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ALGEBRAS DERIVED EQUIVALENT TO BRAUER GRAPH

ALGEBRAS AND DERIVED INVARIANTS OF BRAUER GRAPH

ALGEBRAS REVISITED

MIKHAIL ANTIPOV AND ALEXANDRA ZVONAREVA

Abstract. In this paper the class of Brauer graph algebras is proved to be closed
under derived equivalence. For that we use the rank of the maximal torus of the identity
component of the group of outer automorphisms Out0(A) of a symmetric stably biserial
algebra A.

1. Introduction

Brauer graph algebras or equivalently symmetric special biserial algebras, originating
from modular representation theory, are studied quite extensively. They appear in clas-
sifications of various classes of algebras including blocks with cyclic or dihedral defect
groups [14, 15], blocks of Hecke algebras [9, 10] and others. Brauer tree algebras, the
subclass of Brauer graph algebras of finite representation type, contain all blocks with
cyclic defect group.

In this paper we make a final step in the proof of the fact that Brauer graph algebras
are closed under derived equivalence. This fact was believed to be true, based on the work
of Pogorza ly [27]. In [11], counterexamples to some of the statements of [27] were given.
In [8], we revised the proof of the fact that the only algebras possibly stably (and thus
derived) equivalent to self-injective special biserial algebras (a class containing Brauer
graph algebras) are self-injective stably biserial (see Section 2). As a finite-dimensional
algebra derived equivalent to a symmetric algebra is itself symmetric [31] we can restrict
our attention to symmetric stably biserial algebras. It turns out that in odd characteristic
the class of symmetric stably biserial algebras coincides with the class of Brauer graph
algebras, whereas in characteristic 2 this is not the case [8].

The general strategy of the proof of the fact that Brauer graph algebras are closed
under derived equivalence follows the classical proof for Brauer tree algebras. The fact
that Brauer tree algebras are closed under stable equivalence was proved in [19]. Since
by [30] derived equivalence for self-injective algebras implies stable equivalence, it follows
that this class is closed under derived equivalence as well. It turns out that the proof for
the whole class of Brauer graph algebras is much more involved and requires an extra
step in characteristic 2, which is provided in this paper.

A symmetric stably biserial algebra can be given by the same combinatorial data as
the Brauer graph algebra, that is a graph on a surface and a number attached to each
vertex of this graph, called the multiplicity. Additionally, one needs to fix a distinguished
class of loops in the quiver, satisfying certain conditions, which we call deformed loops
(see Section 2). In case the number of deformed loops is 0 we recover the usual definition
of a Brauer graph algebra. Since for local algebras derived equivalence implies Morita
equivalence [34], we will sometimes assume that A has at least 2 simple modules. For
further reference, let us denote by V (Γ), E(Γ) and F (Γ) the vertices, edges and faces of
the Brauer graph Γ.
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The main technique, used in this paper, is the computation of the rank of the maximal
torus D(A) of the identity component of the group of outer automorphisms Out0(A) for
a symmetric stably biserial algebra A. The group Out0(A) is a derived invariant [23, 33]
used quite seldom. The only previous systematic application we know of is the proof of
the fact that the number of arrows in the quiver of a gentle algebra is a derived invariant
[1].

Theorem 1.1. Let k be an algebraically closed field. Let A be a symmetric stably biserial
algebra over k (char(k) = 2) or a symmetric special biserial algebra over k (char(k) 6= 2)
with at least two non-isomorphic simple modules, which is not a caterpillar (see Section
3). Let Γ be the Brauer graph of A and let d be the number of deformed loops in A (d = 0
for the symmetric special biserial case). The rank of D(A) is |E(Γ)| − |V (Γ)| − d + 2.

In section 3, we investigate basic properties of symmetric stably biserial algebras. In
section 4, we revisit the known derived invariants for Brauer graph algebras [3, 4, 5, 6] in
arbitrary characteristic, providing simpler proofs of their invariance for the larger class
of symmetric stably biserial algebras and correcting some inaccuracies in the existing
literature.

Theorem 1.2. Let A be a symmetric stably biserial algebra with a Brauer graph Γ and
with at least two simple modules. The following are invariants of A under a derived
equivalence of symmetric stably biserial algebras: |V (Γ)|, |E(Γ)|, |F (Γ)|, the multiset of
perimeters of faces, the multiset of multiplicities and bipartivity of Γ.

As a corollary of Theorems 1.1 and 1.2 and the fact that Brauer graph algebras can be
derived equivalent only to symmetric stably biserial algebras [8] we obtain the following:

Corollary 1.3. The class of Brauer graph algebras is closed under derived equivalence.
Namely, if A is an algebra Morita equivalent to a Brauer graph algebra and B is an
algebra such that Db(A) ≃ Db(B), then B is Morita equivalent to a Brauer graph algebra.

In forthcoming work [21], among other results, W. Gnedin independently obtains Corol-
lary 1.3 in characteristic 2 and for bipartite Brauer graphs by different methods. Note
that the list of invariants from Theorem 1.2 is crucial to the forthcoming joint work [26] of
S. Opper and the second named author, where a complete classification of Brauer graph
algebras up to derived equivalence will be provided.

Acknowledgement: AZ would like to thank Alexey Ananyevskiy for many fruitful
discussions.

2. Preliminaries

Throughout this paper, A is a basic, connected, finite dimensional algebra over an
algebraically closed field k and mod-A is the category of right A-modules. The stable
category of mod-A will be denoted by mod-A and Ω : mod-A → mod-A will denote
the syzygy. The bounded derived category of the category mod-A will be denoted by
Db(A). A quiver Q consists of a set of vertices Q0 and a set of arrows Q1. The map
s : Q1 → Q0 will denote the start of an arrow, the map e : Q1 → Q0 will denote the
end of an arrow. In the path algebra kQ the multiplication of arrows α and β is αβ 6= 0,
provided e(α) = s(β), by J(A) we will denote the Jacobson radical of the algebra A,
which is the ideal generated by the arrows of the quiver Q in case A ≃ kQ/I. By K0(C)
we are going to denote the Grothendieck group of an Abelian or a triangulated category
C.
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In this paper we are going to be interested in symmetric special biserial and symmetric
stably biserial algebras.

Definition 2.1. Let Q be a quiver, I an admissible ideal of kQ. A self-injective algebra
A = kQ/I is called special biserial if the following conditions are satisfied.

(1) For each vertex v ∈ Q, the number of outgoing arrows and the number of incoming
arrows are less than or equal to 2.

(2) For each arrow α ∈ Q, there is at most one arrow β ∈ Q such that αβ /∈ I.
(3) For each arrow α ∈ Q, there is at most one arrow β ∈ Q such that βα /∈ I.

