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Abstract.  We investigate the growth of needles from a flat substrate. We focus 
on the situation when needles suddenly begin to grow from the seeds randomly 
distributed on the line. The width of needles is ignored and we additionally 
assume that (i) the growth rate is the same for all needles; (ii) the direction of 
the growth of each needle is randomly chosen from the same distribution; (iii) 
whenever the tip of a needle hits the body of another needle, the former needle 
freezes, while the latter continues to grow. We elucidate the large time behavior 
by employing an exact analysis and the Boltzmann equation approach. We also 
analyze the evolution when seeds are located on a half-line, on a finite interval. 
Needles growing from the two-dimensional substrate are also examined.

Keywords: exact results, surface eects, Boltzmann equation, kinetic growth 
processes
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1.  Introduction

Crystallization of a substance from vapor or melt often implies simultaneous forma-
tion of many crystallite seeds on a substrate. These seeds than continue to grow from 
the substrate competing for the material left in the vapor or melt. Such crystals are 
subject to geometrical selection—the probability for a given seed to grow into a large 
crystal depends on its geometrical orientation [1–3]. In the case of growth of thin needle 
crystals (see [4–8] for examples of dierent substances growing in needles), geometrical 
selection essentially implies that when two thin needle crystals meet, the less vertical 
needle stops growing while the more vertical needle continues to grow.

In this paper we propose a toy model of geometrical selection and analyze its prop-
erties in various settings including growth from 1D or 2D substrate with uniform den-
sity of initial seeds, growth from a finite set of seeds, and growth from seeds distributed 
with constant density on a half-line. In the case of infinite 1D substrate we show the 
problem is closely related to the one-dimensional trac model [9] allowing us to find an 
exact solution in the totally asymmetric case and to construct exact upper and lower 
bounds on the probability of a needle survival in the general case. We also solve the 
Boltzmann equation and show that it gives qualitatively correct decay laws, e.g. the 
asymptotic density of surviving needles is correct up to an amplitude, while more sub-
tle features like the decay of the needles substantially more tangential to the substrate 
than the typical surviving needles are wrong. In the 2D case, we analyze the scaling 
behavior and the Boltzmann equation. When the number of needles growing from the 
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1D substrate is finite, we show that the exact distribution of the number of ultimately 
surviving needles is the same as the distribution of the number of surviving clusters in 
the 1D ballistic aggregation [10–13]. In the case of the initially occupied half-line, we 
calculate the large time asymptotic of the average number of needles infiltrating the 
seed-free half-line.

The paper is organized as follows. We define the model in section 2. In section 3, 
we study the angle distribution for growing needles on an infinite 1D substrate. In sec-
tion 4, we construct a scaling theory for the angle distribution for growing needles on 
the 2D substrate and we analyze the corresponding Boltzmann equation. In section 5, 
we present several exact results and conjectures concerning the needles growing from 
a finite part of the 1D substrate. In section 6, we summarize our results and discuss a 
few unsolved problems.

2. The model

We mimic a needle by a ray growing from a seed. Seeds are randomly distributed on 
the one-dimensional horizontal line y   =  0, and the needles grow into the upper half-
plane y   >  0. The speed of the growth is assumed to be the same for all needles (we set 
it equal to unity). The direction of growth is random, and this causes the interaction 
between the needles—one must define what happens when the tip of one needle hits the 
body of another one. We postulate that such a collision freezes the first needle, while 
the second needle is not aected.

In the realm of our model the evolution is fully deterministic, the randomness is 
only in the initial conditions, and the interaction between the needles occurs only in 
collisions. A number of dierent needle growth models have been investigated, see [14] 
for a review. In these models the growth mechanism was usually stochastic, and the 
interactions were also very dierent (e.g. caused by some kind of screening or shadowing 
mechanism). For instance, Laplacian needles where the interaction is via a Laplacian 
field have been studied in [15–19]. Needle models in which the growth is caused by bal-
listic deposition were also studied, particularly by Krug and Meakin [20–22].

The analysis of this strongly interacting infinite-needle system simplifies after pro-
jection on the one-dimensional horizontal line from which the growth has begun. We 
then follow the motion of the projections of the tips. Each such projection, a particle, 
moves with a certain velocity v; in terms of the inclination angle θ of its direction of 
growth to the vertical axis, |θ| � π

2
, the velocity is v = sin θ. We assume that (i) initial 

velocities are uncorrelated and drawn from the same velocity distribution P0(v); (ii) 
initial positions (the locations of the seeds) are also uncorrelated, without loss of gener-
ality we set the density to unity.

Many of our results are valid for an arbitrary P0(v). Symmetric velocity distribu-
tions, P0(v) = P0(−v), usually arise in applications and some of the results simplify in 
this case. Therefore, we often consider symmetric velocity distributions. The results 
also significantly simplify for totally asymmetric velocity distributions, P0(v) = 0 for 
v < 0, as we shall see below.

https://doi.org/10.1088/1742-5468/ab270c
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Let P (v, t) be the velocity distribution of growing needles. This quantity contains 
the total density

n(t) =

∫ 1

−1

dv P (v, t)� (1)

and the average velocity

〈|v|〉 = 1

n(t)

∫ 1

−1

dv |v|P (v, t).� (2)

Needless to say, P0(v) ≡ P0(v, t = 0). Since we set the initial density to unity: 

n(t = 0) =
∫ 1

−1
dv P0(v) = 1.

