
Information Processing Letters 156 (2020) 105914
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Independent domination versus weighted independent 

domination

Vadim Lozin a, Dmitriy Malyshev b,1, Raffaele Mosca c, Viktor Zamaraev d,∗
a Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
b National Research University Higher School of Economics, 603155, Nizhny Novgorod, Russia
c Dipartimento di Economia, Universitá degli Studi “G. D’Annunzio”, Pescara 65121, Italy
d Department of Computer Science, University of Liverpool, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 June 2019
Received in revised form 8 January 2020
Accepted 10 January 2020
Available online 15 January 2020
Communicated by Marek Chrobak

Keywords:
Independent domination
Weighted independent domination
Polynomial-time
NP-hardness
Algorithms

Independent domination is one of the rare problems for which the complexity of weighted 
and unweighted versions is known to be different in some classes of graphs. Trying to 
better understand the gap between the two versions of the problem, in the present paper 
we prove two complexity results. First, we extend NP-hardness of the weighted version in 
a certain class to the unweighted case. Second, we strengthen polynomial-time solvability 
of the unweighted version in the class of P2 + P3-free graphs to the weighted case. This 
result is tight in the sense that both versions are NP-hard in the class of P3 + P3-free 
graphs, i.e. P3 + P3 is a minimal graph forbidding of which produces an NP-hard case for 
both versions of the problem.

Crown Copyright © 2020 Published by Elsevier B.V. All rights reserved.
1. Introduction

Independent domination is the problem of finding in a 
graph an inclusionwise maximal independent set of min-
imum cardinality. This is one of the hardest algorithmic 
problems and it remains difficult in very restricted graph 
classes. In particular, it is NP-hard in the class of so called 
sat-graphs, where the problem is equivalent to satisfiabil-

ity [9].
The weighted version of the problem (abbreviated WID) 

deals with vertex-weighted graphs and asks to find an 
inclusionwise maximal independent set of minimum to-
tal weight. This version is provenly harder, as it remains 
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NP-hard even for chordal graphs [2], where independent 
domination can be solved in polynomial time [4].

Recently, we have strengthened the NP-hardness of 
WID in the class of chordal graphs by showing that the 
problem is NP-hard in the class of (C4, Sun3)-free sat-
graphs [5] (see Fig. 1 for Sun3). This is a proper subclass 
of the intersection of sat-graphs and chordal graphs, and 
therefore independent domination admits a polynomial-
time solution in this class. Trying to better understand the 
gap between the two versions of the problem, we slightly 
extend this class by replacing C4 with a domino in the 
set of forbidden graphs and show that with this extension 
the complexity of independent domination jumps from 
polynomial-time solvability to NP-hardness.

On the other hand, independent domination can be 
solved in polynomial time in the class of P2 + P3-free 
graphs [7], where the complexity of WID is an open ques-
tion. We answer this question by showing that WID also 
admits a polynomial-time solution for P2 + P3-free graphs. 
This result is tight in the sense that both versions are NP-
hard in the class of P3 + P3-free graphs, because this class 
d.
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Fig. 1. Graphs (a) domino, and (b) Sun3.

contains all sat-graphs. In other words, our result shows 
that P3 + P3 is a minimal graph forbidding of which pro-
duces an NP-hard case for both versions of the problem.

The organization of the paper is as follows. In the rest 
of this section, we introduce basic terminology and nota-
tion. In Section 2, we prove our NP-hardness results. Sec-
tion 3 is devoted to the polynomial-time result.

All graphs in this paper are finite, undirected, without 
loops and multiple edges. Let G = (V , E) be a graph and let 
v be a vertex in G . By NG(v) we denote the neighbourhood
of v , i.e. the set of vertices of G adjacent to v . For a set 
S ⊆ V , we denote by AG(S) the antineighbourhood of S , i.e. 
the set of vertices of G that have no neighbours in S . Also 
by G[S] we denote the subgraph of G induced by S and 
by G − S the subgraph G[V \ S]. If S consists of a single 
element, say S = {v}, we write AG(v) and G − v , omitting 
the braces.

