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Recently, there has been an increasing number of empirical evidence supporting the hypothesis that spread of avalanches of
microposts on social networks, such as Twitter, is associated with some sociopolitical events. Typical examples of such events are
political elections and protest movements. Inspired by this phenomenon, we built a phenomenological model that describes
Twitter’s self-organization in a critical state. An external manifestation of this condition is the spread of avalanches of microposts
on the network.  e model is based on a fractional three-parameter self-organization scheme with stochastic sources. It is shown
that the adiabatic mode of self-organization in a critical state is determined by the intensive coordinated action of a relatively small
number of network users. To identify the critical states of the network and to verify the model, we have proposed a spectrum of
three scaling indicators of the observed time series of microposts.

1. Introduction

 e general science development trend in the 20th century,
which is also passed in the new century, is the gradual
penetration of ideas and methods of physics in natural as
well as traditional humanities. Since the 1970s, the methods
of mathematical and then physical modeling have been
increasingly used in such sciences as demography, sociology,
economics, history, and political science. In all these sci-
ences, the desire for an objective and, preferably, a quan-
titative description of various social and economic
phenomena is increasing.

 e development of quantitative models in sociology,
political science, theory of transport �ows, and other areas
of society investigations is gradually moving relevant tasks
from the humanities and engineering sciences to inter-
disciplinary applications of mathematics and physics. In
the literature of recent years, the term sociophysics [1, 2] is
assigned to all such areas.  e main task of this new �eld of
natural science is to search for objectively measurable and
formalizable patterns that determine various social

processes. Sociophysics analyzes the structure and dy-
namics of all existing varieties of social systems, using ideas
and methods borrowed from theoretical and experimental
physics.

Some of the objects and phenomena studied by socio-
physics are social networks (e.g., see the review [3] and
references therein) and critical phenomena, such as phase
transitions, observed in them (e.g., see the reviews [4, 5] and
references therein). Dorogovtsev and co-authors state in
their paper [4] that “Critical phenomena in networks include
a wide range of issues: structural changes in networks, the
emergence of critical—scale-free—network architectures,
various percolation phenomena, epidemic thresholds, phase
transitions in cooperative models de�ned on networks,
critical points of diverse optimization problems, transitions
in co-evolving couples—a cooperative model and its net-
work substrate, transitions between di�erent regimes in
processes taking place on networks, andmany others.” In the
thermodynamics theory of irreversible processes, it is stated
that signi�cant structure reconstructions occur when the
external parameter reaches a certain critical value (the
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bifurcation point) and has the character of a kinetic phase
transition [6]. (e critical point is reached as a result of fine-
tuning of the system external parameters. In a certain sense,
such critical phenomena are not robust. (e following types
of self-organization of nonlinear systems can be identified
that lead to nonrobust critical phenomena: self-organization
during phase transitions, which are characterized by spatial-
temporal scale invariance with a transition to the critical
point, when the external parameter reaches its critical value;
self-organization during geometric phase transitions, when
the critical value of the cell filling probability is reached (for
example, the percolation threshold); and self-organization of
dissipative structures at the bifurcation point, in case when
some external parameter (for example, the temperature
gradient in the classical Benard problem) reaches its critical
value.

At the end of the 1980s, Bak et al. [7, 8] found that there
are complex systems with a large number of degrees of
freedom that go into a critical mode as a result of the
internal evolutionary trends of these systems. A critical
state of such systems does not require fine-tuning of ex-
ternal control parameters and may occur spontaneously.
(us, the theory of self-organized criticality (SOC) was
proposed. (is is the theory claiming to be the universal
theory, explaining the spontaneous occurrence of critical
states in open nonequilibrium systems. A characteristic
feature that qualitatively distinguishes SOC from other
phenomena with a similar nature is the realization of a self-
organized critical state in a wide range of external control
parameters. For SOC, however, no special “parameter
tuning” is required, and, in this sense, such critical phe-
nomena are robust.

From the moment of the SOC model emergence, this
model started to be applied to describe critical phenomena in
systems regardless of their nature (e.g., see the review [9] and
references therein). Not an exception is the application of the
theory to the description of critical phenomena in social
networks (e.g., see the works [10–13]).

(e motivation of our investigation is the following.
(ere is a number of studies (e.g., see the works [11, 13–20]),
in which it is established that the observed flows of
microposts generated by microblogging social networks
(e.g., Twitter) are characterized by avalanche-like behavior.
Time series of microposts depicting such streams are the
time series with a power-law distribution of probabilities,
with 1/f noise and long memory. As it will be shown in
Section 2.2, these characteristics of the time series are key
features of the social network in the SOC state. Despite this,
there are no studies on the construction, analysis, and
verification of physical models that explain the phenomenon
of the emergence and spread of avalanche of microposts on
Twitter.(e construction, analysis, and verification of such a
phenomenological model are the purpose of our research.

(e presented work is structured as follows. Section 2.1 is
devoted to the description of one of the scenarios of Twitter
self-organizing transition in a critical state, determined by
the specifics of the network functioning. Section 2.2 in-
troduces the notion of a spectrum of indicators of self-or-
ganized network criticality, which is an identifier that allows

the SOC state of the network to be distinguished from a
noncritical state, determined from the results of the analysis
of the time series of microposts. Methods of mining and data
analysis for identifying the state of the network, as well as the
results of identifying network states from the observed data,
are presented in Section 3. (ese data are used to verify the
model presented in Section 4, which describes the conditions
for Twitter self-organization transition to the critical state
from its subcritical state. Section 5 presents the general
conclusions from the study, as well as their discussion.
Finally, Section 6 is devoted to a discussion of tasks that
cannot be solved within the proposed model, and a brief
description of the approaches to their solution.

2. Self-Organized Criticality on Twitter

(is section presents a qualitative nonformalized description
of the emergence mechanisms of a self-organized critical
state on Twitter as a result of the coordinated action of
strategically oriented network users. (e range of indicators
of self-organized criticality of a social network is defined as
the identifier of the network functioning in the subcritical
(SubC), the self-organized critical (SOC), and the super-
critical (SupC) states.

2.1. Mechanisms of Self-Organized Criticality on Twitter.
(e well-known physical model of self-organized criticality,
Abelian sandpile model [21], provides one of the scenarios
for the system to achieve a self-organized critical state in the
robust case. A model with a pile of sand is metaphorical, and
the real dynamics of such systems can be very diverse. We
adapt this scenario to explain the emergence of the SOC state
on Twitter, accompanied by the appearance of the avalanche
of microposts on the network of various sizes: from small
avalanches of the order of 10 microposts per second to large
avalanches of about 1000 microposts per second or even
more. (e corresponding time series shows consistently
measured numbers of microposts (avalanche sizes) at some
time intervals.

We hypothesize that Twitter self-organization in a
critical state results from the consistent behavior of a rel-
atively small number of network users (S) when S reaches a
critical state Sc. Further discussion is devoted to the sub-
stantiation of this assumption.

First of all, we introduce the concepts that will be needed
for further discussion. Let N be the total number of Twitter
users who are interested in a particular topic, for example,
“2016 United States Presidential Election.” Such users, who
are united by an interest in a given topic, form a community
on the network and, therefore, only these users can send
microposts relevant to this topic. Let that S (S≪N) users of
this community follow a certain strategy. For example, the
goal of these users is to pump the network, i.e., to distribute
as many microposts, related to a certain topic on the net-
work, as possible. Call these users as strategically oriented
users (SOUs). SOUs have a common goal, to achieve that
they act in concert. Consolidation of users into a sub-
community of SOUs does not necessarily occur as a result of

2 Complexity



a preliminary conspiracy, but also unconsciously. Examples
of concerted action to achieve a common goal can be the
promotion of a candidate in the political elections, as well as
the coordination of actions of participants in protest
movements and/or the involvement of citizens in protest
movements. Recent protest movements have suggested that
online social networks might play a key role in their or-
ganization, as adherents have a fast, many-to-many com-
munication channel to help coordinate their mobilization
[22]. (e behavior of network users during natural disasters
may be the result of their unconscious collusion. (e
remaining N − S users do not follow a single coherent
strategy and, in this sense, are randomly oriented users
(ROUs).

