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ABSTRACT
This paper presents a new method for constructing an optimal
feature set from sequential data. It creates a dictionary of n-grams
of variable length (we call them v-grams), based on the minimum
description length principle. The proposed method is a dictionary
coder and works simultaneously as both a compression algorithm
and as unsupervised feature extraction. The length of constructed
v-grams is not limited by any bound and exceeds 100 characters in
provided experiments. Constructed v-grams can be used for any se-
quential data analysis and allows transfer bag-of-word techniques
to non-text data types. The method demonstrates a high compres-
sion rate on various real-life datasets. Extracted features generate a
practical basis for text classification, that shows competitive results
on standard text classification collections without using the text
structure. Combining extracted character v-grams with the words
from the original text we achieved substantially better classification
quality than on words or v-grams alone.
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1 INTRODUCTION
The importance of sequential data analysis nowadays is hard to
overestimate. This type of tasks comes from many fields: text re-
trieval, speech recognition, genetic data analysis, antifraud, etc..
Historically the most competitive field for such tasks was informa-
tion retrieval. Once build, methods from this area of computer
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science then often migrate to other fields. One of the limiting
factors of such migration is that many IR techniques use word
representation as their basis. Once the method extracts a set of
descriptive subsequences they could be used as words. This ap-
proach is widely used in biology, clickstream analysis, etc.. How-
ever the method for extracting subsequences in most of the cases
is straightforward n-gram analysis. This simplification of the ex-
traction method has its downsides: the curse of dimensionality,
performance difficulties with substantial dictionary sizes, etc. Fea-
ture extraction/construction methods could help to overcome these
problems.

There are two aspects of the quality of the feature extraction
method in this context: the quality of the extracted feature set and
the ability of the method to describe the data. We can evaluate the
first aspect on some known task such as text classification, using
no information on text structure (e.g., removing all spaces from
the source text). Other data types have no such information and
methods should be able to work without it. Extracted subsequences
from the text are called character n-grams. This type of data has
proven its value [29], so despite the challenging task setup, we can
expect competitive results.

Text classification is one of the most popular tasks in text re-
trieval [13]. Like any classification task in machine learning, it
relies critically on a feature set quality [10]. In this paper, we fix
the learning method (SVM) and then compare the quality of the
constructed feature sets by classification quality of SVM based on
them.

The second aspect we associate with the compression quality. If
the feature set with entropy coding can compress the data effec-
tively, then it contains independent blocks of data, which could be
treated as “words”. This binary structure of the task gives us two
potential sources of ideas: one from compression field, the second
from text retrieval. In Sec. 2 we will review the most interesting of
them.

In this paper, we present a new method, based on the MDL
principle. It can deliver competitive text classification quality and
provide good compression rate on various data. Constructed limited
optimal feature set is referred to as a dictionary and consists of
character-based n-grams of a variable length. The term ’v-grams’ is
introduced, emphasizing the variable and unlimited length of such
n-grams.

The idea of the proposed method is similar to described in [21],
but the instruments and the approach differ. Authors in [21] formu-
late document compression as a binary optimization task and use
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algebraic instruments to solve this problem, while the information
theory approach applied to random processes is used in this paper.
Besides the instruments, the difference comes from the nature of
the optimization: Paskov et al. filter out uninformative n-grams
(like backward elimination), while in this paper we construct in-
formative (like forward selection). Our approach does not limit
the problem space allowing us to construct n-grams of potentially
unlimited length.

The main contributions of this paper:
• Approach to sequence generation modeling that theoreti-
cally converges to optimal dictionary based representation.

• Implementing our approach in a real-world environment.
• Asymmetric measure of terms similarity, based on the infor-
mativeness.

• Evaluation of the compression rate of the method on various
data to demonstrate its ability to find proper terms for data
description.

• Competitive results on text classification task without using
information on text structure (no spaces, punctuation, etc.).

The rest of the paper is organized as follows. At first, we perform
a quick review of existing approaches to feature extraction from
sequential data. Then comes the description of our approach in
Sec. 3. It consists of two main parts: the theoretical approach to
the sequence modeling, and implementation of this approach on
practice. Sec. 4 contains three types of experiments: the testing
ability of the proposed method to restore fixed random process of
sequences generation, testing compression quality on various data
types and finally evaluation of the classification quality on textual
data. Discussion on possible future work could be found in Sec. 5

2 RELATEDWORK
2.1 Compression and machine learning
A connection between machine learning and data compression has
been thoroughly studied over the last few years. Such an approach
is based on the MDL principle [22]. In [8] authors present the ap-
plication of the compression-based algorithm to different machine
learning tasks, such as text categorization and similarity measures.
Compression-based algorithms can also be applied to other tasks,
such as hierarchical clustering [6], anomaly detection [14], spam
filtering [4], language clustering and others [2].

