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*A new class of Q-ary codes that correct errors in the Lee metric is described. For the received codes there is no restriction on the number of correctable

errors associated with the size of the code alphabet. In addition, the resulting codes have less redundancy compared to known codes.
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I. INTRODUCTION

Lee [1] introduced the Lee metric in 1958 as an alter-
native to the Hamming metric for certain noisy channels.
Let a positive integer m, a prime number p, a finite field
GF (pm) and a set of integers {0, 1, 2, . . . , pm − 2} ≡ M
be given. Denote by α the primitive element of GF (pm) ≡
{0, α0, α1, . . . , αpm−2}. Denote by Mn the set of vectors of
length n < pm with elements from the set M . The number of
elements of the set M is denoted by Q = pm − 1. Note that
for any nonzero element of the field γ ∈ GF (pm) the identity

γ(pm−1) = γ(0) = 1 (1)

is satisfied.
The distance in the Lee metric between two vectors u =

(u1, u2, . . . , un) ∈ Mn and v = (v1, v2, . . . , vn) ∈ Mn is
calculated by the formula

dL(u; v) =

n∑
i=1

min

{
(ui − vi) mod Q
(vi − ui) mod Q

}
(2)

The weight in the Lie metric of the vector u is determined
by the formula

wL(u) =

n∑
i=1

min{ui, Q− ui}

In [2], Chiang and Wolf derived all discrete, memoryless,
symmetric channels matched to the Lee metric and investi-
gated the general properties of Lee metric block codes.

In [3], Berlekamp introduced negacyclic codes for which
the generator polynomial contains the roots α1, α3, . . . , α2t−1

. The lower bound on the minimum Lee distance of this class
of codes is 2t− 1 when t ≤ p−1

2 .
In [4], Roth and Siegel characterized the Lee distance prop-

erties of a class of BCH codes whose generator polynomial
contains α0, α1, . . . , αt−1 as its roots. When t ≤ p−1

2 or when

the code lies in GF (p), the minimum Lee distance is shown to
be at least 2t. The authors also developed a decoding algorithm
utilizing Euclids algorithm to correct up to t − 1 Lee errors.
In contrast to the performance of negacyclic codes, this class
of codes has twice the length of the negacyclic construction.

In [5], Byrne showed that, under certain restrictions on t,
the 2t lower bound on the minimum Lee distance also holds
for codes on a Galois ring and devised a decoding algorithm
in light of a Grobner basis.

We say that the coordinate ui of the vector u is obtained
from the coordinate vi of the vector v with increasing errors
e

(+)
i , if the condition

(ui − vi) mod Q = e
(+)
i (3)

is satisfied.
The vector of increasing errors that translate the vec-

tor v into the vector u will be denoted by e(+) =

(e
(+)
1 , e

(+)
2 , . . . , e

(+)
n ) ∈ Mn. Determine the distance of the

increasing errors in the Lie metric between the vectors u =
(u1, u2, . . . , un) ∈ Mn and v = (v1, v2, . . . , vn) ∈ Mn by
the formula

d+
L(u; v) =

n∑
i=1

(ui − vi) mod Q =

n∑
i=1

e
(+)
i (4)

We define the operation of adding the vectors v =

(v1, v2, . . . , vn) ∈ Mn and e(+) = (e
(+)
1 , e

(+)
2 , . . . , e

(+)
n ) ∈

Mn at which the corresponding components of these vectors
are added modulo Q. Thus v + e(+) = u, (vi + e

(+)
i )

mod Q = ui, 1 ≤ i ≤ n.
The total number of increasing errors that translate the

vector v into the vector u will be called the weight of the
increasing errors of the vector e(+) and denoted W (+)

L (e(+)) =
n∑

i=1

e
(+)
i



We say that the coordinate ui of the vector u is obtained
from the coordinate vi of the vector v with decreasing weight
errors e(−)

i if the condition

(vi − ui) mod Q =

n∑
i=1

e
(−)
i (5)

is satisfied.
The vector of decreasing errors transforming the vec-

tor v into the vector u will be denoted by e(−) =

(e
(−)
1 , e

(−)
2 , . . . , e

(−)
n ) ∈ Mn Determine the distance of re-

ducing errors in the Lee metric between the vectors u =
(u1, u2, . . . , un) ∈ Mn and v = (v1, v2, . . . , vn) ∈ Mn by
the formula

d−L (u; v) =

n∑
i=1

(vi − ui) mod Q =

n∑
i=1

e
(−)
i (6)