(e rationale for dividing network users into two classes
is the research results presented by Pramanik and co-authors
in their paper [23]. (ey introduce two mention strategies:
random mention and smart mention to model the mention
preferences of the users. (ey proposed a model of the
cascade formation in Twitter, incorporating both retweet
and mention activities. Realizations of the model prove the
elegance of smart mention strategy in boosting tweet pop-
ularity, especially in the low retweeting environment.

We use, in our opinion, the exhaustive classification of
Twitter users presented in [24] to classify network users to
one of the two classes. (e classification consists of real
users, which include personal users, professional users, and
business users, and also digital actors, which include spam
users, feed/news, and viral/marketing services. Of course,
the assignment of one of these classes to SOUs or ROUs is
conditional and is determined by the specifics of the topic,
discussed by network users. However, in most cases, all
digital actors who are using bots, professional users, and
business users can be considered as SOUs. For example, the
main goal of professional users and business users on the
network is to involve as many users as possible, for example,
personal users, in a discussion of a certain topic. Finally,
personal users can be considered as ROUs. Indeed, such
users create their Twitter profiles for entertainment, train-
ing, or to receive news, etc. (is is the most numerous class
of Twitter users.

Consider the features of the network users’ interactions,
which lead to the emergence of the SOC state on Twitter. To
explain the mechanisms of the emergence of such state, it is
appropriate to distinguish three consecutive network states:
the SubC state, the SOC state, and the SupC state.

(e SubC state is the chaotic network state, which is
observed in a certain time interval or in subcritical time
ΔtSubC (from 0 to tc). A demonstration of the chaotic nature
of this state is the chaotic (disordered) distribution of
microposts avalanches on the network. (e most common
scenario for observation of this state corresponds to the
presence of only ROUs (S � 0) on the network, who
generates avalanches of microposts in terms of a certain
topic. Such avalanches are not interconnected, and they are
small in size and quickly fade out in time and space. (is is
due to the fact that ROUs do not behave in a consistent
manner, do not pursue one goal, and do not pump the
network with certain information, and, accordingly, it does

not lead to the formation of avalanches of microposts of all
sizes. In such a network, self-organization in an ordered
state, which is characterized by the existence of avalanches
of microposts of all sizes, is impossible. ROUs are not
characterized by cooperative (synchronous) behavior and,
therefore, a spontaneous transition of the network from a
chaotic to an ordered state, in which avalanches of
microposts of all sizes distribute on the network, is not
possible. We do not exclude that in the community of
ROUs, connected exclusively by discussing a certain topic,
there are local structures with a small number of hierar-
chical levels (user, his subscribers, subscribers of their
subscribers, etc.). (e avalanches follow a single tweet that
is retweeted or similar tweets as they move across the
network. But the avalanche of microposts distributed in
such structure has relatively small size. Even the totality of
such hierarchical structures will allow to generate only
many avalanches of small sizes that are not interconnected.

Suppose that at each moment of time, one SOU (S≠ 0)
goes on Twitter, wherein S< Sc. (ese users act in concert,
trying to form the avalanches of microposts of all sizes
relevant to a certain topic. Gradually, SOUs form hierar-
chical structures on the network. (e cooperative behavior
of these users gives them the opportunity to build hierar-
chical structures that are quite effective to generate ava-
lanches of microposts of larger sizes. If SOUs are real users
and most of them are influential persons of Twitter, then it is
possible to form a hierarchical structure with a large number
of levels (influential person #1, his subscribers, subscribers of
their subscribers, etc.), which can generate avalanches of
microposts of greater sizes. Even larger avalanches can be
generated, if both ROUs, which are subscribers of sub-
scribers on certain levels, and other influential persons
(influential person #2, influential person #3, etc.) with their
subscribers, including SOUs and ROUs, will be integrated in
this structure. In some sense, ROUs are an active envi-
ronment for increasing the size of the avalanches originally
generated by SOUs.

It should be noted that the considered hierarchical
structure is not the only structure through which it is
possible to generate avalanches of microposts of larger
sizes. Other possible mechanisms for generating criticality
will be described in Conclusion. Nevertheless, the above-
mentioned mechanism of the spread of microposts ava-
lanches of all sizes, in our opinion, is the most justified.(is
is determined by the basic specifics of users’ organization
on Twitter: user (hierarchical level #1), his subscriber
(hierarchical level #2), subscriber of his subscriber (hier-
archical level # 3), etc. Moreover, in [25], it was shown that
the evolution of hierarchically subordinate complex net-
works reduces to anomalous diffusion in the ultrametric
space of the hierarchical system.(e stationary distribution
over the levels of such a system is determined by a power
law. Besides, Bakshy and co-authors state in their paper
[26] “Unsurprisingly, we find that the largest cascades tend
to be generated by users who have been influential in the
past and who have a large number of followers.” (is study
also provides a rationale for the existence of a hierarchical
structure (influential person #1, his subscribers, subscribers
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of their subscribers, etc.), as the most effective structure for
the distribution of large avalanches of microposts. In the
paper [27], a conceptual and practical model is proposed
for the classification of topical networks on Twitter, based
on their network-level structures. (e existence of con-
nection between hierarchical sequences of tweet-retweet-
follow and cascades of retweets is discussed in [28].

If S does not reach its critical value Sc, then unrelated
avalanches of microposts, although of larger sizes, are still
forming on Twitter.(e formed hierarchical system of SOUs
and ROUs on the social network is still not able to form an
avalanche of microposts of all sizes. SubC state is resistant to
small external influences: adding one SOU on the network
will not qualitatively change the network behavior.

At tc moment of time, the number of SOUs reaches its
critical value Sc, and the network goes into the SOC state.
(e SOC state is not resistant to small external influences:
just one added SOU can cause an avalanche of microposts of
any size. (e behavior of avalanches of microposts distri-
bution in a self-organized critical network is unpredictable
based on the behavior of its individual users. In this case, the
social network has the emergence property and in this sense
is a complex system. (us, the cause of the emergence of
microposts avalanches of all sizes is the self-organized
criticality of a certain network community, which users are
united by interest in some topics. It should be noted that the
network in the SubC state does not necessarily go to the SOC
state. It is possible to relax the network until it reaches the
SOC state. Relaxation may be caused by the decrease or the
constancy of the SOUs number over time due to the loss of
interest of SOUs in the topic discussed on the network.

Twitter self-organization in a critical state occurs when
the number of microposts (η) relevant to a certain topic
barely becomes nonzero (+0), i.e., corresponds to its sepa-
ration from zero (η � +0). To ensure η � +0, one SOU is
added in Twitter at each time interval Δt, corresponding to
the relaxation time. (e SOC state is robust in relation to
possible changes on the social network. For example, if the
nature of interactions between users changes, the social
network temporarily deviates from the existing critical state,
but after a while, it is restored in a slightly different form.(e
hierarchical network structure will change, but its dynamics
will remain critical. Every time, when trying to divert Twitter
from the SOC state, the social network invariably returns to
this state.

(e regular return to the SOC state for any deviations
from it let us suggest that it is a special kind of stable
equilibrium of the evolving network, which, according to
Bak, is called a punctuated equilibrium [7, 8]. If the social
network is in such an equilibrium, then significant changes
in it can occur both with a strong external impact (for
example, with the strong social network pumping by stra-
tegically oriented users) and as a result of gradual internal
changes.

(e ordered SupC state, observed if S> Sc, is resistant to
small external influences: adding one SOU on the network
will not qualitatively change the network behavior. In this
state, characterized by a supercritical number of SOUs, the
size of the avalanches of microposts continues to grow. If the

network does not pump by SOUs, then it relaxes, returning
back to the SubC state.

2.2. Spectrum of Self-Organized Criticality Exponents. In
Section 2.1, it was noted that the presence of avalanches of
large microposts on the network is a characteristic feature of
being Twitter in the SOC or the SupC state. Consequently,
the results of a quantitative analysis of the avalanche sizes of
microposts can be used as an identifier of the social network
state.

To determine the network state, it is necessary to de-
termine the size of avalanche microposts, which will allow
the social network to be assigned to one of the critical states.

Considering that the theory of self-organized criticality is
one of the foundations of the complexity theory (sometimes
called the paradigm) [29], we will use the more general
concept of complexity: a nonstrict definition of complexity
at the level of external demonstrations of criticality of the
system regardless of its internal structure. In this case, the
complex system is the system, which is capable of generating
extremal events: unexpected (unpredictable) and/or ex-
traordinary events.

