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Preface

Lie theory, inaugurated through the fundamental work of Sophus Lie during the late
nineteenth century, has proved central in many areas of mathematics and theoretical
physics. Sophus Lie’s formulation was originally in the language of analysis and
geometry; however, by now, a vast algebraic counterpart of the theory has been
developed. As in algebraic geometry, the deepest and most far-reaching results in
Lie theory nearly always come about when geometric and algebraic techniques are
combined.

A core part of Lie theory is the structure and representation theory of complex
semisimple Lie algebras and Lie groups, which is an exemplary harmonious field in
modern mathematics. It has deep ties to physics, and many areas of mathematics,
such as combinatorics, category theory, and others. This field has inspired many
generalizations, among them the representation theories of affine Lie algebras,
vertex operator algebras, locally finite Lie algebras, Lie superalgebras, etc. This
volume originates from a pair of sister conferences titled “Algebraic Modes of
Representations” held in Israel in July 2017. The first conference took place at the
Weizmann Institute of Science, Rehovot, July 16–18, and the second conference
took place at the University of Haifa, July 19–23. Both conferences were dedicated
to the 75th birthday of Anthony Joseph, who has been one of the leading figures
in Lie Theory from the 1970s until today. The conferences were supported by the
United States–Israel Binational Science Foundation and the Chorafas Institute for
Scientific Exchange (Weizmann part) and by the Israel Science Foundation (Haifa
part).

Joseph has had a fundamental influence on both classical representation theory
and quantized representation theory. A detailed description of his work in both
areas has been given in the articles by W. McGovern and D. Farkash–G. Letzter in
the volume “Studies in Lie theory,” Progress in Mathematics, vol. 243, Birkhauser.
Concerning Joseph’s contribution to classical representation theory, it is impossible
not to mention his classification of primitive ideals of the universal enveloping
algebra of sl(n). The essential new ingredient here is the introduction of a partition
of the Weyl group into left cells, corresponding to the Robinson map from the
symmetric group to the standard Young tableaux. Joseph further extended this result
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vi Preface

to other simple Lie algebras using similar techniques, and this has since then become
a powerful tool in Lie theory.

As for quantized representation theory, Joseph’s monograph “Quantum Groups
and Their Primitive Ideals,” Ergebnisse der Mathematik und Ihrer Grenzgebiete, 3rd
series, vol. 29, has had a fundamental influence over the field since its appearance
in 1995.

The present volume contains 14 original papers covering a broad spectrum of
current aspects of Lie theory. The areas discussed include primitive ideals, invariant
theory, geometry of Lie group actions, crystals, quantum affine algebras, Yangians,
categorification, and vertex algebras.

The authors of this volume are happy to dedicate their works to Anthony Joseph.

Rehovot, Israel Maria Gorelik
Haifa, Israel Vladimir Hinich
Haifa, Israel Anna Melnikov
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Abstract Attached to a vertex algebra V are two geometric objects. The associated
scheme of V is the spectrum of Zhu’s Poisson algebraRV . The singular support of V
is the spectrum of the associated graded algebra gr(V) with respect to Li’s canonical
decreasing filtration. There is a closed embedding from the singular support to the
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cases. In this note we give an example of a non-quasi-lisse vertex algebra whose
associated scheme is reduced, for which the isomorphism is not true as schemes but
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1 Introduction

Attached to a vertex algebra V are two geometric objects. The associated scheme
X̃V of V is the spectrum of commutative algebra RV , which is an affine Poisson
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associated graded algebra gr(V) with respect to Li’s canonical decreasing filtration,
which is a vertex Poisson scheme of infinite type.2 There is a closed embedding

� : SS(V) ↪→ (X̃V )∞

from the singular support to the arc space X̃∞ of the associated scheme, which is an
isomorphism in many interesting cases.

Originally Zhu [29] introduced the algebra RV to define a certain finiteness
condition on a vertex algebra. Recall that a vertex algebra V is called lisse (or
C2-cofinite) if dim X̃V = 0. Using the map � one can show that this condition
is equivalent to that dim SS(V) = 0, and hence, the lisse condition is a natural
finiteness condition [3]. It is known that lisse vertex (operator) algebras have many
nice properties, such as modular invariance property of characters [23, 29], and
this condition has been assumed in many significant theories of vertex (operator)
algebras. However, recently non-lisse vertex algebras have caught a lot of attention
due to the Higgs branch conjecture by Beem and Rastelli [10], which states that
the reduced scheme XV of X̃V should be isomorphic to the Higgs branch of a four-
dimensional N = 2 superconformal field theory T if V obtained from T by the
correspondence discovered by [9], see the survey articles [4, 5] and the references
therein.

It is natural to ask whether the map � is always an isomorphism, and if not,
whether � defines an isomorphism as varieties. Very recently counterexamples to
the first question were found by van Ekeren and Heluani [16] in the case that V
is lisse in their study of chiral homology of elliptic curves. It was also shown
recently in [8] that the map � defines an isomorphism as varieties if V is quasi-
lisse, that is, the Poisson varietyXV has finitely many symplectic leaves. In this note
we give an example of a non-quasi-lisse vertex algebra whose associated scheme
is reduced, for which � is not an isomorphism of schemes, but still defines an
isomorphism of varieties. We remark that by tensoring one of the lisse examples
in [16] with any non-quasi-lisse vertex algebra, one can trivially obtain a non-quasi-
lisse example. However, all such examples have the property that the associated
scheme is nonreduced.

2 Vertex Algebras

We assume that the reader is familiar with vertex algebras, which have been
discussed from various points of view in the literature [11, 17–19]. Given an element
a in a vertex algebra V , the field associated to a via the state-field correspondence
is denoted by

2Unless V is finite-dimensional.
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a(z) =
∑

n∈Z
a(n)z−n−1 ∈ End(V)[[z, z−1]].

Throughout this paper, we shall identify V with the corresponding space of fields.
Given a, b ∈ V , the operators product expansion (OPE) formula is given by

a(z)b(w) ∼
∑

n≥0

(a(n)b)(w) (z− w)−n−1.

Here (a(n)b)(w) = Resz[a(z), b(w)](z− w)n where

[a(z), b(w)] = a(z)b(w) − (−1)|a||b|b(w)a(z),

and∼means equal modulo terms which are regular at z = w. The normally ordered
product : a(z)b(z) : is defined to be

a(z)−b(z) + (−1)|a||b|b(z)a(z)+,

where

a(z)− =
∑

n<0

a(n)z−n−1, a(z)+ =
∑

n≥0

a(n)z−n−1.

We usually omit the formal variable z and write : a(z)b(z) : = : ab :, when no
confusion can arise. For a1, . . . , ak ∈ V , the iterated normally ordered product is
defined inductively by

: a1a2 · · · ak : = : a1
( : a2 · · · ak :

)
. (2.1)

A subset S = {ai | i ∈ I } of V is said to strongly generate V , if V is spanned by the
set of normally ordered monomials

: ∂k1ai1 · · · ∂kmaim :, i1, . . . , im ∈ I, k1, . . . , km ≥ 0.

If S is an ordered strong generating set {α1, α2, . . . }, we say that S freely generates
V , if V has a PBW basis consisting of

: ∂k1
1αi1 · · · ∂k1

r1αi1∂k
2
1αi2 · · · ∂k2

r2αi2 · · · ∂kn1αin · · · ∂knrn αin :, 1 ≤ i1 < · · · < in,
k1

1 ≥ k1
2 ≥ · · · ≥ k1

r1
, k2

1 ≥ k2
2 ≥ · · · ≥ k2

r2
, · · · , kn1 ≥ kn2 ≥ · · · ≥ knrn,

kt1 > k
t
2 > · · · > ktrt (2.2)

whenever αit is odd.
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In particular, the monomials (2.2) are linearly independent, so there are no
nontrivial normally ordered polynomial relations among the generators and their
derivatives.

βγ -System The βγ -system S is freely generated by even fields β, γ satisfying

β(z)γ (w) ∼ (z− w)−1, γ (z)β(w) ∼ −(z− w)−1,

β(z)β(w) ∼ 0, γ (z)γ (w) ∼ 0.
(2.3)

It has Virasoro element LS = 1
2

( : β∂γ : − : ∂βγ : ) of central charge c = −1,
under which β, γ are primary of weight 1

2 .

W3-Algebra The W3-algebra Wc
3 with central charge c was introduced by

Zamolodchikov [28]. It is an extension of the Virasoro algebra, and is freely
generated by a Virasoro field L and an even weight 3 primary fieldW . In fact, Wc

3 is

isomorphic to the principal W-algebra Wk(sl3, fprin) where c = 2 − 24(k+2)2

k+3 . For
generic values of c, Wc

3 is simple, but for certain special values it has a nontrivial
ideal. In this paper, we only need the case c = −2, which is nongeneric. We shall
denote the simple graded quotient of W−2

3 by W for the rest of the paper. Since
W−2

3 has a nontrivial ideal, W is strongly but not freely generated by L,W .
There is a useful embedding i :W → S due to Wang [26], given by

L 	→ 1

2
: ββγ γ : + : β(∂γ ) : − : (∂β)γ :,

W 	→ 1

4
√

2

(
2 : β3γ 3 : +9 : β2(∂γ )γ : +3 : β∂2γ : −9 : (∂β)βγ 2 : −12∂β)(∂γ ) : +3 : (∂2β)γ :

)
,

(2.4)

and we shall identify W with its image in S . In fact, W is precisely the subalgebra
of S that commutes with the Heisenberg algebra generated by : βγ :. Note that W
is normalized so that it satisfies

W(z)W(w) ∼ −9

8
(z− w)−6 + 27

8
L(w)(z− w)−4 + 27

16
∂L(w)(z− w)−3

+
(

9

2
: LL : −27

32
∂2L

)
(w)(z− w)−2 +

(
9

2
: (∂L)L : − 3

16
∂3L

)
(w)(z− w)−1.

This normalization is nonstandard but convenient for our purposes.

Zhu’s Commutative Algebra and the Associated Variety Given a vertex algebra
V , define

C(V) = Span{a(−2)b| a, b ∈ V}, RV = V/C(V). (2.5)
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It is well known that RV is a commutative, associative algebra with product induced
by the normally ordered product [29]. Also, if V is graded by conformal weight, RV
inherits this grading. Define the associated scheme

X̃V = Spec(RV ), (2.6)

and the associated variety

XV = Specm(RV ) = (X̃V )red. (2.7)

Here (X̃V )red denotes the reduced scheme of X̃V . If {αi | i ∈ I } is a strong generating
set for V , the images of these fields in RV will generate RV as a ring. In particular,
RV is finitely generated if and only if V is strongly finitely generated.

Since the βγ -system S is freely generated by β, γ , RS ∼= C[b, g], where b, g
denote the images of β, γ in RS . On the other hand, since W is not freely generated
by L,W , the structure of RW is more complicated.