As usual, Pn , Cn and Kn denote a chordless path, a 
chordless cycle and a complete graph on n vertices, respec-
tively. Given two graphs G and H , we denote by G + H the 
disjoint union of G and H , and by mG the disjoint union 
of m copies of G .

A set S ⊆ V of pairwise non-adjacent vertices is called 
an independent set. We say that S is a maximal independent 
set if it is not properly contained in any other independent 
set. Clearly, if S is a maximal independent set, then it is 
also dominating, i.e. every vertex not in S has a neighbour 
in S . This is why maximal independent sets also known as 
independent dominating sets.

The independent domination number of G is the size of 
a minimum independent dominating set in G; we denote 
it by id(G). If G is a vertex weighted graph with a weight 
function w , then idw(G) stands for the minimum weight 
of an independent dominating set in G .

2. An NP-hardness result

As we mentioned in the introduction, both versions of 
the problem are NP-hard for general graphs and remain 
difficult under various restrictions. For instance, both of 
them are NP-hard for graphs of bounded vertex degree, of 
large girth [1], line graphs [8], chordal bipartite2 graphs 
[3], etc. The weighted version of the problem is also NP-
hard in the class of (C4, Sun3)-free sat-graphs [5], where 
the unweighted version is polynomial-time solvable, be-
cause this is a subclass of chordal graphs. By replacing C4

2 This is a bipartite analog of chordal graphs and is not the intersection 
of chordal and bipartite graphs.
Fig. 2. Transformation γ (a,b).

in the set of forbidden induced subgraphs with a domino 
(see Fig. 1) we obtain a larger class. Therefore, WID re-
mains NP-hard in this extension. However, the complexity 
of ID in this class is an open question. In this section, we 
answer this question by showing that independent domi-

nation is NP-hard in the class of (domino, Sun3)-free sat-
graphs.

A graph G is called a sat-graph if there exists a partition 
A ∪ B = V (G) such that

1. A is a clique (possibly, A = ∅);
2. G[B] is a 1-regular graph, also known as an induced 

matching (possibly, B = ∅);
3. there are no triangles (a, b, b′), where a ∈ A and 

b,b′ ∈ B .

We shall refer to the pair (A, B) as a sat-partition of G . 
The NP-hardness of independent domination (and hence 
of WID) in the class of sat-graphs was proved in [9], 
where the author showed that independent domination

restricted to the class of sat-graphs is equivalent to satis-

fiability.
Observe that no cycle with at least 5 vertices is an in-

duced subgraph of a sat-graph, while each of domino and 
Sun3 (Fig. 1) can be an induced subgraph of a sat-graph. 
Moreover, it is easy to see that each of domino and Sun3
is partitioned by a sat-partition in a unique way.

Observation 1. Let G be a sat-graph with a sat-partition (A, B).

(1) If G contains a domino (see Fig. 1 (a)) as an induced sub-
graph, then 3, 4 ∈ A and 1, 2, 5, 6 ∈ B.

(2) If G contains Sun3 (see Fig. 1 (b)) as an induced subgraph, 
then 1, 2, 3 ∈ A and 4, 5, 6 ∈ B.

Since each of domino and Sun3 can be an induced sub-
graph of a sat-graph, the class of (domino, Sun3)-free sat-
graphs form a proper subclass of sat-graphs. To prove the 
NP-hardness of ID in this class, we reduce the problem 
from sat-graphs.

Let G be a sat-graph with a sat-partition (A, B), and let 
a ∈ A and b ∈ B be two adjacent vertices. The transforma-
tion γ (a, b) of G , illustrated in Fig. 2, consists in

1. adding a new vertex v to A, and connecting it to all 
other vertices in A;

2. adding new vertices x and y to B and connecting them 
by an edge;

3. removing the edge (a, b);
4. adding edges (v, b), (v, x) and (a, y).

We say that v is an α-new vertex, x, y are β-new ver-
tices, and the edge (x, y) is a β-new edge. Vertices in A
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that are not α-new, and vertices and edges in B that are 
not β-new will be called α-old and β-old, respectively.

Notice that transformation γ (a, b) does not change the 
property of being a sat-graph. In what follows, we show 
that this transformation increases the independent domi-
nation number by exactly one. To this end, we first make 
the following observation.