Definition 2.2. Let Q be a quiver, I an admissible ideal of kQ. A self-injective algebra
A = kQ/I is called stably biserial if the following conditions are satisfied.

(1) For each vertex v ∈ Q, the number of outgoing arrows and the number of incoming
arrows are less than or equal to 2.

(2) For each arrow α ∈ Q, there is at most one arrow β ∈ Q such that αβ 6∈
αrad(A)β + soc(A).

(3) For each arrow α ∈ Q, there is at most one arrow β ∈ Q such that βα 6∈
βrad(A)α + soc(A).

The following description of stably biserial algebras was provided in [11]:

Proposition 2.3 (Proposition 7.5 [11]). If A = kQ/I is stably biserial then we can
choose the presentation of A in such a way that the following conditions hold.

(1) If αβ 6= 0, αγ 6= 0, β 6= γ, for arrows α, β, γ then either αβ ∈ soc(A) or αγ ∈
soc(A).

(2) If βα 6= 0, γα 6= 0, β 6= γ, for arrows α, β, γ then either βα ∈ soc(A) or γα ∈
soc(A).

Self-injective special biserial algebras are a subclass of stably biserial algebras. We
will call an algebra symmetric special biserial (SSB for short) or symmetric stably

biserial, if in addition to being special biserial or stably biserial it is symmetric.
Consider the following data:

(1) A quiver Q such that every vertex has two incoming and two outgoing arrows.
(2) A permutation π on Q1 with e(α) = s(π(α)) for all α ∈ Q1.
(3) A function m : C(π)→ N, where C(π) is the set of cycles of π. We will denote by

C(α) := απ(α)π2(α) . . . π|C(α)|−1 the cycle, containing α ∈ Q1 and call m(C(α))
the multiplicity of the cycle C(α).

(4) A set of loops L = {αi1 , . . . , αid}, such that π(αij) 6= αij and a set of elements
{tαi1

, . . . , tαid
}, with tαij

∈ k∗.

In [8] the following description of symmetric stably biserial algebras in terms of gener-
ators and relations was obtained:

Theorem 2.4. Any symmetric stably biserial algebras can be given as A = kQ/I, where
the ideal of relations is generated by

(1) αβ for all α, β ∈ Q1, β 6= π(α), α does not belong to the set of loops L,

(2)

(

απ(α)π2(α) . . . π|C(α)|−1(α)

)m(C(α))

−
(

βπ(β)π2(β) . . . π|C(β)|−1(β)

)m(C(β))

for

all α, β ∈ Q1 with s(α) = s(β),

(3) α2 − tα

(

απ(α)π2(α) . . . π|C(α)|−1(α)

)m(C(α))

for each α ∈ L,
3



(4)

(

απ(α)π2(α) . . . π|C(α)|−1(α)

)m(C(α))

β for all α, β ∈ Q1.

Moreover, any symmetric stably biserial algebra over an algebraically closed field k with
char(k) 6= 2 is isomorphic to an algebra kQ/I as above with the empty set of loops L.
Remark 2.5. In [8] we considered quivers Q such that every vertex has either two incom-
ing and two outgoing arrows or one incoming and one outgoing arrow, and an admissible
ideal of relations I. To pass to this equivalent description from the description in Theo-
rem 2.4 one needs to delete loops α such that π(α) = α, m(α) = 1 and modify the ideal
of relations accordingly. In the case where the algebra has only two loops αi such that
π(αi) = αi, m(αi) = 1, one needs to delete only one loop to get the algebra isomorphic to
k[x]/(x2).

The loops from the set L will be called deformed loops. It is well known that any
SSB-algebra can be given in the above form with the empty set of deformed loops.

Note also that for this description of stably biserial algebras |Q1| = 2|Q0| is invariant
under derived equivalence, since |Q0| is the rank of K0(D

b(A)).
It is well known [32, 7, 35] that the class of SSB-algebras coincide with the class

of Brauer graph algebras. Brauer graph is a graph with a cyclic ordering of (half-
)edges around each vertex and a number assigned to each vertex. This graph Γ can be
constructed using the data (Q, π,m) as follows: the vertices of Γ correspond to the cycles
of π, the edges of Γ correspond to the vertices of Q, an edge connects two vertices of Γ
if the corresponding π-cycles have the corresponding vertex of Q in common. The cyclic
ordering of edges around a vertex comes from the order in which vertices of Q appear in
the π-cycle, the multiplicities come from the function m. Along the same lines, to each
Brauer graph one can assign the data (Q, π,m) and the corresponding SSB-algebra.

In [4] each Brauer graph was considered together with a minimal compact oriented
surface S, into which it is embedded, in such a way that its complement is a union of
disks (see also [24]). The orientation of the edges around the vertices of Γ comes from the
orientation of the surface, now it makes sense to consider not only vertices and edges of
Γ but also faces of Γ. The set L corresponds to a subset of faces of perimeter 1 of Γ. We
will use the terms SSB-algebra and Brauer graph algebra interchangeably.

3. Stably biserial algebras

In this section we are going to investigate basic properties of symmetric stably biserial
algebras. As stated in Theorem 2.4 any symmetric stably biserial algebra A can be given
as a certain deformation of a Brauer graph algebra with a Brauer graph Γ. We are going
to show that with one exception the Brauer graph Γ does not depend on the presentation
of A and that any deformation from Theorem 2.4 is indeed symmetric.

Let us introduce a special class of algebras, called caterpillar in this paper. This class
of algebras behaves differently form other symmetric special biserial algebras and has to
be excluded from some considerations.

The algebra kQ/I will be called a caterpillar of length n > 1 if Q is of the form

1

2 3 n-1

n.

α

α

α

α

β β ββ

In this case, the ideal of relations has the form I1 or I2. Where I1 is generated by relations
αeiβ = 0 = βeiα, i 6= 1, αe1α = 0 = βe1β, (αke1β

nαn−k)mα = (βke1α
nβn−k)mα, thus it
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has one π-cycle, the multiplicity of which is mα. The ideal I2 is generated by relations
αβ = 0 = βα, αnmα = βnmβ , thus it has two π-cycles, the multiplicity of one π-cycle is
mα, the multiplicity of the other π-cycle is mβ. The Brauer graphs of these algebras are:

•

· · ·

• •

· · ·

The following Lemma is most likely know for Brauer graph algebras, but we could not
find the proof, so we include it for the larger class of symmetric stably biserial algebras.

Lemma 3.1. Let A be a symmetric stably biserial algebra with a presentation kQ/I
as in Theorem 2.4 and the associated Brauer graph Γ. If Γ is not a loop with 1 as the
multiplicity of the unique vertex, or an edge with 2 as the multiplicity of both vertices,
then Γ does not depend on the choice of the presentation kQ/I.