In the case of Twitter, we are talking about certain
features of the observed time series of microposts (ηt), for
example, the presence of sharply allocated values of the time
series. Another feature is the existence of sharply increasing
sequence of time series values up to a critical value corre-
sponding to the distribution of the avalanche of microposts
on the network.

(e key features of the complexity of the social networks
at the level of the time series generated by them are the
power law for the probability distribution function (power-
law PDF) of the time series of microposts, the power spectral
density (PSD) of the time series, which is characterized by
1/f noise, and the power law for the autocorrelation
function (power-law ACF), which is characterized by the
presence of the long memory in the time series [30].

In the general case, the power-law PDFs can be con-
sidered as a statistical value of the scale invariance of the time
series of microposts:

p(η)∝ η− α
, (1)

where α ∈ (1, 3). It should be noted that usually power-law
PDFs are characterized by α ∈ (2, 3) [31]. We consider the
most common case belonging to power-law PDF. Power
laws with α≤ 1 cannot be normalized and are usually not
found in natural phenomena. Power-law PDF with a low
value of α does not have a finite average η (η⟶∞ for
α≤ 2), but for α> 2 the average is defined. (e mean square
η2⟶∞ for α≤ 3, but η2 has a well-defined value for
α> 3.

Power-law PDF (1) refers to distributions with heavy
tails, for which, unlike compact distributions, the well-
known 3σ rule (the possibility of neglecting the values of the
number of microposts exceeding 3σ) is not satisfied. If the
distribution (1) is fulfilled, then rare large events do not
occur infrequently enough for their probability to be
neglected. (e possibility of gigantic, extraordinary events
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appearing on Twitter indicates the network’s tendency for
disasters.

Another characteristic of the scale-invariant properties
of the time series is 1/f noise, which is observed in the power
form of PSD at low frequencies f:

S(f)∝f
− β

. (2)

(e β value in PSD (2) determines the color of the
noise. For 1/f noise, β ∈ (0.5, 1.5). (e case of β � 1 is
usually referred to as pink noise. 1/f noise is charac-
teristic of all complex systems, regardless of their nature.
If in the time series ηt there is 1/f noise, then for the social
network there are no periodically repeated values of the
number of microposts. (is is due to the fact that, in the
time series of microposts, it is impossible to distinguish
one characteristic scale responsible for the appearance of
large values of the number of microposts. (e scale-in-
variant type of PSD demonstrates a strong nonlinearity of
social network signals when it is impossible to isolate
individual components in the spectrum and offer its
physical interpretation. (us, the dynamics of Twitter
microposts, in which 1/f noise is observed, cannot be
decomposed into separate components. Twitter, oper-
ating in a self-organized state, generates oscillations of
microposts with PSD of the form (2).

(e third universal feature of complexity associated with
power laws (1) and (2) is the existence of the long memory in
the time series of microposts. In simple systems, the time
correlation function (for example, the autocorrelation
function), which shows the extent of which the time series
“remembers” its history, has the following form [30]:

ρ(τ)∝ exp
− τ
τs

􏼠 􏼡. (3)

Complex systems are characterized by a power-law
decrease in ACF as the time lag τ increases:

ρ(τ)∝ τ− c
, (4)

where c ∈ (0, 1).
(e existence of power-law ACF for the time series of

microposts means that the current number of microposts
largely depends on the past number of microposts generated
by Twitter, as well as the absence of characteristic times at
which information about the previous appearance of
microposts would be lost. In addition, dependence (4) de-
termines a slow power decrease in the probability of a
microposts flow at time t under the condition that the same
flow appeared earlier at time t0(t> t0).

It is fundamentally important that the existence of long
temporal correlations states the fact of the emergence of
Twitter.(is fact determines the possibility of the emergence
of the avalanche of microposts (extremal events) as a result
of the coordinated behavior of strategically oriented network
users. (e mechanism of occurrence of emergent Twitter
properties is described in detail in Section 2.1. If for the time
series of microposts relevant to a certain topic, power laws
(1), (2), and (4) are fulfilled, then the following important
consequences are possible.

Firstly, the relevant Twitter segment, which includes
SOUs and ROUs, distributing microposts relevant to a
particular topic, is in the SOC state. Secondly, power laws
describe large-scale invariance in the structure of time series
of microposts generated by the self-organized critical social
network. (e approach to the study of scale invariance is
considered in Section 3.2.

PDF, PSD, and ACF in the form of power laws make it
possible to use the range of interval indicators α, β, c as the
indicator of the self-organized criticality (complexity) of
the social network (Twitter). If the social network is in the
SOC or the SupC states, then for such states the indicators
of power laws take the values from the intervals
(1, 3), (0.5, 1.5), (0, 1). Otherwise, Twitter is in the SubC
state.

In conclusion of this section, we note that the proposed
approach to identifying the network complexity is not based
on a statistical analysis of its graph structure, but on a
statistical and fractal analysis of time series generated by the
network.

According to the definition of Dorogovtsev and co-
authors [4], “complex networks are networks with more
complex architectures than classical random graphs with
their ‘simple’ Poissonian distributions of connections.”
(ese networks are networks with heavy-tailed distributions,
in particular, with the power-law distributions. One of the
complex networks classes are scale-free networks. (e
definition of the scale-free network at the level of its graph
structure was proposed by Barabási and Albert more than 20
years ago [32]. (e network is scale-free, if the distribution
function of the vertices u by the number of edges k is de-
termined by a power law:

u(k)∝ k
− α

, (5)

where, as well as in (1), α ∈ (2, 3). But usually a network is
considered as scale-free if α> 1. For example, there are scale-
free networks with α> 3 [33].

It should be noted that Barabasi’s preferential at-
tachment is not the only one mechanism for scale-free
networks to arise; there are several other mechanisms (e.g.,
see the works [32, 34, 35]). For further discussions, it is
important that dependency (5) is satisfied regardless of the
mechanism.

(ere are many studies that present an empirical jus-
tification of the feasibility of equation (5) for a large number
of different types of social networks (e.g., see the works
[36–38]). However, recent studies have appeared showing
that not for all social networks, the power law (5) is sta-
tistically justified (e.g., see the works [39, 40]). It turned out
that the identification of power laws of the distribution of
vertices in natural or artificial systems is not so simple (e.g.,
see the works [39, 41, 42]). For example, it is not always
possible to distinguish a power law from a lognormal one for
samples of small size. A parabola corresponding to a log-
normal law in logarithmic coordinates on a sufficiently small
interval of values k looks like a straight line corresponding to
a power law.

What is the advantage of our proposed approach?
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First of all, there is no need to divide scale-free net-
works into several types depending on the value of the
assessment of the indicator α and the level of signifi-
cance with which this assessment was done, as pro-
posed in [42]. Indeed, our approach involves the use of
the three network complexity indicators α, β, c. Using
the spectrum of indicators of complexity α, β, c as a
network complexity identifier is only possible in the
case of analysis of the time series generated by the
network (realizations of some random process), but not
when analyzing the data of the static network structure.
Indeed, PSD and ACF are characteristics of signals,
random processes, and time series.
Secondly, the use of the spectrum α, β, c to identify
network complexity has a rationale within the para-
digm of the complexity, as one of the paradigms of
nonlinear science, and, being its core, the theory of self-
organized criticality. In the context of this theory, the
network complexity is determined only by the values of
the spectrum indicators and does not depend on the
distribution type u(k).
(ird, the use of the spectrum α, β, c allows us to
identify the subcritical, the self-organized critical, and
the supercritical states of the network operation.
Fourth, β and c indicators can be independently es-
timated both as a static estimate of the slope ratio in a
log-log scale and as a result of an estimation of the
scaling indicator of time series of microposts, for
example, using detrended fluctuation analysis (see
Section 3.2).

3. Data Analysis, Results, and Discussion

(is section provides a brief overview of using data mining
techniques which are necessary for the formation of the time
series of microposts and their statistical and fractal analysis,
as well as the evaluation of Twitter complexity indicators and
their interpretation.