Lemma 2.1 Let �,w denote the images of L,W in RW . Then RW ∼=
C[�,w]/〈w2 − �3〉.
Proof Since W is strongly generated by L,W , RW is generated by �,w, so RW ∼=
C[�,w]/I for some ideal I . By Lemma 2.1 of [27], we have the following normally
ordered relation in W at weight 6:

: W 2 : − : L3 : −7

8
: (∂2L)L : −19

32
: (∂L)2 : = 0. (2.8)

Note that (2.8) differs slightly from the formula in [27] because our normalization
ofW is different. It follows that w2 − �3 ∈ I .

To see that I ⊆ 〈w2 − �3〉, let p = p(�,w) ∈ I . Without loss of generality, we
may assume p is homogeneous of weight d. It must come from a normally ordered
polynomial relation

P = P(L, ∂L, . . . ,W, ∂W, . . . ) = 0

of weight d in W among L,W and their derivatives. The monomials of p
correspond to the normally ordered monomials of P which do not lie in C(W),
and have the form

: LiWj :, 2i + 3j = d. (2.9)

Using (2.8) repeatedly, we can rewrite this relation in the form

P ′ = P ′(L, ∂L, . . . ,W, ∂W, . . . ) = 0,
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where all terms of the form (2.9) that appear either have j = 0 or j = 1. In fact,
since P ′ is homogeneous of weight d, we must have j = 0 if d is even, and
j = 1 if d is odd, so only one such term can appear. If this term appears with
nonzero coefficient, as a normally ordered polynomial in β, γ and their derivatives,
it will contribute the term : β2i+3j γ 2i+3j :, which cannot be canceled. This
contradicts P ′ = 0, so each monomial in P ′ must lie in C(W). Equivalently,
p ∈ 〈w2 − �3〉. ��

3 Jet Schemes and Arc Spaces

We recall some basic facts about jet schemes, following the notation in [15]. Let
X be an irreducible scheme over C of finite type. The first jet scheme X1 is the
total tangent space of X, and for m > 1 the jet schemes Xm are higher-order
generalizations which are determined by their functor of points. Given a C-algebra
A, we have a bijection

Hom(Spec(A),Xm) ∼= Hom(Spec(A[t]/〈tm+1〉),X).
Thus the C-valued points of Xm correspond to the C[t]/〈tm+1〉-valued points of X.
For p > m, we have projections πp,m : Xp → Xm and πp,m ◦ πq,p = πq,m when
q > p > m. The assignment X 	→ Xm is functorial, and a morphism f : X → Y

induces fm : Xm → Ym for all m ≥ 1. If X is nonsingular, Xm is irreducible
and nonsingular for all m. If X, Y are nonsingular and f : X → Y is a smooth
surjection, fm is surjective for all m.

For an affine scheme X = Spec(R) where R = C[y1, . . . , yr ]/〈f1, . . . , fk〉, Xm
is also affine and we can give explicit equations for Xm as follows. Define variables
y
(i)
1 , . . . y

(i)
r for i = 0, . . . , m, and define a derivation D by

D(y
(i)
j ) =

{
y
(i+1)
j 0 ≤ i < m
0 i = m , (3.1)

which specifies its action on all of C[y(i)1 , . . . , y
(i)
r ], for 0 ≤ i ≤ m. In particular,

f
(i)
� = Di(f�) is a well-defined polynomial in C[y(i)1 , . . . , y

(i)
r ]. Letting

Rm = C[y(i)1 , . . . , y
(i)
r ]/〈f (i)1 , . . . , f

(i)
k 〉,

we have Xm ∼= Spec(Rm). By identifying yj with y(0)j , we may identify R with a
subalgebra of Rm. There is a Z≥0-grading on Rm which we call height, given by

Rm =
⊕

n≥0

Rm[n], ht(y(i)j ) = i. (3.2)

For all m, Rm[0] = R and Rm[n] is an R-module.
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Given a scheme X, define

X∞ = lim← Xm, (3.3)

which is known as the arc space of X. For a C-algebra A, we have a bijection

Hom(Spec(A),X∞) ∼= Hom(Spec(A[[t]]),X),

so the C-valued points of X∞ correspond to the C[[t]]-valued points of X. If X =
Spec(R) as above,

X∞ ∼= Spec(R∞),where R∞ = C[y(i)1 , . . . , y
(i)
r ]/〈f (i)1 , . . . , f

(i)
k 〉.

Here i ≥ 0, and D(y(i)j ) = y(i+1)
j for all i.

By a theorem of Kolchin [21], X∞ is irreducible if X is irreducible. However,
even if X is irreducible and reduced, X∞ need not be reduced. The following result
is due to Sebag (see Example 8 of [24], as well as more general results in [25]), but
we include a proof for the benefit of the reader.

Lemma 3.1 For X = Spec(C[�,w]/〈w2 − �3〉) = X̃W , X∞ is not reduced.

Proof We have

X∞ ∼= Spec(R∞), R∞ = C[�(0), �(1), . . . , w(0), w(1), . . . ]/〈f (0), f (1), . . . 〉,
(3.4)

where f (0) = (�(0))3 − (w(0))2. Consider the element

r1 = 3�(1)w(0) − 2�(0)w(1) ∈ C[�(0), �(1), . . . , w(0), w(1), . . . ]. (3.5)

First, r1 /∈ 〈f (0), f (1), . . . 〉 since no element of this ideal has leading term of degree
2. However, (r1)3 ∈ 〈f (0), f (1), . . . 〉; a calculation shows that

(r1)
3 =

(
− 81�(0)�(1)�(2)w(0)− 27

2
(�(0))2�(3)w(0)+18(�(0))2�(2)w(1)−4(w(1))3+15w(0)w(1)w(2)

+ 9(w(0))2w(3)
)
f (0)+

(
9

2
(�(0))2�(2)w(0)+12(�(0))2�(1)w(1)−7w(0)(w(1))2−3(w(0))2w(2)

)
f (1)

+
(
− 9

2
(�(0))2�(1)w(0)−6(�(0))3w(1)+9(w(0))2w(1)

)
f (2) +

(
9

2
(�(0))3w(0)− 9

2
(w(0))3

)
f (3).

(3.6)

Therefore regarded as an element of R∞, r1 �= 0 but (r1)3 = 0. ��
It is well known that in characteristic zero, for any affine schemeX, the nilradical

N ⊆ O(X∞) is a differential ideal; in other words, D(N ) ⊆ N . A natural
question (see [20]) is whether N is finitely generated as a differential ideal, and
whether an explicit generating set can be found. In general, N need not be finitely
generated; this was shown for X = Spec(C[x, y]/〈xy〉) in [12]. In the example
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X = Spec(C[�,w]/〈w2 − �3〉), a calculation shows that in addition to r1,

r2 = (w(1))2 − 9

4
�(0)(�(1))2 (3.7)

does not lie in 〈f (0), f (1), . . . 〉, but (r2)3 does. So r2 is another nontrivial element
of N . We expect that N is generated as a differential ideal by r1 and r2.

The following characterization of N in this example will also be useful to us.

Lemma 3.2 Let X = Spec(C[�,w]/〈w2 − �3〉) and let t be a coordinate function
on C. Consider the map

C→ X, t 	→ (t2, t3), (3.8)

and the induced homomorphism

ϕ : O(X∞)→ O(C∞), �(0) 	→ (t(0))2, w(0) 	→ (t(0))3. (3.9)

Then N = ker(ϕ).

Proof Since (3.8) is birational, the map C∞ → X∞ on arc spaces induced by (3.8)
is dominant, see Proposition 3.2 of [15]. Therefore ker(ϕ) ⊆ N . On the other hand,
N ⊆ ker(ϕ) since O(C∞) ∼= C[t (0), t (1), . . . ], which is an integral domain. ��

4 Li’s Filtration and Singular Support

For any vertex algebra V , we have Li’s canonical decreasing filtration

F 0(V) ⊇ F 1(V) ⊇ · · · ,

where Fp(V) is spanned by elements of the form

: ∂n1a1∂n2a2 · · · ∂nr ar :,

where a1, . . . , ar ∈ V , ni ≥ 0, and n1+ · · ·+nr ≥ p [22]. Clearly V = F 0(V) and
∂F i(V) ⊆ F i+1(V). Set

gr(V) =
⊕

p≥0

Fp(V)/Fp+1(V),

and for p ≥ 0 let

σp : Fp(V)→ Fp(V)/Fp+1(V) ⊆ gr(V)
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be the projection. Note that gr(V) is a graded commutative algebra with product

σp(a)σq(b) = σp+q(a(−1)b),

for a ∈ Fp(V) and b ∈ Fq(V). We say that the subspace Fp(V)/Fp+1(V) has
height p. Note that gr(V) has a differential ∂ defined by

∂(σp(a)) = σp+1(∂a),

for a ∈ Fp(V). Finally, gr(V) has the structure of a Poisson vertex algebra [22]; for
n ≥ 0, we define

σp(a)(n)σq(b) = σp+q−na(n)b.

Zhu’s commutative algebra RV is isomorphic to the subalgebra F 0(V)/F 1(V) ⊆
gr(V), since F 1(V) coincides with the spaceC(V) defined by (2.5). Moreover, gr(V)
is generated by RV as a differential graded commutative algebra [22]. Since X̃V =
Spec(RV ), there is always a surjective homomorphism of differential graded rings

�V : O((X̃V )∞)→ gr(V), (4.1)

where the grading on O((X̃V )∞) is given by (3.2). Define the singular support

SS(V) = Spec(gr(V)), (4.2)

which is then a subscheme of (X̃V )∞. A natural question which was raised by
Arakawa and Moreau [7] is whether the map (4.1) is always an isomorphism. This
is true in many examples and it was recently shown in [8] to hold as varieties when
V is quasi-lisse, that is, if XV has finitely many symplectic leaves, see [6] for the
details. We note that the vertex algebra W is not quasi-lisse.

5 Main Result

Theorem 5.1 For the vertex algebra W , the map �W : O((X̃W )∞) → gr(W) is
not injective, so (X̃W )∞ and SS(W) are not isomorphic as schemes.

Proof As before, we use the notation

O((X̃W )∞) ∼= R∞ = C[�(0), �(1), . . . , w(0), w(1), . . . ]/〈f (0), f (1), . . . 〉.

We use the same notation ∂iL, ∂iW to denote the images of the fields ∂iL, ∂iW ∈
W in the subspace F i(W)/F i+1(W) of gr(W). We therefore may identify gr(W)
with a quotient of the polynomial ring C[L, ∂L, . . . ,W, ∂W, . . . ]. In this notation,
�W (�(0)) = L and �W (w(0)) = W .



10 T. Arakawa and A. R. Linshaw

We will show that the nilpotent elements r1 and r2 in O((X̃W )∞) given by (3.5)
and (3.7) lie in ker(�W ). By Lemma 2.1 of [27], we have the following relation in
W at weight 6:

3 : (∂L)W : −2 : L(∂W) : +1

4
∂3W = 0.