Proof. Assume that the algebra A has two presentations kQ/I ≃ kQ′/I ′ as in Theo-
rem 2.4. Let us delete loops α such that π(α) = α, m(α) = 1 and modify the ideal of
relations accordingly in both presentations. These deleted loops correspond to the leafs
with multiplicity 1 in the Brauer graph and can always be reconstructed from the va-
lency of the vertices in the quiver. Since the ideals of relations I and I ′ are admissible
after the deletion of extra loops, we can assume that Q and Q′ coincide, thus there is a
bijection between primitive idempotents for these two presentations and between simple
modules over kQ/I and kQ′/I ′, simple modules will be denoted by Si. This extends to
a bijection between the edges of the Brauer graphs Γ and Γ′, constructed from these two
presentations, since the edges of the Brauer graph correspond to simple modules. For
the projective cover Pi of Si we can consider the module radPi/socPi which has either
one or two indecomposable summands Mi and Ni. These modules are uniserial and each
of them gives a unique sequence of simple modules, corresponding to it’s radical series
(Si1 , · · · , Sin), where Si1 is the top of Mi or Ni respectively. Adding Si to this sequence
(Si0 = Si, Si1 , · · · , Sin) and numbering the sequence by the elements of Z/(n + 1)Z we
get a collection of cycles of simple modules (coming from each Pi for all i’s), which we
identify up to a cyclic permutation of Z/(n + 1)Z. If for some Pi the modules Mi and
Ni are both zero, then A ≃ k[x]/(x2). The radical series of the modules Mi, Ni do not
depend on the presentation of the algebra, so in this case the Brauer graph is determined
uniquely and is an edge with both vertices of multiplicity 1.

Note that by construction of the permutation π the cyclic ordering of the simples in
the sequences constructed above coincides with the cyclic ordering of edges in the Brauer
graph.

If the module Si appears in two different cyclic sequences, then the edge, corresponding
to Si is not a loop and we can reconstruct the cyclic ordering around the ends of the
edge, corresponding to Si from the subsequence of the form (Si, Si1 , · · · , Sil, Si), where
(Si1 , · · · , Sil) does not contain Si. The multiplicities of the vertices is the number of times
the subsequences (Si, Si1, · · · , Sil) has to be repeated to get the whole sequences.

If Si appears in only one cyclic sequence, but this cyclic sequence has a subsequence of
the form (Si, Si1, · · · , Sil, Si, Sil+2

, · · · , Sim , Si), where the subsequences (Si1 , · · · , Sil) and
(Sil+2

, · · · , Sim) do not contain Si, are different and at least one of them is not empty,
then the edge corresponding to Si is a loop and we can reconstruct the cyclic ordering
of the edges around the vertex adjacent to this loop and the multiplicity is the number
of times the subsequence (Si, Si1 , · · · , Sil, Si, Sil+2

, · · · , Sim) has to be repeated to get the
whole sequence.

5



If Si appears in only one cyclic sequence and this sequence does not have a subsequence
as before, but the projective module Pi is uniserial then we can reconstruct the cyclic
ordering of the edges around one vertex incident to the edge corresponding to Si and its
multiplicity as before, the other end of this edge has no other edges incident to it and
has multiplicity 1.

The only case left to consider is when Si appears in only one cyclic sequence and this
sequence does not have a subsequence as before, but the projective module Pi is not
uniserial. In this case the modules Mi and Ni have the same radical series but are both
nonzero. If the cyclic sequence containing Si is of the form (Si, Si1 , · · · , Sil, Si), where
(Si1 , · · · , Sil) does not contain Si, then the edge, corresponding to Si is not a loop and we
can reconstruct the cyclic ordering around each end of this edge, the multiplicities of the
ends are 1. Assume that (Si, Si1, · · · , Sil, Si), where (Si1, · · · , Sil) does not contain Si is a
subsequence of the cyclic sequence and it has to be repeated m > 1 times to get the whole
sequence. If (Si1 , · · · , Sil) is empty, then |Q0| = 1, this situation will be considered later.
If the edge corresponding to Si is a loop, then all edges corresponding to (Si1 , · · · , Sil)
are loops and we get a caterpillar with one vertex in the Brauer graph with multiplicity
m/2 (this can happen only for even m). If the edge corresponding to Si is not a loop,
then all edges corresponding to (Si1 , · · · , Sil) are not loops and we get a caterpillar with
two vertices in the Brauer graph, both with multiplicity m. The two algebras we get for
even m are not isomorphic, since they are not even derived equivalent by Proposition 4.4.
Note that the proof of Proposition 4.4 does not relay on the results of this section.

Let us consider the case |Q0| = 1. The Brauer graph is either an edge or a loop. If it
is an edge, there are no deformed loops and A ≃ Ak,l = k[x, y]/〈xy, xk − yl〉, k, l ≥ 1,
which is a commutative algebra. If it is a loop, then for multiplicity greater then one, A
is non-commutative. So it is sufficient to consider algebra Btx,ty = k[x, y]/〈x2y, y2x, x2 −
txxy, y

2−tyxy〉, which is 4-dimensional. If it is isomorphic to Ak,l, then either k = 1, l = 3,
which is not possible, or k = l = 2. In the last case the algebras can be indeed isomorphic,
even when tx = ty = 0, char(k) 6= 2. �

Remark 3.2. The cyclic ordering of edges in the Brauer graph played an important role
in the proof of Theorem 2.4. Namely, for a symmetric stably biserial algebra A with an
arbitrary presentation as in Proposition 2.3, with an admissible ideal of relations, we first
fixed the permutation π and then using the change of basis produced a presentation as
in Theorem 2.4. We would like to note here that the change of basis from [8, Lemma
10] does not work for the algebras At and Bt,s (see below), which was not noted in the
proof of Lemma 10. This does not effect the result, since these algebras turn out not to
be symmetric. For the algebra At the element α − tβ belongs to the socle of At, for the
algebra Bt,s the element γ0 − sγ1 belongs to the socle of Bt,s, which is a contradiction.
Here

1 2

β1

β0 γ0
γ1

Q :

I = 〈J(kQ)3, γ0β0 = γ1β1,
β0γ0 = β1γ1, β0γ1 = tβ0γ0,
γ1β0 = tγ1β1, β1γ0 = sβ1γ1,

γ0β1 = sγ0β0〉, st = 1
Bt,s = kQ/I, π(γi) = βi, π(βi) = γi

Q : 1

I = 〈J(kQ)3, α2 = β2,
αβ = tα2, βα = tβ2〉, t2 = 1

At = kQ/I, π(α) = β, π(β) = α

α β
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Let us also denote by A∞ an algebra isomorphic to any symmetric stably biserial
algebras with one vertex, two loops and one π-cycle of multiplicity 1.