3.1. Mining Twitter Time Series Data. (e most suitable data
source for mining of Twitter time series data that contain
tweet ids (unique identifiers of tweets) regarding different
events, such as political elections and natural disasters, is
Harvard Dataverse. It contains the datasets of tweets ids on
12 different topics, and each dataset consists of more than 2
million unique tweet ids in the form of the 18-digit numbers
(for example, 1128408193699340294) combined into one
text file (.txt). Harvard Dataverse collected data using Social
Feed Manager, which is the open source software that
harvests social media data and web resources from Twitter.
(e reason why it is necessary to start to work with tweets
ids, rather than tweets itself, is the fact that per Twitter’s
Developer Policy, tweet ids may be publicly shared for ac-
ademic purposes, but tweets may not.

Nevertheless, in order to get Twitter time series, it is
necessary to hydrate the obtained datasets of tweet ids.
Hydrating is the process of loading JSON objects from
tweets based on available tweet ids. It can be done using the

API-interface of Twitter, as well as using third-party ap-
plications. We did it with a Hydrator version 0.0.3 software.
According to the obtained data, it is possible to build the
interaction structure of users and time series of tweets
(including retweets and other mentions).

We used the following relevant tweet ids time series
events and themes for the formation and subsequent sta-
tistical and fractal analysis of the time series of microposts:

(1) 2016 United States Presidential Election Tweet Ids
[43]. (e dataset contains the tweet ids of ap-
proximately 280 million tweets and retweets related
to the 2016 United States Presidential Election.
Tweets were collected between July 13, 2016, and
November 10, 2016.

(2) Women’s March Tweet Ids [44]. (e dataset con-
sists of the tweet ids of 7,275,228 tweets and retweets
related to the Women’s March on January 21, 2017.
Tweets were collected between December 19, 2016,
and January 23, 2017.

(3) End of Term 2016 US Government Twitter Archive
[45]. (e dataset consists of the tweet ids of
5,655,632 tweets and retweets, and the original
tweets were made from approximately 3000 Twitter
accounts, which are connected with the US gov-
ernment. Tweets were collected between October
21, 2016, and January 21, 2017.

(4) Hurricanes Harvey and Irma Tweet Ids [46]. (e
dataset consists of the tweet ids of 35,596,281 tweets
and retweets related to Hurricanes Irma and
Harvey.

(5) Immigration and Travel Ban Tweet Ids [47]. (e
dataset consists of the tweet ids of 16,875,766 tweets
and retweets related to the immigration and travel
ban that was announced by the Trump Adminis-
tration in January 2017. Tweets were collected be-
tween January 30, 2017, and April 20, 2017.

(6) Charlottesville Tweet Ids [48]. (e dataset consists
of the tweet ids of 7,665,497 tweets and retweets
related to events in Charlottesville, Virginia, in
August 2017.

(7) Winter Olympics 2018 Tweet Ids [49]. (e dataset
consists of the tweet ids of 13,816,206 tweets and
retweets related to the 2018 Winter Olympics held
in Pyeongchang, South Korea. Tweets were col-
lected between January 31, 2018, and February 27,
2018.

(8) US Government Tweet Ids [50].(e dataset consists
of the tweet ids of 9,673,959 tweets and retweets,
and the original tweets were made from approxi-
mately 3400 US government accounts. (ese ac-
counts are linked with the federal US government
agencies. Tweets were collected between January 20,
2017, and July 20, 2018.

(9) News Outlet Tweet Ids [51]. (e dataset consists of
the tweet ids of 39,695,156 tweets and retweets, and
the original tweets were made from the Twitter
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accounts of approximately 4500 news outlets; it
means accounts of mass media that intended to
disseminate news. Tweets were collected between
August 4, 2016, and July 20, 2018.

(10) 2018 US Congressional Election Tweet Ids [52]. (e
dataset consists of the tweet ids of 171,248,476
tweets and retweets related to the 2018 US Con-
gressional Election. Tweets were collected between
January 22, 2018, and January 3, 2019.

(11) 115th US Congress Tweet Ids [53]. (e dataset
consists of the tweet ids of 2,041,399 tweets and
retweets, and the original tweets were made from
the Twitter accounts of members of the 115th US
Congress. Tweets were collected between January
27, 2017, and January 2, 2019.

(12) Ireland 8th Tweet Ids [54]. (e dataset consists of
the tweet ids of 2,279,396 tweets and retweets re-
lated to the referendum to repeal the 8th amend-
ment to the Irish constitution on May 25, 2018.
Tweets were collected between April 13, 2018, and
June 4, 2018.

As a result, we got twelve equidistant (a step is 1 second)
time series of microposts ηi􏼈 􏼉 (i � 1, 2, . . . , N) of different
lengths N, each of which is relevant to some topic (tweet
Ids). Next, there is a description of the time series analysis
methods ηi􏼈 􏼉 (see Section 3.2), as well as the results of such
analysis for each time series, obtained over its entire length
N (see Section 3.3).

3.2. Statistical and Fractal Methods for Twitter Time Series
Analysis. In the context of our study, the main purpose of
analysis of the time series of microposts is to statistically
confirm the statement that the range of empirical indicators
of complexity α, β, c takes values (1, 3), (0.5, 1.5), (0, 1).
Formally, we tested the statistical hypothesis of the signif-
icance of a simple linear regression:

lnyi � δ0 + δ1 lnxi + εi, (6)

where yi ≡ pi, xi ≡ ηi, δ1 ≡ α for PDF, yi ≡ Si, xi ≡ fi,

δ1 ≡ β for PSD, and yi ≡ ρi, xi ≡ τi, δ1 ≡ c for ACF.(is is a
test of the null hypothesis H0: δ1 � 0, with an alternative
hypothesis H1: δ1 ≠ 0. As a measure of agreement with the
null hypothesis, p value was used as an indicator of the
minimum level of significance, in which H0 being rejected.
We used the ordinary least squares (OLS) method for es-
timating the parameters δ0 and δ1.

(e possibility of transition to simple linear regressions
for statistical analysis of the time series is due to the scale
invariance of the dependences (1), (2), and (4). On the one
hand, such a transition will make it easier to obtain statistical
estimates of the indicators α, β, and c; on the other hand, it
will allow to establish a filter for separating power laws from
other non-scale-invariant laws, for example, from normal,
exponential, lognormal, and extended exponential laws for
PDF.

(e ACF for the observed time series ηi􏼈 􏼉 represents the
correlation of the values ηi and ηi+τ for different time lags τ

(τ � 0, 1, 2, . . . , N), i.e., correlations over different time
scales τ. It is calculated based on formula ρ(τ) � 〈ΔηiΔηi+τ/
Δη2i 〉, where Δηi � ηi − ηi− 1 is an increment and 〈ΔηiΔηi+τ〉

and 〈Δη2i 〉 state the mean value for the data ΔηiΔηi+τ􏼈 􏼉 and
Δη2i􏼈 􏼉, respectively. We applied standard spectral analysis
techniques (Fourier transform) to calculate the PSD S(f) of
the time series ηi􏼈 􏼉 as a function of the frequency f.

(e traditional approach to the time series analysis relies
on the measurement of PSD and ACF. However, only the
implementation of Gaussian processes is exhaustively de-
scribed by their second moments. Outside of such imple-
mentations, a complete statistical description requires an
estimate of higher order moments. In addition, higher order
moments do not always have such a clear physical meaning
as ACF and PSD.(erefore, evaluations of a small number of
values that can be given a certain meaning become im-
portant. (ese values include the fractal dimensions of the
time series.

(e fractal dimension is closely related to the scaling
index s, which can be the Hurst exponent, estimated by
the method of normalized range or fluctuation analysis
(FA) [55], or the generalized Hurst exponent, estimated
by the method of detrended fluctuation analysis (DFA)
[56].

(e DFA method is an efficient method for analysis of
the time series characterized by the presence of the long
memory or 1/f noise.(eDFAmethod is a generalization of
the FA method for analysis of the scale invariance of
nonstationary time series.

(e DFA method allows both to estimate the scaling
indicator of the time series s and to obtain indirect estimates
of βs and cs indicators, calculated from the generalized
scaling indicator s of the time series. In the first case, it is
about the definition of s of scale-invariant (in the narrow
sense) time series ηt, t ∈ Ν, i.e., time series for which the
equality of probability distributions (ηat and asxt) takes
place [57]; in the second case, it is about the existence of
dependencies for the time series with power-law ACF and
1/f noise of the form [58]:

cs � 2 − 2s,

βs � 2s − 1.
(7)

(e FA method does not always give correct estimates
of the indicator s for the most time series [30]. Compared
with the FA method, the DFA method gives more correct
estimates in most cases [30], so we used this method to
estimate s.