Therefore in F 1(W)/F 2(W), we have the relation

3(∂L)W − 2L∂W = 0.

Since �W (r1) = 3(∂L)W − 2L∂W , r1 ∈ ker(�W ).
Similarly, in W we have the following relation in weight 8:

: (∂W)2 : −9

4
: (∂L)2L : − 3

16
: (∂4L)L : −3

8
: (∂3L)(∂L) : − 9

32
: (∂2L)2 : + 1

160
∂6L = 0,

so in F 2(W)/F 3(W) we have the relation (∂W)2 − 9
4 (∂L)

2L = 0, and r2 ∈
ker(�W ). ��
Theorem 5.2 Even though (X̃W )∞ and SS(W) differ as schemes, the map of
varieties

SS(W)red → ((X̃W )∞)red

induced by �W is an isomorphism.

Proof It suffices to show that the map ϕ : O((X̃W )∞) → O(C∞) given by (3.9)
factors through the map �W : O((X̃W )∞)→ gr(W), since ker(ϕ) = N . First, the
embedding i :W → S given by (2.4) induces a map

gr(i) : gr(W)→ gr(S).

Identifying gr(S) with C[β, ∂β, . . . , γ, ∂γ, . . . ], this map is given on generators by

gr(i)(L) = (βγ )2, gr(i)(W) = (βγ )3.

We also have an injective map of differential graded algebras

ψ : O(C∞)→ gr(S),

defined on the generator t (0) of O(C∞) by ψ(t(0)) = βγ . Since

�W (�(0)) = (βγ )2 = gr(i)(L) = ψ((t(0))2), �W (w(0)) = (βγ )3 = gr(i)(W) = ψ((t(0))3),
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and L,W generate gr(W) as a differential algebra, it is clear that

gr(i)(gr(W)) = ψ(A) ∼= A = ϕ(O((X̃W )∞)),

where A ⊆ O(C∞) is the subalgebra generated by (t(0))2, (t (0))3, and their
derivatives. This completes the proof. ��

In this example, we expect that gr(i) : gr(W) → gr(S) is injective, so that
gr(W) ∼= A, and in particular is reduced. However, we caution the reader that the
associated graded functor is not left exact in general.

6 Failure of Associated Graded Functor to be Left Exact

Here we give an example of a simple vertex algebra V which has a free field
realization i : V → H where H is the Heisenberg algebra, such that the induced
map gr(i) : gr(V)→ gr(H) is not injective.

First, H is generated by an even field α satisfying

α(z)α(w) ∼ (z− w)−2,

and has Virasoro element L = 1
2 : αα : of central charge c = 1. There is an action

of Z2 sending α 	→ −α which preserves L, and we consider the orbifold

V = HZ2 .

By a result of Dong and Nagatomo [14], V is strongly generated by L together with
a unique up to scalar weight 4 field primary field

W 4 = − 1

6
√

6
: α4 : − 1

4
√

6
: (∂α)2 : + 1

6
√

6
: (∂2α)α :,

which is normalized so that it satisfies

W 4(z)W 4(w) ∼ 1

4
(z− w)−8 + · · · .

One can check by direct calculation that V is isomorphic to the simple, principal
W-algebra of sp4 with central charge c = 1. It is convenient to replaceW 4 with the
field

W = 35

132
: (∂2α)α : = 35

√
2/3

33
W 4 + 70

297
: L2 : + 35

396
∂2L,
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which is not primary. A calculation shows that we have the following nontrivial
relations in V at weights 8 and 10, respectively.

: W 2 : − : L2W : + 35

132
: (∂2L)L2 : − 35

264
: (∂L)2L : +13265

69696
: (∂4L)L :

+ 19495

139392
: (∂3L)∂L : −59

88
: (∂2L)W : −497

352
: (∂L)∂W : −181

528
: L∂2W :

− 139

2112
∂4W + 10955

557568
∂6L = 0,

(6.1)

: L3W : +4455

1024
: (∂W)∂W : − 35

132
: (∂2L)L3 : + 35

264
: (∂L)2L2 : +347

256
: (∂L)2W : −

1069

256
: (∂L)L∂W : −49

16
: L2∂2W : +385

576
: (∂4L)L2 : + 48965

101376
: (∂3L)(∂L)L : −

35

44
: (∂2L)2L : +35

88
: (∂2L)(∂L)2 : −1687

1536
: (∂4L)W : −5939

3072
: (∂3L)(∂W) : −

247

256
: (∂2L)(∂2W) : −10927

6144
: (∂L)(∂3W) : + 779

1536
: L∂4W : + 3899

36864
: (∂6L)L : +

102851

270336
: (∂5L)∂L : + 7525

67584
: (∂4L)∂2L : + 659645

4866048
: (∂3L)2 :

+ 68311

6488064
∂8L− 3187

49152
∂6W = 0.

(6.2)

Lemma 6.1 Let �,w denote the images of L,W in RV . Then

RV ∼= C[�,w]/I

where I is the ideal generated byw(w−�2) and �3w. In particular, X̃V = Spec(RV )
is irreducible of dimension one, but is not reduced.

Proof Since V is strongly generated by L,W , it follows from (6.1) and (6.2) that
RV ∼= C[�,w]/I for some ideal I which contains w(w − �2) and �3w. The proof
that I is generated by these two elements is similar to the proof of Lemma 2.1, and
is omitted. Since I is contained in the ideal 〈w〉, the map C[�] → RV is injective,
and RV has Krull dimension 1. Since w is a nontrivial nilpotent element of RV , X̃V
is not reduced. Finally, it is easy to see that the nilradical N of RV is generated by
w, so N is prime and X̃V is irreducible. ��
Corollary 6.2 Let i : V → H be the inclusion. Since gr(H) is the polynomial ring
C[α, ∂α, . . . ], the induced map gr(i) : gr(V)→ gr(H) is not injective.

In fact, it is easy to verify that the image of gr(i) is just the differential polynomial
algebra generated by gr(i)(L) = 1

2α
2. Finally, we remark that as in our main
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example W , the map �V : O((X̃V )∞) → gr(V) is not injective for V = HZ2 .
For example,

r = �(0)�(2)w(0) + (�(1))2w(0) − 1

2
(�(0))2w(2)

is a nontrivial element of ker(�V ). In fact, r is nilpotent in O((X̃V )∞) and satisfies
r3 = 0.

7 Universal Enveloping Vertex Algebras

Let V be a conformal vertex algebra with a strong generating set S, i.e., for a, b ∈ S,
the all terms in the OPE a(z)b(w) can be expressed as normally ordered polynomials
in the elements of S and their derivatives. In the language of de Sole and Kac
[13], the OPE algebra gives rise to a nonlinear conformal algebra satisfying skew-
symmetry. There is a well-defined universal enveloping vertex algebra UV which is
the initial object in the category of vertex algebras with the above strong generating
set and OPE algebra. If for all fields a, b, c ∈ S and integers r, s ≥ 0, the Jacobi
identities

a(r)(b(s)c)− (−1)|a||b|b(s)(a(r)c)−
r∑

i=0

(
r

i

)
(a(i)b)(r+s−i)c = 0, (7.1)

hold as formal consequences of the OPE relations, this Lie conformal algebra is then
called a nonlinear Lie conformal algebra. The main result (Theorem 3.9) of [13] is
that in this case, UV is freely generated by S. This means that it has a PBW basis
consisting of monomials in the elements of S and their derivatives.

In the examples W and V above, the universal enveloping vertex algebras are
the universal W3-algebra with c = −2 and the universal W(sp4, fprin)-algebra
with c = 1, respectively. Both of these are freely generated, so the associated
varieties are isomorphic to C

2 and the map (4.1) is an isomorphism in both cases.
It is natural to ask whether (4.1) is always an isomorphism for universal enveloping
vertex algebras, and in this section we provide a counterexample.

In [1], Adamovic studied a class of simple vertex algebra called W(2, 2p − 1)-
algebras, where p ≥ 2 is a positive integer. They are strongly generated by a

Virasoro field L with central charge c = 1− 6(p−1)2

p
, and a weight 2p − 1 primary

fieldW , and coincide with the singlet subalgebras of the W2,p-triplet algebras. The
triplet algebras were the first examples of C2-cofinite, nonrational vertex algebras
to appear in the literature [2].

We consider the case p = 3, and we denote the W(2, 5)-algebra by A. It can be
realized explicitly inside the Heisenberg algebra H with generator α as follows.
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L = 1

2
: α2 : +

√
2

3
∂α,

W = 1

4
√

2
: α5 : + 5

4
√

3
: (∂α)α3 : + 5

12
√

2
: (∂2α)α2 : + 5

8
√

2
: (∂α)2α :

+ 5

48
√

3
: (∂3α)α : + 5

24
√

3
: (∂2α)∂α : + 1

144
√

2
∂4α.

(7.2)

The Virasoro field L has central charge −7, and the primary weight 5 field W
satisfies

W(z)W(w) ∼ 175

12
(z− w)−10 − 125

6
L(w)(z− w)−8 − 125

12
∂L(w)(z− w)−7

+
(

125

3
: LL : − 125

8
∂2L

)
(w)(z− w)−6 +

(
125

3
: (∂L)L : − 125

36
∂3L

)
(w)(z− w)−5

+
(

50 : L3 : + 25

24
: (∂L)2 : −25 : (∂2L)L : − 175

72
∂4L

)
(w)(z− w)−4

+
(

75 : (∂L)L2 : − 175

8
: (∂2L)∂L : − 125

36
: (∂3L)L : − 35

96
∂5L

)
(w)(z− w)−3

+
(

25

2
: L4 : + 1175

48
: (∂L)2L : + 125

12
: (∂2L)L2 : − 775

128
: (∂2L)2 :

− 225

64
: (∂3L)∂L : − 175

64
: (∂4L)L : − 1115

13824
∂6L

)
(z− w)−2

+
(

25 : (∂L)L3 : − 25

96
: (∂L)3 : − 125

48
: (∂2L)(∂L)L : + 125

24
: (∂3L)L2 :

− 775

288
: (∂3L)∂2L : − 425

288
: (∂4L)∂L : − 115

288
: (∂5L)L : − 365

24192
∂7L

)
(w)(z− w)−1

(7.3)

We have the following normally ordered relations in weights 8 and 10, respectively.

2 : L∂W : −5 : (∂L)W : −1

6
∂3W = 0, (7.4)

: W 2 : − : L5 : −335

24
: (∂L)2L2 : −25

3
: (∂L)L3 : +283

64
: (∂2L)(∂L)2 :

+ 309

64
: (∂2L)2L : −67

36
: (∂3L)(∂L)L : + 49

216
: (∂3L)2 : −23

32
: (∂4L)L2 :

+ 49

64
: (∂4L)(∂2L) : + 249

1280
: (∂5L)∂L : + 223

3840
: (∂6L)L : + 1

504
∂8L = 0.