Observation 2. Let G be a sat-graph with a sat-partition (A, B)

and let s be the number of edges in G[B]. Then s ≤ id(G) ≤
s + 1.

Lemma 1. Let G be a sat-graph and G ′ be the sat-graph 
obtained from G by applying transformation γ (a, b). Then 
id(G ′) = id(G) + 1.

Proof. Let (A, B) be a sat-partition of G and let s be the 
number of edges in G[B]. By Observation 2 we have s ≤
id(G) ≤ s +1, and s +1 ≤ id(G ′) ≤ s +2. Therefore, to prove 
the lemma it is sufficient to show that id(G) = s if and 
only if id(G ′) = s + 1.

First, assume that id(G) = s and D is a minimum inde-
pendent dominating set in G . If b ∈ D , then D ′ = D ∪ {y}
is an independent dominating set in G ′ . Moreover, D ′ is 
minimum, since id(G ′) ≥ s + 1 and |D ′| = s + 1. Let now 
id(G ′) = s + 1 and D ′ be a minimum independent domi-
nating set in G ′ . If y ∈ D ′ , then b ∈ D ′ (to dominate v) and 
therefore D = D ′ \ {y} is a minimum independent domi-
nating set in G . If x ∈ D ′ , then there exists c ∈ D ′ \ {x, y}
that dominates a, and hence D = D ′ \ {x} is a minimum 
independent dominating set in G . �

Let G be a sat-graph with a sat-partition (A, B). 
By G∗ we denote the sat-graph obtained from G by 
successive applications of transformation γ (a, b) to ev-
ery edge (a, b) with a ∈ A and b ∈ B . Denote S∗ =
{G∗ | G is a sat-graph with a sat-partition (A, B)}. It fol-
lows from Lemma 1 that independent domination in sat-
graphs polynomially reduces to the same problem in the 
subclass S∗ of sat-graphs. Now we show that graphs in S∗
are (domino, Sun3)-free. First, we note some useful prop-
erties of a graph G in S∗:

(1) No α-old vertex is adjacent to a β-old edge.
(2) Every α-new vertex is adjacent to exactly one β-new 

edge, and to exactly one β-old edge.
(3) In every β-new edge one of its vertices is adjacent to 

exactly one vertex in A and this vertex is α-new, and 
the other vertex is adjacent to exactly one vertex in A
and this vertex is α-old.

Lemma 2. Let G be a graph in S∗ . Then G is (domino, Sun3)-
free.

Proof. Let H be a sat-graph with a sat-partition (A, B)

such that G = H∗ . Let also (A′, B ′) be a sat-partition of 
G such that A ⊆ A′ , B ⊆ B ′ , and all α-new vertices belong 
to A′ and all β-new vertices belong to B ′ .

Suppose to the contrary that G contains an induced 
domino with vertex set {1, 2, 3, 4, 5, 6} as shown in
Fig. 1 (a). By Observation 1 (1) we have 3, 4 ∈ A′ and 
1, 2, 5, 6 ∈ B ′ . Assume that 3 is an α-new vertex, then by 
Property (2) of H∗ one of the edges (1, 2) and (5, 6) is 
β-new and the other one is β-old. Without loss of gener-
ality, let (1, 2) be a new edge. Now by Property (1) vertex 
4 is also α-new. But then two new vertices 3, 4 are adja-
cent to the new edge (1, 2), which contradicts Property (3). 
Assume now that both vertices 3 and 4 are α-old. Then by 
Property (1) edges (1, 2) and (5, 6) are β-new, which again 
contradicts Property (3). This contradiction shows that G is 
domino-free.

Suppose now that G contains the graph Sun3 induced 
by vertices 1, 2, 3, 4, 5, 6 as shown in Fig. 1 (b). Then by 
Observation 1 we have 1, 2, 3 ∈ A′ and 4, 5, 6 ∈ B ′ . Let us 
consider vertex 1. From Properties (1) and (2) we conclude 
that at least one of its neighbours 4 and 5, say 4, is a 
β-new vertex. But this is impossible, since by Property (3) 
every β-new vertex has at most one neighbour in A. This 
contradiction shows that G is Sun3-free and completes the 
proof of the lemma. �

Now the main result of this section follows from Lem-
mas 1 and 2 and from the fact that independent domina-

tion is NP-hard in sat-graphs.

