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Abstract. We show that the presence of a two-dimensional inertial manifold for

an ordinary differential equation in R
n permits reducing the problem of determining

asymptotically orbitally stable limit cycles to the Poincare–Bendixson theory. In the

case n = 3 we implement such a scenario for a model of a satellite rotation around a

celestial body of small mass and for a biochemical model.
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1. Introduction

We consider ordinary differential equations

ẋ = −Ax + F (x), x ∈ R
n, n ≥ 3, (1.1)

where A is a symmetric n× n matrix with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn and the

function F belongs to C1+α(Rn,Rn) for some α ∈ (0, 1). We let F ′(x) denote the Jacobi

matrix of the mapping F at a point x, and ‖·‖ and ‖·‖
2

denote the Euclidean norm in

R
n and the Euclidean norm of matrices, respectively. If one of the two conditions

‖F (x)− F (y)‖ ≤ K ‖x− y‖ , ‖F ′(x)‖
2
≤ K, x, y ∈ R

n, (1.2)

that are equivalent in this situation is satisfied, then equation (1.1) generates a C1-

smooth phase flow {Φt∈R} in R
n. Everywhere below we identify linear operators on R

n

with their matrices. Let f = −A + F be a vector field of (1.1), then we call xs ∈ R
n a

singular point if f(xs) = 0. By a cycle we mean a closed trajectory. A stable limit cycle

is a cycle that is asymptotically orbitally stable as t→ +∞.
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The theory of inertial (that is, invariant and globally exponentially attracting) manifolds

was developed in the 1980s as a tool for studying the final (at large times) dynamics

of semilinear parabolic equations with a vector field structure of the form (1.1) in an

infinite-dimensional Hilbert space X (see [1, Ch. 8], [2] and the references therein). In

this case, as usual, it is assumed that A is an unbounded self-adjoint positive linear

operator in X with a compact resolvent. In such a situation, the presence of an m-

dimensional inertial manifold (IM) permits describing the final dynamics of an infinite-

dimensional evolutionary system by an ordinary differential equation (ODE) in R
m.

Here we demonstrate the usefulness of inertial manifolds in the finite-dimensional case

X = R
n. Namely, the existence of a two-dimensional IM (m = 2) allows one to reduce

studying the final dynamics of equation (1.1) to solving the corresponding problem in R
2

and, in several cases, to prove the presence and to discover the localization of a stable limit

cycle without using the bifurcation technique or some rather complicated topological

constructions. We stress that, in contrast to the bifurcation theory, our approach proves

the existence of stable self-sustained oscillations of a “large amplitude”.

2. Inertial manifolds

A set Λ ⊆ R
n is said to be invariant if ΦtΛ = Λ, t > 0. Let Pm and Qm be orthogonal

projection operators in R
n on the subspacesXm andXn−m corresponding to the eigenvalues

λ1, . . . , λm and λm+1, . . . , λn, λm < λm+1, of the matrix A.

Invariant manifold of the form

Hm = {x ∈ R
n : x = u+ h(u), u ∈ Xm} (2.1)

with the function h ∈ Lip (Xm, Xn−m)
⋂

C1(Xm, Xn−m) we call inertial, if for each

trajectory x(t), there exists a trajectory x(t) ⊂ Hm such that

‖x(0)− x(0)‖ ≤ M1 ‖Qmx(0)− h(Pmx(0))‖ , (2.2)

‖x(t)− x(t)‖ ≤ M2e
−γt ‖x(0)− x(0)‖ (2.3)

for t > 0, whereM1,M2, γ > 0. If a set E ⊂ R
n is bounded, then the Lipschitzian function

h : Xm → Xn−m is bounded on the bounded set PmE and for everyone x(0) ∈ E

we have ‖Qmx(0) − h(Pmx(0))‖ ≤ M with M = M(E). It follows from (2.3) that

2



‖x(t) − x(t)‖ ≤ M1M2Me−γt for x(0) ∈ E, t > 0, which means Hm exponentially and

uniformly attracts E. Let Λ ⊂ R
n be a compact invariant set and y ∈ Λ. If x(0) = Φ−ty,

then x(0) ∈ Λ, x(t) = y, and

‖x(t)− x(t)‖ = ‖y − x(t)‖ ≤ M(Λ)e−γt.