In this paper, the primary focus is on the use of compression
algorithms to feature extraction. In [23] authors present a com-
prehensive survey of compression-based similarity measures and
present theoretical and empirical connections between traditional
machine learning vector models and compression. The feature set,
corresponding to the famous Lempel-Ziv algorithm (LZ77) [30] is
described in this paper among others.

The LZ77 algorithm is the universal lossless compression algo-
rithm based on the repeated occurrence of data. One of the disad-
vantages of this method is its low efficiency on small datasets. The
idea “to store substring found by Lempel-Ziv schemes as explicit fea-
tures” is provided in [23] as a future work suggestion. With using
such substrings as features, the LZ77 algorithm acquires portability
and would be able to work more efficient on small datasets. In this
paper, we use a dictionary from a dictionary coder algorithm as
features.

A similar idea of compression feature learning based on the
MDL principle is presented in [21]. The intention of both methods
is using the compression to feature extraction.While in [21] authors
formulate the problem as the binary optimization, in this paper the
same idea is observed from the information theory perspective. This
idea allows taking into account interdependence between features.

Information theory and compression have a natural and robust
bond. Intrinsically, the whole theoretical background for data com-
pression is based on the information theory. As far as the paper is
concerned with feature extraction, a short survey of information
theory application for this task is provided.

2.2 Feature extraction with information theory
Information theory is widely used to feature extraction purposes.
Applying such measures as mutual information, information gain,
χ2 and others for filteringmethods is very popular, especially in text
classification tasks [13, 20, 27]. Moreover, information-theoretical
methods allow inspecting the interdependence between features,
which is very important for both the size of the feature set and the
accuracy of machine learning algorithms.

The application of information theory to feature extraction is use-
ful when the question of feature redundancy arises. The information-
theoretical measures are convenient to study features interdepen-
dence. The groundbreaking paper [5] provides a unifying frame-
work to feature selection based on information theory, connecting
the concepts of feature relevance and redundancy.

Another interesting approach to feature selection based on in-
formation theory is presented in [9]. Authors demonstrate that
previous methods use unrealistic approximations. Authors intro-
duced a new method based on a variational lower bound on mutual
information and provided a new class of assumptions.

Themost popular measure applied to feature extraction is mutual
information. A comprehensive review of feature selection methods
is provided in [28]. A new approach, presented in [5], associates
mutual information criteria with a conditional likelihood problem,
while authors in [9] provide a framework based on the lower bounds
for mutual information. In most of the papers, the mutual informa-
tion is used for calculating information between features and labels,
while it can also be applied for measuring information between
features.

There are three main differences between the proposed method
from the other information-theoretic methods mentioned above.
First, the proposed method is unsupervised feature extraction, thus
can be applied for both supervised and unsupervised algorithms.
Next, mutual information, which is utilized in the majority of other
papers, is symmetrical measure, while in this paper cross-entropy
is used, removing constraints on the symmetry. Finally, another
critical difference is that method constructs an optimal set of features
for a processed dataset, unlike just selection of most correlated with
the target (or relevant for information retrieval tasks) features. This
difference allows diminishing the redundancy of the information
presented in the features.

The approach for constructing an optimal set of features is es-
sential. As contrasted with other methods it allows to control the
size of the optimal dictionary directly, as opposed to some stopping
criterion [11]. Such stopping criteria might demand unreasonably
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big size of the dictionary, thus enlarging the size of feature set and
the overall performance. Proposed approach pushes the boundaries
in feature extraction algorithms from a practical perspective.

In the experimental section, we will show, that the proposed
method can be successfully applied to text classification tasks. Fea-
ture selection based on the information theory measures occurs
widely in text retrieval tasks. Authors in [7] provide a study on
compression-based dissimilarity measures for text classification. An
interesting approach is presented in [26], where authors examine
Kullback-Leibler divergence and Jeffreys divergence in application
to text categorization and introduce a new divergence measure,
explicitly constructed for the multi-classification task.

One of the approaches to text classification includes utilizing
n-grams as features. In [23] authors provide a connection of com-
pression algorithms with n-grams. In this paper, character-based
n-grams naturally occur as features.

2.3 Character-based n-grams
The utilization of the n-gram model for text classification is quite
widespread, word-based n-grams serve as a well-established tool.
Recently a bunch of papers on character-based n-grams appeared.
Perhaps one of the most popular papers on this topic is [29], which
describes the use of character n-grams in addition to word-based
ones. This approach is applied to rare words in neural machine
translation.

A combination of word-based n-grams with character-based
occurs in other papers. In [3] character n-grams are utilized as
subword information. Subword units are also used to obtain repre-
sentations of rare words in [24]. In [25], a language model based
on restricted Boltzmann machines, where words are encoded as a
set of character-based n-grams, is introduced.

The application of n-grams as features enlarges the size of fea-
ture set tremendously, thus requiring feature extraction methods.
Proposed in [21] compression-based method works as a feature
selection, being applied to all n-grams with the length less than 6.
In most papers, the length of n-grams is limited to some fixed num-
ber, even when it is stated to be variable. It seems reasonable for
word-based n-grams to have a short length. However, limiting the
length of character-based n-grams is a different matter. Although
n-grams proposed in [3] are character-based, their length is limited
from 3 to 6.