Theorem 1. Independent domination is NP-hard in the class 
of (domino, Sun3)-free sat-graphs.

3. A polynomial-time result

In this section, we study the weighted version of the 
problem restricted to the class of P2 + P3-free graphs. This 
special case of the problem was also studied in [6]. How-
ever, a solution presented in [6] turned out to be erro-
neous. The error was partially corrected in [7], where a so-
lution for the unweighted version of the problem was pre-
sented. Now we extend it to weighted independent dom-

ination. The initial stage of the solution, up to Claim 2, 
is the same for both versions of the problem, and we start 
by briefly outlining the main ideas of this stage and stating 
the necessary results from [7].

The first step in the solution is Algorithm Generation, 
which generates a family S of vertex subsets of the input 
graph. To each set H ∈ S the algorithm assigns a special 
vertex μ(H) which does not belong to H . Given a graph G
with vertex set V (G) = {v1, v2, . . . , vn}, we denote by Gi
the subgraph of G induced by vertices v1, v2, . . . , vi . Also, 
for a subset U ⊆ V (G), we denote by U0 the set of isolated 
vertices in G[U ]. Without loss of generality we assume 
that the input graph G has no isolated vertices, because 
all these vertices must belong to any optimal solution. We 
also assume that the vertices of G are ordered so that v1
is adjacent to v2. In the beginning of the algorithm, the 
family S includes only the set {v1} and the special vertex 
assigned to this set is μ({v1}) = v2.

Lemma 3. [7] Let G be a P2 + P3-free graph with vertex set 
V (G) = {v1, v2, . . . , vn} and let S be the family of subsets of 
V (G) produced by Algorithm Generation. Then

(i) for each H ∈ S , we have H − H0 ⊆ AG({vi, μ(H)}), where 
i is the iteration at which H was created;
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Algorithm 1 Generation.
Input: A graph G with vertex set V (G) = {v1, v2, . . . , vn}.
Output: A family S of subsets of V (G).

1: S := {{v1}} with μ({v1}) = v2

2: for i = 2 to n do

3: [Extension of some members of S]
4: for each H ∈ S do
5: if

[
NGi (vi) ∩ H = ∅]

or [(NGi (vi) ∩ H0 = ∅) and (μ(H), vi) /∈
E(G)

]
then

6: H := H ∪ {vi}
7: [Addition of new members of S]
8: for each pair of vertices vi, u inducing in Gi a P2 do
9: H := {vi} ∪ AGi ({vi , u})

10: μ(H) := u
11: S := S ∪ {H}
12: for each triple of vertices vi, u, w inducing in Gi a P3 with u be-

ing the centre do
13: H := {vi , w} ∪ AGi ({vi , u, w})
14: μ(H) := u
15: S := S ∪ {H}
16: return S

(ii) for each maximal independent set I in G, there is a set H ∈
S such that I ⊆ H.

Lemma 4. [7] For a graph G with n vertices, Algorithm Gen-

eration runs in time O (n5) and the family S produced by this 
algorithm contains O (n3) subsets of V (G).

By Lemma 3, a solution to WID in a P2 + P3-free graph 
G belongs to one of the subsets H ∈ S generated by the 
algorithm. Therefore, the problem can be solved by check-
ing, for each H ∈ S , all maximal independent sets in G[H], 
verifying which of them are also maximal in G and then 
choosing a set of minimum weight. For sets H ∈ S created 
in Line 13 of the algorithm, this is an easy task, because 
all these sets are independent.

Now let H be created in Line 9 of the algorithm and 
denote by A the subset of H obtained by removing isolated 
vertices from G[H]. By Lemma 3, A ⊆ AG({vi, μ(H)}), and 
hence, G[A] is P3-free, i.e. each connected component of 
G[A] is a clique with at least two vertices. We denote the 
components (cliques) of G[A] by Q 1, . . . , Q t .

The condition in Line 5 of the algorithm implies that 
every maximal independent set in G[H] dominates all ver-
tices of G except possibly some neighbours of μ(H). We 
denote the set of neighbours of μ(H), which are not dom-
inated by at least one maximal independent set in G[H], 
by W . With this notion and an argument similar to the 
one used in [7] (see Proposition 4 of [7]), maximal inde-
pendent sets in G[H], which also are maximal in G , can be 
characterized as follows.