Proposition 3.3. Let us consider any data of the form (Q, π,m,L, {tα}α∈L), and A ≃
kQ/I, where I is the ideal of relations described in Theorem 2.4. If A is not isomorphic
to A∞ with both loops deformed, then the algebra A is symmetric.

Proof. Recall that an algebra A is symmetric if and only if there exists a non-degenerate
symmetric k-bilinear form 〈a, b〉 : A×A→ k such that 〈ab, c〉 = 〈a, bc〉 for all a, b, c ∈ A.

Let us define the standard bilinear form 〈a, b〉 := φ(ab), where the value of φ on the
path basis of A is defined as follows: φ(C(α)m(C(α))) = 1 for any arrow α, thus φ(γ2) = lγ
for any deformed loop γ, and φ(p) = 0 for any path p 6∈ socA. The values of φ on other
elements of A is defined by linearity.

The defined form is bilinear, symmetric and satisfies the property 〈ab, c〉 = 〈a, bc〉 for
all a, b, c ∈ A. Let us check that it is non-degenerate.

Let us assume that φ is degenerate, that is φ((
∑

cipi)a) = 0 for some
∑

cipi 6= 0 and
for all a ∈ A, where ci ∈ k∗ and pi are paths, by the symmetry of φ, for all a ∈ A we
have φ(a(

∑

cipi)) = 0. We can assume that all pi start at the same vertex i and end
at the same vertex j (multiplying by two idempotents and keeping

∑

cipi non-zero). All
pi’s are subpaths of the standard socle paths of the form C(α)m(C(α)). Since there are at
most two such standard socle paths starting at i, all pi’s can be divided into two groups
depending on the socle path. Let us chose the shortest path from one of these two groups
p1. Let p̄1p1 be the standard socle path containing p1 (that is not γ2 for a deformed loop
γ), then p̄1(

∑

cipi) = c1p̄1p1 + c2p̄1p2, where p̄1p2 appears only in case when the shortest
path from the second group is an arrow p2 and p̄1 is also an arrow. In this case p2 must
be a deformed loop p2 = p̄1. If p̄1p2 = 0, then φ(p̄1(

∑

cipi)) = 0 iff c1 = 0 and we are
done.

Let us do the same exchanging p1 and p2. Then p̄2(
∑

cipi) = c2p̄2p2 + c1p̄2p1, where
p̄2p1 appears only in case when the shortest path from the first group is an arrow p1 and
p̄2 is also an arrow. In this case p1 must be a deformed loop p1 = p̄2. And we get exactly
the excluded case of 2 deformed loops at one vertex. �

4. Combinatorial derived invariants

The aim of this section is to show that the following combinatorial data are invariant
under derived equivalences of stably biserial algebras: number of vertices, edges and faces
of the Brauer graph, multisets of perimeters of faces, multisets of multiplicities of vertices,
bipartivity. Note that the corresponding results were shown to be true for Brauer graph
algebras with some minor inaccuracies in [2, 3, 4, 6], the proofs are identical or relay
on the corresponding results for Brauer graph algebras, except for some simplifications.
From here on we are going to exclude the case |Q0| = 1 from some considerations, since
by [34] a local algebra can be derived equivalent only to itself.

4.1. The centre of a symmetric stably biserial algebra. In this subsection we
compute the centre Z(A) of a symmetric stably biserial algebra A, which is known to be
invariant under derived equivalence, see [29]. We will use this to establish, that the number
of π-cycles, or the vertices of the Brauer graph, is invariant under derived equivalence.
This will also gives us an opportunity to correct the above-mentioned inaccuracies in
the description of the centre of an SSB-algebra made in [4]. Let {C1, C2, . . . , Cr} be the
set of π-cycles. For each i = 1, . . . , r consider a cyclic sequence (αi,1, αi,2, . . . , αi,li) of
arrows of the cycle Ci, where π(αi,j) = αi,j+1, li denotes the length of the cycle Ci. Let
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m(C1), m(C2), . . . , m(Cr) denote the multiplicities of the π-cycles and let r′ ≤ r be an
integer such that m(Ci) > 1, i = 0, . . . , r′ and m(Ci) = 1, i = r′ + 1, . . . , r. For each loop
γ such that π(γ) 6= γ there are i and j such that γ = αi,j. For each such loop γ set
qγ = qαi,j

= (αi,j+1αi,j+2 . . . αi,liαi,1 . . . αi,j)
m(Ci)−1αi,j+1αi,j+2 . . . αi,liαi,1 . . . αi,j−1.

Proposition 4.1. Let A be a symmetric stably biserial algebra with the corresponding
data (Q, π,m,L). As a vector space over k the centre Z(A) is generated by 1 and by the
elements of the following form:

a) Elements mi,t = (αi,1αi,2 . . . αi,li)
t + (αi,2αi,3 . . . αi,1)

t + · · ·+ (αi,liαi,1 . . . αi,li−1)
t, for

i = 1, 2, . . . , r′ and t = 1, . . . , m(Ci)− 1.
b) Elements qγ for each loop γ such that π(γ) 6= γ.
c) Elements sv for each vertex v ∈ Q0, where sv is the socle element corresponding to

v.
Moreover, if A is not isomorphic to some A∞, then considered as an al-

gebra, Z(A)/(soc(Z(A)) ≃ k[x1, x2, . . . , xr′]/〈xm(Ci)
i , (xixj)i 6=j〉. So the multiset

{m(C1), m(C2), . . . , m(Cr′)} is invariant under derived equivalence. The number of loops
γ such that π(γ) 6= γ, or equivalently, the number of faces of Γ of perimeter 1 is a derived
invariant as well.

Proof. It is clear that all the listed elements belong to the centre of A. Let us prove that
any element of the centre is a linear combination of elements of the form (a)-(c).

Each z ∈ Z(A) has a form z =
∑N

i=1 aipi+z′, where pi are the elements of the path basis
of A which do not belong to the socle of A and z′ ∈ soc(A). Without loss of generality,
we can assume z′ = 0. All elements pi with ai 6= 0 are necessarily closed paths, that is
pi = evpiev for some idempotent ev, corresponding to a vertex v. Fix pi = β1β2 . . . βm

for some βj ∈ Q1, let βm+1 = π(βm), then piβm+1 6= 0. Assume that piβm+1 does not
belong to the socle of A, then β1β2 . . . βmβm+1 has coefficient ai in the sum βm+1z, hence
βm+1 = β1 and the coefficient of β2 . . . βmβm+1 in z is ai, so pi = (αj,sαj,s+1 . . . αj,s−1)

t for
some π-cycle, and z contains aimj,t as a summand, z − aimj,t contains less summands,
then z. If β1β2 . . . βmβm+1 belongs to the socle of A, then βm+1 is a loop, since pi is a
closed path. Then pi is either mj,m(Cj)−1 for a cycle Cj, consisting of a single loop (if
π(βm+1) = βm+1) or qβm+1 (if π(βm+1) 6= βm+1). Either z − aiqβm+1 or z − aimj,m(Cj)−1

has less summands then z and we can proceed by induction on the number of nonzero
coefficients ai in the sum z =

∑N
i=1 aipi. By induction we get that z is a linear combination

of elements of the form (a)-(c).
In case A 6≃ A∞, soc(Z(A)) is clearly generated by the elements of type (b) and (c).