The main difference between the proposed method from other
methods utilizing character-based n-grams in parametrization. The
proposed method can build a dictionary of any fixed size, and not
limited by the length of n-grams. This setting is particularly impor-
tant and provides the construction of useful features independent
on the length.

3 PROPOSED METHOD
3.1 Background
Let A be an arbitrary alphabet. Denote as X = {x} a set of entries
x based on alphabet A:

x = {χk }
|χ |
k=1, χk ∈ A,x ∈ X

Assume that entries x ∈ X were generated by some fixed random
process P . Dictionary A consists of terms a = {α j } |a |j=1,α j ∈ A

Table 1: Notations table

Notation Description
A alphabet of allowed symbols
x sequence from the training set
X training set of sequences
|x | power of set or symbol length of the sequence

|x |A
length of the x sequence in terms of current
dictionary |A|

|X |A =
∑
x ∈X |x |A

total length of data set representaton in dic-
tionary A

P random process generating X
A dictionary of subsequences of X
a, b elements of the dictionary

{xk }
|x |A
t=0 = x

items from the dictionaryA, coding sequence
x from the training set

p(xk |A, P)
probability of t-th coding component for
fixed dictionary and P

p(b |a,A, P) probability of term b after term a occured

f (a,b |A,Xt )
frequency of pair (a,b) in t-th re-sampling of
X

Following the information theory, the process P can be modeled in
terms of dictionary A if it contains the alphabet (A ⊃ A) without
loss of information1.

x = {xk }
|x |A
k=1 ,xk ∈ A

If for each term a ∈ A we know the probability p(a |A, P) of its
generation by process P , then the total code length of X in terms
of A will be the cross-entropy:

H (X ,A) =
∑
x ∈X

|x |A∑
k=1

p(xk |xk−1, . . . ,x1,A, P) logp(xk |A, P) (1)

where p(xik |xik−1, . . . ,xi1,A, P) is a true probability of generating
xik , preceeded by terms xi1, . . . xik−1, by process P . Note, that
in p(a |A, P) we can not ommit A, because the probability of the
term depends on other terms in the dictionary. Assuming Markov
property of P in terms ofA, (1) can be reformulated in the following
way:

HM (X ,A) =
∑
x ∈X

|x |A∑
k=1

p(xk |xk−1,A, P) logp(xk |A, P) (2)

The better A describes P , the more P becomes markovian: in terms
of perfect A all terms are independent.

On the other hand, cross-entropy by definition equals to:

HM (X ,A) = HM (X ) + DKL (p(b |a,A, P)| |p(b |A, P)) (3)

where DKL is Kullback-Liebler divergence. In this problem setting
Kullback-Liebler divergence reflects the information that is lost
in the process of coding, so-called informativeness further in the
paper. The entropy termHM (X ) does not depend on dictionary and
could be excluded from the optimization. The most informative
1There could be more then one coding of the same x . If x = abb , A = {a, b, ab },
then there are two such variants: {a, b, b } and {ab, b }. We use the one with minimal
code length.
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Data: Set of sequences X
Result: Optimal A
A0 = A;
X0 = frequencies of alphabet terms in X ;
t = 0;
repeat

t = t + 1;
Xt = ∅;
repeat

Pick x at random from X ;
Split x → {xk } using terms from At−1 and
frequencies from Xt−1;

foreach unigram a and bigram (a,b) from {xk } do
put a → Xt and (a,b) → Xt ;

until StoppinдCriterion(Xt );
if t mod 2 = 1 then

At = Expand(At−1,Xt );
else

At = Reduce(At−1,Xt );
end

until t mod 2 = 0 and At ∩At+1 > N ;
Algorithm 1: General schema of the algorithm

dictionary Â describing random process P can be found by the
following optimization problem:

Â = argmin
A

H (X ,A) = argmin
A

DKL (p(b |a,A, P)| |p(b |A, P))

= argmin
A

∑
x ∈X

|x |A∑
k=1

p(xk |xk−1,A, P) log
p(xk |xk−1,A, P)

p(xk |A, P)

= argmin
A

∑
x ∈X

|x |A∑
k=1

p(xk |xk−1,A, P) log
p(xk ,xk−1 |A, P)

p(xk |A, P)p(xk−1 |A, P)

= argmin
A

∑
(a,b)∈A2

f (a,b |A,X )p(b |a,A, P) log p(a,b |A, P)
p(a |A, P)p(b |A, P)

(4)

In the last transition we have grouped all entrances of pair (a,b) in
sequences of X . f (a,b |A,X )—is the total frequency of (a,b) in the
training set. We will minimize this formula by iteretively changing
A. On each step we are greedily eliminating its biggest term by
apending (a,b) into the dictionary. If the size of A is above wanted
volume, reduce it back removing least informative term. This al-
gorithm has nice convergence properties if p(∗|A, P) are precise:
cross-entropy in our form is submodular [1], and the algorithm is
greedy on the code length. The problem comes from the fact that
these probabilities are not precise in practice, and we need to do
some tricks to optimize the alphabet on real data.