Claim 1. Let H ∈ S be a set created in Line 9 of Algorithm Gen-

eration. An independent set I which is maximal in G[H] also is 
maximal in G if and only if I ∩ A dominates W .

Our next claim characterizes independent sets I ∩ A that 
dominate W .
Claim 2. For i = 1, . . . , t, let zi ∈ Q i and Yi = W ∩ AG(zi). The 
set I = {z1, . . . , zt} dominates W if and only if Y1 ∩ . . .∩Yt = ∅.

Proof. Denote Y i = W − Yi . Then I dominates W if and 
only if Y 1 ∪ . . .∪ Y t = W . By De Morgan’s law, this holds if 
and only if Y1 ∩ . . . ∩ Yt = ∅. �

It remains to show that the problem of finding a max-
imal independent set in G[H] of minimum weight that 
dominates W can be solved in polynomial time. To prove 
this, we first observe that if a vertex x ∈ W is non-adjacent 
to two vertices a, b ∈ A, then a and b are non-adjacent 
to each other, since otherwise a, b, x, μ(H), vi induce a 
P2 + P3. Therefore, if Q = {q1, . . . , qp} is a component 
(clique) in G[A] and W i = W ∩ AG(qi), then {W1, . . . , W p}
is a partition of W and we denote this partition by P(Q ).

We recall that Q 1, . . . , Q t are the components of G[A]. 
The corresponding t partitions P(Q 1), . . . , P(Q t) of W
can be described as a rooted tree T as follows. Let W be 
the root of T and let v be a node of distance 0 ≤ i < t
from the root representing a subset U ⊆ W . If U = ∅, 
then v is a leaf. Otherwise, v has p children represent-
ing the sets U ∩ W1, . . . , U ∩ W p , where W1, . . . , W p are 
the subsets in the partition P(Q i+1). In other words, if 
a node v is located at level i of the tree, then it repre-
sents the set Y1 ∩ . . . ∩ Yi for a unique collection of sets 
Y1 ∈ P(Q 1), . . . , Yi ∈ P(Q i) defined by the unique path 
connecting v to the root of T . Every set Yi ∈ P(Q i) cor-
responds to a unique vertex zi ∈ Q i with Yi = W ∩ AG(zi)

and we denote Av = {z1, . . . , zi} ∪ Q i+1 ∪ . . . ∪ Q t .
From Claims 1 and 2, we derive the following conclu-

sion.

Claim 3. If I is a maximal independent set in G[H], which is also 
maximal in G, then I ∩ A ⊂ Av for a node v of T representing 
the empty set.

Each Av induces a P3-free graph and hence WID can 
be solved for such a graph in time O (n). It remains to es-
timate the number of nodes representing the empty sets 
(empty nodes, for short). To this end, we first slightly mod-
ify the tree T as follows. If a node of T has several children 
representing the empty set, then we ignore all of them ex-
cept one, corresponding to a vertex zi ∈ Q i of minimum 
weight. Clearly, with this modification we do not lose any 
potential solution. Now, every node of T has at most one 
child representing the empty set, and hence the number 
of empty nodes does not exceed the number of non-empty 
nodes, i.e. nodes representing non-empty sets.

Claim 4. The number of non-empty nodes in T is at most n2.

Proof. For each i, the subsets of W represented by the 
nodes of T at level i form a partition of W . Therefore, for 
each i, the number of non-empty nodes at level i is at 
most n. The number of levels (cliques) is at most n, and 
hence, the total number of non-empty nodes is at most 
n2. �
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Theorem 2. The weighted independent domination prob-
lem can be solved for n-vertex P3 + P2-free graphs in O (n6)

time.

Proof. To solve the problem for a P3 + P2-free graph G , 
first, we run Algorithm Generation which produces O (n3)

subsets of G . For each of these subsets, which is not an 
independent set, we construct a tree T and for each of the 
O (n2) empty nodes of T , we solve the problem in O (n)

time. Therefore, the total time is O (n6). �
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