2,3. It is clear that the resulting graph has no twin-leaves. The
initial graph contains 2⋅𝑎3+7⋅𝑎2+4⋅𝑎0m.i.s. and by Lemma 2wenowhavemi(𝑅2)⋅(3⋅𝑎1+2⋅𝑎0) = 9⋅𝑎1+6⋅𝑎0
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m.i.s. (we apply Lemma 1 to the leaf adjacent to the contact vertex of the subgraph 𝑅2,3). By Lemmas 1 and 3
(assertion I)

2 ⋅ 𝑎3 + 7 ⋅ 𝑎2 + 4 ⋅ 𝑎0 = 7 ⋅ 𝑎2 + 2 ⋅ 𝑎1 + 6 ⋅ 𝑎0 > 9 ⋅ 𝑎1 + 6 ⋅ 𝑎0,
so the number of m.i.s. was reduced.

Thus the number of m.i.s. may be reduced in all cases. Therefore, the assumption was false.

Theorem 1. A minimal tree 𝑇 is 𝑅1⋁𝑅2-selected if the tree𝑍(𝑇) contains at least four vertices.
Proof. Assume that the tree𝑍(𝑇) is a star. Then this star has at least three leaves. Further, by Lemma4 (case 1),
Lemma 5 (case 1), Lemmas 8, 9, and Lemma 10 (case 1), at least two of these leaves are of degree three in 𝑇
and are not adjacent to a 4-path. By Lemma 7, these vertices are adjacent to a leaf. We denote by 𝑥 and 𝑦
the corresponding leaves of the star 𝑍(𝑇). Since 𝑍(𝑇) is a star, 𝑍(𝑇) is not 𝑅1-selected and so by Lemma 4
(case 1) each of the second extremepaths has two vertices. Consider the path in the tree𝑇between the vertices
𝑥 and 𝑦. By Lemma 5 (case 2) and Lemma 11, the length of this path is at most five and in this path only one
vertex has degree larger two. Now Lemma 14 shows that the tree 𝑇 is 𝑅2-selected.

Now assume that the tree𝑍(𝑇) is not a star. Hence in the tree𝑍(𝑇) there exist at least two preleaves each
of which is adjacent to its set𝑀𝑖, 𝑖 = 1, 2, of terminal leaves. By Lemma 4 (case 1), Lemma 5 (case 1), Lemmas
7–9, and Lemma 10 (case 1), it may be assumed without loss of generality that each element of the set𝑀1
has degree three in 𝑇 and is adjacent to an extreme 2-path and a leaf. By Lemma 11, any such element is at
distance at most three from the nearest vertex of degree at most two. If in𝑀1 there are at least two elements,
then we consider a path between them and argue as in the previous case. As a result, we will prove that𝑍(𝑇)
is 𝑅2-selected.

It remains to consider the case when𝑀1 = {𝑥} and 𝑥 is at the distance at most 3 in 𝑇 from the nearest
vertex𝑦 of degree exceeding two. Then𝑦 is a preleaf in the tree𝑍(𝑇) adjacent to its leaf𝑥. Since |𝑀1| = 1 and
𝑥 is terminal, then in the tree𝑇 all extreme subgraphswhich are adjacent to𝑦 andwhich do not contain𝑥 are
simple paths. Let 𝑃𝑙 be one of the extreme paths of this kind. By Lemma 4 (case 1), we have 𝑙 ≤ 4. If dist = 1,
then by Lemma 12 the vertex 𝑦 is a preleaf. If dist = 2, then 𝑦 is not a preleaf and 𝑙 ̸= 1, for otherwise 𝑇
would be 𝑅2-selected. But this would imply that 𝑇 is also 𝑅2-selected by Lemma 13.

It remains to consider the case dist = 3; i.e., when 𝑥 is in an extreme subgraph 𝑅2 adjacent to a 2-path.
If𝑀2 contains an element of degree four in 𝑇, then we get a contradiction with Lemma 10 (case 3). Assume
that all elements in𝑀2 are of degree three in 𝑇. By Lemma 6 (case 2) and Lemma 7, they are all adjacent to
a leaf and a 2-path. Then it suffices to consider only the casewhen𝑀2 = {𝑥󸀠}. We denote bydist󸀠 the distance
from 𝑥󸀠 to the nearest vertex of degree exceeding two. If dist󸀠 = 2, then, by Lemmas 12 and 13, the tree 𝑇
is 𝑅2-selected. If dist󸀠 = 1, then we get a contradiction by Lemmas 12 and 6 (case 1). If dist󸀠 = 3, then by
Lemma 5 (case 3) we also have a contradiction.