Moreover, mi,t1mj,t2 = δi,jmi,t1+t2 and m
m(Ci)
i,1 ∈ socZ(A). Hence Z(A)/(soc(Z(A))) ≃

k[x1, x2, . . . , xr]/〈xm(Ci)
i , (xixj)i 6=j〉. Since Z(A) is invariant under derived equivalence as

an algebra, the multiset {m(C1), m(C2), ..., m(Cr′)} is invariant under derived equiva-
lence. The socle of Z(A) is spanned by the elements of the form sv, v ∈ Q0 and qγ, γ is
a loop, π(γ) 6= γ. Since the number of the elements sv is a derived invariant, so is the
number of loops γ such that π(γ) 6= γ. �

4.2. Number and perimeters of faces. Let A be a symmetric stably biserial algebra
with the corresponding Brauer graph Γ, let p1, p2, . . . pm be the perimeters of faces of Γ.
Namely, using the graph Γ the surface S can be cut into polygons, by a perimeter of
a face F we mean the number of edges in the corresponding polygon, thus, for example,
the perimeter of a self-folded triangle is 3. Note that the perimeter of a face F coincides
with the length of the corresponding Green walk (see [32, 16]). The aim of this section
is to prove that the multiset {p1, . . . , pm} (and, in particular, the number of faces m)
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is an invariant of the derived category of A. For this we are going to use the structure
of the Auslander-Reiten quiver of the stable category of mod-A. Note that by [30] for
self-injective and in particular for symmetric algebras derived equivalence implies stable
equivalence, so any invariant of stable equivalence is automatically a derived invariant.

Indecomposable modules over special biserial algebras are classified in terms of strings
and bands, the description of the Auslander-Reiten sequences and of the Auslander-
Reiten quiver for such algebras is well understood [20, 13, 36, 17, 18]. Let us consider the
AR-quiver Γmod-A of mod-A. If A is SSB, then each periodic component of Γmod-A is a
tube. Moreover, all tubes are either tubes of rank 1, consisting of band modules or tubes
consisting of string modules, called exceptional tubes. Exceptional tubes correspond to
faces of Γ: if a face has an even perimeter p, then it produces two tubes of rank p/2 such
that they are permuted by Ω; if a face has an odd perimeter, then it produces one tube
of rank p, which is stable under the action of Ω. For a detailed exposition see [16, Section
4].

In case A is symmetric stably biserial and not necessarily special biserial its AR-quiver
Γmod-A of mod-A coincides with the same quiver for the SSB-algebra A′ constructed
from the same data (Q, π,m). Indeed, A/soc(A) ≃ A′/soc(A′) is a string algebra, so the
classification of indecomposable non-projective modules is the same. The AR-sequences
not ending at the module P/soc(P ) for a projective module P coincide for A and A/soc(A)
by [12, Proposition 4.5], the fact that the sequences 0 → radP → radP/socP ⊕ P →
P/socP → 0 give the same in Γmod-A and Γmod-A′ can be checked by hand.

Consequently, we get that the number of faces of a given perimeter p > 2 is the number
of tubes of rank p, stable under Ω, in case p is odd and the number of tubes of rank p/2,
not stable under Ω, divided by 2, in case p is even. In both cases the perimeter can be
also reconstructed from the stable category. By Proposition 4.1 the number of faces of
perimeter 1 is a derived invariant. The number of faces of perimeter 2 can be reconstructed
as follows: (2|E(Γ)| −

∑

pi 6=2 pi)/2. Thus, the following holds:

Proposition 4.2. Let A1, A2 be two symmetric stably biserial algebras with Brauer graphs
Γ1 and Γ2, such that neither Γ1 nor Γ2 is a loop with multiplicity 1 or an edge with
multiplicity of both vertices 2. If Db(A1) ≃ Db(A2), then the number of faces and the
multisets of perimeters of faces of Γ1 and Γ2 coincide.

Remark 4.3. The proof of the fact that the number of faces and the multisets of perime-
ters of faces of Γ is invariant under an equivalence of stable categories of SSB-algebras
was provided in [3] with a mistake, which was corrected in [5]. Note that the proof is much
more involved, since one can not use the centre of the algebra Z(A) (as in Proposition
4.1), so one has to deal with the tubes coming from the faces of perimeter 1 and 2 and
with the tubes containing band modules.

4.3. Number of vertices and their multiplicities. Let Z
|Q0| be the Grothendieck

group of a self-injective algebra A with the Cartan matrix C(A). Then C(A) defines a
group homomorphism φA from Z

|Q0| to itself and K0(mod-A) ≃ Z
|Q0|/Im(φA). To obtain

the standard description of this Abelian group one can use Smith’s normal form of C(A),
which can be obtained by computing the greatest common divisors of all t × t minors
of C(A), this was done for SSB-algebras in [2, 6]. We are going to use only the rank of
C(A), which is equal to |Q1/π| − 1 if the Brauer graph Γ of A is bipartite and to |Q1/π|,
otherwise. Note that by construction |Q1/π| is the number of vertices of Γ.

Proposition 4.4. Let A1, A2 be stably biserial algebras with Brauer graphs Γ1 and Γ2,
such that neither Γ1 nor Γ2 is a loop with multiplicity 1 or an edge with multiplicity of
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both vertices 2. If Db(A1) ≃ Db(A2), then |V (Γ1)| = |V (Γ2)|. Moreover, the multisets of
multiplicities of the vertices and the bipartivity of Γ1 and Γ2 coincide.

Proof. Let A′
i be the special biserial algebra corresponding to the data given by the Brauer

graph Γi. As Ai and A′
i have the same Cartan matrices, we can use the description of

the structure of the Grothendieck group of A′
i for Ai. Since derived equivalences of self-

injective algebras imply stable equivalences, K0(mod-A1) ≃ K0(mod-A2), thus the ranks
of C(A1) and C(A2) coincide.