(e DFA method is one of the algorithms based on the
ideology of the transition from the original time series
ηt, t ∈ Ν to the generalized model of one-dimensional
random walks. In this algorithm, the data are first reduced to
a null average with the subsequent construction of a random
walk xk � 􏽐

k
i�1|ηi − η|. Next, the series xk, k ∈ Ν is divided

into nonintersecting segments of length a, within each of
which the equation of a straight line is defined, approxi-
mating the sequence xk. Found xk(a) approximation is
treated as a local trend. Next, the mean square error of the
linear approximation is calculated:
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F(a) �
1
N

􏼒 􏼓 􏽘

N

k�1
xk − xk(a)( 􏼁

2⎡⎣ ⎤⎦

0.5

, (8)

and the corresponding calculations are made in a wide range
of values a. It is believed that the dependence F(a) often has
the power form F(a)∝ as, and the presence of a linear
segment in a log-log scale allows us to state that scaling
exists.

Numerical values characterize different types of corre-
lated dynamics of microposts, if s≠ 0.5 and uncorrelated
behavior at s � 0.5. For example, the interval 0< s< 0.5
corresponds to anticorrelations (the alternation of large and
small values in the time series of microposts); 0.5< s< 1
determines the correlated dynamics (large compared to the
average values more often follow large values, and small
values follow small ones). (e special case s � 1 is observed
for 1/f noise.

3.3. Data Analysis Results. Table 1 presents the OLS esti-
mates of the spectrum complexity as a slope δ1 of linearized
dependencies (6) and DFA estimates of scaling indicators s,
βs, and cs, obtained using the dependencies (7). (e cor-
responding p values are shown in brackets.

(e symbol “–” denotes the absence of statistically
significant DFA estimates for βs and cs indicators (see
equation (7)). (is is due to the fact that there are no sta-
tistically significant linear dependencies of lnF(a)∝ s ln a

for the corresponding time series of microposts. Statistically
significant values of the exponents are denoted in bold.

3.4. Results and7eir Discussion. (e most significant result
in the context of our study is the existence of two classes of
time series of microposts and tweet Ids corresponding to
them.

(e first class consists of time series for which
α ∈ [1.23, 2.23], β ∈ [1.05, 1.29], and c ∈ [0.12, 0.43]. Indi-
cators of the power laws of such time series belong to the
spectrum of indicators of complexity (1, 3), (0.5, 1.5), (0, 1)

and, consequently, Twitter, which generates such time series
of microposts, is in the SOC state or the SupC state. (e
social network is capable of generating extreme events,
which are avalanches of microposts of all sizes (regarding
“sizes,” see Section 2.1) corresponding to the following tweet
ids: “2016 United States Presidential Election,” “Women’s
March,” “Hurricanes Harvey,” “Hurricanes Irma,” “Immi-
gration and Travel Ban,” “Charlottesville,” “2018 US Con-
gressional Election,” and “Ireland 8th.” In addition, the
current number of microposts largely depends on the past
number of microposts generated by Twitter. Indeed, for all
the time series of this class indicator ACF, c ∈ (0, 1). It is
noteworthy that all tweet ids relate either to protest
movements or to political elections or to the population
activities during natural disasters. PDF of such time series
have infinite η2 and infinite η for events related to political
elections and finite η in all other cases. DFA estimates of βs

and cs give close values to the corresponding indicators β
and c, and the presence of statistically significant values of

the scaling exponent s determines the scale invariance of
time series, which is one of the key features of the self-
organized criticality of the social network. In addition, for all
time series of the first class s � 1 and βs � 1, which corre-
sponds to the presence of pink noise and, accordingly, being
Twitter in the SOC or the SupC states. (e existence of a
dependency (4) for the time series of microposts means that
the current numbers of microposts largely depend on the
past number of microposts generated by Twitter, as well as
the absence of characteristic times at which information
about previous occurrences of microposts would be lost.

(e second class consists of time series for which
α ∈ [3.24, 3.99], β ∈ [0.19, 0.26], and c ∈ [5.24, 6.01];
moreover, estimates of all indicators are not statistically
significant: statistical hypothesis is accepted with previously
considered p values shown in Table 1. Consequently, for
these time series of microposts, at least the power laws (1)
and (4) are not satisfied. (is result is consistent with the
results of the detrended fluctuation analysis, according to
which there is no statistically significant estimate of the
scaling exponent s; therefore, these time series of microposts
are not scale-invariant. (us, Twitter, which generates these
time series, is neither in the SOC state nor in the SupC state.
Twitter users, that is, in such a state, are not coordinated.
(is leads to the generation of the time series, for which the
spectrum is not performed. It may be the SubC state, but
such a conclusion requires the determination of the explicit
form of PDF and ACF dependencies, which is beyond the
scope of our study. (e only argument in favor of the as-
sumption of Twitter being in the SubC state is the fact that
indicator β ∈ [0.19, 0.26] is close to the value corresponding
to white noise (β � 0).

4. Three-Parameter Twitter
Self-Organization Model

(e results of the analysis of the time series of microposts
presented in Section 3 are important not only for solving
management problems and identifying the state of Twitter,
but also as the basis for the development and verification of
macroscopic models describing evolutionary processes on
the social network. In the context of our study, the analysis of
such time series is necessary for the verification of the model,
describing the SOC state of Twitter. (e construction and
verification of such model is the purpose of the research
presented in Section 4.

A sufficient verification of Twitter’s self-organized
criticality model is that the indicators of the power laws (1),
(2), and (4) of the theoretical and observable time series of
microposts belong to the spectrum of complexity indicators
(1, 3), (0.5, 1.5), (0, 1).

4.1. Generalized 7ree-Parameter Model. It is known (e.g.,
see the works [59–61]) that the concept of self-organization
is a generalization of the physical concept of critical phe-
nomena, such as phase transitions. (erefore, the phe-
nomenological theory that we propose is a generalization of
the theory of thermodynamic transformations for open
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systems. Twitter self-organization is possible due to its
openness, since there are incoming and outgoing network
flows of its users constantly; its macroscopic nature, because
it includes a large number of users; and its dissipation,
because there are losses in the flows of microposts and
associated information.

Based on the synergetic principle of subordination, it
can be argued that Twitter’s self-organization in a critical
state is completely determined by the suppression of the
behavior of an infinite number of microscopic degrees of
freedom by a small number of macroscopic degrees of
freedom. As a result, the collective behavior of users of the
social network is defined by several parameters or degrees
of freedom: an order parameter ηt, its role is the number of
microposts relevant to a certain topic that are sent by SOUs
and, unwittingly following their strategies, by ROUs; a
conjugate field ht is information associated with microposts
distributed on the network; and a control parameter St

which is the number of SOUs of the networks. On the other
hand, in Twitter’s self-organization as the nonequilibrium
system, the dissipation of flows of microposts on the
network should play a crucial role, which ensures the
transition of the network to the stationary state. In the
process of self-organization in a critical state of the net-
work, all three degrees of freedom have an equal character,
and the description of the process requires a self-consistent
view of their evolution. (e restriction to three degrees of
freedom is also determined by the Ruelle–Takens theorem
[62], according to which a nontrivial picture of self-or-
ganization is observed if the number of selected degrees of
freedom is, at least, three.

Kinetic equations and a detailed physical substantiation
of the relations between its parameters are given in our paper
[63]. (e construction of the three-parameter self-organi-
zation scheme was based on the analogy between the
mechanisms of functioning of a single-mode laser and the
microblogging social network. (e study of possible mod-
ifications of equations leading to models that are capable of
describing critical phenomena on Twitter, in particular the
SOC or the SupC states, is outside of the scope of this paper.
(ese equations in dimensionless quantities have the fol-
lowing form:

_ηt � − ηεt + ht +
��
Iη

􏽱
ξt,

τh

τη
_ht � − ht + ηεtSt +

��
Ih

􏽰
ξt,

τS

τη
_St � S0 − St( 􏼁 − ηεtht +

��
IS

􏽰
ξt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where Ii is the intensity of fluctuations (or noises) of each of
the degrees of freedom i � η, h, S; τi is relaxation times of
corresponding quantities; ξt is the white noise due to ran-
dom factors; and S0 is the number of SOUs of the network at
the initial time moment (t � 0) of the network evolution.
(e parameter S0 determines the degree of external dis-
turbance or pumping of the social network by strategically
oriented users, which removes Twitter from the equilibrium
state.