3.2 Algorithm of v-grams extraction
The general schema of dictionary A construction (Alg. 1) consists
of two phases, repeating iteratively:

(1) Expansion phase. Populating dictionary with the most in-
formative elements.

(2) Reduction phase. Deleting the least informative elements
from the dictionary.

Dictionary is examined on each iteration. Let A0 = A denote
the initial dictionary in the beginning of process, and At be the
dictionary on t-th iteration. Let A′

t denote the expanded version
of At . On each iteration t dictionary At is expanded to A′

t at the
expansion phase and then is pruned to At+1 at the reduction phase.

Equality At+1 = At reflects the stopping criteria of the whole
process, meaning that dictionary remains unchanged after expan-
sion and reduction phases. Both phases require statistical data on
elements of At and A′

t . The expansion phase requires observed fre-
quencies of all pairs of occurrences, while the reduction phase needs
unigram frequencies. These statistics are calculated by sampling X
with the common mechanism described below. New statistics on
each phaser prevents overfitting on the observed sample set.

On each step, we deal with the dictionary A. Depending on a
step and phase it can take values At or A′

t . To shorten notation, we
will use term A instead of the full name of the dictionary. If this
notation becomes unclear, we will use full naming.

Statistics calculation scheme: At this step we are given dic-
tionary A, frequencies of the terms of the dictionary observed on
previous statistics harvesting. With this data in hands we perform
the following steps:

(1) Choose an element of the training set at random x ∈ X .
(2) Find the most compact representation of the element x in

terms of the current dictionary A.
(3) Update frequencies of dictionary terms involved in this rep-

resentation.
(4) Update frequencies for pairs of the dictionary elements that

appear consecutively in the entry x .

Described steps are then repeated before stopping condition is
reached. This part of the algorithm is the most computationally
intensive, and we had to introduce the stopping condition to limit
this computational difficulty. The idea behind the condition is that
every element from A should be observed at least once with some
fixed significance level.

For the set of drawn samples on the statistics calculation step,
we use XA notation if dictionary A were used for parsing.

Statistics calculation details. At the beginning of each statis-
tics calculation step, we set all frequencies of elements of A to 0.
With each drawn sequence x we increment frequencies of items,
observed in the most compact representation of x .

As stated above, x always has at least one variant of represen-
tation in terms of A, but there could be more than one variant.
To measure the quality of each variant, we can use clear metrics.
The most simple is the number of elements in the representation
of x . Despite the simplicity of this measure, it can be suboptimal
regarding presentation code length optimized on later steps. We
have experimented with this and several other metrics and found
that the code length itself that requires additional data to be calcu-
lated is substantially better than the others. Code length requires
probability values p(a |A, P) on elements of A. We have used point
estimates of these probabilities taken from the previous statistics
calculation step. For the first step, all terms are assumed equally
probable.
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Another problem with the most compact representation is that it
is computationally difficult to get for arbitrary A. The difficulty of
the naive implementation isO(2 |x |−1). On the other hand, using in-
formation onA and frequency of its elements minimum code length
could be found for O (|x |loд |A|). The algorithm has the following
schema:

(1) Initialize array L of size |x | by positive infinities
(2) For each position p from 0 to |x | − 1:
(a) Find the longest entry a of A that is equal to substring of

x starting from current position
(b) For s from set of a and its “parents” update the value of

L[p + |s |] with the L[p] + logp(s |A, P) if it is less then
current value

Resulting array L will contain the code length in the last cell and
the proper presentation could be calculated from the backtrace.

Statistics calculation stopping criteria. During the process
of statistics accumulation, a subset of textual data X denoted as
Xt is examined. For representation of entries x ∈ Xt elements
from dictionary A are used. The goal is to calculate statistics for all
elements of dictionary A in a reasonable time. We can formulate
the condition on the statistics volume to observe the least probable
dictionary element at least once with some fixed probability α .

The least probable dictionary element amin can be found, using
statistics gathered on previous step Xt−1:

p(ai |At ,Xt−1) =
f (ai |Xt−1)
|Xt−1 |At

The minimal among probabilities from the previous step is selected.
Corresponding to this probability element is denoted as amin :

amin = arg min
a∈At

p(a |At ,Xt−1)

Let λ denote the following:

λ = p(amin |At ,Xt−1) · |Xt |
Assume that elements of dictionary are appearing as a Poisson
process, one can estimate the probability of element occurrence.
With Poisson indexn = 0, probability of eventamin never occurring
is the following:

p({ f (amin ) = 0}|At ,Xt−1) = e−λ · λ
n

n!
= e−λ

Setting up α as a confidence level to be small enough, the stopping
criteria can be formulated as:

e−λ = ep(amin |At )· |Xt | < α

Hence a condition on the current statistics volume |Xt | appears:

|Xt | > − logα
p(amin |At )

The size of re-sampling Xt in terms of the dictionary At serves as
a stopping criteria of statistics accumulation.