Since t > 0 is arbitrary, x(t) ∈ Hm and the set Hm is closed, then y ∈ Hm and Λ ⊂ Hm. In

this way, the inertial manifold contains all compact invariant sets (including the singular

points and cycles) of the dynamical system.

It is well known [3, 4] that if the exact spectral gap condition

λm+1 − λm > 2K (2.4)

is satisfied, then there is such a manifold with h ∈ Lip (Xm, Xn−m) and the factor 2 on

the right-hand side of (2.3) cannot be decreased in general. Later, it was shown [2], that

condition (2.4) also provides the existence of a C1-smooth inertial manifold. Estimate (2.2)

means that ‖x(0)− x(0)‖ is small if the initial point x(0) is close to Hm. Estimate (2.3)

reflects the exponential tracking of the initial trajectory x(t) by the trajectory x(t) ⊂ Hm.

By the reduction principle [4, Lemma 1], the compact invariant sets Λ of equation

(1.1) and PmΛ of the ODE

u̇ = −Au+ PmF (u+ h(u)), u = Pmx, (2.5)

inXm ≃ R
m are simultaneously asymptotically stable or unstable. The dynamical system

generated by (2.5) is topologically conjugate to the restriction of the original dynamical

system (1.1) to Hm. This means that the final (for t → +∞) regimes of the original

equation in R
n are fully described by some ODE in space of smaller dimension, which

in many cases simplifies their research. Essentially, we highlight the m < n “defining”

degrees of freedom of a n-dimensional dynamical system. In addition, if t is sufficiently

large then every solution x(t) of equation (1.1) is completely determined by its projection

u(t) = Pmx(t) onto the subspace Xm and is reconstructed by the formula x(t) = ψ(u(t))

with ψ(u) = u+ h(u).

Splitting the right-hand side of equation (1.1) into linear and nonlinear components,

of course, is not unique. Right choice matrix A in (1.1) can help to satisfy the condition
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(2.4). On the other hand, condition (2.4) can sometimes be ensured by using a nondegenerate

linear change of variables; the topology of the phase portrait of the dynamical system

does not change in this case. Such a method is used below in Section 4 to study a

mathematical model of cell processes.

Remark 2.1. The existence of a two-dimensional inertial manifold allows one to assert

that the union of all singular points and cycles (if any) has the form of a Lipschitz graph

over a certain plane X2 ⊂ R
n.

It should be noted that, under condition (2.4), the inertial manifold Hm does not

inherit the smoothness of the nonlinearity F ; for example, the condition that F is real

analytic in R
n does not even imply that Hm ∈ C2.

Definition 2.1. A domain D ⊂ R
n is strictly positive invariant if ΦtD ⊆ D, t > 0.

In particular, this means that the boundary ∂D does not contain singular points.

Remark 2.2. Even under a weaker condition ΦtD ⊆ D, t > 0, the continuity of the

mapping x→ Φtx for x ∈ R
n guarantees the inclusion ΦtD ⊆ D, t > 0, for the closure D.

The strict positive invariance of D is ensured if the vector field f(x) = −Ax + F (x)

of equation (1.1) on the boundary ∂D is directed inside the interior of D. If the domain

D ⊂ R
n is strictly positive invariant, then the domain PmD ⊂ Xm has the same property

with respect to the ODE (2.5).

Remark 2.3. The closure of the union of all cycles contained in the strictly positive

invariant domain D does not contain points of ∂D.

This is a consequence of the continuity of the phase flow {Φt} with respect to x ∈ R
n.

Consider the quadratic form V (x) = ‖Qx‖2 − ‖Px‖2 with an arbitrary orthogonal

projection operator P in R
n and Q = Id − P . Assume that, for some λ, ε > 0, any two

solutions x(t) and y(t) of (1.1) satisfy the following relation holds with t > 0:

d

dt
V (x(t)− y(t)) + 2λV (x(t)− y(t)) ≤ −ε ‖x(t)− y(t)‖2 . (2.6)

This condition is known in the theory of inertial manifolds as the strong cone condition.