At first sight, the description in terms of the point particles moving on the one-
dimensional line looks simpler than the original description it terms of needles growing 
in the two-dimensional space. The collision rule becomes more complicated, however: 
colliding particles have dierent positions. Indeed, in a collision of particles with veloci-
ties of the same sign, the particles never meet (the fast particle disappears before 
catching the slow particle); in a collision of particles moving toward each other, they 
pass through each other (the actual collision of needles occurs later). Overall in every 
collision, the particle moving with larger speed disappears (see figure 1(c)).

Consider two particles with initial coordinates x1 and x2 and velocities v1 and v2 and 
assume, for definiteness, that x1 < x2 and v1 > v2 > 0. The tip of the first needle will hit 
the second needle at a certain time t. The tip of the second needle was there at some 
earlier time τ . We have

t cos θ1 = τ cos θ2, t sin θ1 = τ sin θ2 + x2 − x1.

Recalling that v1 = sin θ1 and v2 = sin θ2, we find

τ = t

√
1− v21
1− v22

, x2 − x1 = t

(
v1 − v2

√
1− v21
1− v22

)
.� (3)

The initial distance between the tips is x2 − x1. The final distance between the tips 
(after the projection on the horizontal line) is

x2 − x1 + t(v2 − v1) = (x2 − x1)v2

√
1− v22 −

√
1− v21

v1
√
1− v22 − v2

√
1− v21

.� (4)

It is easy to check that the same equations hold when the velocities of the two colliding 
particles have dierent sign (i.e. v1 > 0 > v2, and |v1| > |v2|.

3. Velocity distribution

To determine the velocity distribution P (v, t) of growing needles we employ the method 
developed in the context of trac model [9], see also a textbook exposition [23]. In the 
trac model the collision occurs when two particles (representing cars) are at the same 
place; in the needle model the tips are at dierent places, see (4). Further, in the trac 

https://doi.org/10.1088/1742-5468/ab270c
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problem the proper initial velocity distribution P0(v) was totally asymmetric, P0(v) = 0 
for v < 0. This was crucial in deriving the exact velocity distribution [9]

P (v, t) = P0(v) exp

[
−t

∫ v

0

dwP0(w) (v − w)

]
.� (5)

The needle problem with totally asymmetric velocity distribution (P0(v) = 0 for v < 0) 
is also exactly solvable. The corresponding velocity distribution

P (v, t) = P0(v) exp

[
−t

∫ v

0

dwP0(w)

(
v − w

√
1− v2

1− w2

)]
� (6)

is the direct generalization of (5) for the non-local rules of needle collision, see the 
paragraph below (8) for the derivation of this result. We have not succeeded in finding 
P (v, t) for an arbitrary initial velocity distribution, and even for symmetric initial 
velocity distributions. In the general case it is possible to establish upper and lower 
bounds on the distribution P (v, t) as we now demonstrate.

3.1. Exact bounds

Consider a target particle moving with velocity v (v > 0 for concreteness). This particle 
can be eliminated in a collision with a slower particle on the right of the target particle. 
In order for a slower particle with velocity w, |w| < v, to be able to eliminate the target 
particle before time t, the slow particle should be located within a distance

∆x(v,w; t) = t

(
v − w

√
1− v2

1− w2

)
� (7)

Figure 1.  (a) Schematic illustration of the formation of a polycrystalline film by 
geometric selection, in case of crystals growing from seeds of arbitrary polygon 
shape (adopted from [3]); (b) similar geometric selection for thin pyramidal crystals 
(adopted from [7]); (c) the limiting case of arbitrary thin needles considered in this 
paper. In all cases the selection rule on collisions is that the more vertical line 
survives while the less vertical perishes.

https://doi.org/10.1088/1742-5468/ab270c
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of the target particle. If for any |w| < v there is no potential ‘killer’ particle in the corre
sponding interval ∆x(v,w; t), the target particle is guaranteed to survive up to time t. 
This gives the following lower bound P�

5

P (v, t) � P�(v, t) = P0(v) exp

[
−t

∫ v

−v

dwP0(w)

(
v − w

√
1− v2

1− w2

)]
.� (8)

The exponential reflects the assumption that the initial seeds are randomly located 
(with unit density); the length of the interval around the target particle which must be 
free of slow particles is given by (7).

When the velocities of all particles are positive, the lower bound (8) is simultane-
ously an upper bound, and hence the exact solution. Indeed, it is possible that the killer 
particle (blue in figure 2(a)) does not eliminate the target particle (red in figure 2(a)) 
because there exists another particle (‘killer’-2, black in the figure) which eliminates it 
before it reaches the red one. But if all particle velocities are positive, the black particle 
is guaranteed to eliminate the red one even earlier than the blue one. As a result, in 
this case the existence of the blue particle within the interval ∆x(v,w; t) guarantees 
that the red one will be dead either at the moment t or earlier.