By [6], rk(C(Ai)) is equal to |V (Γi)| − 1 if the Brauer graph Γ(Ai) of Ai is bipartite
and to |V (Γi)| otherwise. By Proposition 4.2 |F (Γ1)| = |F (Γ2)|, the same holds for
|E(Γ1)| = |E(Γ2)|, since |V (Γi)| − |E(Γi)|+ |F (Γi)| is even as the Euler characteristic of
the surface Si, we see that |V (Γi)| can not differ by 1, hence, |V (Γ1)| = |V (Γ2)|. Since the
ranks of the Cartan matrices of A1 and A2 coincide, Γi are either simultaneously bipartite
or simultaneously not bipartite.

The multiplicities of the vertices > 1 can be detected by the centre of the algebra, see
Proposition 4.1. The invariance of the number of the vertices with multiplicity 1 follows
from the invariance of the number of all vertices. �

Lemma 4.5. Let A1, A2 be derived equivalent symmetric stably biserial algebras, where
A1 is a caterpillar. Then A2 is special biserial.

Proof. The algebra A1 has no loops γ such that π(γ) 6= γ, so by Proposition 4.1 A2 has
no such loops as well, hence, A2 is symmetric special biserial. �

Proof of Theorem 1.2. Combining the results of Proposition 4.2 and 4.4 we get that
the following are derived invariants of a symmetric stably biserial algebra A with
at least two non-isomorphic simple modules and the corresponding Brauer graph Γ:
|V (Γ)|, |E(Γ)|, |F (Γ)|, the multiset of perimeters of faces, the multiset of multiplicities
of vertices, bipartivity of Γ. �

5. The group of outer automorphisms

Throughout this section we are going to assume that either char(k) = 2 or that
char(k) 6= 2 and the number of deformed loops d = 0 (that is A is symmetric spe-
cial biserial); that A is not a caterpillar and that A has at least two non-isomorphic
simple modules. We are going to show that derived equivalent symmetric stably biserial
algebras have the same number of deformed loops using the identity component of the
group of outer automorphisms. By [23, 33] the identity component of the group of outer
automorphisms Out0(A) of an algebra A is invariant under derived equivalence as an
algebraic group. We are going to use the necessary notions and facts about algebraic
groups freely, for more details see [25].

5.1. H ′ is trigonalizable. Let A = kQ/I be a stably biserial algebra in the standard
form given in Theorem 2.4, i.e. the ideal of relations is not necessarily admissible. Let
L ⊂ Q1 be the set of deformed loops. Let A = B ⊕ J(A) be a Wedderburn-Maltsev
decomposition (i.e. B is semisimple subalgebra). Then it is known that Out(A) = H/H ∩
Inn(A), where H = {f ∈ Aut(A)|f(B) ⊂ B} [22, 28]. If {ev}v∈Q0 is a set of primitive
idempotents and B = 〈{ev}v∈Q0〉, then obviously for any v ∈ Q0 and f ∈ H , f(ev) = ev′
for some v′ ∈ Q0. Therefore H ′ = {f ∈ H | f |B = Id} is a closed subgroup of finite index
in H , i.e. it is a union of connected components, since H ∩ Inn(A) = H ′ ∩ Inn(A) =
Inn(A) acts on each component, to understand Out0(A) we can consider only H ′ without
loss of generality.
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Lemma 5.1. If A is not a caterpillar and rkK0(A) ≥ 2, then there is an embedding
i : H ′ → T (l,k) of algebraic groups over k, where T (l,k) is the group of lower triangular
matrices and l = dimA.

Proof. Let P be a set of paths in Q which forms a basis for kQ/I, such that α2 /∈ P
for α ∈ L and all primitive idempotents {ev}v∈Q0 and all arrows of Q are in P . For
each p ∈ P let lp = max{k : p ∈ J(A)k}, with the convention that lev = 0, v ∈ Q0. A
pair (β, β ′) ∈ Q1 × Q1 with s(β) = s(β ′), e(β) = e(β ′) (β, β ′ are parallel arrows) and
π2(β) 6= β, π2(β ′) = β ′ will be called an exceptional pair.

Let us consider some linear extension of the following partial order on P :
1)If lp < lq, then p < q.
2)If (β, β ′) is an exceptional pair, then β < β ′. Note that since |Q0| > 1, lβ = lβ′ = 1.
We are going to express the matrix of an automorphisms of A in the basis P with

respect to this linear order and show that, it is lower-triangular, i.e, for f ∈ H ′ and p ∈ P
we have f(p) = kpp +

∑

p′>p kp,p′p
′.

Let us consider p = β ∈ Q1, such that lβ = 1. If β has no parallel arrows, then
f(β) = kββ + r where r ∈ J(A)2 and we are done. Now suppose that β has a parallel
arrow β ′, in this case we can have f(β) = kββ+kβ,β′β ′ + r with kβ,β′ 6= 0. Note that since
|Q0| 6= 1, β is not a loop. There are three possible cases:

1) π(β), π(β ′) are not parallel. In this case f(π(β ′)) = kπ(β′)π(β ′) + r1, r1 ∈ J(A)2.
Then 0 = f(βπ(β ′)) = f(β)f(π(β ′)) = kβ,β′kπ(β′)β

′π(β ′) + r′, r′ ∈ J(A)3. A path of
length two β ′π(β ′) belongs to J(A)3, hence β ′π(β ′) ∈ soc(A). Since π(β), π(β ′) are not
parallel, (β, β ′) is an exceptional pair and β < β ′. The same argument for (β ′, β) gives
kβ′,βkπ(β)βπ(β) ∈ soc(A), hence kβ′,βkπ(β) = 0, thus kβ′,β = 0, so f(β ′) = kβ′β ′ + r′′,
r′′ ∈ J(A)2.

2) π(β), π(β ′) are parallel arrows but πl(β), πl(β ′) are not parallel for some l (we
take the minimal l). In this case (πl−1(β), πl−1(β ′)) is not an exceptional pair (other-
wise s(πl−1(β)) has 3 incoming arrows) and f(πl(β ′)) = kπl(β′)π

l(β ′) + r′, r′ ∈ J(A)2.