(7.5)
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It is straightforward to show using (7.4) and (7.5) that

RA ∼= C[�,w]/〈w2 − �5〉. (7.6)

Here �,w denote the images of L,W in RA.
Next, let U = UA denote the universal enveloping vertex algebra of A. By abuse

of notation, we shall also denote the generators of U by L,W ; they satisfy the same
OPE relations as the generators of A. We also denote by �,w the images of L,W
in RU .

Lemma 7.1 RU ∼= C[�,w]/〈w2 − �5〉 ∼= RA.

Proof Using (7.3), we can compute the left side of the Jacobi identity (7.1) in the
case a = b = c = W , r = 4 and s = 3. We find that it does not vanish identically
as a consequence of the OPE relations, but instead is given by

9075

16
(2 : L∂W : −5 : (∂L)W : −1

6
∂3W). (7.7)

Since all Jacobi identities must hold in any vertex algebra, (7.7) must be a null
vector, so that (7.4) holds in U . Therefore the corresponding Lie conformal algebra
is not a nonlinear Lie conformal algebra, and U is not freely generated by L and
W . Applying the operatorW(2) to the identity (7.4) yields a nonzero multiple of the
identity (7.5). Therefore (7.5) also must hold in U , which shows that the relation
w2 − �5 holds in RU . Since RA is a quotient of RU , the claim follows. ��
Remark 7.2 We expect that A = U , but we do not prove this.

As in our previous example W , even though the scheme XU = Spec(RU ) is
reduced, the arc space (XU )∞ is not. In particular,

r = 2�(0)w(1) − 5�(1)w(0)

is a nontrivial nilpotent element of O((X̃U )∞) satisfying r3 = 0, and r ∈ ker(�U ).
Therefore U is an example of a universal enveloping vertex algebra for which the
map (4.1) fails to be injective.

Finally, via the embedding

H→ S, α 	→ √−1 : βγ :,

A can be identified with a subalgebra of S . By the same argument as Theorem 5.2,
one can check that the map on varieties induced by (4.1) is an isomorphism.
Therefore the same holds for U .
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Abstract In the present work we study actions of various groups generated by
involutions on the category O intq (g) of integrable highest weight Uq(g)-modules
and their crystal bases for any symmetrizable Kac–Moody algebra g. The most
notable of them are the cactus group and (yet conjectural) Weyl group action on any
highest weight integrable module and its lower and upper crystal bases. Surprisingly,
some generators of cactus groups are anti-involutions of the Gelfand–Kirillov model
for O intq (g) closely related to the remarkable quantum twists discovered by Kimura
and Oya (Int Math Res Notices, 2019).
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1 Introduction

In the present work we study the action of various groups generated by involutions
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Let V ∈ O intq (g). We claim that for every node i of the Dynkin diagram I of g

there exists a unique linear operator σ iV on V such that

σ iV (E
(k)
i (u)) = E(l−k)i (u) (1.1)

for all l ≥ k ≥ 0 and for all u ∈ kerFi ∩ ker(Ki − q−li ). Clearly, (σ iV )
2 = idV .

Denote by W(V ) the subgroup of GLk(V ) generated by the σ iV , i ∈ I .

Theorem 1.1 For any non-zero module V ∈ O intq (g), the assignments

σ iV 	→
{

1, i ∈ J (V )
si, otherwise

where J (V ) = {i ∈ I : Fi(V ) = {0}}, define a homomorphism ψV from W(V ) to
the Weyl groupW of g.

We prove Theorem 1.1 in Sect. 3.3 by showing that the image of ψV can be
described in terms of a natural action ofW on a certain set of extremal vectors in V .
In particular, ψV is surjective if and only if J (V ) = ∅. Moreover, we show that
σ iV = idV if and only if i ∈ J (V ). This suggests the following

Conjecture 1.2 The homomorphism ψV is injective for any V ∈ O intq (g).

Clearly, it is equivalent to (σ iσ j )mij = idV , i �= j ∈ I for appropriate choices
of mij . We proved it for mij = 2 and we have ample evidence that this conjecture
holds formij = 3. We also verified it for all modules in which weight spaces of non-
zero weight are one-dimensional (see Theorem 7.2). This class of modules includes
all miniscule and quasi-miniscule ones. Conjecture 1.2 combined with Theorem 1.1
implies that W acts naturally and faithfully on objects in O intq (g), which is quite
surprising. Informally speaking, this conjecture asserts that Kashiwara’s action of
the Weyl group on crystal bases lifts to an action on the corresponding module (see
Remark 5.7).

Remark 1.3 The definition (1.1) of σ iV makes sense for any integrableU(g)-module
where g is a semisimple or a (not necessarily symmetrizable) Kac–Moody Lie
algebra. The “classical” Theorem 1.1 holds verbatim. Moreover, Conjecture 1.2
implies its classical version for all (even not symmetrizable) Kac–Moody algebras.

It turns out that we can extend the group W(V ) by adding involutions σJ for any
non-empty J ⊂ I such that the subgroup WJ = 〈si : i ∈ J 〉 is finite; we denote
the set of all such J by J . Note that {i} ∈ J for all i ∈ I and in particular J is
non-empty.

Proposition 1.4 (Proposition 4.14) For any V ∈ O intq (g), J ∈ J there exists a

unique k-linear map σJ = σJV : V → V such that
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(a) σJ (v) = vJ for any v ∈ ⋂i∈J kerEi where vJ is a distinguished element
in
⋂
i∈J

kerFi ∩ Uq(gJ )v defined in Proposition 4.14(a);

(b) σJ (Fj (v)) = Ej(σ
J (v)), σJ (Ej (v)) = Fj(σ

J (v)) for all j ∈ J , v ∈ V
where  : J → J is the involution on J induced by the longest element wJ◦
ofWJ via sj = wJ◦ sjwJ◦ , j ∈ J (see Sect. 2.1).

Moreover, for any morphism f : V → V ′ in O intq (g) the following diagram
commutes

(1.2)

By definition, σJ = σ i if J = {i}. The following is the main result of this paper.

Theorem 1.5 Let V ∈ O intq (g). Then for any J ∈J we have in GLk(V )

(a) σJ ◦ σJ = 1;
(b) If J = J ′ ∪ J ′′ where J ′ and J ′′ are orthogonal (that is, J ′ ∩ J ′′ = ∅ and

sj ′sj ′′ = sj ′′sj ′ for all j ′ ∈ J ′, j ′′ ∈ J ′′), then σJ = σJ ′ ◦ σJ ′′ ; in particular,

σJ
′ ◦ σJ ′′ = σJ ′′ ◦ σJ ′ if J ′, J ′′ ∈J are orthogonal.

(c) σJ ◦ σK = σK
 ◦ σJ for any K ⊂ J , where  : J → J is as in

Proposition 1.4(b).

We prove Theorem 1.5 in Sect. 4.3 using appropriate modifications of Lusztig’s
symmetries (which we introduce in Sect. 4.1).

Following (and slightly generalizing) [29] (see also [10]), we denote CactW the
group generated by the τJ , J ∈ J subject to all relations of Theorem 1.5. Indeed,
this definition coincides with that in [29, (1.1)] if W is finite because τJ = τJ ′τJ ′′
for any J as in Theorem 1.5(b). By definition, the assignments τJ 	→ σJV , J ∈ J
define a representation of CactW on V . In view of (1.2) we obtain the following
immediate corollary of Theorem 1.5 (see Sect. 4 for the notation)

Corollary 1.6 The group CactW acts on the category O intq (g) via τJ 	→ σJ• ,
J ∈J .

The study of cactus groups began with Cactn := CactSn which appeared, to
name but a few, in [13, 14, 16, 33, 35] in connection with the study of moduli spaces
of rational curves with n + 1 marked points and their applications in mathematical
physics. It is easy to see that Cactn is generated by involutions τi,j = τ{i,...,j−1},
1 ≤ i < j ≤ n subject to the relations

τi,j τk,l = τk,lτi,j , i < j < k < l

τi,lτj,k = τi+l−k,i+l−j τi,l , i ≤ j < k ≤ l.
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Categorical actions of Cactn on n-fold tensor products in symmetric coboundary
categories (first introduced in [15]) were studied in [20, 34] and also implicitly
in [9] where the braided structure on the category O intq (g) was converted into a
symmetric coboundary structure for any complex reductive Lie algebra g (for non-
abelian examples of coboundary categories, see the discussion after Theorem 1.8).
It would be interesting to compare these actions of Cactn with the one given by
Corollary 1.6. We expect that they are connected in some cases via the celebrated
Howe duality (see, e.g., the forthcoming paper [4]). In view of Corollary 1.6 it is
natural to seek other categorical representations of CactW for all Coxeter groupsW .

Conjecture 1.2 suggests that our representation of CactW on O intq (g) is not
faithful. Namely, in view of the discussion after the conjecture, we expect that
the kernel Kg of this representation of CactW contains all elements (σ iσ j )mij ,
i �= j ∈ I . For example, if g = sl3, then τ1,2τ1,3 = τ1,3τ2,3 and so CactW is
freely generated by involutions τ1,2 and τ1,3. It is easy to see that τ1,2 /∈ Ksl3 , while
τ1,3 /∈ Ksl3 by Remark 7.14. Thus, we expect that Ksl3 = {(τ1,2τ1,3)

6n : n ∈ Z}.
Therefore, we can pose the following

Problem 1.7 Find the kernel Kg of the representation of CactW on O intq (g).

To outline an approach to Problem 1.7, denote �V , V ∈ O intq (g) the subgroup

of GLk(V ) generated by the σJV , J ∈ J . Then clearly Kg is the intersection of
kernels of canonical homomorphisms CactW → �V over all V ∈ O intq (g). We
show (Proposition 4.18) that �V ∼= �V where V = ⊕

λ∈P+ :HomUq (g)(Vλ,V ) �=0
Vλ. In

particular, CactW /Kg is isomorphic to �Cq (g) where Cq(g) = ⊕
λ∈P+ Vλ is the

Gelfand–Kirillov model for O intq (g); in fact, it has a structure of an associative
algebra (see Sect. 6). Thus, in view of the above we expect that Cact3 /Ksl3 is
isomorphic to the dihedral group of order 12. However, it is likely that �Cq (g) is
infinite for simple g different from sl2 and sl3.

It turns out that the action of CactW on O intq (g) descends to a permutation
representation on any crystal basis of any object V (see Sect. 2.5 for definitions
and notation). Thus, we obtain the following refinement of [19, Theorem 5.19].

Theorem 1.8 Let V ∈ O intq (g). Then for any lower or upper crystal basis (L,B)
of V at q = 0 the group �V preserves L and acts on B by permutations.