Calculation of statistics precedes each of the main phases: ex-
pansion and reduction. After that, the random process P can be
modeled by the data from Xt using calculated frequencies. Now
the main phases of the algorithm can be explained in more details.

(1) Expansion phase. Populating the dictionary with the
most informative elements. Most informative elements
are estimated based on accumulated statistics for pairwise
frequency and Kullback-Liebler divergence in the equation
(4).

f (a,b |A,Xt )p(b |a,A, P) log p(a,b |A,P )
p(b |A,P )p(a |A,P ) (5)

If we use point estimates of the probabilities of pair ab oc-
currence:

p(b |a,A, P) = f (a,b |Xt )
|Xt |A − |Xt |

the error rate will be too high and we will always append
pairs of infrequent terms. To prevent this we should do a bit
more modeling.
Let x denote all elements of A except a and y denote all
elements of A except b:

x = {Ak } \ a,y = {Ak } \ b

Then all possible cases of elements co-occurrence can be
described as following pairs:ab,ay,xb,xy. These pairs can be
examined as independent and incompatible random events
that form a probabilistic simplex.
Let f (a,b |Ak ,Xk ), f (a,y |Ak ,Xk ), f (x ,b |Ak ,Xk ), f (x ,y |Ak ,Xk )
be corresponding frequencies and v1 = p(a,b |Ak , P), v2 =
p(a,y |Ak , P), v3 = p(x ,b |Ak , P), v4 = p(x ,y |Ak , P) denote
corresponding probabilities. Denote resulting distribution as
V ∼ Dir(γk ), where components of γkuv = f (u,v |Ak ,Xk )+
1.
Thenv1,v2,v3,v4 can be used for calculating following prob-
abilities from (5):

p(b |a,Ak , P) =
v1

v1 +v2

p(a,b |Ak , P) = v1
p(b |Ak , P) = v1 +v3
p(a |Ak , P) = v1 +v2

Then expression under summation in (5) can be rewritten as

p(b |a,Ak , P) log
p(a,b |Ak , P)

p(b |Ak , P)p(a |Ak , P)
=

v1
v1 +v2

log
v1

(v1 +v3)(v1 +v2)
Finally, with applying integral smoothing,DKL for pair (a,b)
can be calculated in the following way:

DKLab
f (a,b |Ak ,Xk ) =

∫
v

v1
v1+v2

log v1
(v1+v3)(v1+v2)dDir(γ ) (6)

This integral is then calculated numerically drawing vectors
v at random by Dir(γ ) distribution. After calculation of in-
formativeness for all pairs using equation (6), these values
are sorted. Elements with minimal DKL are selected for ex-
pansion. Concatenated pairs are then used for dictionary
expansion. Thus a length of dictionary terms can increase
as 2k with the number of iterations.

Session 8E: Optimization CIKM’18, October 22-26, 2018, Torino, Italy

1347



(2) Reduction phase. Deleting the least informative ele-
ments from the dictionary. For each dictionary element
aj except members of A, we should calculate the cost of
its removal. We code each element a by the rest of cur-
rent dictionary Ak \ a, update statistics for coding elements
(a = (b1, . . . ,bs ),bj ∈ Ak \ a ). During the update, we ap-
pend to coding element frequencies the frequency of a. After
the statistics update, the new code length is calculated. The
described method gives us the upper bound on the Xk code
length in terms of Ak \ a. Result values are then sorted and
dictionary A is reduced to the required size N by excluding
elements with minimal values.

Entries of constructed dictionary A are called v-grams with re-
spect to variability of elements length. The algorithm scheme is
similar to iterative conditional optimization. In this scheme a step in
optimal direction is performed and its result is projected to the con-
ditions. The both phases of the algorithm are greedy and optimize
the same target function: the code length of X .

4 EXPERIMENTS
In this section results of experiments based on the proposed method
are presented. Regarding the versatility of this method, it can be
successfully used in a wide variety of applications. Since it is a
feature extraction method based on the minimum description prin-
ciple, it can be applied for compression and information retrieval
tasks. These two are well-studied areas, and the effectiveness of the
proposed approach will be demonstrated by encouraging results. It
is worth noticing that such results are provided without any domain
knowledge.

The rest of the section is organized as follows. In the first instance,
it is demonstrated that assumptions from section 3 are consistent
with the method’s capability to restore original dictionary from
dictionary-based sequences. Then we present a compression track
to evaluate the effectiveness of constructed dictionary on various
types of data. In the final section, the quality of text classification
tasks on several public collections with v-grams used instead of
words and in combination with them is studied.