Define the operation of subtracting the vectors v =

(v1, v2, . . . , vn) ∈ Mn and e(−) = (e
(−)
1 , e

(−)
2 , . . . , e

(−)
n ) ∈

Mn for which the corresponding components of these vectors
are subtracted modulo Q. Thus v − e(−) = u, (vi − e

(−)
i )

mod Q = ui, 1 ≤ i ≤ n.
The total number of decreasing errors that convert the vector

v to the vector u will be called the weight of the error reducing
vector e(−) and denoted by

W
(−)
L (e(−)) =

n∑
i=1

e−i

Note that the equality e(−)
i +e

(+)
i = Q holds for any values

of ui,vi. Respectively,

e
(−)
i = −e(+)

i mod Q, 1 ≤ i ≤ n

Then from (3) and (5) it follows that

e(−) = −e(+) (7)

For any vectors u = (u1, u2, . . . , un) ∈ Mn and v =
(v1, v2, . . . , vn) ∈Mn the equality

d+
L(u; v) + d−L (u; v) = Qn

.
From (4) and (6) it follows that

d+
L(u; v) = d−L (v;u) (8)

II. CODES IN THE LIE METRIC OVER THE ALPHABET
EQUAL TO THE LENGTH OF THE CODE

The set CL(n; t) ⊂ Mn is called a code correcting t+

increasing errors in the Lee metric if for any pair of different
vectors u ∈ CL(n; t), v ∈ CL(n; t) is not there exists a vector
c ∈Mn such that d+

L(c; v) ≤ t+ and d+
L(c;u) ≤ t+

We define the mapping F of the set Mn to the set of
polynomials in the formal variable x over the field GF (pm).
To do this, we associate the i-th position (1 ≤ i ≤ n) of the
vectors of the set Mn with a non-zero element αi of the field
GF (pm). It follows from the inequality pm > n that such a

comparison is possible. Define the mapping F of the vector
u = (u1, u2, . . . , un) to the polynomial u(x) by the rule

F(u) ∆
= u(x) =

n∏
i=1

(x− 1

ai
)ui

We will call a polynomial u(x) a locator polynomial for the
vector u. Note that for any vectors u, v ∈ Mn the condition
F(u) ≡ F(v) ≡ 1 mod x holds.

Denote by GF [x] the ring of polynomials in the formal
variable x over the field GF (qm). Let s(x) ∈ GF [x] be a
polynomial of degree less than or equal to t, whose lowest
coefficient is one.

Lemma 1. The set of words CL(n; t)
∆
= {u|u ∈

Mn,F(u) ≡ s(x) mod xt+1} is the code correcting t+

increasing errors in the Lee metric.

Evidence.
Let there be different code vectors u ∈

CL(n; t), v ∈ CL(n; t), and different error
vectors e(1) = (e

(1)
1 , e

(1)
2 , . . . , e

(1)
n ) ∈ Mn and

e(2) = (e
(2)
1 , e

(2)
2 , . . . , e

(2)
n ) ∈ Mn increasing errors, the

weight of each of which in the Lee metric does not exceed
t+.

Suppose the opposite, that there is a word c ∈ Mn,
satisfying conditions, which can be obtained by adding the
word u with the error vector e(1) and the word v with the
error vector e(2). Then the following relations take place:

u+ e(1) = v + e(2)

F(u+ e(1)) = F(u+ e(1))

n∏
i=1

(1− x

ai
)ui

n∏
i=1

(1− x

ai
)e

(1)
i =

n∏
i=1

(1− x

ai
)vi

n∏
i=1

(1− x

ai
)e

(2)
i

(9)
Since u ∈ CL(n; t), v ∈ CL(n; t) get the identity F(u) ≡
F(v) ≡ s(x) mod xt+1

Then from (9) we get
n∏

i=1

(1− x

ai
)e

(1)
i =

n∏
i=1

(1− x

ai
)e

(2)
i mod xt+1 (10)

Notice, that

deg(F(e(1))) ≤ t+anddeg(F(e(2))) ≤ t+

Therefore, (10) is equivalent to the identity
n∏

i=1

(1− x

ai
)e

(1)
i =

n∏
i=1

(1− x

ai
)e

(2)
i (11)

Since the vectors e(1)
i and e(2)

i are different, expression (11)
cannot be satisfied. Hence, our assumption is not true.