Remark 2.4 (see [2, Lemma 2.21; 4, Lemma 4]). Condition (2.4) implies (2.6) with

P = Pm, λ = (λm+1 + λm)/2 and ε = (λm+1 − λm)/2−K.

Recall the well-known (see [5]) estimate T ≥ 2π/K1 of the periods T > 0 of periodic

solutions (1.1), where K1 = λn + K is the Lipschitz constant of the vector field f =
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−A+F . For τ = π/K1, we set Uτ (x) = x−Φτx, x ∈ R
n. The zeros of the vector field Uτ

are precisely the singular points of equation (1.1). A point xs is said to be asymptotically

unstable if the spectrum σ(f ′(xs)) contains an eigenvalue with Reλ > 0. In this case,

σ(U ′

τ (xs)) = {1} − exp(τσ(f ′(xs))).

Theorem 2.1. Assume that the following conditions are satisfied for equation (1.1):

(i) there exists bounded convex strictly positive invariant domain D ⊂ R
n containing a

unique singular point xs, this point is asymptotically unstable and satisfies detf
′

(xs) 6= 0;

(ii) the function F is real analytic in D;

(iii) λ3 − λ2 > 2K.

Then at least one stable limit cycle is localized in the domain D.

Proof. We use condition (iii) to reduce the final dynamics of (1.1) to the two-dimensional

inertial manifold H2 ∋ xs. By Remark 2.4, the estimate (iii) implies relation (2.6) for the

quadratic form V with P = P2, λ = (λ3 + λ2)/2 and ε = (λ3 − λ2)/2−K. Assume that

Reκ1 ≥ Reκ2 ≥ · · · ≥ Reκn for κi ∈ σ(f ′(xs)). If we consider the matrix f ′(xs) as a

perturbation of the matrix −A, then condition (iii) implies the inequality Reκ3 < −λ <

0. It follows from condition (i) that the vector field Uτ with τ = π/K1 has a unique

zero xs in D.

Since the domain D is convex and ΦτD ⊂ D, then according to [6, Theorem 21.5] the

vector field Uτ is not is degenerate (0 does not belong to σ(U ′

τ )) on ∂D and the rotation

of Uτ on ∂D is equal to 1. By the hypothesis (i) of the theorem the vector field Uτ is

not degenerate at the point xs, therefore from [6, Theorem 20.6] and [6, Theorem 21.6]

we successively find that ind xs = 1 and ind xs = (−1)β, where ind is the Poincare index

and β is an even sum multiplicities of the real λ > 1 in σ(Φ′

τ (xs)). At the same time, β

is the sum multiplicities of positive κ ∈ σ(f ′(xs)). So, since Reκ3 < 0 and Reκ1 > 0,

then Reκ2 > 0.

Thus, taking (i), (ii), and Remark 2.3 into account, we see that the assumptions

in [7, Corollary 6.1] are satisfied, and hence the domain D contains at most finitely

many cycles. One can see that the point P2xs is an unstable focus or an unstable knot of

equation (2.5) in the plane X2 ⊂ R
n. By the Poincare–Bendixson theory [8, Sect. 2.8],

this equation has finitely many embedded cycles in the strictly positive invariant domain
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P2D ⊂ X2 and at least one of them, Γ, is stable. Then ψΓ is a stable limit cycle of the

original equation (1.1). �

Theorem 2.1 gives us a method for determining stable limit cycles of ODEs in R
n.

In what follows we refer to this method as to the “spectral gap method”. In fact, notion

similar to that of inertial manifold has been used successfully by R.A. Smith (see [7, 9,

10] and the references therein) in his studies of cycles of ODEs. This author worked with

Lipschitz invariant manifolds of the form (2.1), attracting (not necessarily exponentially)

all trajectories for t → +∞ and containing all bounded invariant sets. He did not use

the simple and convenient condition (2.4) but directly considered1 the condition of type

(2.6) with an arbitrary quadratic form V (x) of the signature (0, n − 2, 2). Formally,

assumption (2.6) is weaker than (2.4) and does not mean that the vector field of the

equation splits into linear and nonlinear parts. At the same time, the spectral gap

condition (2.4) can be verified significantly simpler.