This logic is inapplicable when velocities can be both positive and negative: figure 2(b) 
shows an example of a particle which is eliminated later than it would have been by 
the initial (blue) killer particle. However, one can still construct an upper bound for the 
survival probability. Consider the situation with the target (red) and the killer (blue) 
particles having velocities with dierent signs (figure 2(c)). Because of possible interfer-
ence of other particles, we cannot guarantee that the red particle will be dead after its 
intersection with the world line of the blue particle. However, the target particle can-
not survive beyond the black point in figure 2(c), which is the intersection of the world 
line of the target particle and of a virtual particle which starts in the same point as 

A B C

Figure 2.  Possible interplay of three intersecting needles. (a) In the case of needles 
with positive inclinations the existence of the third (black) needles leads to the red 
needle being killed even sooner than it would have been if only the blue one existed; 
(b) this is not true if needles can have both positive and negative inclinations: in 
this case the black needle might kill the red one later than the blue one would 
have done; (c) still, one can write an upper bound on the needle surviving time: 
the existence of the blue needle guarantees that the red one will be dead beyond 
the black point (see explanation in the text).

5 In equation (8) and many following equations we tacitly assume that v � 0; the generalization to v < 0 is 
straightforward, and since we are mostly interested in symmetric distributions, it suces to know the behavior in 
the v � 0 region.

https://doi.org/10.1088/1742-5468/ab270c
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the blue one, and has the velocity  −w, i.e. opposite to the velocity of the blue particle. 
Indeed, it is obvious that any possible third particle which could possibly eliminate the 
blue one would intersect with the world line of red particle before the black point. The 
same is true for the possible fourth particle which could eliminate the third, and so on 
ad infinitum. Thus, we arrive at the upper bound

P (v, t) � Pu(v, t) = P0(v) exp

[
−t

∫ v

−v

dwP0(w)

(
v − |w|

√
1− v2

1− w2

)]
.

� (9)
The bounds (8) and (9) are valid for an arbitrary velocity distribution. For a com-

pletely asymmetric velocity distribution, P0(v) = 0 for v < 0, the two bounds coincide 
giving the announced exact solution (6).

In the remaining part of this subsection we consider only symmetric velocity distri-
butions, P0(v) = P0(−v). For such distributions, the bounds (8) and (9) give

e−2t[I1(v)−I2(v)] �
P (v, t)

P0(v)
� e−2tI1(v)

� (10)

with

I1(v) = v

∫ v

0

dwP0(w)� (11a)

I2(v) =

∫ v

0

dww

√
1− v2

1− w2
P0(w).� (11b)

For the uniform initial velocity distribution

P0(v) =

{
1
2

|v| < 1

0 |v| > 1� (12)

which corresponds to the situation when the initial distribution of the inclination 

angles is given by Π(θ) = 1
2
cos θ for |θ| � π

2
, the integrals (11a) and (11b) are I1 = v2/2 

and I2 =
√
1− v2

(
1−

√
1− v2

)
, so the bounds become

1

2
exp

[
−t

(
1−

√
1− v2

)]
� P (v, t) �

1

2
exp

[
−v2t

]
.� (13)

For the uniform initial distribution of the inclination angles, Π(θ) = π−1 for |θ| � π
2
, 

the initial velocity distribution is P0(v) = π−1(1− v2)−1/2. In this case I1 = π−1v sin−1 v 
and I2 = −(2π)−1 ln(1− v2) leading to

exp

[
−2tv sin−1 v

π

]
(1− v2)−t/π �

P (v, t)

P0(v)
� exp

[
−2tv sin−1 v

π

]
.� (14)

The long-time behavior of the velocity distribution is determined by the small-
velocity behavior of the initial velocity distribution. Assuming an algebraic small veloc-
ity behavior,

P0(v) � A|v|µ� (15)

https://doi.org/10.1088/1742-5468/ab270c
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when |v| � 1, one gets

I1 �
A

µ+ 1
|v|µ+2, I2 �

A

µ+ 2
|v|µ+2

� (16)

allowing one to write the exact bounds (8) and (9) in the scaling form

A|v|µ exp
[
−B1|v|µ+2t

]
� P (v, t) � A|v|µ exp

[
−B2|v|µ+2t

]
,� (17)

where

B1 =
2A

(µ+ 1)(µ+ 2)
, B2 =

2A

µ+ 1
.� (18)

Using (17) we find that the density and the average speed exhibit simple algebraic 
behaviors in the large time limit:

2A(1− ν)Γ(ν) (B2t)
−ν � n � 2A(1− ν)Γ(ν) (B1t)

−ν
� (19a)

1

Γ(1− ν)
(B2t)

ν−1 � 〈|v|〉 � 1

Γ(1− ν)
(B1t)

ν−1
� (19b)

where we used short-hand notation

ν =
µ+ 1

µ+ 2
.� (20)

The velocity distribution is expected to acquire a scaling form

P (v, t) = At−µ/(µ+2)V µP(V ), V = |v| t1/(µ+2)
� (21)

in the long-time limit. The bounds (17) show that P(0) = 1 and imply that 
lnP(V ) � −BV µ+2 as V � 1. The exact value of B is unknown; equation (17) lead to 
the bounds B1 � B � B2.