Proof Completed.

From (8) it follows that the code correcting t+ increasing
errors in the Lee metric is also a code that corrects t−



reducing errors in the Lee metric. In the sequel, we call
CL(n; t) a code of length n, correcting t unidirectional errors
in the Lee metric. One directivity of errors in this case means
that in different positions of the code word u ∈ CL(n; t) both
increasing and decreasing errors cannot occur simultaneously.

Lemma 2.
A set of words BL(n; t)

∆
= {u|u ∈ CL(n; t), wL(u) ≡ σ

mod (2t+ 1)}
is a code correcting t of arbitrary errors in the Lee metric.

Evidence.
Consider the case when the two words u ∈ BL(n; t), v ∈

CBL(n; t) have different weight in the Lee metric. Then they
are at a distance in the Lie metric of at least 2t+1. Thus, for
this case, Lemma 2 is proved.

Consider the case wL(u) = wL(v). Assume the converse
that there are two words u ∈ BL(n; t), v ∈ BL(n; t), as well
as a vector of arbitrary errors e = (e1, e2, . . . , en) ∈ Mn for
which identities

e+ v = u, (12)

wL(e) ≤ 2t (13)

hold. With allowance for wL(u) = wL(v) to satisfy identity
(12), the vector e must contain the same number of increasing
and decreasing errors. Taking into account (13), the maximum
number of such errors is t− = t+ = t.

Represent the vector of multidirectional errors as the
difference of the vector of increasing errors e

(+)
1 =

(e
(+)
11 , e

(+)
12 , . . . , e

(+)
1n ) ∈ Mn and reducing errors e

(−)
2 =

(e
(−)
21 , e

(−)
22 , . . . , e

(−)
2n ) ∈Mn. Then we obtain e = e

(+)
1 − e(−)

2

and equality (13) is written as

v + e
(+)
1 − e(−)

2 = u

We transform the resulting equality with regard to equation
(7).

v + e
(+)
1 = u+ e

(−)
2 = c ∈Mn (14)

According to the conditions u ∈ CL(n; t), v ∈ CL(n; t).
Consequently, there is no vector c ∈Mn such that d+

L(c; v) ≤
t+, and d+

L(c;u) ≤ t+.
Thus, we obtained a contradiction with (14). Hence, our

assumption is not true.
Proof Completed.

III. CODES IN THE LEE METRIC OVER THE ALPHABET,
LESS THAN THE LENGTH OF THE CODE

Let natural numbers l and z be given, such that lz = m.
Given a finite field GF (pl) ⊂ GF (pm) and the set of integers
0, 1, 2, . . . , pl − 1 ≡ L. Denote by Ln the set of vectors of
length n with elements from the set L. The number of elements
of the set L is denoted by q = pl Write down the condition
for the code explicitly.

CL(n; t)
∆
= {u|u ∈ Ln,F(u) ≡ s(x) mod xt+1}

F(u) ∆
= u(x) =

n∏
i=1

(1− x

ai
)ui = s(x) + f(x)xt+1 (15)

Note that CL(n; t) ⊂ Ln ⊂ Mn, according to Lemma 1,
a code correcting t+ = t increasing errors in the Lie metric.
Moreover, operations with elements of vectors are carried out
modulo Q = pm − 1.

We assume that for 1 ≤ i ≤ n, ai ∈ GF (pm)endn < pm.
Raise the left and right sides of equation (15) to the power
pz . Since the actions are performed in the characteristic field
p, we get

u∗(x) = (

n∏
i=1

(1− x

ai
)ui)p

z

= s(x)p
z

+ f(x)p
z

x(t+1)pz

This means that the vector u = (u1, u2, . . . , un) with
elements from the set {0, 1, 2, . . . , pl − 1} ≡ L transformed
into the vector u∗ = (u∗1, u

∗
2, . . . , u

∗
n) with elements from the

set {0, pz, 2pz, . . . , (pl − 1)pz} ≡ H .
The degree of the polynomial s(x)p

z

satisfies the inequality
deg(s(x)p

z

) ≤ pzt. Thus, s(x)p
z

polynomial of degree less
than or equal to pzt, whose lowest coefficient is 1. Note that
pz(t+1) = 1+(pzt+pz−1). Consequently, from the statement
of Lemma 1 we obtain that C∗

L(n; t)
∆
= {u∗|u∗ ∈ H,F(u∗) ≡

s(x)p
z

mod xp
z(t+1)} is a code correcting pzt + pz − 1

unidirectional errors in the Lee metric. Note that operations
with elements of vectors are carried out modulo Q = pm− 1.