On the other hand, the method proposed in [3] guarantees the existence of an inertial

manifold of dimension m < n for equations of the form (1.1) with an arbitrary linear

part −A if, for some λ > 0, the spectrum σ(A) has m values (with multiplicity taken

into account) in the half-plane Re z < λ, the straight line Re z = λ lies in the resolvent

set ρ(A), and ‖(A − λ − iω)−1‖2 < 1/K, ω ∈ R. Such a technique was independently

used to determine stable limit cycles in [10]. The author believes that the revival of this

approach is rather perspective.

It should be noted that the technique of this paper (as well as papers [7, 9, 10]) only

detect ODE cycles lying on invariant 2D-manifolds of the Cartesian structure (2.1).

In the following two sections we illustrate the spectral gap method with examples

from two distinct areas of natural science.

3. Satellite motion model

The problems of the periodic dynamics of the satellites of celestial bodies extensive

literature is devoted (see, for example, [11] and references therein). In particular, the

dynamics of a artificial satellite flying around a celestial body of small mass was studied

1 See, e.g., [10, Theorem 3].
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in [12]. We consider here this model as a successful mathematical application of our

method for detecting stable limit cycles. Let (r, ϕ) be the polar coordinates in the plane

of the motion r = r(t), ϕ = ϕ(t) of a flying vehicle. According to [12], the radial

and transverse control forces act on the satellite, depending on the positive parameters

µ1, µ2, µ3 and some smooth function g(ϕ̇). The goal is to determine the values µ1, µ2, µ3

and the function g so as to ensure the existence of a stable periodic motion in coordinates

(r, ṙ, ϕ̇). We set x1 = ṙ + µ2r, x2 = r, x3 = ϕ̇. In these new coordinates, the satellite

dynamics can be described by the system of equations (slightly different from the system

in [12])

ẋ1 = −µ1x1 + g(x3),

ẋ2 = −µ2x2 + x1,

ẋ3 = −µ3x3 + x2 (3.1)

with control parameters µ1, µ2, µ3 > 0 and the “admissible” nonlinear function g ∈

C1+α(R). We define the class of admissible smooth functions g in (3.1) by conditions

0 < g(x3) < M, −1 ≤ g′(x3) < 0 (3.2)

for x3 ∈ R. The choice of such a class will allow us to apply Theorem 2.1 under certain

conditions on the parameters µ1, µ2, µ3. A similar mathematical model was studied in [10,

Sect. 7] from a different standpoint. System (3.1) takes the form (1.1) if we set

A =











µ1 0 0

0 µ2 0

0 0 µ3











, F (x) =











g(x3)

x1

x2











.

This decomposition of a vector field (3.1) is natural from the point of view of condition

(iii) of Theorem 2.1, so as the matrix A is symmetric, and the Lipschitz constant of

nonlinearity F easy to appreciate.

Due to the second condition in (3.2), system (3.1) generates a C1 phase flow {Φt}

in R
3.

Lemma 3.1. The convex domain

D = {x ∈ R
3 : 0 < x1 <

M

µ1

, 0 < x2 <
M

µ1µ2

, 0 < x3 <
M

µ1µ2µ3

}
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is strictly positive invariant and contains a unique singular point.

Proof. The search of the singular points of the system (3.1) reduces to solving the scalar

equation g(x3) = µ1µ2µ3x3. Since according to conditions (3.2) we have 0 < g < M and

g′ < 0, then this equation has a unique solution x3 = ν > 0. So there exists a unique

singular point in R
3:

xs = (µ2µ3ν, µ3ν, ν) =

(

g(ν)

µ1

,
g(ν)

µ1µ2

,
g(ν)

µ1µ2µ3

)

.