We prove Theorem 1.8 in Sect. 5 by means of what we call c-crystal bases, which
allow one to treat lower and upper crystal bases uniformly. Taking into account that
B is graded by the weight lattice of g, all weights occur in a crystal basis of Cq(g)
and thatW acts faithfully on the weight lattice, we obtain an immediate

Corollary 1.9 The assignments σJ 	→ wJ◦ , J ∈ J define a surjective homomor-
phism CactW /Kg → W which refines the natural epimorphism CactW → W

from [29].
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Analogously to the notion of the pure braid group, one calls the kernel of the
natural homomorphism CactW → W the pure cactus group (this term was used
for Cactn in e.g., [16, 33, 35]). Thus, Corollary 1.9 asserts that Kg is pure.

The involution σ IV was first defined in [8] for g = gln and simple polynomial
representations Vλ and explicitly computed on the corresponding crystal in [28]. In
fact, it coincides with the famous Schützenberger involution (see Remark 4.11).
Following a suggestion of the first author and [28], an action of Cactn on the
category of crystal bases was constructed in [20], thus turning it into a symmetric
coboundary category.

We expect that to solve Problem 1.7 it suffices to find the kernels of permutation
representations of CactW on all B.

Since W(V ) is naturally a subgroup of �V , its action on V induces an action
on B by permutations which coincides with Kashiwara’s crystal Weyl group (see
Remark 5.7).

In case when g is reductive we can refine Theorem 1.8 as follows.

Theorem 1.10 Let g be a reductive Lie algebra and let V ∈ O intq (g). Then for

any crystal basis (L,B) of V the involution σ IV preserves the corresponding upper
global crystal basis BV of V .

An analogous result for J � I is weaker. We prove (Proposition 5.8) that the image
of any element of BV under σJ , J ∈J is a ·̄-invariant element of V where ·̄ is the
anti-linear involution fixing BV . However, as explained in Remark 7.18, σJ does
not need to preserve BV if J � I . For example, if V is the 27-dimensional simple
module V2ρ for g = sl3, then the σ iV , i = 1, 2 do not preserve the canonical basis
of V .

An analogue of Theorem 1.10 for a simple V and its lower global crystal basis
was deduced from [30, Proposition 21.1.2] in [20, Theorem 5].

We prove Theorem 1.10 in Sect. 6.5. A central role in our argument is played by
the following surprising property of σ I on the aforementioned quantum Gelfand–
Kirillov model Cq(g) of O intq (g).

Theorem 1.11 (Theorem 6.21) For g reductive finite dimensional, σ ICq (g) is an

algebra anti-involution on Cq(g).
Our proofs of Theorems 1.10 and 1.11 rely in a crucial way on the properties

of a remarkable quantum twist defined in [27]. We do not expect an analogous
result for J � I ; for example, for g = sl3, the σ i , i ∈ {1, 2} are not algebra
anti-automorphisms of Cq(g).

In view of Theorem 1.8 we can refine Conjecture 1.2 for every V ∈ O intq (g) with
V = Cq(g) as follows. We expect that in the notation of Theorem 1.8 the group �V
acts on B faithfully. Morally, this means that each element of �V is semisimple
in GLk(V ).

Similarly to Remark 1.3, our constructions, results, and conjectures make sense if
one replaces Uq(g) by U(g) for any (symmetrizable or not) Kac–Moody algebra g.
Some results (for example, Theorem 1.8) should be possible to rescue even whenW
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is not crystallographic (and so g does not exist) with the aid of theory of continuous
crystals initiated by A. Joseph in [21].

2 Preliminaries

2.1 Coxeter Groups

Let I be a finite set. Let W be a Coxeter group with Coxeter generators si , i ∈ I
subject to the relations (sisj )mij = 1 where mii = 1, mij = mji , and mij ∈ {0} ∪
Z≥2 for i �= j ∈ I . Let � : W → Z≥0 be the Coxeter length function, that is, �(w)
is the minimal length of a presentation of w as a product of the si , i ∈ I . We say that
i = (i1, . . . , ir ) ∈ I r is reduced if �(si1 · · · sir ) = r and denote by R(w) the set of
reduced words for w, that is, R(w) = {(i1, . . . , i�(w)) ∈ I �(w) : w = si1 · · · si�(w)}.

Given J ⊂ I we denote by WJ the subgroup of W generated by the si , i ∈ J .
We will need the following standard fact (see [11, IV.1.8, Théorème 2]).

Lemma 2.1 For any J, J ′ ⊂ I
(a) WJ ∩WJ ′ = WJ∩J ′ ;
(b) WJ ⊂ WJ ′ if and only if J ⊂ J ′.
Let J = {J ⊂ I, : |WJ | < ∞}. If J ∈ J , we denote by wJ◦ the unique longest
element of WJ ; thus, �(sjwJ◦ ) < �(wJ◦ ) for all j ∈ J . If I ∈ J , we abbreviate
w◦ = wI◦ . Given J ∈ J and j ∈ J , there exists a unique j ∈ J such that
sj = wJ◦ sjwJ◦ ; the assignments j 	→ j define an involution  : J → J .

Given J ⊂ I , we set J⊥ = {i ∈ I \ J : mij = 2, ∀ j ∈ J } = {i ∈ I \ J :
sisj = sj si , ∀ j ∈ J }. We say that J, J ′ ⊂ I are orthogonal if J ∩ J ′ = ∅ and
J ′ ⊂ J⊥ (whence J ⊂ J ′⊥).

Define a relation∼ on I by i ∼ j if i = j ormij > 2. Then the transitive closure
of this relation is an equivalence on I which we still denote by ∼. In particular, if
i ∼ i′, then there exists a sequence (called admissible) (i0, . . . , id ) ∈ I d+1 with
i0 = i, id = i′ and mir−1,ir > 2, 1 ≤ r ≤ d. Define dist(i, i′) to be the minimal
length of an admissible sequence beginning with i and ending with i′. Clearly, this
defines a metric on I .

Define a topology on I by declaring that the fundamental neighborhood of each
i ∈ I is its equivalence class with respect to ∼. In particular, each open set is closed
and vice versa and is a union of equivalence classes. For J ⊂ I we denote by cl(J )
its closure in that topology, that is, the union of equivalence classes of elements
of J . Denote ∂(J ) the boundary of J , that is, the complement of J in cl(J ). The
following is immediate.

Lemma 2.2 Let J ⊂ I . Then I = J ∪ J⊥ if and only if J is closed in the above
topology.

The following is a reformulation of a well-known fact [11, IV.1.9, Proposition 2]
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Lemma 2.3 Let J ⊂ I be a closed subset. Then W is the internal direct product
ofWJ andWJ⊥ .

Given a group G acting on a set X, denote by KX(G) the kernel of the natural
homomorphism of groups G → Bij(X) induced by the action. By definition, the
action of G on X is faithful if and only if KX(G) = {1}.

The following is the main result of Sect. 2.1 (which is probably known although
we could not find it in the literature).

Theorem 2.4 We have KJ := KW/WJ (W) = WI\cl(I\J ) for any J ⊂ I . In
particular, if I is connected and J � I , thenW acts faithfully onW/WJ .

Proof The following is immediate.

Lemma 2.5 Let G be a group and H be a subgroup of G. Then KG/H (G) = {k ∈
H : g−1kg ∈ H, ∀ g ∈ G} is a subgroup of H .

The following Lemmata are apparently well-known. We provide their proof for
the reader’s convenience.

Lemma 2.6 Let w ∈ W and let J ⊂ I be such that �(sjw) = �(w)− 1 for all j ∈
J . ThenWJ is finite and w = wJ◦w′ for some w′ ∈ W with �(w) = �(w′)+ �(wJ◦ ).
Proof By [11, Ch. IV, Ex. 3], every u ∈ W can be written uniquely as [u]J · J [u]
where [u]J ∈ WJ , J [u] ∈ JW = {x ∈ W : �(sj x) > �(x), ∀ j ∈ J } and �(u) =
�([u]J ) + �(J [u]). The uniqueness of such a presentation implies that [sjw]J =
sj [w]J and J [sjw] = J [w] for all j ∈ J and so that �(sj [w]J ) < �([w]J ) for
all j ∈ J . This implies that WJ is finite and [w]J is its longest element wJ◦ . The
assertion follows with w′ = J [w]. ��
Lemma 2.7 For i ∈ I and u ∈ WI\{i} the following are equivalent.

(a) u ∈ W{i}⊥ (in particular, siu = usi);
(b) siusi ∈ WI\{i}.
Proof The implication (a) �⇒ (b) is obvious. To prove the opposite implication,
note that the assumption in (b) implies that siu = u′si for some u′ ∈ WI\{i}. Then
�(siu) = �(u) + 1 and �(u′si) = �(u′) + 1 whence �(u) = �(u′). We prove the
assertion

siu = u′si �⇒ u = u′ ∈ W{i}⊥ (2.1)

by induction on �(u) = �(u′), the case �(u) = �(u′) = 0 being obvious. If �(u) =
�(u′) > 0, then there exists j �= i ∈ I such that �(sju′) < �(u′). Let w = siu. Then
�(sjw) < �(w) and �(siw) < �(w). Applying Lemma 2.6 to w and J = {i, j} we
conclude thatw = (sisj · · ·︸ ︷︷ ︸

mij

)u′ with �(w) = mij+�(u′) and so u = (sj si · · ·︸ ︷︷ ︸
mij−1

)u′ with

�(u) = mij − 1 + �(u′). Since u ∈ WI\{i}, a reduced word for u cannot contain i,
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yet for any (i1, . . . , ir ) ∈ R(u′), (j, i, . . .︸ ︷︷ ︸
mij−1

, i1, . . . , ir ) ∈ R(u). Thus, mij = 2 and

so j ∈ {i}⊥. Then si(sju) = sj siu = (sju
′)si . Thus, sju, sju′ satisfy (2.1) and

�(sju) < �(u). Then the induction hypothesis implies that sju = sju′ ∈ W{i}⊥ and
hence u = u′ ∈ W{i}⊥ . ��
Lemma 2.8 Let i, i′ be connected in I and let (i = i0, i1, . . . , id = i′) ∈ I d+1

be an admissible sequence with d = dist(i, i′). Suppose that w ∈ WI\{i} and
si0 · · · sidwsid · · · si0 ∈ WI\{i}. Then w ∈ W{i0,...,id }⊥ .