Since for the vector u = (u1, u2, . . . , un) ∈ CL(n; t) the
condition

n∑
i=1

ui = σ mod (2t+ 1)

is satisfied, then for the vector u∗ = (u∗1, u
∗
2, . . . , u

∗
n) ∈

C∗
L(n; t) with elements from the set {0, pz, 2pz, . . . , (pl −

2)pz} ≡ H condition

n∑
i=1

pzui = σpz mod pz(2t+ 1)

is satisfied.
Then, from the equality pz(t + 1) = 1 + (pzt + pz − 1)

and, according to the statement of Lemma 2, we obtain that
the code

B∗
L(n; t)

∆
= {u∗|u∗ ∈ CL(n; t),

n∑
i=0

u∗i = σpz mod pz(2t+1)}

(16)
is a code correcting pzt + pz − 1 of arbitrary errors in the
Lee metric. Note that the input alphabet of the code B∗

L(n; t)
is the set of numbers {0, pz, 2pz, . . . , (pl − 1)pz} ≡ H of
power q = pl, and the output alphabet is the set of numbers
{0, 1, 2, . . . , pm − 2} ≡M power Q = pm − 1.

Consider H as the output alphabet of the code B∗
L(n; t). Let

us number all elements of the alphabet {0, pz, 2pz, . . . , (pl −
1)pz} from 0 to q − 1 and denote them by the symbols



Fig. 1.

{h0, h1, . . . , hq−1}. For the distance dL(hi;hi+1) the condi-
tion {

dL(hi;hi+1) = pz, 0 ≤ i ≤ q − 2,

dL(hq−1;h0) = pz − 1, i = q − 1

is satisfied.
Thus, the distance in the Lee metric between the characters

hi and hj , 0 ≤ i ≤ q− 1, 0 ≤ j ≤ q− 1 of the alphabet H is{
dL(hi;hj) = pzdL(i; j), i− j < q − i+ j

dL(hq−1;h0) = pzdL(i; j)− 1, i− j > q − i+ j
(17)

Consider an example of distances for p = 2, l = 2, z = 3.
Then q = 22 = 4,{0, 1, 2, 3} = L, pz = 23 = 8, Q = 2(2+3)−
1 = 31, {0, 8, 16, 24} = H . The distances between the four
elements of the alphabet H are shown in Fig.1.

From (17) it follows that t errors in the alphabet
{0, 1, 2, . . . , pl − 1} = L lead to no more than tpz errors
in the alphabet {0, pz, 2pz, . . . , (pl − 1)pz} ≡ H From (16)
we obtain that the code B∗

L(n; t) with the input and output
alphabet H corrects t errors of multiplicity pz . Thus, the code
B∗

L(n; t) can be considered as a code correcting t errors in
the alphabet {0, 1, 2, . . . , pl − 1} ≡ L.

IV. CONCLUSION

The number of different polynomials s(x) ∈ GF [x] with
coefficients over a field GF (pm) of degree less than or equal
to t, the lowest coefficient of which is one equals pmt.
The number of different residues modulo (2t + 1) is 2t + 1.
Let code length n = pm − 1. Then, for the cardinality of
the code B∗

L(n; t) with the incoming and outgoing alphabet
{0, 1, 2, . . . , pl − 1} = L of power q = pl the inequality

|B∗
L(n; t)| ≥

qn

(2t+ 1)(n+ 1)t
(18)

holds.
For the power code G(n; t) constructed in [3], the following

estimate is valid.

|G(n; t)| ≥ qn

2t(n)t
(19)

For codes of [3] and [4], the restriction t ≤ p−1
2 should be

satisfied. For the codes constructed in this paragraph, there is
no such restriction.
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