Thus the number of m.i.s. may be reduced in all cases. Therefore, the assumption was false.

Theorem 2. For 𝑛 ≥ 9, each minimal 𝑛-vertex tree is 𝑅1⋁𝑅2-selected.
Proof. In view of Theorem 1 for the proof of Theorem 2 it suffices to show that all minimal trees𝑇with at least
nine vertices and such that the tree𝑍(𝑇) contains at most three vertices are 𝑅1⋁𝑅2-selected.

Assume that tree 𝑍(𝑇) consists of a unique vertex 𝑥. By Lemmas 7 and 8, in the initial tree 𝑇 this vertex
is adjacent precisely to one leaf and to at least two paths 𝑃𝑎 and 𝑃𝑏, where 𝑎 ≥ 𝑏 ≥ 2. By Lemmas 4 (case 1)
and 5 (case 1), we have 𝑎 ≤ 4, and moreover, (𝑎, 𝑏) ̸= (4, 4). If 𝑎 = 3 or 𝑏 = 3, then 𝑇 if 𝑅1-selected. If
𝑎 = 4, 𝑏 = 2, then by Lemma 5 (case 1), Lemma 8 and since 𝑛 ≥ 9, the vertex 𝑥 is adjacent to a 4-path, to
2-paths, and to a leaf. But then mi(𝑇) = 14 by Lemma 1, and hence 𝑇 is not minimal, because we already
havemi(𝑅1,1,2) = 12 by Lemma 2.

Assume that the tree𝑍(𝑇) consists of two vertices. By Lemma 7, each of these vertices is adjacent to a leaf.
By Lemmas 8 and 9, each of these vertices has degree 3 ≤ 𝑑󸀠 ≤ 𝑑 ≤ 4 in the initial tree𝑇. The case𝑑󸀠 = 𝑑 = 4
is impossible by Lemma 9, and hence wemay assume that 𝑑󸀠 = 3. By Lemma 4 (case 1) and Lemma 5 (case 1),
among the extreme paths there is at most one 4-path, the remaining path being isomorphic to 𝑃2. We denote
by 𝑎 the number of vertices in the largest extreme path contained in the tree. Note that in the case 𝑑 = 𝑎 = 4
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an extreme 4-path must be adjacent to a vertex of degree four, for otherwise we would have a contradiction
with Lemma 10 (case 1).

Consider several variants depending on the number 𝑠 of vertices of degree two between extreme vertices.
If 𝑠 = 1, then some vertex of the tree 𝑇 of degree three is adjacent to an extreme 2-path and 𝑇 is 𝑅2-selected.
If 𝑠 ≥ 3, then by Lemma 11,𝑇 cannot contain a vertex of degree three which is adjacent to an extreme 2-path.
But then each of the extreme vertices is either adjacent to an extreme 4-path or is of degree four, which is
impossible. Finally, if 𝑠 = 0 or 𝑠 = 2, then, depending on the values 𝑑 ∈ {3, 4} and 𝑎 ∈ {2, 4}, the following
eight variants are possible.

The variant 𝑠 = 0, 𝑑 = 3, 𝑎 = 2. The tree 𝑇 is isomorphic to the tree 𝑅4 and contains eight vertices.
The variant 𝑠 = 0, 𝑑 = 3, 𝑎 = 4. The graph 𝑇 contains 10 vertices and 13 m.i.s. This tree is not minimal,

because we already havemi(𝑅1,1,2) = 12 by Lemma 2.
The variant 𝑠 = 0, 𝑑 = 4, 𝑎 = 2. The graph 𝑇 contains 10 vertices and 14 m.i.s. This tree is not minimal,

because we already havemi(𝑅1,1,2) = 12 by Lemma 2.
The variant 𝑠 = 0, 𝑑 = 4, 𝑎 = 4. The graph 𝑇 contains 12 vertices and 22 m.i.s. This tree is not minimal,

because we already havemi(𝑅1,1,3) = 20 by Lemma 2.
The variant 𝑠 = 2, 𝑑 = 3, 𝑎 = 2. The graph 𝑇 contains 10 vertices and 13 m.i.s. This tree is not minimal,

because we already havemi(𝑅1,1,2) = 12 by Lemma 2.
The variant 𝑠 = 2, 𝑑 = 3, 𝑎 = 4. The graph 𝑇 contains 12 vertices and 21 m.i.s. This tree is not minimal,

because we already havemi(𝑅1,1,3) = 20 by Lemma 2.
The variant 𝑠 = 2, 𝑑 = 4, 𝑎 = 2. The graph 𝑇 contains 12 vertices and 23 m.i.s. This tree is not minimal,

because we already havemi(𝑅1,1,3) = 20 by Lemma 2.
The variant 𝑠 = 2, 𝑑 = 4, 𝑎 = 4. The graph 𝑇 contains 14 vertices and 36 m.i.s. This tree is not minimal,

because we already havemi(𝑅1,1,4) = 32 by Lemma 2.