Proof The argument is by induction on d. The case d = 0 (that is, i = i′) is
established in Lemma 2.7. Suppose that d > 0. Let u = si1 · · · sidwsid · · · si1 . By
Lemma 2.7, u ∈ W{i}⊥ . Since mi,i1 > 2, i1 /∈ {i}⊥. Thus, u ∈ WI ′\{i1} where I ′ =
I \ {i} and dist(i1, i′) = d − 1. By the induction hypothesis, u ∈ W{i1,...,id }⊥ and in
particular u = w. But thenw ∈ W{i}⊥ ∩W{i1,...,id }⊥ = W{i}⊥∩{i1,...,id }⊥ = W{i0,...,id }⊥
where we used Lemma 2.1(a) and the observation that J⊥ ∩ J ′⊥ = (J ∪ J ′)⊥. ��

By Lemma 2.5, KJ = {w ∈ W : uwu−1 ∈ WJ , ∀u ∈ W } and is a subgroup
ofWJ . Suppose thatw ∈ KJ ; in particular,w ∈ WJ . Furthermore, using Lemma 2.7
with u = w and i ∈ I \ J , we conclude that w ∈ ⋂i∈I\J W{i}⊥ = W(I\J )⊥ . Let
i′ ∈ ∂(I \ J ). By definition, there exists i ∈ I \ J and an admissible sequence
(i0, . . . , id ) with d = dist(i, i′), i0 = i and id = i′. Since uwu−1 ∈ WJ with
u = si0 · · · sid , it follows from Lemma 2.8 that w ∈ W{i0,...,id }⊥ ⊂ W{i′}⊥ . Thus,
w ∈ W(I\J )⊥∩∂(I\J )⊥ = W(cl(I\J ))⊥ = WI\cl(I\J ). We proved that KJ ⊂ WJ0

where J0 = I \ cl(I \ J ).
To complete the proof of Theorem 2.4 we need the following.

Lemma 2.9 Let J ′ ⊂ J which is closed in I . ThenWJ ′ ⊂ KJ .

Proof Since J ′ is closed,WJ = WJ ′ ×WJ\J ′ andW = WJ ′ ×WI\J ′ by Lemma 2.3.
Then W/WJ = WI\J ′/WJ\J ′ . Since WJ ′ acts by left multiplication in the first
factor, this implies thatWJ ′ acts trivially onW/WJ . ��
Applying Lemma 2.9 with J ′ = J0 = I \ cl(I \ J ) we conclude that WJ0 ⊂ KJ .
Thus, KJ = WJ0 . This completes the proof of Theorem 2.4. ��

2.2 Cartan Data and Weyl Group

In this section we mostly follow [23]. Let A = (aij )i,j∈I be a symmetrizable
generalized Cartan matrix, that is aii = 2, i ∈ I , −aij ∈ Z≥0 and aij = 0 �⇒
aji = 0, i �= j and diaij = djaji for some d = (di)i∈I ∈ Z

I
>0. We fix the following

data:

– a finite dimensional complex vector space h;
– linearly independent subsets {αi}i∈I of h∗ and {α∨i }i∈I of h;
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– a symmetric non-degenerate bilinear form (·, ·) on h∗, and
– a lattice P ⊂ h∗ of rank dim h∗

such that

1◦ αj (α∨i ) = aij , i, j ∈ I ;
2◦ (αi, αi) ∈ 2Z>0;
3◦ λ(α∨i ) = 2(λ, αi)/(αi, αi) for all λ ∈ h∗;
4◦ αi ∈ P for all i ∈ I ;
5◦ λ(α∨i ) ∈ Z for all λ ∈ P ;
6◦ (P, P ) ⊂ 1

d
Z for some d ∈ Z>0.

These assumptions imply, in particular, that dim h ≥ 2|I | − rankA.
Denote by Q (respectively, Q+) the subgroup (respectively, the submonoid) of

P generated by the αi . Let P+ = {λ ∈ P : λ(α∨i ) ∈ Z≥0, ∀i ∈ I }.
Define ωi ∈ h∗, i ∈ I , by ωi(α∨j ) = δi,j , j ∈ J and ωi(h) = 0 for all h ∈⋂
i∈I kerαi . We will assume that ωi ∈ P , i ∈ I and denote by Pint (respectively,

P+int ) the subgroup (respectively, the submonoid) of P generated by the ωi , i ∈ I .
Given any J ⊂ I , denote ρJ =∑j∈J ωj ∈ P ; we abbreviate ρI = ρ.

LetW be the Weyl group associated with the matrix A, that is, the Coxeter group
with mij = 2 if aij = 0, mij = 3 if aij aji = 1, mij = 4 if aij aji = 2, mij = 6 if
aij aji = 3 and mij = 0 if aij aji > 3. It is well-known that W is finite if and only
if A is positive definite. It should be noted that in that case αi ∈ Pint for all i ∈ I .
The group W acts on h (respectively, on h∗) by sih = h − αi(h)α∨i (respectively,
siλ = λ − λ(α∨i )αi), h ∈ h, λ ∈ h∗ and i ∈ I . Then we have (wλ)(h) = λ(w−1h)

for all w ∈ W , h ∈ h and λ ∈ h∗. Clearly, W(P) = P and P = Pint ⊕ PW where
PW = {λ ∈ P : wλ = λ, ∀w ∈ W } = {λ ∈ P : λ(α∨i ) = 0, ∀ i ∈ I }.

Given J ⊂ I we define a linear map ρ∨J : h∗ → C by ρ∨J (αi) = 1, i ∈ J
and ρ∨J (λ) = 0 if (λ, αi) = 0 for all i ∈ J . As before, we abbreviate ρ∨I = ρ∨.
If J ∈ J , then it can be shown that ρ∨J (λ) is equal to 1

2λ(
∑
h∈R∨J h) where R∨J =

{h ∈ h : h ∈ (⋃i∈J WJα∨i ) ∩
∑
i∈J Z≥0α

∨
i } is the set of positive co-roots of WJ .

In particular, this implies that ρ∨J (P ) ⊂ 1
2Z.

If J ∈J , then for each j ∈ J we have wJ◦ (αj ) = −αj .
Given λ ∈ P+, denote Jλ = {i ∈ I : λ(α∨i ) = 0} = {i ∈ I : siλ = λ}. It is

well-known that StabW λ = WJλ for λ ∈ P+.

2.3 Quantum Groups

We associate with the datum (A, h, {αi}i∈I , {α∨i }i∈I ) a complex Lie algebra g
generated by the ei , fi , i ∈ I and h ∈ h subject to the relations

[h, h′] = 0, [h, ei ] = αi(h)ei , [h, fi ] = −αi(h)fi , [ei , fj ] = δi,j α∨i , h, h′ ∈ h, i, j ∈ I
(ad ei )

1−aij (ej ) = 0 = (ad fi)
1−aij (fj ), i �= j.
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If A is positive definite, then g is a reductive finite dimensional Lie algebra.
For J ⊂ I we denote by gJ the subalgebra of g generated by the ei , fi , i ∈ J
and h. It can also be regarded as the Lie algebra corresponding to the datum
(A|J×J , h, {αi}i∈J , {α∨i }i∈J ). In particular, if J ∈ J , then gJ is a reductive finite
dimensional Lie algebra.

Let k be any field of characteristic zero containing q
1

2d which is purely
transcendental over Q. Given any v ∈ k

× with v2 �= 1 define

(n)v = vn − v−n
v − v−1 , (n)v! =

n∏

s=1

(s)v,

(
n

k

)

v

=
k∏

s=1

(n− s + 1)v
(s)v

.

Let qi = q 1
2 (αi ,αi ). Henceforth, given any associative algebra A over k and Xi ∈ A,

i ∈ I denote X(n)i := Xni /(n)qi ! We will always use the convention that X(n)i = 0
if n < 0.

Define the Drinfeld-Jimbo quantum group Uq(g) corresponding to g as the
associative algebra over k with generators Kλ, λ ∈ 1

2P and Ei, Fi , i ∈ I subject to
the relations

KλEi = q(λ,αi )EiKλ, KλFi = q−(λ,αi )FiKλ, [Ei, Fj ] = δij Kαi −K−αi
qi − q−1

i

, λ ∈ 1
2P, i, j ∈ I

∑

r+s=1−aij
(−1)rE(r)i EjE

(s)
i = 0 =

∑

r+s=1−aij
(−1)rF (r)i FjF

(s)
i i �= j ∈ I.

This is a Hopf algebra with the “balanced” comultiplication

�(Ei) = Ei ⊗K 1
2αi
+K− 1

2αi
⊗ Ei, �(Fi) = Fi ⊗K 1

2αi
+K− 1

2αi
⊗ Fi, i ∈ I,

(2.2)
while �(Kλ) = Kλ ⊗ Kλ, λ ∈ 1

2P . Denote by U+q (g) (respectively, U−q (g))
the subalgebra of Uq(g) generated by the Ei (respectively, the Fi), i ∈ I . Then
U±q (g) is graded by ±Q+ with degEi = αi = − degFi . Given ν ∈ Q+, denote
by U±q (g)(±ν) the subspace of homogeneous elements of U±q (g) of degree ±ν.

Given J ⊂ I we denote by Uq(gJ ) the subalgebra of Uq(g) generated by the Ej ,
Fj , j ∈ J and Kλ, λ ∈ 1

2P and set U±q (gJ ) = U±q (g) ∩ Uq(gJ ).
If J ∈ J , then the algebra Uq(gJ ) admits an automorphism θJ defined by

θJ (Ei) = Fi , θJ (Fi) = Ei and θJ (Kλ) = KwJ◦ λ, λ ∈ 1
2P . If I ∈ J , we

abbreviate θI = θ .
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2.4 Integrable Modules

We say that a Uq(g)-module M is integrable if M = ⊕
β∈P

M(β) where M(β) =
{m ∈ M : Kλ(m) = q(λ,β)m, ∀λ ∈ 1

2P } and the Ei , Fi , i ∈ I act locally
nilpotently onM . Given any m ∈ M we can write uniquely

m =
⊕

β∈P
m(β) (2.3)

where m(β) ∈ M(β) and m(β) = 0 for all but finitely many β ∈ P . Denote
suppm = {β ∈ P : m(β) �= 0}. By definition, ifm ∈ M(β) and u± ∈ U±q (g)(±ν),
ν ∈ ±Q+, then u±(m) ∈ M(β±ν). We say thatm ∈ M(β), β ∈ P is homogeneous
of weight β and callM(β) a weight subspace ofM .

Definition 2.10 The category O intq (g) is the full subcategory of the category
of Uq(g)-modules whose objects are integrable Uq(g)-modules M with the follow-
ing property: given m ∈ M , there exists N(m) ≥ 0 such that U+q (g)(ν)(m) = 0 for
all ν ∈ Q+ with ρ∨(ν) ≥ N(m).

Given V ∈ O intq (g), let V+ = ⋂i∈I kerEi where the Ei are regarded as linear
endomorphisms of V . For any subset S of an object V in O intq (g) we denote S(β) =
S ∩ V (β) and S+ = S ∩ V+.