Assuming ε � 1, and also neglecting random factors ξt,
equation (9) represents a well-known system of Lorenz
equations, in which dynamic variables describe the self-
consistent behavior of the order parameter, the conjugate
field, and the control parameter. In such a system, the
functions ηt/τη, ht/τh, and (St − S0)/τS describe autonomous
relaxation of the number of microposts, of conjugate in-
formation, and the number of strategically oriented network
users to stationary values ηt � 0, ht � 0, St � S0. (e Lorenz
system takes into account Le Chatelier’s principle: since the
reason for self-organization is the growth of the control
parameter St, the values of ηt and ht should be changed in
such a way as to prevent the growth St. Finally, the positive
feedback between the order parameter ηt and the control
parameter St, which leads to an increase in the conjugate
field ht, is fundamentally important. (is is what causes the
self-organization [60]. Despite the fact that the Lorenz
system is a rather rough approximation in solving some
problems, the system is an adequate model that qualitatively
describes the processes of self-organization in systems of
various nature, including the kinetics of first- and second-
order phase transitions [59].

(e feedback intensity indicator ε in equation (9), which
also distinguishes it from the Lorenz system, is an indicator
of the disturbance of Twitter’s ordering on its self-consistent

Table 1: Estimates of the values of the complexity spectrum indices for time series of microposts.

Tweet Ids α β c βs cs s

2016 United States Presidential Election 1.23 (0.0121) 1.29 (0.0182) 0.12 (0.0201) 0.92 (0.0036) 0.08 (0.0036) 1.04 (0.0036)
Women’s March 2.11 (0.0234) 1.23 (0.0198) 0.42 (0.0211) 0.90 (0.0101) 0.10 (0.0101) 1.05 (0.0101)
End of Term 2016 US government 3.24 (0.6743) 0.24 (0.7235) 5.24 (0.6990) — — 0.45 (0.7699)
Hurricanes Harvey 2.12 (0.0312) 1.13 (0.0289) 0.34 (0.0320) 0.89 (0.0015) 0.11 (0.0015) 1.06 (0.0015)
Hurricanes Irma 2.23 (0.0234) 0.98 (0.0194) 0.18 (0.0209) 0.96 (0.0098) 0.04 (0.0098) 1.02 (0.0098)
Immigration and Travel Ban 2.18 (0.0401) 1.09 (0.0320) 0.21 (0.0128) 0.97 (0.0094) 0.03 (0.0094) 1.02 (0.0094)
Charlottesville 2.18 (0.0313) 1.21 (0.0287) 0.43 (0.0121) 0.90 (0.0101) 0.10 (0.0101) 1.05 (0.0101)
Winter Olympics 2018 3.59 (0.7239) 0.22 (0.6348) 5.64 (0.5341) — — 0.52 (0.8172)
US Government 3.28 (0.6361) 0.19 (0.7298) 6.01 (0.6399) — — 0.48 (0.7456)
News Outlet 3.36 (0.4275) 0.23 (0.3895) 5.50 (0.4458) — — 0.54 (0.6451)
2018 US Congressional Election 1.47 (0.0281) 1.05 (0.0398) 0.22 (0.0435) 0.95 (0.0099) 0.05 (0.0099) 1.03 (0.0099)
115th US Congress 3.99 (0.3189) 0.26 (0.4197) 5.24 (0.5618) — — 0.46 (0.9999)
Ireland 8th 2.18 (0.0311) 1.18 (0.0270) 0.35 (0.0311) 0.97 (0.0129) 0.03 (0.0129) 1.02 (0.0129)
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behavior. From a physical point of view, replacing the order
parameter normalized to one (ηt ∈ (0, 1]) with a larger value
ηεt (ε< 1) means that the ordering process affects Twitter’s
self-consistent behavior more than in the ideal case, when
ε � 1. In the case when ηt ∈ (0,∞), the parameter ε can be
determined by introducing the unit step function θ(ηt)

using the following replacement:

ε ≡ ε + θ ηt − 1( 􏼁, (10)

where θ(ηt − 1) �
0, ηt < 1,

1, ηt ≥ 1.
􏼨

Another replacement is the replacement in equation (9)
of the order parameter ηt of the following form:

ηεt ≡ Sign ηt( 􏼁 ηt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ε
. (11)

(emeaning of the transition ηt⟶ Sign(ηt)|ηt|
ε in the

Lorenz system is that the transition of the order parameter to
its absolute value avoids the minimum values of the power
function ηεt with a fractional exponent ε.

Further, if it is not specified separately, the parameters ε
and ηt are defined as (10) and (11).

4.2. Self-Organized Criticality of Twitter in Adiabatic
Approximation. Equation (9), as well as the system of
Lorenz equations, does not have an exact analytical solution.
When certain conditions are met, system (9) in an adiabatic
approximation can be quite acceptable approximation. (e
adiabatic self-organization mode corresponds to a phase
transition process for which the stationary value of the
control parameter does not reduce to the pump parameter
(e.g., see the works [59–61]).

In the adiabatic approximation, the characteristic
relaxation time of the number of microposts τη far ex-
ceeds the corresponding relaxation times of the infor-
mation associated with microposts and the number of
strategically oriented users: τh and τS. (is means that the
information ht � h(ηt) and the number of strategically
oriented users St � S(ηt) follow the changes in the
number of microposts ηt on Twitter. When the conditions
τη≫ τh, τS are fulfilled, the principle of subordination
makes it possible to neglect the fluctuations of the
quantities h(ηt) and S(ηt) in equation (9), i.e., assume
(τh/τη) _ht � (τS/τη) _St � 0.

(e use of the adiabatic approach to Twitter as an open
nonequilibrium system means that, when the value of the
social network pumping by strategically oriented users tends
to zero (S0⟶ 0), there is a slow decrease in the flow of
microposts ηt and a rapid decrease in the associated in-
formation ht as well as in the number of strategically ori-
ented users St, who sending microposts.

Using the adiabatic approximation allows to reduce the
dimension of the phase space, i.e., transit from the analysis of
a three-dimensional dynamic system with additive noise (9)
to the analysis of a one-parameter stochastic system with
multiplicative noise:

τη _ηt � fη +
��
Iη

􏽱
ξt. (12)

In the Langevin equation (12), the drift and diffusion
parts are determined by the following values:

fη ≡ − ηεt + S0η
ε
tμη,

Iη ≡ Iη + Ih + ISη
2ε
t􏼐 􏼑μ2η,

(13)

where μη ≡ 1 + η2εt .

4.3. Results and 7eir Discussion

4.3.1. Self-Organized Critical State of Twitter. Suppose that
the social network Twitter is self-organized into a critical
state as a result of the agreed actions of SOUs and ROUs.
Such a saturated network state by strategically oriented users
and information is characterized by the following features:
firstly, by the significant intensity of stochastic interactions
between strategically oriented users (IS≫ Iη, Ih), and sec-
ondly, by the significant impact of the streamlining process
on Twitter’s self-consistent behavior. In this case, equality
(10) holds for the feedback intensity indicator ε. In this state,
even a negligible external disturbance (S0 � 0) is enough to
spread avalanches of microposts on the social network.

(erefore, equation (12), describing the being of the
social network in the SOC state, will be in the following
form:

τη _ηt � − ηεt +
��
IS

􏽰
ηεtμηξt. (14)

Suppose that the homogeneous process (14) occurs on
the interval (ηmin, 1) and ε< 1, where ηmin is the minimum
number of microposts for which power-law PDF is per-
formed. (en, a nonnormalized solution of the corre-
sponding stationary Fokker–Planck equation with reflecting
boundaries is given by

ps(η)∝ I
− 1
S η− 2εμ− 2

η exp − I
− 1
S 􏽚

n

ηmin

η′− εμ− 2
η′ dη′􏼢 􏼣. (15)

(e integral in PDF (15) has the following form, rather
bulky for analysis:

η1− ε

2(ε − 1)μη′
(3ε − 1)μη′ 2F1 + η′2ε − ε 3η′2ε + 2􏼒 􏼓􏼔 􏼕

⎧⎨

⎩

⎫⎬

⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

η

ηmin

,

(16)

where 2F1(1, (ε − 1/2ε); (3ε − 1/2ε); − η′− 2ε
) is the hyper-

geometric function.
(e graph of the unnormalized PDF (15) in a log-log

scale for η ∈ (ηmin, 1), ηmin � 0.001 and the values of
ε ∈ (0, 1) are presented in Figure 1.