4.1 Dictionary reconstruction
In the method description, a couple of assumptions were used. First,
upper bound on code length instead of its true value to compare
informativeness of entries is used. This assumption allows us to
use the same calculated statistics for all terms of the dictionary,
without it we will have to exclude each term one by one during
exclude phase and calculate statistics once per term which is next
to impossible in a computational sense. The second assumption
simplifies calculation of KL-divergence DKL with a new term from
the dictionary (corresponding to the pair of old terms). It allows us
to analyze each pair independently on each other; the alternative
is to look for the combination of joins which is NP-hard. The fol-
lowing experiment on synthetic data is provided, to demonstrate
that method is capable of reconstructing a fixed random dictionary
so far. Experiment schema follows:

(1) Fix the alphabet A = Base642 encoding scheme.

2https://tools.ietf.org/html/rfc4648

(2) Set the dictionary A consisting of sequences of terms from
the alphabet A according to the scheme below.

(3) Generate a set of strings: pick random entries from the dic-
tionary uniformly and concatenate them.

(4) Direct the stream of generated strings to the input of the
proposed method.

(5) Compare dictionary entries produced by the proposedmethod
with dictionary A, checking exact match.

To set entries of A the following procedure is used:

(1) Choose a length of a dictionary entry using Poisson point
process with λ = 53. The length of a dictionary element
a ∈ A is equals to |a | = Poisson(5) + 1.

(2) Given a length of the dictionary entry |a | = n, construct an
element itself, based on alphabet A.

(3) Add obtained element to A.

Following described procedure, a dictionary A with length |A| =
1 000 is obtained for experiments. Based on it, 10 000 sequences
of length 1 000 as training data are generated. After that a dictio-
nary of v-grams is constructed, trained on generated sequences.
These results are compared to the original dictionary. A repetitive
sequence of experiments shows that 99± 1% of dictionaryA entries
are present in the constructed dictionary. This fact demonstrates
that introduced assumptions do not spoil theoretical base.

4.2 Sequential data compression
In this set of experiments, the proposed method is compared with
other compression algorithms on various sequential data X . In this
problem setting, the process of sequence generation is modeled,
assuming that strings x ∈ X are independent. This assumption
characterizes streams of data, not batches of data. One of the ap-
proaches to batch compression includes preliminary sorting of data
before the compression. This approach is beneficial in the majority
of cases. The excellent compression rate can be reached, playing
with data dependence.

Experiments are conducted to compare average compression
rate of data X without additional preprocessing (like sorting). The
original dataX is shuffled in some random order, to achieve this goal.
The proposed method is then combined with arithmetic coding.
Constructed dictionary4 is appended to data X , compressed by this
dictionary. This pair acted as an experiment output and used to
estimate the total size of the archive.

Genetic data compression. For this experiment the data from
the Oxford Nanopore Human Reference Dataset [12] is used. Ex-
tracted FASTQ data from NA12878 genome6 was compressed by
differentmethods. Compression rates of themethod, gzip and bzip27
are present at Tab. 2.

A persistent tendency of compression ratio and dictionary size
correlation was found (Fig. 1). This fact provides evidence to one
of the main characteristics of the method, namely constructing
an optimal feature set. For a feature selection method, instead of

3This parameter value allows generating long (> 10 characters) entries in the dictio-
nary A
4Compressed by gzip5
6https://github.com/nanopore-wgs-consortium/NA12878
7http://bzip.org/
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Table 2: Genetic data compression

Method Size, bytes Compression rate, %
Original data 3 288 652 678 -
gzip 937 092 187 28.5%
bzip2 871 801 533 26.5%
Dictionary size 500 845 185 024 25.7%
Dictionary size 1 000 840 701 362 25.6%
Dictionary size 2 000 836 993 024 25.5%
Dictionary size 10 000 818 544 640 24.9%
Dictionary size 20 000 810 008 576 24.6%

Table 3: Examples of extracted genetic subsequences

V-grams Frequency
AGCCTGGGTGACAGAGCAAGACTCTGTCTCAAAAA 118
AAGAACAAAGCTGGAGGCATCATGCTACCTGACTTCAAACTA 60
ACAGAGTTGAACCTTGCTTTCATAGTTCAGCTTTCAAACACTCTTT 30
AGTAATGGGATGGCTGGGTCAAATGGTATTTCTAGTTCTAGAT 256

increasing of the feature set size would only increase computational
cost.

It is essential that experiments using the proposed method pro-
vide compression rate below 25%8. Based upon gzip and bzip2
compression rate, this genetic data might seems incompressible. In-
deed, with the alphabet consisting mostly of 4 symbols {A,T ,C,G}
with rare end-of-line separators, compression rate above 25% is
not successful. With the proposed method applied, results below
25% appear, which shows that the examined data is compressible
indeed.

Another significant characteristic of the proposed method is
an unlimited length of v-grams, which is illustrated by the dic-
tionary elements produced for this compression task. Examples
of nontrivial dictionary elements of long length with frequencies
are presented in Tab. 3. These examples are called nontrivial in
contrast to trivial sequences like homopolymers or simple repeti-
tions like “ATAT...”. It is worth noticing that observed frequencies
are much greater than expected frequencies of random sequences
(29 ≫ 3·1010

447 ≃ 10−17). It is fair to assume that such sequences
might be overrepresented motifs (like cis-regulatory elements) and
serve the interests of biologists.