It is well-known (see, e.g., [30, Theorem 6.2.2]) that O intq (g) is semisimple
and its simple objects are simple highest weight modules Vλ, λ ∈ P+ with
(Vλ)+ = Vλ(λ) one-dimensional. Furthermore, every V ∈ O intq (g) is generated
by V+ as a Uq(g)-module and V+(λ) �= 0 implies that λ ∈ P+. Given λ ∈ P+
and V ∈ O intq (g) denote Iλ(V ) the λ-isotypical component of V as a Uq(g)-
module. Thus, every simple submodule (and hence a direct summand) of Iλ(V )
is isomorphic to Vλ and Iλ(V )+ = V+(λ). Furthermore, for any v ∈ V+ we have
the following equality of Uq(g)-submodules of V

Uq(g)(v) =
∑

λ∈supp v

Uq(g)(v(λ)), (2.4)

where the sum is direct and each summand is simple and isomorphic to Vλ.
It is immediate from the definition that every object O intq (g) can be regarded as an

object in O intq (g
J ), J ⊂ I . Denote P+J = {μ ∈ P : μ(α∨j ) ∈ Z≥0, ∀ j ∈ J }. Given

V ∈ O intq (g) and λJ ∈ P+J denote by IJλJ (V ) the λJ -isotypical component of V as

a Uq(gJ )-module. Clearly, IJλJ (Iλ(V )) = Iλ(V ) ∩ IJλJ (V ) for any V ∈ O intq (g),

λ ∈ P+, λJ ∈ P+J . We denote V J+ =
⋂
j∈J kerEj ⊂ V+. Then IJλJ (V ) is generated

by V J+ (λJ ) as a Uq(gJ )-module.
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2.5 Crystal Operators, Lattices and Bases

Here we recall some necessary facts from Kashiwara’s theory of crystal bases.
To treat lower and upper crystal operators and lattices uniformly, we find it
convenient to interpolate between them using c-crystal operators and lattices (for
other generalizations, see, e.g., [12, 18]).

The following fact is standard (for example, see [30, Lemma 16.1.4]).

Lemma 2.11 Let V ∈ O intq (g) and fix i ∈ I . Then

V =
⊕

0≤n≤l
F ni (kerEi ∩ ker(Kαi − qli )) =

⊕

0≤n≤l
Eni (kerFi ∩ ker(Kαi − q−li ))

Let D = {(l, k, s) ∈ Z≥0 × Z≥0 × Z : k − l ≤ s ≤ k ≤ l}. Fix a map c :
D → Q(z)× and denote its value at (l, k, s) by cl,k,s . We use the convention that
cl,k,s = 0 whenever (l, k, s) ∈ Z

3\D. Using Lemma 2.11 we can define generalized
Kashiwara operators ẽc

i,s ∈ Endk V , s ∈ Z by

ẽc
i,s (F

k
i (u)) = cl,k,s(qi)F

k−s
i (u), (2.5)

for every u ∈ kerEi ∩ ker(Kαi − qli ), 0 ≤ k ≤ l. Note that under these assumptions

on u, ẽc
i,s (F

(k)
i (u)) �= 0 if and only if (l, k, s) ∈ D. Clearly, like lower or upper

Kashiwara operators, the generalized ones commute with morphisms in O intq (g).

Lemma 2.12 Let u ∈ kerEi ∩ ker(Kαi − qli ) and u′ ∈ kerFi ∩ ker(Kαi − q−li ),
0 ≤ k ≤ l. Then

ẽc
i,s (F

(k)
i (u)) = cl,k,s(qi)F

(k−s)
i (u), ẽc

i,s (E
(k)
i (u

′)) = cl,l−k,s(qi)E
(k+s)
i (u′),

(2.6)
for all (l, k, s) ∈ D, where cl,k′,s′ = cl,k′,s′(k′ − s′)z!/(k′)z!.
Proof The first identity in (2.6) is immediate from (2.5). To prove the second, note
that E(l+1)

i (u′) = 0 and so u = E
(l)
i (u

′) ∈ kerEi ∩ ker(Kαi − qli ). It follows

from [30, §3.4.2] that E(k)i (u
′) = F

(l−k)
i (u). Using the first identity in (2.6) we

obtain

ẽc
i,s (E

(k)
i (u

′)) = ẽc
i,s (F

(l−k)
i (u)) = cl,l−k,s(qi)F

(l−k−s)
i (u) = cl,l−k,s(qi)E

(k+s)
i (u′).

��
The following is immediate.

Lemma 2.13 Given c : D→ Q(z)× we have

(a) ẽc
i,0 = idV for all V ∈ O intq (g) if and only if cl,k,0 = 1 for all 0 ≤ k ≤ l;
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(b) ẽc
i,t ◦ ẽc

i,s = ẽc
i,s+t for all s, t ∈ Z with st ≥ 0 and for all V ∈ O intq (g) if and

only if cl,k,s+t = cl,k,scl,k−s,t for all 0 ≤ k ≤ l, s, t ∈ Z, st ≥ 0.

The following is easy to deduce from [25, §3.1]

Lemma 2.14 Define clow, cup : D→ Q(z)× by

clowl,k,s =
(k)z!

(k − s)z! , cupl,k,s =
(l − k + s)z!
(l − k)z! , (l, k, s) ∈ D. (2.7)

We have

(ẽlowi )s = ẽclow
i,s , (ẽ

up
i )

s = ẽcup
i,s , i ∈ I, s ∈ Z,

where ẽlowi (respectively, ẽupi ) are lower (respectively, upper) Kashiwara’s operators
as defined in [25, §3.1].

Fix c : D→ Q(z)× and let V ∈ O intq (g). Let A be the local subring of Q(q) ⊂ k

consisting of rational functions regular at 0. Generalizing well-known definitions of
Kashiwara, we say that an A-submodule L of V is a c-crystal lattice if V = k⊗AL,
L =⊕β∈P (L ∩ V (β)), and ẽc

i,s (L) ⊂ L for all i ∈ I , s ∈ Z.
We will be mostly interested in a special class of crystal lattices which we refer

to as monomial. We need the following notation. Given v ∈ V set

Mc
J (v) = {v} ∪

⋃

k∈Z>0

{ẽc
i1,m1

· · · ẽc
ik,mk

(v) : (i1, . . . , ik) ∈ J k, (m1, . . . , mk) ∈ Z
k}.

We abbreviate Mc(v) = Mc
I (v). We call an A-submodule L of V a (c, J )-monomial

lattice if

L =
∑

v+
Mc
J (v+)

where the sum is over all v+ ∈ L ∩ V J+ (λJ ), λJ ∈ P+. Clearly, L inherits a weight
decomposition from V and ẽc

j,a(L) ⊂ L for all j ∈ J , a ∈ Z. In particular, if L is a
(c, I )-monomial lattice and k⊗A L = V , then L is a c-crystal lattice.

Denote L̃ the Q-vector space L/qL. Given ṽ ∈ L̃, denote

M̃c
J (ṽ) = {ṽ} ∪

⋃

k∈Z>0

{ẽc
i1,m1

· · · ẽc
ik,mk

(ṽ) : (i1, . . . , ik) ∈ J k,

(m1, . . . , mk) ∈ Z
k} ⊂ L̃.

As before, we abbreviate M̃c(v) = M̃c
I (v).

By [24, Theorem 3] and [25, Theorem 3.3.1], if c = clow or c = cup, then every
object in O intq (g) admits a c-crystal lattice. Moreover, in that case for any λ ∈ P+,
and any vλ ∈ Vλ(λ) the smallest A-submodule of Vλ containing vλ and invariant
with respect to the ẽc

i,s , i ∈ I , s ∈ Z<0 is a c-crystal lattice.
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Let L be a c-crystal lattice of V ∈ O intq (g). Clearly, operators ẽc
i,s commute with

the action of q on L and thus factor through to Q-linear operators on L̃ = L/qL

denoted by the same symbols. Similarly to [24, 25], we say that (L,B), where B is
a weight basis of L̃, is a c-crystal basis of V at q = 0 if ẽc

i,s (B) ⊂ B ∪ {0}, i ∈ I ,

s ∈ Z. By [24, 25], every object in O intq (g) admits a c-crystal basis provided that
c ∈ {cup, clow}.

The following is well-known (cf. [24, 25]).

Lemma 2.15 Let V ∈ O intq (g), c ∈ {clow, cup} and let (L,B) be a c-crystal basis
at q = 0. Then for any J ⊂ I
(a) L is a (c, J )-monomial lattice;
(b) M̃c

J (b) ⊂ B ∪ {0} for any b ∈ B;

(c) B =⋃b+∈BJ+ M̃c
J (b+) \ {0} where BJ+ =

⋂
j∈J ker ẽc

j,1 ⊂ B;

Remark 2.16 It is not hard to see that if for given c : D → Q(z)× and J ⊂ I

Lemma 2.15(a)–(c) hold then (L,B) is a c-crystal basis at q = 0 of V regarded as
a Uq(gJ )-module.

3 Properties of σ i and Proof of Theorem 1.1

3.1 Special Monomials in U±
q (g)

Given any reduced sequence i = (i1, . . . , im) ∈ Im and λ ∈ P+ we define Fi,λ ∈
U−q (g) and Ei,λ ∈ U+q (g), λ ∈ P+ by

Fi,λ = F (a1)
i1

· · ·F (am)im
, Ei,λ = E(a1)

i1
· · ·E(am)im

, (3.1)

where ak = ak(i, λ) = sik+1 · · · simλ(α∨ik ) = λ(sim · · · sik+1α
∨
ik
) ∈ Z≥0.

Lemma 3.1 Let w ∈ W , λ ∈ P+, i ∈ I . Then

(a) Fi,λ = Fi′,λ and Ei,λ = Ei′,λ for any i, i′ ∈ R(w) and λ ∈ P+. Thus, we can
define Fw,λ := Fi,λ and Ew,λ := Ei,λ for some i ∈ R(w);

(b) If �(siw) = �(w) + 1, then Fsiw,λ = F
(wλ(α∨i ))
i Fw,λ and Esiw,λ =

E
(wλ(α∨i ))
i Ew,λ;

(c) If �(siw) = �(w) − 1, then Fw,λ = F
(−wλ(α∨i ))
i Fsiw,λ and Ew,λ =

E
(−wλ(α∨i ))
i Esiw,λ;

(d) If siλ = λ, then Fwsi ,λ = Fw,λ;
(e) degFw,λ = − degEw,λ = wλ− λ;
(f) Suppose thatW is finite. Then θ(Fw,λ) = Ew◦ww◦,−w◦λ.
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Proof It is well-known that i can be obtained from i′ by a finite sequence of rank 2
braid moves of the form sisj · · ·︸ ︷︷ ︸

mij

= sj si · · ·︸ ︷︷ ︸
mij

with mij finite. Thus, it suffices to prove

part (a) in case when w is the longest element in the subgroup of W generated by
si , sj , i �= j ∈ I . But in that case it was established in [30, Proposition 39.3.7].