Distribution (15) is a power-law PDF of the form (1) with
indicator α, corresponding to indicators of feedback in-
tensity ε. Increasing the feedback intensity leads to an in-
crease in the stationary probability ps(η) for all
η ∈ (0.001, 1).
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In order to obtain analytical values for PSD and ACF
of a random process (14), it is necessary to obtain an
analytical solution p(ηt, t) of the corresponding nonsta-
tionary Fokker–Planck equation. If it is possible to obtain
an exact analytic values for p(ηt, t) and, accordingly, an
analytical definition of S(f) and ρ(τ), then it will be
difficult to interpret. (erefore, we obtained these de-
pendences as a result of the numerical integration of
equation (14). According to the obtained realizations of
this random process, the dependences S(f) and ρ(τ) were
determined.

In Figures 2 and 3, the PSD and ACF are presented in a
log-log scale for one of the process implementations (14).
To obtain implementations of the stochastic processes
and to process the results, standard Wolfram Mathe-
matica version 11.2 algorithms were used. First, data were
generated using the “ItoProcess” function. Further, based
on the data obtained using the “PowerSpectralDensity”
functions, PSDs similar to those shown in Figure 2 were
built. Using the “CorrelationFunction,” ACFs were found
similar to those shown in Figure 3. Also in the figures are
shown the following: linear approximations and the es-
timates of the scaling indicators β and c which are ob-
tained by averaging over 10,000 realizations of the OLS
estimates β and c of the random process. (e straight line
shown in Figure 2 is a linear approximation of the PSD
with the OLS estimate of the index β � 1.1(0.009) that
corresponds to a random process with pink noise; straight
line in Figure 3 is a linear approximation of ACF with the
estimate of the index c � 0.8(0.010) that corresponds to a
random process with the long memory. (e corre-
sponding p values are shown in brackets.

Consequently, equation (14) is a good approximation for
describing the self-organized critical state of Twitter. Indeed,
all theoretical indicators of complexity (criticality) ε, β, and c

belong to the spectrum of indicators of complexity
(1, 3), (0.5, 1.5), (0, 1).

4.3.2. Subcritical and Supercritical States of Twitter. (e
SubC state of Twitter is a chaotic state characterized by the

presence of a negligible number of avalanches of micro-
posts and, therefore, ps(η) is not the power-law PDF. Also
SubC state is characterized by resistance to small distur-
bances. In this state, minor chaotic directed flows of
microposts are created by all users of the social network,
regardless of the size of its pumping by strategically ori-
ented users. (e social network functions in the SubC state
until St reaches a certain critical value Sc. In this state, the
streamlining process has almost no effect on the self-
consistent behavior of the network, i.e., the feedback in-
tensity indicator ε � 1, and the fluctuation intensity of each
of the degrees of freedom is comparable (let us take
Iη � Ih � IS � I).

(erefore, the SubC state of Twitter is described by the
following Langevin equation:

τη _ηt � − ηt + S0ηtμη +

��������

I 1 + μ3η􏼐 􏼑

􏽱

ξt, (17)

where μη ≡ 1 + η2t .
Assuming that the process (17) is on the interval (0, 1),

the solution of the corresponding stationary Fokker–Planck
equation is a PDF of the following form:
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Figure 2: Log-log plot of the PSD for τη � 1, ε � 0.75, and
IS � 1000.
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Figure 3: Log-log plot of the ACF for τη � 1, ε � 0.75, and
IS � 1000.
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Figure 1: Log-log plot of the distribution (15) for IS � 1000, and
three different ε � 0.55, 0.65, 0.75.
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ps(η)∝ I
− 1 1 + μ3η􏼐 􏼑

− 1
exp I

− 1
􏽚
η

0

S0η′μ2η′ − η′

1 + μ3η′
dη′⎡⎢⎢⎣ ⎤⎥⎥⎦. (18)

(e integral in the distribution (18) has the following
form:

1
12I

2
�
3

√
S0 − 1( 􏼁tan− 1 2η′2 + 1

�
3

√⎛⎝ ⎞⎠ − S0 + 1( 􏼁ln
2 + η2( 􏼁′

2

η′4 + η′2 + 1
⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎨

⎩

⎫⎬

⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

η

0

.

(19)

Distribution graph (18) is presented in Figure 4 in a log-
log scale.

It is obvious that PDF presented in Figure 4 is not a
power-law PDF and, therefore, such a distribution describes
the appearance of avalanches of microposts only of relatively
small size. In addition, an increase in the network pumping
S0 leads to an increase, although not significant, in the
frequency of appearance of relatively large numbers of
microposts.

(us, it is reasonable to assume that a further increase in
the number of strategically oriented social network users to a
certain critical value Sc, accompanied by a significant in-
crease in the intensity of stochastic interactions between
them (IS≫ Iη, Ih), will lead the network to self-organization
in a critical state.

Twitter in the SubC state is able to generate time series of
microposts with relatively small values. Perhaps, these time
series correspond to the following tweet identifiers: “End of
Term 2016 US Government,” “Winter Olympics 2018,” “US
Government,” and “News Outlet.”

If S> Sc, then chaos changes in order, and instead of
insignificant chaotic directed flows of microposts, a dedi-
cated directional flow (avalanche) of microposts appears on
the network.(is flow becomes significant at the macrolevel.
Like the SubC state, the SupC state is resistant to small
disturbances (for example, adding only one SOU). In the
SupC state, small disturbances cannot tangibly affect the size
of the avalanche of microposts.

(e distribution of the number of microposts which is
characterized by the SupC state of Twitter is presented in
Figure 5 in a log-log scale. PDFs are presented (see distri-
bution (15)) for ε � 0.75 and various values of the network
pumping parameter.

(e distributions shown in this figure correspond to the
power-law PDF. Moreover, the weighting of the distribution
tails is due to the increased pumping of the network by the
strategically oriented users. If Twitter is in the SupC state,
then the number of SOUs and, accordingly, the microposts
avalanche sizes continue to grow.

5. Discussion

(e obtained results are of interest both for identifying
the SubC state or the SupC state of Twitter that are
stable to small disturbances based on the analysis of the
observed time series of microposts and for determining
the causes of the social network self-organization in a
critical state.

(e presence of a spectrum of criticality indicators
(1, 3), (0.5, 1.5), (0, 1) for the observed time series of
microposts is a sufficient feature that Twitter is in the SupC
state. Such a state appears from time tc on the network
evolution process and continues to exist during the time
interval ΔtSupC. Starting from time tc, the network’s behavior
becomes unpredictable: avalanches of microposts of any size
can appear over time t≥ tc.

It is important that the identification of the SupC state of
the network does not require a detailed analysis of the in-
teractions between its users at the microlevel. Only an
analysis of the time series of microposts for being in the
spectrum is sufficient, which does not require significant
resource costs. Moreover, estimates of β and c can be ob-
tained independently, for example, using the DFA method.

Prior to the transition of the network in the SOC state at
time tc and then in the SupC state, it is in the SubC state
during the time interval ΔtSubC. If the network is in this state,
then PDF and ACF for the observed time series of micro-
posts are not scale-invariant (see dependencies (1) and (4),
respectively). (is state can be characterized by exponential
laws for PDF and ACF, and the exponent β of PSD has a
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Figure 4: Log-log plot of the distribution (18) for I � 1 and three
different S0 � 1.2, 1.4, 1.6.
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Figure 5: Log-log plot of the distribution (15) for Is � 1000,
ε � 0.75, and three different S0 � 0.5, 1.5, 2.5.
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value close to 0. It is important to note, it is possible that a
network in this state can arise a critical state over time.
Before transition in the SOC state, there will be a slow
increase in the size of avalanches of microposts over time
until a large splash appears in the time series at t � +tc. But
the appearance of the SOC state on the network is not
necessary at all: the network can continue to be in the SubC
state until it is completely relaxed due to the loss of user
interest in the discussed topic.