URL compression. The proposed method can be successfully
applied to a variety of tasks associated with large lists of URLs, such
as clickstream data utilized by web search engines and many others
(geotracks, network events, etc.). The effectiveness of the method in
an application for these tasks is based on the repeating sequences,
which often occurs in URL data. An experiment on digital object
identifier (DOI) URLs list9 compression is provided. This dataset
consists of about 50 million journal article DOIs from CrossRef’s
OAI-PMH server. Results presented in Tab. 4 were calculated for
DOI URLs 2013.

It is worth mentioning that a dictionary constructed in the pro-
cess of compression might be used as a feature set. This property

825% correspond to a 2-bit representation of each ACTG term
9https://archive.org/details/doi-urls
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Figure 1: Genetic data compression rate depending on the
size of dictionary

Table 4: DOI URLs 2013 as a stream compression

Method Size, bytes Compression rate, %
Original data 933 550 241 -
bzip2 154 035 790 16.5%
Dictonary size 500 000 112 026 029 12.0%

offers the challenge to utilize the method for malicious URL de-
tection and other information retrieval tasks. Experiments with
dictionary elements acting as a feature set for a text classification
task are as follows.

4.3 Text classification
In this section, the application of the proposed method to feature
extraction is examined. Given a textual data, a dictionary of v-
grams is constructed and can be used instead of words for text
classification. Performance is comparedwith other published results
on popular datasets, including method, proposed in [21] as far as it
based on the same MDL principle.

We have normalized the text data in the following way: all sym-
bols, except letters and digits, were excluded from the text, then
the text was converted to lower case. The resulting “character soup”
string was passed to the method. If the method can demonstrate
competitive with NLP based techniques, we can expect it to be
relevant on other data types.

The proposed method is unsupervised, which allows construct-
ing a dictionary on the whole collection of documents including
the unlabeled part. Another useful property is that the method has
the dictionary size parameter and unlike other methods will not
increase the size of the dictionary to some unreasonable value. The
other function of this parameter is to control overfit of the model.
During the experiments, we studied the influence of this parameter
on the results.
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Table 5: Text classification accuracy on 20 NewsGroups
dataset

Method Accuracy
Discriminative RBM [17] 76.2
Naive Bayes [18] 81.8
Compressed FL [21] 83.0
Bag-of-Words SVM 83.5
v-grams SVM 82.5
v-grams + BoW SVM 89.5

Table 6: Example v-grams extracted from 20 NewsGroups

V-grams Frequency
bretttheres.(74 more chars here).anocase 16
bontchevfbihhinformatikunihamburgdeorganization 18
bookofmormon 53
brownbatmanbmdtrwcom 42
comprehensivegeneralunifiedtheory 13
iamlookingfor 161
icanthinkof 70
awarethat 82
artillery 48
ator 570

20 Newsgroups. The 20 Newsgroups dataset10 is a collection
of 20 classes of different newsgroups, containing approximately
20 000 documents [16]. For this dataset, a dictionary consisting of
15 000 elements is constructed, and the SVM algorithm with the
linear kernel as a classifier is used. Experiments are conducted
varying size of the dictionary, and the best results were achieved
with 15 000 elements in the dictionary. Sklearn implementation
of the text pipeline is used as a bag-of-word baseline. Results are
presented in the Tab. 5. Please note that the result of the combined
feature set is hard to beat. We explain this result by the fact that
the combination of unique words and informative v-grams gives
a much more complete view of the textual information than any
single source. Unigram dictionary has 130116 entries, many of them
have a low frequency in the collection and thus cannot be extracted
by statistical methods, on the other hand in a broader context
these words are used and bring information to the reader. V-grams
dictionary is much smaller, but it brings a statistical perspective on
the data.

It is easy to note, that results of the v-grams alone are competi-
tive and allow us to claim that v-gram based dictionary gives an
ability to the researchers to use bag-of-word and other word-based
techniques on the data that has no word partitioning. From the prac-
tical perspective, v-grams has at least two significant advantages
over words: straightforward text normalization and fixed dictionary
volume (in this case it was >8 times smaller).