Note that xs ∈ D.

We first show that ΦtD ⊆ D, and hence ΦtD ⊆ D for t > 0. Consider the solution

x(t) = (x1(t), x2(t), x3(t) with x(0) ∈ D. On the faces x1 = 0 and x1 = M/µ1 of the

parallelepiped D, we have ẋ1 = g(x3) > 0 and ẋ1 = −µx1 + g(x3) < 0 respectively, so

0 < x1(t) < M/µ1 for t > 0. On the faces x2 = M/(µ1µ2) and x2 = 0, we have ẋ2 < 0

and ẋ2(t) = x1(t) > 0 respectively, and hence, 0 < x2(t) < M/(µ1µ2) for t > 0. On the

faces x3 = M/(µ1µ2µ3) and x3 = 0, we have ẋ3 < 0 and ẋ3(t) = x2(t) > 0 respectively,

so that 0 < x3(t) < M/(µ1µ2µ3) for t > 0.

We write Π = {x ∈ ∂D : Φtx ∈ D, t > 0} and Π0 = ∂D\Π. We see that Π0 ⊆

l1
⋃

l2
⋃

{0}, where l1 = {x ∈ ∂D : x1 = 0, x2 = 0, x3 > 0} and l2 = {x ∈ ∂D : x1 >

0, x2 = 0, x3 = 0}. On l1 and l2, we respectively have ẋ1 > 0 and ẋ2 > 0, and hence

Φtx ∈ D, t > 0, on Π0/{0}. Because Φt0 6= 0, we have Φt0 ∈ D, t > 0. Thus, Π0 = φ,

Π = ∂D, and ΦtD ⊆ D for t > 0. �

Clearly,

F ′(x) =











0 0 g′(x3)

1 0 0

0 1 0











, (F ′(x))∗ · F ′(x) = diag (1, 1, (g′(x3))
2 ),

and ‖F ′(x)‖
2
= 1 for all x ∈ R

3. Let λ1, λ2, λ3 stand for the parameters µ1, µ2, µ3

permutated by nondecreasing order. We have K = 1 and the spectral gap condition (2.4)

becomes

λ3 − λ2 > 2. (3.3)

We linearize the vector field of the system (3.1) at the singular point xs. Note that

the Routh–Hurwitz criterion gives the condition of asymptotic instability of xs by the
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inequality

−g′(ν) + λ1λ2λ3 > (λ1 + λ2 + λ3) (λ1λ2 + λ1λ3 + λ2λ3) . (3.4)

In addition, det(F
′

(xs) − A) = g′(ν) − λ1λ2λ3 6= 0. Estimates (3.3), (3.4) determine a

nonempty open set Ω in the positive octant R3
+ of the parameters λ1, λ2, λ3. In particular,

the domain Ω contains points of the form (δ, δ, 2+ 2δ) for all sufficiently small δ > 0. If

the function g in (3.2) is real analytic for 0 < x3 < M/(µ1µ2µ3), then by Theorem 2.1,

system (3.1) with (λ1, λ2, λ3) ∈ Ω has a stable limit cycle Γ ⊂ D.

As an admissible nonlinear function in (3.1) we can, for example, take

g(x3) = arccot(x3 − ν), ν =
π

2µ1µ2µ3

.

This function satisfies conditions (3.2) with g′(ν) = −1 and M = π.

In similar constructions [12], the real analyticity of the function g in (3.1) is not

required, but it is only necessary to prove the existence of an orbitally stable periodic

trajectory on which at least one different trajectory is “winding” as t→ +∞.

4. A model of cell processes

Another example illustrating the spectral gap method is related to the complex dynamics

in cell processes [13]. Consider the following the system of equations

ẋ = −kx+R(z),

ẏ = x−G(y, z),

ż = −qz +G(y, z), (4.1)

where

R(z) =
1

1 + z4
, G(y, z) =

Ty(1 + y)(1 + z)2

L+ (1 + y)2(1 + z)2

and k, q, T, L > 0 are constants. Here x, y, and z are dimensionless concentrations of the

matters S1, S2, and S3, where S1 is the initial product, S2 is the intermediate product,

and S3 is the final product; k and q are constants of the rate of variation in S1 and S3.