The most natural case from the point of view of the needle growth problem is one 
where initial velocity distribution remains finite at zero velocity, i.e. µ = 0. In this case 
the velocity distribution becomes

A exp
[
−Av2t

]
� P (v, t) � A exp

[
−2Av2t

]
� (22)

while the particle density and the average particle speed both decay as t−1/2:√
πA

t
� n �

√
πA

2t
,

1√
πAt

� 〈|v|〉 � 1√
2πAt

.� (23)

These asymptotic behaviors agree with predictions of Kolmogorov [2] who arrived to 
them using scaling arguments; Kolmogorov also gave hints about exact amplitudes 
which he planned to derive in a later (never published) work. The t−1/2 decay of the 
density of needles has been also found in a number of needle models in which the under-
lying growth mechanism is stochastic, see e.g. [20, 21].

https://doi.org/10.1088/1742-5468/ab270c
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3.2. Boltzmann equation approach

In this subsection we consider only symmetric velocity distributions, P0(−v) = P0(v). 
In this situation, the lower bound (8) simplifies to

P�(v, t) = P0(v) exp

[
−vt

∫ v

−v

dwP0(w)

]
.� (24a)

Equivalently, the lower bound can be obtained by solving a linear Boltzmann-like 
equation

∂P�(v, t)

∂t
= −vP�(v, t)

∫ v

−v

dwP0(w).� (24b)

In turn, the upper bound (9) which we re-write as

Pu(v, t) = P0(v) exp

[
−vt

∫ v

−v

dwP0(w)

(
1−

√
v−2 − 1

w−2 − 1

)]
� (25a)

satisfies a linear Boltzmann-like equation

∂Pu(v, t)

∂t
= −vPu(v, t)

∫ v

−v

dwP0(w)

(
1−

√
v−2 − 1

w−2 − 1

)
.� (25b)

The Boltzmann equation describing the evolution of P (v, t) has the form

∂P (v, t)

∂t
= −P (v, t)

∫ v

−v

dw

(
v − w

√
1− v2

1− w2

)
P (w, t) = −vP (v, t)

∫ v

−v

dwP (w, t),� (26)

where we have used (3) and simplified the integral by using the symmetry: 
P (−w, t) = P (w, t). In contrast to the linear Boltzmann-like equations  (24b) and 
(25b) for the lower and upper bounds, the Boltzmann equation  (26) is a non-linear 
integro-dierential equation. One can reduce (26) to a non-linear partial dierential 
equation (PDE)

v
∂2P

∂v∂t
− v

P

∂P

∂v

∂P

∂t
=

∂P

∂t
− 2v2P 2� (27)

which looks even more challenging that (26). The Boltzmann equation (26) and its PDE 
version (27) appear analytically intractable. In the most interesting long-time limit, 
however, one can derive asymptotically exact results since the solution acquires a scal-
ing form. We now describe the procedure in the most natural case of a continuous sym-
metric velocity distribution which remains finite at zero velocity, P (v = 0) = A > 0. 
The structure of equation (26) suggests to seek the velocity distribution in the scaled 
form

P (v, t) = AF (V ), V = v
√
2At.� (28)

https://doi.org/10.1088/1742-5468/ab270c
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Plugging (28) into equation (26) we obtain

F ′ = −2F (V )

∫ V

0

dW F (W )� (29)

where (·)′ = d(·)/dV . Writing Φ(V ) =
∫ V

0
dW F (W ) one transforms (29) into Φ′′ = −2ΦΦ′ 

which can be further integrated to yield Φ′ = 1− Φ2 and then Φ = tanh(V ) leading to

FBE(V ) =
1

cosh2(V )
.� (30)

Clearly, this scaled velocity distribution does not lie within the exact bounds 

e−V 2/2 � Fexact(V ) � e−V 2
 [see (22)]. Equations  (28) and (30) predict the following 

asymptotic decay of the density and the average speed

nBE =

√
2A

t
, 〈|v|〉BE =

ln 2√
2At

.� (31)

Comparing with the exact bounds (23) we conclude that the Boltzmann equa-
tion approach gives qualitatively correct t−1/2 decay laws. The amplitudes predicted by 
the Boltzmann equation approach are probably erroneous, although they lie inside the 
exact bounds (23).

4. Two dimensions

In this section we consider needles of finite width growing from a two-dimensional 
substrate. We start with needles of constant width and then consider a more realistic 
model of conical needles with linearly growing width.

4.1. Cylindrical needles (constant width)

Here we assume that the needles are cylinders with equal radii a. Other assumptions 
are like in the one-dimensional setting, e.g. the speed of the longitudinal growth is 
assumed to be the same for all needles and the growth begins at the same time t  =  0. 
In the long time limit the projections of the surviving needles will have small veloci-
ties. The molecular chaos assumption underlying the Boltzmann equation is plausible 
in two dimensions, while in one dimension it is violated as we have seen in the previous 
section.