So 0 = f(πl−1(β))f(πl(β ′)) implies f(πl−1(β)) = kπl−1(β)π
l−1(β) + r, r ∈ J(A)2 and the

same holds for β ′. Then by decreasing induction on i we obtain in the same way that
f(πi(β ′)) = kπi(β′)π

i(β ′) + r′, r′ ∈ J(A)2, f(πi(β)) = kπi(β)π
i(β) + r, r ∈ J(A)2 for all

0 ≤ i ≤ l, in particular, for i = 0.
3) πl(β), πl(β ′) are parallel for all l. In this case A = kQ/I is a caterpillar.
For an arbitrary pi ∈ P , chose a presentation pi = β1 . . . βn with n maximal. Then

f(pi) = f(β1) . . . f(βn) =
∏

i kβi
β1 . . . βn +

∑

kjpj, where pj > β1 . . . βn. Indeed, β1 . . . βn

is of the form β1π(β1) . . . π
n(β1) and since for an exceptional pair (β, β ′) we have

β ′π(β), π−1(β)β ′ ∈ J(A)3 the sum
∑

kjpj belongs to J(A)n+1. �

5.2. Decomposition with the unipotent subgroup. We have seen in the previous
subsection that H ′ is a subgroup of the group of lower-triangular matrices. In order not to
compute the groups Out0(A) for all symmetric stably biserial algebras, which might turn
out to be quite technical, we want to deduce some easier invariant of Out0(A) preserved
by isomorphisms of algebraic groups.

Let us consider maximal unipotent subgroups in H ′ and Inn(A), denoted respectively
by UH′ and UI . These groups are given by the intersection of H ′ (respectively Inn(A))
with U(l,k) the group of (lower) unitriangular matrices. We can consider the following
diagram of algebraic groups:

11



1 // UI
//

��

Inn(A) //

��

DI
//

��

1

1 // UH′ //

��

H ′ //

��

DH′ //

��

1

1 // UH′/UI
// Out(A) // DH′/DI

// 1

An easy diagram chasing shows that the map DI → DH′ is an embedding. As a quotient
of a trigonalizable group Out(A) is trigonalizable, DH′/DI is diagonalizable and UH′/UI

is the maximal unipotent subgroup of Out(A), it contains all unipotent subgroups of
Out(A) [25, Theorem 16.6]. Thus we can consider another diagram:

1

��

// 1 //

��

X

��

1 // (UH′/UI)
0 //

��

Out0(A) //

��

D(A) //

��

1

1 // UH′/UI
//

��

Out(A) //

��

DH′/DI
//

��

1

Y // Z // W // 1

Since Out0(A) is connected and solvable its maximal unipotent subgroup is connected
and thus coincides with (UH′/UI)

0. Note also that all maximal tori of Out0(A) are con-
jugate. The groups DI , DH′ , DH′/DI are diagonalizable. We also get the following exact
sequence 1→ X → Y → Z →W → 1, where Y, Z are finite, then X,W are finite as well.
Hence the rank of D(A) and DH′/DI coincide. We have proved the following lemma.

Lemma 5.2. In the notation of the previous construction, the rank of DH′/DI coincides
with the rank of the maximal torus D(A) of Out0(A) and so is a derived invariant of A.

5.3. Computation of the rank of DH′/DI . Both DH′ and DI are induced by the
projection map from the group of lower triangular matrices to the group of diagonal
matrices. So we are going to find out what elements can appear on the diagonal of the
matrices from H ′ and Inn(A). Clearly the diagonal entries corresponding to the arrows
of the quiver determine all other diagonal entries, so we are going to restrict our attention
to them.

Lemma 5.3. There is an isomorphism of affine algebraic groups DI ≃ (k∗)|Q0|−1.

Proof. Recall that Inn(A) = {fa|a ∈ A∗}, where fa(x) = axa−1. Each a ∈ A∗ can
be uniquely written as a =

∑

i∈Q0
aiei + r, where ai ∈ k∗, r ∈ J(A). Then a−1 =

∑

i∈Q0
a−1
i ei + r′, r′ ∈ J(A) and the action of fa on J(A)/J(A)2 depends only on ai’s. For

c ∈ k∗, fa clearly coincides with fca.
Let fa = fa (mod UI). Consider any spanning tree of Q (ignoring the orientation

of Q), let {αi}1≤i≤n−1 be the corresponding set of arrows. For each arrow αi we have

fa(αi) = aαia
−1 = as(αi)a

−1
e(αi)

αi (mod J(A)2). Let us define the map DI
η−→ (k∗)|Q0|−1 as

fa → (as(α1)a
−1
e(α1)

, . . . , as(α|Q0|−1)a
−1
e(α|Q0|−1)

). The equality fa(αi) = αi (mod J(A)2) for the

elements of UI guarantees that the map is well defined.
12



Since αi form a spanning tree, for any element (k1, . . . , k|Q0|−1) ∈ (k∗)|Q0|−1 one
can uniquely determine {ai}i ∈ Q0 up to multiplication of all ai by a common con-

stant c ∈ k∗. Setting a =
∑

i∈Q0
aiei one can define a map DI

θ←− (k∗)|Q0|−1, clearly

θη((k1, . . . , k|Q0|−1)) = (k1, . . . , k|Q0|−1).
For a − a′ ∈ J(A) and any path p = β1β2 . . . βk we have fa(p)− fa′(p) ∈ J(A)k+1. As

the order on the basis P agrees with the path length fa = fa′ . Since fa = fca for c ∈ k∗,
ηθ(fa) = fa and we get the desired bijection. �

Let us consider the following algebraic group DΓ, which can be constructed from the
data (Q, π,m,L) or equivalently from the data of a Brauer graph and a fixed number of
1-perimeter faces of Γ (the set L is assumed to be empty in case char(k) 6= 2). The group
DΓ is a subgroup of (k∗)2|E(Γ)|+1. The first 2|E(Γ)| entries kα are labelled by the arrows
of Q, the last entry is denoted k. The subgroup is given by the following equations:

(kα)2 = tαk for each deformed loop α and
∏

α∈C k
m(C)
α = k for each C ∈ Q1/π with

multiplicity m(C).

Proposition 5.4. Let A be a symmetric stably biserial algebra corresponding to the data
(Q, π,m,L), then DH′ ≃ DΓ.

Proof. As before any f ∈ H ′ has the form f(α) = kαα +
∑

p>α kα,pp. We need to check

that the set of elements of (k∗)2|E(Γ)| appears as the set (kα) for some f ∈ H ′ if and only
if there exists k ∈ k∗ such that the equations from the description of the group DΓ are
satisfied.

If for a set of elements (kα) in (k∗)2|E(Γ)| there exists k ∈ k∗ such that (kα, k) ∈ DΓ,
then we can define f ∈ H ′ by f(α) = kαα, which clearly gives an automorphism of A.