We have

Rz = −
4z3

(1 + z4)2
, Gz =

2TLy(1 + y)(1 + z)

(L+ (1 + y)2(1 + z)2)2
,
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Gy =
2TLy(1 + z)2

(L+ (1 + y)2(1 + z)2)2
+

T (1 + z)2

L+ (1 + y)2(1 + z)2
,

Rz(z) < 0 for z > 0, and G(y, z) < T , Gy(y, z) > 0, Gz(y, z) > 0 for y, z > 0. Since the

first derivatives of the functions R andG are uniformly bounded in z ∈ R and (y, z) ∈ R
2,

we see that system (4.1) generates a smooth flow {Φt} in R
3. We fix the values T = 10

and L = 106 that are physically meaningful from the standpoint of the authors of [13]

and try to determine pairs of free parameters (k, q) ∈ R
2
+ for which this system satisfies

the conditions of Theorem 2.1 and hence admits a stable periodic regime.

Everywhere below we restrict ourselfs to the simple case when kT > 1 and k > q. By

p(x, y, z) we denote points in R
3.

4.1. Positive invariant domain and a singular point. We note that G(+∞, 0) = T

and G(0, z) = 0 for z > 0. Since kT > 1, we can uniquely determine the value y0 > 0

from the relation G(y0, 0) = 1/k. In what follows we set x0 = 1/k, z0 = T/q.

Lemma 4.1. The convex domain D = {p ∈ R
3 : 0 < x < x0, 0 < y < y0, 0 < z < z0}

is strictly positive invariant and contains a unique singular point.

Proof. Equating the right-hand side of (4.1) to zero we obtain the relations x = qz

and kqz = R(z) which are satisfied for a unique pair of values xs, zs > 0. Another

scalar equation ϕ(y) = 0 with ϕ(y) = qzs − G(y, zs), ϕ
′ < 0, has a unique solution

ys > 0. So system (4.1) has a unique singular point ps = (xs, ys, zs) in R
3
+. Since the

function R decreases in z > 0, it follows that zs = (kq)−1R(zs) < (kq)−1 < z0 and

xs = k−1R(zs) < x0. Taking into account that G is an increasing function with respect

to each variable y > 0 and z > 0, from the relation xs = G(ys, zs) we derive that

xs = G(ys, zs) < x0 = G(y0, 0), and hence ys < y0 and ps ∈ D.

First, we show that ΦtD ⊆ D, and hence ΦtD ⊆ D for t > 0. We consider the

solution p(t) = (x(t), y(t), z(t)) with p(0) ∈ D. On the faces z = 0 and z = z0 of the

bar D, we have ż = G(y, 0) > 0 and ż = −T + G(y, z0) < 0, respectively, and hence

0 < z(t) < z0 for t > 0. On the faces x = 0 and x = x0, we have ẋ = R(z) > 0 and

ẋ(t) = −1 + R(z(t)) < 0 for p(t), respectively, and hence 0 < x(t) < x0 for t > 0. On

the faces y = 0 and y = y0, we respectively have ẏ(t) = x(t)−G(0, z(t)) = x(t) > 0 and

ẏ(t) = x(t)−G(y0, z(t)) < x0 −G(y0, 0) = 0 for p(t), whence 0 < y(t) < y0 for t > 0.

We write Π = {p ∈ ∂D : Φtp ∈ D, t > 0}, Π0 = ∂D \ Π, and p0 = (x0, y0, 0). We see
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that Π0 ⊆ l1
⋃

l2
⋃

l3
⋃

{p0}, where l1 : {x = x0, 0 ≤ y < y0, z = 0}, l2 : {x = 0, y =

0, 0 ≤ z ≤ z0}, and l3 : {x = x0, y = y0, 0 ≤ z ≤ z0}. On l1, l2, and l3, we respectively

have ż > 0, ẋ > 0, ẋ < 0, and hence Φtp ∈ D, t > 0, on Π0 \ {p0}. Since Φtp0 6= p0, we

see that Φtp0 ∈ D, t > 0. Thus, Π0 = φ, Π = ∂D, and ΦtD ⊆ D for t > 0. �

4.2. Inertial manifold. In the natural decomposition f = −A + F of the vector field

f of system (4.1) into the linear and nonlinear parts, we have

A =











−k 0 0

0 0 0

0 0 −q











, F











x

y

z











=











R(z)

x−G(y, z)

G(y, z)











.