Within the Boltzmann equation approach, the velocity distribution evolves accord-
ing to

∂P (v, t)

∂t
= −a

∫

|w|<|v|
P (v, t)P (w, t)

∣∣∣∣∣v −w

√
1− v2

1− w2

∣∣∣∣∣ dw.� (32)

We limit ourselves by the symmetric case when the velocity distribution depends only 
on the speed v = |v|. After changing to the polar coordinates, one gets
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∂P (v, t)

∂t
= −a

∫ v

0

P (v, t)P (w, t)wdw

∫ 2π

0

dφ
√

X(v,w)− Y (v,w) cosφ,� (33)

where φ is the angle between vectors v and w, and

X(v,w) =
v2 + w2 − 2w2v2

1− w2
;Y (v,w) = 2vw

√
1− v2

1− w2
.� (34)

In the case of small velocities (v � 1) which is the only one relevant at large time, one 
can drop higher order terms in (34) and rewrite (33) in a more convenient form

∂P (v, t)

∂t
= −2πav3P (v, t)

∫ 1

0

dx xf(x)P (xv, t)� (35)

where we have used the shorthand notation

f(x) =
1

2π

∫ 2π

0

dφ
√

1 + x2 − 2x cosφ.� (36)

The function f(x) can be expressed through the complete elliptic integral of the second 
kind. From such an exact expression, or directly from (36), one finds that f(x) slowly 
increases as x increases, more precisely (see figure 3)

f(x) =

{
1 + x2

4
+ x4

64
+ . . . 0 < x � 1

4
π
− 2(1−x)

π
+ . . . 0 < 1− x � 1

.

We again assume that P (v = 0) = A > 0 and seek the velocity distribution in the 
scaling form (28). The scaling of the velocity should be modified, however. The struc-
ture of equation (35) shows that t−1 ∼ Aav3, so the properly scaled velocity distribu-
tion is

P (v, t) = AF (V ), V = v
3
√
2πAat.� (37)

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

f

Figure 3.  The function f(x) appearing in (35) is a function of x monotonically 

increasing from f(0) = 1 to f(1) = 4
π
.
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Making this substitution we transform the Boltzmann equation (35) into

F ′ = −3FV 2

∫ 1

0

dx xf(x)F (xV )� (38)

which should be solved subject to the boundary condition

F (0) = 1.� (39)
The boundary-value problem (38) and (39) is analytically intractable, so we limit 

ourselves to asymptotic behaviors. In the small velocity limit, 0 < V � 1, the scaled 
velocity distribution admits an expansion

F (V ) = 1− αV 3 + βV 6 + . . .� (40)

(Perhaps a bit surprisingly, the scaling function F (V ) is non-analytical in the V = |V| → 0 
limit.) By inserting the expansion (40) into (38) we extract the amplitudes

α =

∫ 1

0

dx xf(x) =
16

9π
� (41a)

β =
α

2

[
α +

∫ 1

0

dx x4f(x)

]
=

128

81π2
+

845 + 18G

1296π2� (41b)

where G =
∑

k�0(−1)k/(2k + 1)−2 is the Catalan constant. In the large velocity limit, 
V � 1, one easily establishes an exponential decay

F (V ) ∝ e−CV , C = 3

∫ ∞

0

dW WF (W ).� (42)

It does not seem possible to find an analytical expression for C. The scaling form (37) 
gives the decay laws for the density and the average speed

n ∼ t−2/3, 〈|v|〉 ∼ t−1/3.� (43)

Figure 4.  Inosculating needles, i.e. needles which do not die immediately after 
collision.
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4.2. Conical needles (growing width)

We now assume that needles are (circular) cones with radii growing linearly with time 
(distance from the seed), as shown in figure  1(b) There is some similarity with the 
touch-and-stop model of growth [24–27], also known as the lilypond model [28–30], 
although in that model every collision freezes both disks.

The Boltzmann equation reads

∂P (v, t)

∂t
= −λtv3P (v, t)

∫ 1

0

dx xP (vx, t) f(x),� (44)

which is nothing but (35) with time-dependent a. The scaled velocity distribution has 
the form

P (v, t) = AF (V ), V = (λAt2)1/3v.� (45)

The decay laws for the density and the average speed are

n ∼ t−4/3, 〈|v|〉 ∼ t−2/3.� (46)

The scaled velocity distribution satisfies the same equation (38) (apart from a dierent 
numerical factor in the right-hand side), and therefore the large-velocity tail is again 
exponential

F (V ) ∼ exp [−CV ] .� (47)
One can similarly analyze other growth laws of the radii of cones. Indeed, if the 

radius of a cone grows as a ∼ tα we must replace λt → λtα on the RHS of (44). The 
proper scaling variable is now

V ∼ vt(1+α)/3.� (48)
Hence the decay laws for the particle density and the average particle speed are

n ∼ t−2(1+α)/3; 〈|v|〉 ∼ t−(1+α)/3.� (49)

The consideration above implies that a needle (either cylindrical or conical) stops 
growing immediately after collision with a more vertical one. In a more realistic sce-
nario, such needles do not perish immediately—the side of the needle in touch with a 
more vertical one stops growing, while the other side ‘does not know’ that a collision 
happened and continues growing (see figure 4). As a result, a continuous film of inos-
culated needles is formed. Continuity implies that the typical transversal size of the 
surviving part of the needle scales as n−1/2. This in conjunction with (49) yields

a ∼ tα ∼
(
t−2(1+α)/3

)−1/2 → α = 1/2.� (50)

Thus n ∼ t−1 and 〈|v|〉 ∼ t−1/2 for the case of inosculating needles. These scaling laws 
were stated by Kolmogorov [2] who apparently relied on similar scaling arguments.
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5. Needles growing from an interval or half-line

In this section we return to the one-dimensional substrate and consider what hap-
pens if the original substrate is not uniformly covered by seeds. First, we consider the 
evolution of a finite number of needles and calculate the distribution of the number 
of immortal needles, i.e. needles surviving up to t = ∞. Second, we discuss the set-up 
when needle seeds are located on a half-line and study how they infiltrate the half-line 
which is initially free of needles.