Let us prove that for any f ∈ H ′ the set (kα) is an element of DΓ with some k ∈ k∗. For
that we need to better understand which coefficients kα,p can be non-zero. For an arrow
α, let us denote by C̄(α) := C(α)m(C(α)) = (απ(α) · · ·π|π(α)|−1(α))m(〈π〉α) the maximal
power of the cycle passing through α. Let us show that if kα,p 6= 0 and p is not a subpath
of C̄(α), then p = β−1C̄(β) for some arrow β with s(β) = e(α) and e(β) = s(α). Assume
this is not the case and let us take p = β1 · · ·βt with t minimal, since s(p) = s(α),
e(p) = e(α) and p is not a subpath of C̄(α), p /∈ soc(A), then p is a subpath of some
C̄(δ) and such p is unique. Let β be the arrow such that βp ∈ C̄(β), such β exists and
e(β) = s(α) but α 6= π(β). Note that β is not a loop with π(β) 6= β, otherwise α = β
and p is a subpath of C̄(α). The relation f(β)f(α) = 0 implies that the coefficient before
βp, which contains kβkα,p should be 0. Assume βp /∈ socA, then by the minimality of the
length of p, kα,p = 0. So βp ∈ socA as desired.

Let us now check that for any f ∈ H ′ the set (kα) satisfies the equations
∏

α∈C k
m(C)
α = k

for some k ∈ k. Let us compute f(C̄(α)) for some α ∈ Q1. It has a summand
∏

α′∈C(α) k
m(C(α))
α′ C̄(α), if it has any other summand, then this summand can only ap-

pear in one of the following 3 situations:
1) as a product of the elements of the form kπi(α),p, where p is not a subpath of C̄(πi(α)).

This situation is possible only in the case of a caterpillar with two simple modules, which
we do not consider.

2) as a product of subpaths of C̄(α) and paths, which are not subpaths of C̄(α), this
is possible only in the situation |Q0| = 1 and A has a deformed loop, which we also do
not consider.

3) as a product of subpaths of C̄(α), at least one of which comes from f(πi(α)) and is
not πi(α). Note that all these subpaths are arrows, otherwise the product is zero. Since
at least one of the subpaths comes from f(πi(α)) and is not πi(α) all of them come from
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f(πj(α)) but are not πj(α), otherwise we are in the situation |Q0| = 1 and A has a
deformed loop again. Hence every πi(α) has a parallel arrow and A is a caterpillar, which
we do not consider.

So f(C̄(α)) =
∏

α′∈C(α) k
m(C(α))
α′ C̄(α). Since the relation f(C̄(α)) = f(C̄(β)) holds for

any α, β ∈ Q1 with s(α) = s(β) and the graph Γ is connected, we can denote by k the

product
∏

α′∈C(α) k
m(C(α))
α′ for some fixed α and get that

∏

α∈C k
m(C)
α = k for any π-cycle

C.
From here on we assume char(k) = 2. Let us deal with the equations (kα)2 = tαk, for

each deformed loop α. For a deformed loop α let wα be the path that makes αwα into
a π-cycle. Let m be the multiplicity of this cycle. Then f(α) = kαα +

∑

p kpp (we will

use this simplification of the notation for the rest of the proof), where p can have the
following form: (wαα)i, i = 1, . . .m−1, α(wαα)i, i = 0, . . .m−1, (wαα)iwα, i = 0, . . .m−1,
α(wαα)iwα, i = 0, . . .m− 1. Since α is a deformed loop it appears only in socle relations
and there are no restrictions on kp so far.

Let us consider f(α)2: the coefficient before αwαα should be zero, this gives kαkwαα +
kαkαwα

= 0, so since kα ∈ k∗, kwαα+kαwα
= 0. Let us assume k(wαα)i +k(αwα)i = 0, for i <

j < m and prove the same for j. Let us consider the coefficient of α(wαα)j in f(α)2. For
any entry of the form k(αwα)ik(αwα)j−iα there is an entry of the form k(αwα)j−iαk(wαα)i and by
induction hypothesis they cancel out. The only entries left are kαk(wαα)j + k(αwα)jkα = 0,
so we are done.

Let us now consider the coefficient of α2 = (αwα)m = (wαα)m, which should co-
incide with tαk. For any entry of the form k(wαα)iwα

k(αwα)m−i−1α there is an entry
k(αwα)m−i−1αk(wαα)iwα

, they cancel out since char(k) = 2, the entries k(wαα)ik(wαα)m−i and
k(αwα)ik(αwα)m−i cancel out because of the previous paragraph (which we need only for m
even, otherwise they cancel anyway). So we are left with k2

α = tαk, as desired. �

Lemma 5.5. The rank of DH′ is |Q1|−|Q1/π|−d+1, where d is the number of deformed
loops in A.

Proof. Let us construct an epimorphism j : DH′ → (k∗)|Q1|−|Q1/π|−d+1 such that the kernel
ker(j) is finite.

Each cycle of π contains an arrow, which is not a deformed loop. Let us fix one such
arrow in each cycle and denote the collection of these arrows by F . Let us label the ele-
ments of (k∗)|Q1|−|Q1/π|−d+1 by xα, α ∈ Q1, α /∈ F ∪L and by an additional indeterminant
x. Define the map j as follows: j((kα, k)) := ((xα, x)), where xα = kα, α /∈ F ∪ L, x = k.
The map j is surjective, since for any (xα, x) we can define kα =

√
tαx for α ∈ L and

kα = m(C(α))

√

x/
∏

α′∈C(α),α′ 6=α,α′ /∈L x
m(C(α))
α′

∏

α′∈C(α),α′∈L(
√
tα′x)m(C(α)) for α ∈ F .

Let us compute the kernel of j. (kα, k) ∈ ker(j) if and only if k = 1, kα = 1 for

α /∈ F ∪L, k2
α = tα for α ∈ L, k

2m(C(α))
α = 1/

∏

α′∈C(α),α′∈L t
m(C(α))
α′ for α ∈ F . This clearly

defines a finite group.
Passing to the groups of characters, if necessary, and using the equivalence between

the category of diagonalizable groups and finitely generated commutative groups [25,
Theorem 12.9], we see that the rank of DH′ is |Q1| − |Q1/π| − d + 1. �

Proof of Theorem 1.1. Since DI is connected, its image belongs to the maximal torus
in DH′ and passing to the groups of characters again, the exact sequence 1 → DI →
DH′ → DH′/DI → 1, gives that the rank of DH′/DI is |Q1| − |Q1/π| − d+ 1− |Q0|+ 1 =
|Q0| − |Q1/π| − d + 2 = |E(Γ)| − |V (Γ)| − d + 2. �
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Using the fact that Brauer graph algebras can be stably (and hence derived) equivalent
only to symmetric stably biserial algebras [8, Theorem 1 and 3], Corollary 1.3 can be
deduced from Theorems 1.1 and 1.2 and Lemma 4.5, as well as from the fact that for
local algebras derived equivalence implies Morita equivalence.
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[22] Guil-Asensio, Francisco, and Manuel Saoŕın. ”The group of outer automorphisms and the Picard

group of an algebra.” Algebras and Representation Theory 2.4 (1999): 313–330.
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