Fig. 7: Variants of graphs with two extreme vertices

Assume that the tree 𝑍(𝑇) consists of three vertices. Then 𝑍(𝑇) is a 3-path. In this case the argument is
completely similar to that given in the proof of Theorem 1.

4 The class of minimal trees

4.1 Totally separated trees and their properties

We define the set R(𝑎, 𝑏, 𝑐, 𝑑) of trees, where (𝑐, 𝑑) ∈ {(0, 0), (1, 0), (0, 1)}, as follows. The set R(1, 0, 0, 0)
(R(0, 1, 0, 0)) contains only the tree 𝑅1 (𝑅2, respectively). Similarly, the set R(0, 0, 1, 0) contains only the
trees 𝑅3 and 𝑅󸀠3, and R(0, 0, 0, 1) contains only the trees 𝑅4 and 𝑅󸀠4. The set R(𝑎1 + 1, 𝑏1, 𝑐1, 𝑑1) consists
precisely of such trees 𝑇 for which there exists a tree 𝑇󸀠 ∈ R(𝑎1, 𝑏1, 𝑐1, 𝑑1) such that 𝑇 ∈ 𝑢(𝑇󸀠, 𝑅1). The set
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R(𝑎2, 𝑏2+1, 𝑐2, 𝑑2) consists precisely of the trees𝑇 for which there exists a tree𝑇󸀠 ∈ R(𝑎2, 𝑏2, 𝑐2, 𝑑2) such that
𝑇 ∈ 𝑢(𝑇󸀠, 𝑅2). The elements of the setR(𝑎, 𝑏, 𝑐, 𝑑), where 𝑎 + 𝑏 + 𝑐 + 𝑑 ̸= 1, will be called totally separated
trees.

Lemma 15. Let𝑇 be a tree inR(𝑎, 𝑏, 𝑐, 𝑑). Then |𝑉(𝑇)| = 3 ⋅𝑎+5 ⋅𝑏+7 ⋅ 𝑐+9 ⋅𝑑−1 andmi(𝑇) = 2𝑎+3⋅𝑑 ⋅ 3𝑏 ⋅ 5𝑐.
Proof. We argue by induction on the sum 𝑠 = 𝑎 + 𝑏 + 𝑐 + 𝑑. The base of the induction 𝑠 = 1 is clear. Assume,
for example, that the tree𝑇 if𝑅1-selected. Then𝑇 ∈ 𝑢(𝑇󸀠, 𝑅1), where𝑇󸀠 ∈ R(𝑎 − 1, 𝑏, 𝑐, 𝑑). By the induction
assumption, the tree𝑇󸀠 contains 3 ⋅𝑎+5 ⋅𝑏+7 ⋅ 𝑐+9 ⋅𝑑−4 vertices and 2𝑎+3𝑑−1 ⋅ 3𝑏 ⋅ 5𝑐m.i.s. Then, clearly, the
tree 𝑇 satisfies the hypothesis of this lemma (here we apply Lemma 2). The case when the tree is 𝑅2-selected
is dealt with similarly.

We writeR(𝑎, 𝑏, 𝑐, 𝑑) ≻ R(𝑎󸀠, 𝑏󸀠, 𝑐󸀠, 𝑑󸀠) if the inequalitymi(𝑇) > mi(𝑇󸀠) holds for any trees𝑇 ∈ R(𝑎, 𝑏, 𝑐, 𝑑)
and 𝑇󸀠 ∈ R(𝑎󸀠, 𝑏󸀠, 𝑐󸀠, 𝑑󸀠) with the same number of vertices.

Lemma 16. If a totally separated tree 𝑇 ∈ R(𝑎, 𝑏, 𝑐, 𝑑) is minimal, then 𝑎 ≤ 3 and 𝑎𝑐 + 𝑎𝑑 = 0.