5.1. Finite number of needles

Consider the evolution of N needle seeds initially located at a certain finite interval. 
Our aim is to calculate the probability distribution Π(n|N) of exactly n of them surviv-
ing ad infinitum. We assume that needle velocities are taken independently from the 
same distribution P0(v), with symmetric P0(v) being the most interesting case.

The set of N needles can be recursively separated into smaller subsets which have 
almost no interactions with one another and this allows us to construct recursive 
relations for Π(n|N) as we show below. To appreciate this idea, consider the needle 
with the smallest speed (we call it ‘slow needle-1’ below). Note that, (i) this needle is 
immortal—there is no other slower needle to kill it, (ii) the needles on the left and on 
the right of it will never interact, and (iii) the survival of other needles does not depend 
on the velocity of this slowest needle: any other needle moving towards it will eventu-
ally perish. This allows us to write

Π(n|N) =
N−1∑
M=0

n−1∑
m=0

1

N
ΠR(m|M)ΠL(n−m− 1|N −M − 1).� (51)

We label needles from right to left and denote by M the number of needles to the right 
of the slowest; the 1/N factor is the probability that (M + 1)th needle is the slowest. 
ΠR,L(m|M) are the probabilities that exactly m out of M needles to the right (respec-
tively, left) of the slowest needle are ultimate survivors (see figure 5 for an illustration). 
If P0(v) is symmetric, ΠR(m|M) = ΠL(m|M).

The distributions ΠR,L(m|M) satisfy similar recurrences. Take for instance ΠR(m|M). 
The slowest needle of the set of M needles (‘slow needle-2’) separates it into two non-
interacting subsets. The subset to the left of it will definitely die out: indeed, it is 
contained between slow needle-1 and slow needle-2, which work eectively as absorb-
ing walls, while the subset to the right forms a new rightmost subset for which slow 
needle-2 plays exactly the same role as slow needle-1 for the original set. Finally, the 
survival of the slow needle-2 itself depends only on the sign of its velocity: if it is posi-
tive it will survive ad infinitum, if it is negative it will collide with slow needle-1 and 
die. Collecting all this, and taking into account that every needle of the set has equal 
probability to be the slowest, we get

ΠR(m|M) =
1

M

M−1∑
K=0

[ pLΠR(m|K) + pRΠR(m− 1|K)].� (52)
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Here p L (respectively, p R) is the probability that the slowest needle has negative (respec-
tively, positive) velocity. The recurrence relation for ΠL is the same, up to replacement of 
indexes: R → L. Needless to say, pL = pR = 1/2 for symmetric P0(v), and pL = 0, pR = 1 
for the completely asymmetric one. In a more general case when P0(−v)/P0(v) is a 
v-independent constant λ, we have pL = λ/(λ+ 1) and pR = 1/(λ+ 1). For a generic 
P0(v), the probabilities p L and p R depend on the velocity of the needle in question.

Initial and boundary conditions read

ΠR(m|0) = δm,0, ΠR(−1|M) = 0.� (53)
We introduce generating functions

G(s, z) =
∞∑

M=0

∞∑
m=0

Π(m|M)smzM� (54a)

GR,L(s, z) =
∞∑

M=0

∞∑
m=0

ΠR,L(m|M)smzM .� (54b)

The one-sided recursion (52) can be re-written as
∞∑

M=0

∞∑
m=0

MΠR(m|M)smzM = ( pL + spR)
∞∑

m=0

∞∑
K=0

ΠR(m|K)
∞∑

M=K+1

smzM ,� (55)

which reduces to

z
∂GR(s, z)

∂z
= ( pL + spR)

z

1− z
GR(s, z).� (56)

Integrating this equation, one gets for a one-sided generating function

GR(s, z) = (1− z)−( pL+spR).� (57)

Figure 5. Recurrence relations for the survival probabilities in the system with finite 
number of needles. (A): the most vertical needle (thick line) separates the whole set 
of needles into two domains (shaded dierently) which evolve separately; (B) needles 
in a quadrant: the most vertical needle separates the set into the part confined 
between itself in the wall (lightly shaded) where all the needles eventually perish, 
and the outer part (densely shaded) for which it works as an eective new wall.
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Similarly, GL(s, z) = (1− z)−( pR+spL).
The two-sided recursion equation (51) turns into equation

z
∂G(s, z)

∂z
= szGR(s, z)GL(s, z)� (58)

for the generating functions. Thus

G(s, z) = s

∫
dz

(1− z) pL+spR(1− z) pR+spL
= s

∫
dz

(1− z)1+s
= (1− z)−s,� (59)

which is a well-known [31, 32] generating function of the Stirling numbers [33] of the 
first kind:

∑
N�0

N∑
n=0

[
N

n

]
sn

zN

N !
= (1− z)−s.� (60)

Therefore,

Π(n|N) =
1

N !