An approach to monitor the social network state based
on the spectrum analysis, for example, can be effective for
identifying the origin of protest movements for which
Twitter is one of the tools. In addition, the approach can
be used to study the activity of users on the network
related to political elections. For example, if the social
network is in the SubC state and for the corresponding
time series of microposts it is possible to find the interval
Δt ∈ ΔtSubC, in which a slow increase in the size of ava-
lanches is observed, then the existence of such Δt is a
possible precursor of the appearance of the SOC state and
further transition to the SupC state. Another situation is
possible. If it is possible to find a relatively small interval
(tc, t) ∈ ΔtSubC, then the existence of such an interval is a
possible precursor of the unpredictability of the behavior
on the social network. Starting from time t, avalanches of
microposts of all sizes will appear. Note that all this is
nothing more than a discussion of possible applications.
To conduct such studies, it is necessary to develop and test
algorithms for detecting such integrals, but this is beyond
the scope of our study.

(e proposed phenomenological social network self-
organization equation (9) in the adiabatic approximation
(14) describes not only the functioning of Twitter in the
SubC, the SOC, and the SupC states, but also the conditions
for the transition from one critical state to another.(e latter
is clearly demonstrated in Table 2.

SubC state of Twitter is a typical social network state.
Indeed, the network consists of a large number of users N;
each of which follows its own strategy, not related to the
strategies of other network users. (e intensity of fluctua-
tions of each of the degrees of freedom is commensurate
(Iη � Ih � IS), and the indicator of the intensity of feedback
(ε) is equal to 1.(e network that is pumping by strategically
oriented users (S0 > 0) does not change the network func-
tioning mode qualitatively.

A necessary condition for the network self-organization
in a critical state is the appearance of a certain number of
users S within it, who follow a certain strategy, i.e., acting in
concert, involving random users as their subscribers. (is is
an instantaneous unstable state of the network that does not
require pumping (S0 � 0). In this state, the intensity of
stochastic interactions between SOUs increases significantly
(IS≫ Iη, Ih), and the streamlining process affects Twitter’s
self-consistent behavior more strongly (ε ∈ (0, 1)) than if
Twitter was in the SubC state.

As a result of pumping of the network by strategically
oriented users (S0 > 0), the network moves to the SupC state.
In this state, the intensity of stochastic interactions between
SOUs is IS≫ Iη, Ih and ε ∈ (0, 1).

It is fundamentally important that self-organization in a
critical state occurs as a result of the agreed action of a
relatively small number of users following a single strategy.
Random users can not form avalanches of microposts of all
sizes on the network.

6. Conclusion

In conclusion, we formulate important questions, the an-
swers to which cannot be gotten in the analysis of the
phenomenological model (12) of Twitter self-organization in
the adiabatic approximation, and we also indicate the
possible ways to find the solution.

When discussing Twitter’s self-organization mecha-
nisms in a critical state (see Section 2.1), it was noted that one
of the possible mechanisms of emergence of the SOC state is
the formation of a hierarchical structure in the network,
through which avalanches of microposts of all sizes appear in
the network. (e following is a brief overview of research on
this.

Moriano and co-authors state in their paper [64] that
“Global events trigger viral information cascades that easily
cross community boundaries and can thus be detected by
monitoring intra- and inter-community communications.”
(ey showed, when a global event (Boston Marathon
bombing) occurs, it spreads virally, crossing community
boundaries and producing more intercommunity. Despite
the fact that we are talking about information cascades, there
is no evidence in the article of the self-organized critical
nature of this phenomenon. (e need of existence of hi-
erarchical structure (user, his subscribers, subscribers of
their subscribers, etc.) for the emergence of self-organized
critical states is presented in [65, 66]. Morse and co-authors
[67] consider the persistent cascades, i.e., recurring patterns
of communication among individuals, and relate them to
hierarchical spreading of content, analogously to what we
discuss in our study. Liu and co-authors [68] devise an
embedding model which exploits multiple relations of
hashtag-hashtag, hashtag-tweet, tweet-word, and word-
word relations based on the hierarchical heterogeneous
network.

Stella and co-authors [69] detect power-law relationships
between cascade rate and size on Twitter during a voting
event and they show how social bots used by human users
were capable of creating avalanches of microposts. (ey
showed, “online social interactions during a massive voting
event can be used to build an accurate map of real-world
political parties and electoral ranks for Italian elections in
2018.” (ey provided, “evidence that information flow and
collective attention are often driven by a special class of
highly influential users, who exploit thousands of automated
agents, also known as bots, for enhancing their online

Table 2: Critical states of Twitter.

State Ii ε S0

SubC Iη � Ih � IS 1 >0
SOC IS≫ Iη, Ih (0, 1) 0
SupC IS≫ Iη, Ih (0, 1) >0
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influence.” In addition, they showed, “influential users
generate deep information cascades in the same extent as
news media and other broadcasters, while they uniformly
infiltrate across the full range of identified groups.” Obvi-
ously, highly influential users, who exploit thousands of
automated agents are exactly SOUs. Rizoiu and co-authors
state in their paper [70] that “Socialbots is more active on
Twitter—starting more retweet cascades and retweeting
more—but they are 2.5 times more influential than humans,
andmore politically engaged.”(ere are studies in which the
role of social bots in the emergence of information cascades
is considered (e.g., see the works [71, 72]).

González-Bailón and co-authors [73] studied “recruit-
ment patterns in the Twitter network and find evidence of
social influence and complex contagion.” (ey identified the
network position of early participants (i.e., the leaders of the
recruitment process) and of the users who acted as seeds of
message cascades (i.e., the spreaders of information). (ey
found that early participants cannot be characterized by a
typical topological position, but spreaders tend to be more
central in the network.

Finally, let us consider who can act as SOUs or ROUs. It
should be noted that for the identification of SOUs and/or
ROUs, time series analysis of microposts is not sufficient. A
more meaningful such as sentimental data analysis is beyond
the scope of our study.

In the first class, as we discussed previously, there are
SOUs. In the cases of political elections, SOUs could be
network political bots or “botnets,” who act in concert and
use Twitter as a platform for the formation of the avalanche
of microposts. For example, Kollanyi and co-authors [74],
who analyzed Twitter dataset on US Presidential Election
2016, found that “political bot activity reached an all-time
high for the 2016 campaign.” In the cases of protest
movements, SOUs, such as leaders or organizers of protests,
can be coordinated users who use Twitter as a platform to
encourage others to protest. Wang and Caskey indicated in
[75] that “Twitter is a tool primarily used for sharing ob-
jective, logistical information, along with opinions, to create
a unified community and mobilize individuals to participate
in a physical space of protests.” And finally, in the cases of
natural disasters, we assume SOUs can be the most active,
but noncoordinated Twitter users. For example, these users
can use Twitter to spread the information about the current
state of the environment in their neighborhood, the
remaining water in the nearest groceries, etc.

However, it is more interesting to consider the possible
users’ nature in the second class. As our analysis showed,
there are only ROUs in these datasets:

(1) End of Term 2016 US Government Twitter Archive.
(e original tweets were made by 3000 users who are
connected with federal US government agencies. We
assume that these users acted not in agreement with
each other and posted general content. (ere was no
consistent behavior in their action, such as collusion.
(erefore, they were ROUs.

(2) Winter Olympics 2018. Obviously, a lot of different
users used Twitter as the platform to advertise the

content; however, all the users pursued their own
interests. For example, each sportsman used Twitter
as the advertising platform of his brand. In this case,
they were ROUs.

(3) US Government. (e original tweets were made by
3400 users who are connected with federal US
government agencies. As it was previously, these
tweets had general content and were not unified by a
common goal, so these users were ROUs.

(4) News Outlet. (e basic tweets were made by news
agencies. However, each agency has its own subject,
as well as its own way of presenting news. Moreover,
each agency promotes news in different time and,
sometimes, supports different sides of conflict, for
example. We suppose this could be the most rea-
sonable description why these news agencies were
ROUs.

(5) 115th US Congress. (e original tweets were made
by 535 congress members and their official repre-
sentatives. As it was in Winter Olympics 2018 ex-
ample, each member used Twitter as the platform to
share his ideas, but they were not unified by a
common goal. In this case, they were ROUs.
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5CFLLJ, https://doi.org/10.7910/DVN/DVLJTO, https://
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