To demonstrate properties of statistical view on textual data
we have presented several items from the dictionary in Tab. 6. As
could be seen from these examples v-grams can be quite long. It
is essential that such v-grams not be examples of the overfit: the

10http://qwone.com/~jason/20Newsgroups/

Table 7: Named entity recognition from 20 NewsGroups

V-grams Frequency
universityofpittsburgh 46
universityofsoutherncalifornialosangelesca 68
universityoftennesseecomputingcenter 18
universityoftennesseedivisionofcontinuingeducation 30
universityoftorontochemistrydepartment 52
universityofvirginialines 121
universityofwashington 49
universityofwashingtonseattle 54
universityofwaterloo 43
universityofwestminster 19
universityofwisconsineauclairelines 33

first one is the author’s motto, and the second one is organization
name (part of newsgroup letter format). The occurrence of such
long strings as dictionary element reflects the fact that these strings
are very informative in the sense of compression and often appear
as a pattern. Another interesting effect involves automatic entity
extraction. According to 20 Newsgroups format many messages
are annotated with the organization corresponding to the author.
These organizations were successfully mined from the dataset by
the proposed algorithm. Several examples are demonstrated in
Tab. 711. The third type of entries in the dictionary are idioms and
word+preposition pairs that bring more information than words
along. The fourth type is plain words. The last type of observed data
are subwords that have proven [3] their value for the text analysis.

ACL IMDbmovie review. Another text collection is examined,
to demonstrate the persistence of algorithm performance on clas-
sification task. Namely ACL IMDb movie review dataset12. This
collection consists of 25 000 highly polar movie reviews for training
and 25 000 for testing [19]. The size of the dictionary constructed
by the proposed method is 15 000 and applied classifier is SVM.
The evaluation with the comparison to other methods is presented
in Tab. 9. As one can see in Tab. 8 the types of extracted items
remain the same. Although v-grams specific for the collection like
“5outof10” were extracted.

We have also tested if it is possible to transfer v-gram dictionary
from one collection to another. For this experiment, we have used
a dictionary built on 20newsgroup for IMDb classification. The
drop in classification quality was significant but results are still
competitive, and the combination of 20newsgroup v-grams and
unigrams gives second best result in our testing. So it is possible
to learn v-gram dictionary on one set of data of specific type then
and effectively use it on another.

5 CONCLUSIONS
In this paper, a new method of feature extraction from sequential
data, based on the minimum description length principle, is pre-
sented. MDL principle is implemented from the information theory
perspective, utilizing a dictionary coder for this purpose. A feature
set, constructed by the proposed method, is an optimal feature set
in contrast with the output of feature selection methods. Moreover,
11All shown entries are preceded by “organization” prefix.
12http://ai.stanford.edu/~amaas/data/sentiment/
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Table 8: Example v-grams extracted from IMDb dataset

V-grams Frequency
0outof10 12
10outof10a 67
allofasudden 35
alltheactors 45
crouchingtigerhiddendragon 10
denzelwashington 23
despitethefactthat 50
backandforth 47
badacting 154

aAll similar v-grams were extracted

Table 9: Text classification accuracy on IMDb dataset

Method Accuracy
Bag-of-Words SVM [15, 19] 88.2
Word Vectors [19] 88.9
Compressed FL [21] 90.4
v-grams SVM 88.8
v-grams + BoW SVM 94.5
v-grams (20news) 86.8
v-grams (20news) + BoW SVM 94.0

feature selection methods are often of supervised nature, while the
proposed method is unsupervised, which serves as a big virtue.

Another significant characteristic of the proposed method is
that constructed v-grams are not limited in length, which allows
extracting effective v-grams no matter how long they are. This
property is essential for both compression and classification tasks.
For compression task, the use of v-grams provides a better ratio. For
classification task, it provides automatic entity extraction, idioms
utilization and other features discovered during experiments.

In a series of experiments, main characteristics of the method
and its effectiveness are demonstrated. A method can be success-
fully applied for compression of any sequential stream data. Perfor-
mance in compression experiments surpasses popular compression
algorithms, such as gzip and bzip2. What is more, after dictionary
construction compression of data is exceptionally cost-efficient
regarding computational overhead. On top of that, elements of
dictionary constructed in compression process can be utilized as
useful features, thus solving two tasks at once: data compression
and feature extraction.

For text classification, a quality comparison of automatically
extracted “terms” vs. well-known bag-of-words model is provided.
The classification results demonstrated by the extracted feature set
were competitive with the NLP based techniques. If we combine
the v-grams with the words, the results become much better then
on any single feature set and provide a new strong baseline. We
have demonstrated that v-grams built on one dataset could work
on the other of the same type. This fact opens an opportunity for
further transfer learning research.

It is worth mentioning that the proposed method is 100% pure
statistics based and unrelated to natural language preprocessing.

Obtained within this framework results are compared to results
provided by the state-of-the-art methods with natural language
processing. This offers the challenge to deal with data, for which
preprocessing is either difficult (e.g., Oriental languages) or irrele-
vant (e.g., DNA data).

Only a small number of possible v-grams applications was exam-
ined in this paper. The most natural directions of the future work:
v-grams embedding, application to Oriental languages processing,
preprocessing of sequential data before neural networks or graphi-
cal models training. In general, v-grams provides a tool to control
the optimal size of the alphabet in sequential data processing: either
use bitwise coding to reduce the alphabet or proceed with v-gram
learning to expand.

Another important direction for future work is the application
of v-grams to data analysis, extending beyond data compression
and text classification. As demonstrated in experimental section 4,
v-grams provide insights into data and offer the challenge to dis-
coveries.
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