[
N

n

]
.� (61)

It is now easy calculate the moments of the Π(n|N) distribution exploiting the prop-
erties of the Stirling numbers. For example, the average and the variance of the number 
of ultimately surviving needles

〈n〉 = HN ,
〈
n2
〉
− 〈n〉2 = HN −H

(2)
N� (62)

are expressed through harmonic numbers HN =
∑

1�k�N k−1 and H
(2)
N =

∑
1�k�N k−2.

The same distribution (61) describes the outcome of the ballistic aggregation pro-
cess where particles undergo totally inelastic collisions [10–13]. Another example is a 
bullet problem [34] where N bullets are shot one after another in the same direction 
and whenever two bullets collide they both annihilate—in that problem the emerging 
distribution Πann(n|N) is rather similar to (61). The distribution (61) also often arises 
in theory of records [35, 36], in studies of lead changes in networks [37, 38], and in 
numerous problems in combinatorics [31, 32, 39].

5.2.  Infiltration

Consider now the situation when the seeds are uniformly distributed on the half-line 
x  <  0, namely, the probability density P (x, v, t = 0) to find a seed at x with velocity v is

P (x, v, t = 0) =

{
P0(v) x � 0

0 x > 0.� (63)

In this case, similarly to the case of a finite set of seeds, some needles survive ad 
infinitum. For the nth needle from the boundary, we denote by sn its ultimate survival 
probability. The nth needle is eternal if it has a positive velocity which is smaller than 
the velocities of all n  −  1 needles to the right of it. If P0(v) has a fixed asymmetry, i.e.
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P0(−v)

P0(v)
= λ� (64)

for all v > 0, the sign and the speed are independent random variables and

sn =
Λ

n
, Λ ≡ 1

1 + λ
� (65)

where Λ is the probability that velocity is positive, and n−1 is a probability that abso-
lute value of velocity is the smallest among n equally distributed ones. In particular, 
sn  =  1/(2n) for symmetric distributions, and sn  =  1/n for completely asymmetric ones. 
For more general P0(v), the ultimate survival probability sn converges to (65) when 
n � 1 if we define

λ = lim
v→0

P0(−v)

P0(v)
.� (66)

Moreover, given (28) one expects that probability of survival at a finite time s̃n(t) 
behaves as

s̃n(t) = sn + ant
−ν + o(t−ν),� (67)

where ν is defined by equation (20).
We also want to determine the probability rn that the nth needle is not only immor-

tal but also becomes the rightmost at infinite time, i.e. that it survives, but all needles 
on the right of it are eliminated. In the completely asymmetric case the rightmost nee-
dle always survives, rn = δ1,n; in the general case, the rightmost needle always survives 
only if its velocity is positive. It is instructive to introduce a cumulative distribution

R0 = 1, Rn = 1−
n∑

k=1

rk for n � 1,� (68)

which is the probability that all n rightmost needles eventually perish. The nth needle 
will be the rightmost at t = ∞, if (i) it survives till infinite time; (ii) needles to the right 
of it are eliminated. For the distributions with fixed asymmetry these two events are 
independent—the event (ii) depends only on the sign of the velocities of the first (n− 1) 
needles, which are completely decoupled from absolute values of the velocities in this 
case. Thus one gets

rn = Rn−1 −Rn = snRn−1, Rn = (1− sn)Rn−1.� (69)
Recalling (65) we solve the above recurrence and obtain

Rn =
Γ(n+ 1− Λ)

Γ(1− Λ)Γ(n+ 1)
, rn =

Λ

Γ(1− Λ)

Γ(n− Λ)

Γ(n+ 1)� (70)

which shows that Rn ∼ n−Λ and rn ∼ n−1−Λ when n � 1.
Let us look at needles that infiltrate initially empty half-line x  >  0. One interesting 

quantity is the total number of such needles which are alive at time t:

N(t) =

∫ ∞

0

dx

∫ ∞

0

dvP (x, v, t).� (71)
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Another interesting quantity is the total number of needles which infiltrated the posi-
tive half-line up to time t:

M(t) =

∫ t

0

dτ

∫ ∞

0

dv
∂P (x, v, τ)

∂x

∣∣∣∣
x=0

.� (72)

In figure 6 we show the numerical results for N(t) and M(t) in the case of symmetric 
uniform distribution (12). Both quantities grow logarithmically with slopes suspiciously 
close to 1/4 and 1/3, respectively.