Proof. If 𝑐 = 1 and 𝑎 ≥ 1, then R(𝑎, 𝑏, 𝑐, 𝑑) ≻ R(𝑎 − 1, 𝑏 + 2, 𝑐 − 1, 𝑑). If 𝑑 = 1 and 𝑎 ≥ 1, then
R(𝑎, 𝑏, 𝑐, 𝑑) ≻ R(𝑎 − 1, 𝑏 + 1, 𝑐 + 1, 𝑑 − 1). Hence since the tree 𝑇 is minimal, we have 𝑎 = 0 or 𝑎 ≥ 1,
𝑐 = 𝑑 = 0. If 𝑐 = 0 and 𝑎 ≥ 4, then R(𝑎, 𝑏, 𝑐, 𝑑) ≻ R(𝑎 − 4, 𝑏 + 1, 𝑐 + 1, 𝑑). Now 𝑎 ≤ 3, since the tree 𝑇 is
minimal.

The proof of the following result is quite straightforward if we use Lemmas 15 and 16 and consider the cases
𝑎 ≥ 1 and 𝑎 = 0 separately.

Lemma 17. If a minimal 𝑛-vertex tree 𝑇 is totally separated, then:
1) 𝑇 ∈ R(2, 𝑘 − 1, 0, 0) if 𝑛 = 5𝑘,
2) 𝑇 ∈ R(0, 𝑘 − 1, 1, 0) if 𝑛 = 5𝑘 + 1,
3) 𝑇 ∈ R(1, 𝑘, 0, 0) if 𝑛 = 5𝑘 + 2,
4) 𝑇 ∈ R(3, 𝑘 − 1, 0, 0) or 𝑇 ∈ R(0, 𝑘 − 1, 0, 1) if 𝑛 = 5𝑘 + 3,
5) 𝑇 ∈ R(0, 𝑘 + 1, 0, 0) if 𝑛 = 5𝑘 + 4.

4.2 Description of minimal trees

We define the class L𝑛 of 𝑛-vertex trees without twin-leaves. For 𝑛 ∈ {1, 2, 4, 5}, the only tree without twin-
leaves is the path 𝑃𝑛. For 𝑛 = 6, 7, 8, we set

L6 = {𝑅3, 𝑅󸀠3},L7 = {𝑅1,2},L8 = {𝑅4, 𝑅󸀠4}.
Further, for 𝑛 ≥ 9, we define

L𝑛 =
{{{{{{{{
{{{{{{{{
{

R(2, 𝑘 − 1, 0, 0) if 𝑛 = 5𝑘,
R(0, 𝑘 − 1, 1, 0) if 𝑛 = 5𝑘 + 1,
R(1, 𝑘, 0, 0) if 𝑛 = 5𝑘 + 2,
R(3, 𝑘 − 1, 0, 0) ∪ R(0, 𝑘 − 1, 0, 1) if 𝑛 = 5𝑘 + 3,
R(0, 𝑘 + 1, 0, 0) if 𝑛 = 5𝑘 + 4.

Theorem 3. For any 𝑛, the set of minimal 𝑛-vertex trees coincides with the setL𝑛.
Proof. A direct verification shows that for 𝑛 ≤ 8 the set L𝑛 contains all minimal trees with 𝑛 vertices. By
Lemma 17, it suffices to show that for 𝑛 ≥ 9 each minimal tree is totally separated. We argue by induction
on 𝑛. The basis of the induction: all 𝑛 satisfying 𝑛 ≤ 8. Assume that 𝑇 is a minimal tree with 𝑛 ≥ 9 vertices.
By Theorem 1, the tree 𝑇 is 𝑅1⋁𝑅2-selected.
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If𝑇 if𝑅1-selected, then there exists an (𝑛−3)-vertex tree𝑇󸀠 forwhich𝑇 ∈ 𝑢(𝑇󸀠, 𝑅1). It is easy to verify that
for theminimality of𝑇 the tree𝑇󸀠 should also beminimal. By the induction assumption𝑇󸀠 ∈ R(𝑎1, 𝑏1, 𝑐1, 𝑑1),
and hence, 𝑇 ∈ R(𝑎1 + 1, 𝑏1, 𝑐1, 𝑑1).

If the tree 𝑇 if 𝑅2-selected, then there exists a tree 𝑇󸀠󸀠 with 𝑛 − 5 vertices for which 𝑇 ∈ 𝑢(𝑇󸀠󸀠, 𝑅2). It is
easy to check that for the minimality of 𝑇 the tree 𝑇󸀠󸀠 should also be minimal. By the induction assumption,
𝑇󸀠󸀠 ∈ R(𝑎2, 𝑏2, 𝑐2, 𝑑2), which gives 𝑇 ∈ R(𝑎2, 𝑏2 + 1, 𝑐2, 𝑑2), the result required.
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