This decomposition with symmetric matrix A is chosen in order to best provide

condition (iii) of Theorem 2.1. For the matrix A we have λ1 = 0, λ2 = q, λ3 = k. The

change u = y + z takes (4.1) to the form

ẋ = −kx+R(z), u̇ = x− qz, ż = −qz +G(u− z, z) (4.2)

in the variables (x, u, z) with the vector field decomposition f1 = −A + F1, where F1 :

(x, u, z) → (R(z), x− qz, G(u− z, z)). In this case,











x

y

z











= C











x

u

z











, C =











1 0 0

0 1 −1

0 0 1











, C−1 =











1 0 0

0 1 1

0 0 1











.

The nonlinear part F1 in (4.2) is simpler than the nonlinear part F in the original

system (4.1), which allows us to sharpen the estimate of K = K(k, q) for the norm of its

Jacobi matrix in the spectral gap condition λ3 − λ2 > 2K. The domain C−1D is strictly

positive invariant for (4.2). We put

K = max
C−1D

∥

∥

∥
F

′

1(p)
∥

∥

∥

2

= max
D

∥

∥

∥
(F

′

1C
−1)(p)

∥

∥

∥

2

, F
′

1 C
−1 =











0 0 −Rz

1 0 −q

0 Gy Gz −Gy











, (4.3)

where p = (x, u, z). The condition (2.4) of existence of the inertial manifold means that

(1.2) is satisfied for the function F1 on R
3. In this connection, it is useful to consider

a C1+α extension of F1 from the domain C−1D to R
3 with the same value of K. To
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this end, consider the functions R and G defined as follows. The function R satisfies

R(0) = R(0) and its derivative Rz is an even 2z0-periodic extension of Rz from [0, z0] to

R. Similarly, G satisfies G(0, 0) = G(0, 0) and its derivatives Gy and Gz are even, with

respect to both y and z, and (2y0, 2z0)-periodic extensions of Gy and Gz, correspondingly,

from [0, y0]× [0, z0] to R
2. If we now put F2 : (x, u, z) → (R(z), x− qz, G(u− z, z)), then

the function F2 yields the sought extension of F1 from C−1D to R
3. Clearly, the phase

dynamics of system (4.2) in the domain C−1D remains the same when F1 is replaced

by F2.

Let Θ = {(k, q) ∈ R
2
+, k − q > 2K(k, q)}. Then λ3 − λ2 = k − q and, for (k, q) ∈ Θ,

the system of equations

ẋ = −kx+R(z), u̇ = x− qz, ż = −qz +G(u− z, z) (4.4)

admits a two-dimensional inertial manifold. The same is also true for the system

ẋ = −kx+R(z), ẏ = x−G(y, z), ż = −qz +G(y, z), (4.5)

which inherits the phase dynamics of (4.1) in the domain D.

Remark 4.1. If (k0, q0) ∈ Θ, then (k, q) ∈ Θ for k ≥ k0, q ≥ q0, k − q ≥ k0 − q0.

Indeed, since the strictly positive invariant domain D decreases as k and q increase,

it follows that the constant K = K(k, q) in (4.3) does not increase and the inequality

k − q > 2K still holds. We see that systems (4.1) and (4.5) demonstrate the two-

dimensional final dynamics in the vast domain Θ of the parameters (k, q).