We have not determined N(t) or M(t) analytically, but we have computed a similar 
quantity I(t), the average number of ‘immortal’ needles, which infiltrate the positive 
half-line at time t. Clearly, I(t) � N(t) � M(t). To determine I(t) we first compute the 
survival probability S(v, x) of a needle starting at point  −x with velocity v:

S(v, x) = Θ(v) exp

(
−x

∫ v

−v

P0(w)dw

)
,� (73)

where Θ(v) is the Heaviside function. Then I(t) is simply

I(t) =

∫ ∞

0

dv

∫ vt

0

dxP0(v)S(v, x) =

∫ ∞

0

dv
P0(v)

F (v)
[1− exp (−vF (v)t)] ,� (74)

where F (v) =
∫ v

−v
dwP0(w). The long-time behavior of (74) is controlled by the behav-

ior of P0(v) at small velocities:

P0(v) � Λ
dF

dv
, F (v) � avµ+1,� (75)

where µ and Λ are defined by (15) and (65), and a is a numerical constant. This allows 
to rewrite (74) in the form

Figure 6. Numerical simulations of the needle infiltration. (A) The survival 
probability of nth needle as a function of time for n  =  1...8 converges to 1/2n as 
t → ∞. (B) The average number N(t) of alive needles infiltrating the positive half-
line at time t (open circles), and the total number M(t) of needles which have 
infiltrated the positive half-line up to time t including those which eventually froze 
(closed circles). The straight lines are guides for the eyes and have slopes 1/4 and 
1/3.
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I(t) � Λ

∫ Y (t)

0

1− exp(−y)

y
dy = Λ

µ+ 1

µ+ 2
ln t+O(1),� (76)

where Y (t) = a−1/(µ+2)t(µ+1)/(µ+2). In the most interesting case of symmetric velocity 
distribution with P0(0)  >  0

I(t) =
1

4
ln t+O(1).� (77)

Simulation results suggest (see figure 6(B)) that N(t)− I(t) = O(1), i.e. the number of 
alive but mortal particles in the positive half-line remains finite throughout the evo
lution. The total number of particles M(t) that penetrated into the positive half-line 
also grows logarithmically, but with a dierent pre-factor; when µ = 0,λ = 1 the pre-
factor looks suspiciously close to 1/3. Analytical calculation of the amplitude in the 
general case is an interesting challenge.

6. Discussion

For needles growing from the one-dimensional substrate, we have found upper and 
lower bounds for the velocity distribution. In the case of completely asymmetrical dis-
tributions these bounds coincide, making the problem exactly solvable. We have also 
solved the Boltzmann equation in the situation when the initial velocity distribution is 
symmetric and finite at zero velocity. The chief scaling laws for the average speed and 
the density of the surviving needles predicted by the Boltzmann equation approach 
are correct. The details are erroneous, e.g. the prediction for the velocity distribu-
tion is incompatible with exact bounds. This is not surprising—the Boltzmann equa-
tion approach is an uncontrolled approximation and is known to work poorly in the 
one-dimensional settings.

We have also discussed the version of the problem when needles were seeded only 
on part of the line. In the case when the number of needles is finite, the distribution 
of the number of ultimately surviving needles is remarkably universal. Specifically, it 
coincides with the distribution of surviving particles in the ballistic aggregation pro-
cess where particles undergo totally inelastic collisions [10–13]. The universality of this 
answer seems to imply there should be some universal derivation not relying on the 
details of a particular model. A slightly dierent distribution arises in the context of 
the ballistic annihilation problem, although the derivation in this situation is much 
more involved [34]. It seems plausible that there exist wide classes of the one-dimen-
sional aggregation and annihilation processes in which the distribution of the fan size 
is given by Π(n|N) and Πann(n|N), respectively. Determining the minimal collision rule 
requirements which lead to these distributions is an interesting problem to address.

In two dimensions, we have employed the Boltzmann equation  approach. The 
Boltzmann equation approach is more sound in two dimensions than in one dimen-
sion, yet it is still an uncontrolled approximation. For instance, whenever the tip of the 
faster cone hits the slower one, their radii are dierent. The temporal scaling is still 
the same, so the applicability of (44) seems plausible. It would be interesting to study 
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the problem numerically and to check the validity of the theoretical prediction (47) for 
the tail.

If the lateral size of needles grows linearly in time, the needle model closely resem-
bles the touch-and-stop, or the lilypond, growth model [24–30]. In the case of the 
strictly vertical growth, whenever two objects touch their tips are at the the same 
height and hence both objects freeze, the needle model is isomorphic to the 1D lily-
pond which was exactly solved in [25, 30]; in the case of the conical needles growing 
from the 2D substrate the model is isomorphic, again in the case of the strictly verti-
cal growth, to the 2D lilypond model. The growing objects in [24–30] are hyper-balls, 
but the lilypond model admits various modifications. One such version, a line-segment 
lilypond model [40], has needles of zero widths and assumes that the seeds are distrib-
uted in the plane R2, while in our model the seeds are on the 1D substrate. For a finite 
number of seeds studied in [40] the distribution of the number of ultimately surviving 
needles is unknown. It would be also interesting to study the model [40] with infinitely 
many seeds uniformly distributed throughout the plane and to determine the decay 
law for the fraction of mobile needles. A version of the line-segment lilypond model 
in which seeds are nucleated uniformly in space and time and grow only vertically or 
horizontally was proposed in [41] as a simple model describing martensites formation. 
The asymptotic behavior of this model is analytically tractable [42], but the analysis 
substantially uses the anisotropy of the growth.
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