4.3. Instability of the singular point. The singular points of systems (4.1) and (4.4)

are simultaneously stable or unstable. The Jacobi matrix f
′

(ps) of the vector field of

system (4.1) at the singular point ps = (xs, ys, zs) ∈ D has the form










−k 0 −b

1 −c −d

0 c d− q











with b = −Rz(zs), c = Gy(ys, zs), and d = Gz(ys, zs). By the Routh–Hurwitz criterion,

this point is asymptotically unstable if a1 < 0 or a1a2 − a3 < 0 or a3 < 0, where

a1 = c− d+ k + q, a2 = k(c− d) + qc+ kq, a3 = (kq + b)c .

12



Because a3 > 0, the point ps is unstable under the condition a2 < 0. We have detf
′

(ps) =

c(b− kq).

4.4. Stable limit cycle. The complicated character of nonlinearity in (4.1) requires the

use of computational tools (Maple package) for estimating the Lipschitz constant K(k, q)

and analyzing the instability of ps. As an example, we take two pairs of parameters k > q

and estimate the norms for the points p ∈ D. The square numerical matrices B satisfy

the inequality ‖B‖
2
≤

√

‖B‖
∞
· ‖B‖

1
, where ‖B‖

∞
and ‖B‖

1
are the norms of the linear

operators corresponding to B in R
n
∞

and R
n
1 .

For k = 3 and q = 0.1, we have:

y1 ≈ 186, xs ≈ 0.117, ys ≈ 49.653, zs ≈ 1.167, b− kq ≈ 0.480, a2 ≈ −0.05,

∥

∥(F ′

1C
−1)(p)

∥

∥

∞
≤ 1.209,

∥

∥(F ′

1 C
−1)(p)

∥

∥

1
≤ 1.166,

∥

∥(F ′

1C
−1)(p)

∥

∥

2
≤ K = 1.187.

For k = 2.5 and q = 0.1, we have:

y1 ≈ 204, xs ≈ 0.123, ys ≈ 49.558, zs ≈ 1.230, b− kq ≈ 0.438, a2 ≈ −0.01,

∥

∥(F ′

1C
−1)(p)

∥

∥

∞
≤ 1.209,

∥

∥(F ′

1C
−1)(p)

∥

∥

1
≤ 1.166,

∥

∥(F ′

1C
−1)(p)

∥

∥

2
≤ K = 1.187.

The vector field of system (4.4) is real analytic in the strictly positive invariant

domain C−1D, and this domain contains a unique singular point. In both cases a2 < 0,

detf
′

(ps) = c(b− kq) 6= 0, and k− q > 2K, so that by Theorem 2.1, system (4.4) admits

a stable limit cycle Γ ∈ C−1D for the chosen values of k and q. It is easy to trace the

continuous dependence of the quantities K = K(k, q), b = b(k, q), and a2 = a2(k, q) on

their arguments, and thus, the system admits stable periodic regimes for the parameters

(k, q) in sufficiently small neighborhoods of the points (3, 0.1) and (2.5, 0.1). This implies

that, for the same values of (k, q), the original system (4.1) has a stable limit cycle

localized in the domain D.

5. Conclusion

The spectral gap method is based on the presence of a natural self-adjoint linear

component −A of the vector field of ODE with dominating third eigenvalue, λ3(A) >

λ2(A), which somewhat restricts the range of applications. The advantages of the method
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are the transparency of statements and the relative simplicity of its use. The problems

solved by this method are technically reduced to careful estimation of the Lipschitz

constant in the nonlinear component of the equations and determination of a strictly

positive invariant domain in the phase space that contains a unique (asymptotically

unstable) singular point. In general, the proposed method can well complement the list

of well-known approaches to the problem of determining stable limit cycles of ordinary

differential equations in R
n, lying on invariant 2D-manifolds of the Cartesian structure.

Existence of an inertial manifold of dimension greater than 2 is also of interest. For

example, the presence of such manifolds of dimension 3 guarantees, that all invariant

tori (if any) of the dynamical system lie on the invariant three-dimensional C1-manifold

of the form (2.1). In the most common spectral gap condition (2.4) allows us to state

that the union of all bounded invariant sets lies on the smooth invariant m-dimensional

manifold of the Cartesian structure.
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