Parts (b), (c), and (d) are obtained from part (a) by choosing appropriate reduced
decompositions. To prove parts (e) and (f) we use induction on �(w), the case
�(w) = 0 being obvious. For the inductive step, suppose that �(siw) = �(w) + 1.
Since μ(α∨i )αi = μ− siμ, μ ∈ P , by part (b) and the induction hypothesis we have
degFsiw,λ = −wλ(α∨i )αi + wλ− λ = siwλ− λ. This proves the inductive step in
part (e). Since si = w◦siw◦ we have by Lemma 3.1(b)

θ(Fsiw,λ) = θ(F
(wλ(α∨i ))
i

Fw,λ)=E(wλ(α
∨
i ))

i
Ew◦ww◦,−w◦λ = E

(−wλ(w◦α∨i ))
i

Ew◦ww◦,−w◦λ

= E((w◦ww◦(−w◦λ))(α
∨
i
))

i
Ew◦ww◦,−w◦λ = Esiw◦ww◦,−w◦λ = Ew◦siww◦,−w◦λ.

The inductive step in part (f) is proven. ��

3.2 Extremal Vectors

For V ∈ O intq (g) and v ∈ V , denote J (v) = {i ∈ I : Fi(v) = 0} and define J (S) =⋂
v∈S J (v), S ⊂ V . One can show that J (V ) also equals to {i ∈ I : Ei(V ) = {0}}.

We will need the following basic properties of these sets.

Proposition 3.2 Let V ∈ O intq (g). Then

(a) J (v) = Jλ for any v ∈ V+(λ) \ {0}, λ ∈ P+;
(b) There exists v ∈ V+ such that J (V ) = J (Uq(g)(v)).
Proof It is well-known (see, e.g., [30, Chap. 6]) that the annihilating ideal of v

in U−q (g) is generated by the F
λ(α∨i )+1
i , i ∈ I . Thus, Fi(v) = 0 if and only

if λ(α∨i ) = 0. This proves part (a). To prove part (b), note the following obvious
fact.

Lemma 3.3 Let R be a ring and let M = ⊕
α∈AMα as R-modules. Let S be a

subset of R. Then AnnS M = ⋂α∈A′ AnnS Mα = AnnS M ′ where A′ is any subset
of A such that for each α ∈ A there exists α′ ∈ A′ such that Mα ∼= Mα′ and
M ′ = ⊕α∈A′Mα . In particular, if S is finite, then AnnS M = ⋂α∈A0

AnnS Mα =
AnnS M0 where A0 is a finite subset of A′ andM0 =⊕α∈A0

Mα .

Apply this Lemma to R = Uq(g) and S = {Fi : i ∈ I }, which identifies with I ,
and M = V . Clearly, J (V ) = {i ∈ I : Fi ∈ AnnS V }. Since S is finite and V is a
direct sum of simple modules, it follows from Lemma 3.3 that AnnS V = AnnS V ′
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where V ′ = ⊕λ∈� Uq(g)(vλ) for some finite � ⊂ {λ ∈ P+ : Iλ(V ) �= 0} and
vλ ∈ V+(λ)\{0}, λ ∈ �. Since V ′ = Uq(g)(v) with v =∑λ∈� vλ, part (b) follows.

��
Given v ∈ V+(λ) \ {0} and w ∈ W , define the standard extremal vectors [v]w

of v by [v]w := Fw,λ(v). Furthermore, given v ∈ V+ \ {0}, define

[v]W := {[v(λ)]w : w ∈ W, λ ∈ supp v}. (3.2)

Proposition 3.4 Let V ∈ O intq (g). Then for any v ∈ V+ \ {0}
(a) if v is homogeneous, then [v]w = [v]w′ if and only if w′ ∈ wWJ(v). In

particular, the assignments [v]w 	→ wWJ(v) define a bijection Jv : [v]W →
W/WJ(v);

(b) for any v ∈ V+ \ {0} the set [v]W is linearly independent.

Proof To prove (a), let v ∈ V+(λ) \ {0} for some λ ∈ P+ and recall that StabW λ =
WJλ . It follows from Lemma 3.1(d) by an obvious induction on �(w′′) that Fww′′,λ =
Fw,λ for all w′′ ∈ WJλ . Since wλ = w′λ implies that w′ = ww′′ for some w′′ ∈
WJλ , it follows that Fw′,λ(v) = Fw,λ(v). Conversely, by Lemma 3.1(e) we have
Fw,λ(v) ∈ V (wλ). Thus, if wλ �= w′λ, then Fw,λ(v) and Fw′,λ(v) are in different
weight subspaces of V and are linearly independent (and hence not equal).

In particular, we proved that [v(λ)]W is linearly independent for all v ∈ V+ \ {0}
and λ ∈ supp v. This, together with (2.4), proves part (b). ��
Proposition 3.5 Let V ∈ O intq (g). For each i ∈ I , v ∈ V+ \ {0} the following are
equivalent.

(a) (λ,wαi) = 0 for all λ ∈ supp v, w ∈ W ;
(b) cl({i}) ∈ J (Uq(g)(v)).
Proof Let J be the neighborhood of i. In particular, J ∪ J⊥ = I .

(a) �⇒ (b) We need the following Lemma.

Lemma 3.6 For every i ∼ j ∈ I , i �= j there exists w = wi,j ∈ W such that
wi,jαi ∈ Z>0αj +∑k∈I\{j} Z≥0αk .

Proof Let i = (i = i0, i1, . . . , id = j) ∈ I d+1 be an admissible sequence with d =
dist(i, j). In particular, this sequence is repetition free. Denote βk = sik · · · si1(αi).
We claim that βk ∈ ∑0≤r≤k Z>0αir . We argue by induction on k, the case k = 0
being obvious. For the inductive step, note that

βk = sik (βk−1) ∈
∑

0≤r≤k−1

Z>0sikαir =
∑

0≤r≤k−1

Z>0(αir − αir (α∨ik )αik ).

Since i is admissible, αik−1(α
∨
ik
) < 0 while αir (α

∨
ik
) ≤ 0 for all 0 ≤ r ≤ k −

2. Therefore, βk ∈ ∑0≤r≤k Z>0αir . In particular, w = sid · · · si1 is the desired
wi,j ∈ W . ��
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Write λ ∈ supp v as λ = λ′ +∑k∈I lkωk where λ′ ∈ PW and lk ∈ Z≥0, k ∈ I .
Let j ∈ J . In the notation of Lemma 3.6, we have wi,jαi = ∑

k∈I nkαk with
nj ∈ Z>0 and nk ∈ Z≥0, k ∈ I \ {j}, for some wi,j ∈ W . Then 0 = 2(λ,wi,j αi) =
(αj , αj )lj nj +∑k∈I\{j}(αk, αk)lknk . Since nj > 0 and nk ≥ 0 for all k �= j this
forces lj = 0.

In particular, J ⊂ J (v). Since J is closed in I , [U−q (gJ⊥), Fj ] = 0. Let V ′ =
Uq(g)(v). Then V ′ = U−q (g)(v) = U−q (gJ⊥)(v) and so J ⊂ J (V ′).

(b) �⇒ (a) Since J ⊂ J (Uq(g)(v)) it follows that (λ, αj ) = 0 for all j ∈ J .
SinceWαj ∈∑j ′∈J Zαj ′ for any j ∈ J , the assertion follows. ��
Lemma 3.7 Let V ∈ O intq (g) such that V = Uq(g)(v) for some v ∈ V+. The
following are equivalent for i ∈ I .

(a) i ∈ J (V ).
(b) [v(λ)]siw = [v(λ)]w for all λ ∈ supp v and for all w ∈ W ;

Proof The condition in part (b) implies that siwλ = wλ for all λ ∈ supp v and
w ∈ W . Since siwλ = wλ − (wλ)(α∨i )αi , it follows that (λ,wαi) = 0 for all
λ ∈ supp v and w ∈ W and so i ∈ J (V ) by Proposition 3.5.

Conversely, if i ∈ J (V ), then Fi([v]w) = 0 for all w ∈ W . In particular,

if �(siw) = �(w) + 1 then, since [v]siw = F
(wλ(α∨i ))
i [v]w �= 0 it follows that

(wλ, αi) = 0 and thus [v]siw = [v]w. Similarly, if �(siw) = �(w)− 1 applying the
previous argument to w′ = siw, we obtain the same equality. ��

3.3 Proof of Theorem 1.1

We will now express the action of the σ i , i ∈ I on extremal vectors in terms of the
natural action ofW onW/WJ .

Proposition 3.8 Let V ∈ O intq (g) and v ∈ V+ \ {0}. Then

(a) The set [v]W is W(V )-invariant. More precisely, σ i([v(λ)]w) = [v(λ)]siw for
all i ∈ I , w ∈ W and λ ∈ supp v;

(b) The canonical image of W(V ) in Bij([v]W) is isomorphic to WJ0 where J0 =
I \ cl(J (Uq(g)(v))).

Proof To prove part (a), let λ ∈ P+, w ∈ W , i ∈ I and suppose first
that �(siw) = �(w) + 1. Then wλ(α∨i ) > 0 and [v(λ)]w ∈ kerEi , whence

σ i([v(λ)]w) = F
(wλ(α∨i ))
i ([v(λ)]w) = Fsiw,λ(v(λ)) = [v(λ)]siw where we used

Lemma 3.1(b). If �(siw) = �(w) − 1, then w = siw
′. By the above, [v(λ)]w =

[v(λ)]siw′ = σ i([v(λ)]w′) = σ i([v(λ)]siw). Since σ i is an involution, it follows that
σ i([v(λ)]w) = [v(λ)]siw.
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To prove (b), the bijections from Proposition 3.4(a) allow one to identify [v]W
with

⊔
λ∈supp v

W/WJλ . In particular, this induces an action of W on [v]W via w ·
[v(λ)]w′ = [v(λ)]ww′ , λ ∈ supp v, w,w′ ∈ W . By part (a) the canonical images of
W(V ) andW in Bij([v]W) coincide. We need the following general fact.

Lemma 3.9 LetG be a group acting on X =⊔α∈A Xα . Then the canonical image
of G in Bij(X) is isomorphic to G/K where K = ⋂α∈A Kα and Kα = {g ∈ G :
gx = x, ∀x ∈ Xα} is the kernel of the action of G on Xα .

Applying this Lemma to X = [v]W , Xλ = [v(λ)]W and G = W and using
the fact that Kλ = WJλ by Theorem 2.4 we conclude that K = ⋂

λ∈supp v WJλ .
By Lemma 2.1, K = WJ ′ where J ′ is the set of i ∈ I such that si fixes [v]W
elementwise. By Lemma 3.7, J ′ = J (V ′) where V ′ = Uq(g)(v). Since J ′ is closed,
being an intersection of closed sets,W/WJ ′ ∼= WI\J ′ . ��
Proof of Theorem 1.1 It follows from Proposition 3.4(a) that the assignments
[v]w 	→ wWJ define a bijection J : [v]W → W/WJ . This induces a group
homomorphism ξV : W(V ) → Bij(W/WJ ) via ξV (σ i)(wWJ ) = J(σ i([v]w)) =
J([v]siw) = siwWJ . It follows that ξV (W(V )) coincides with the image of W in
Bij(W/WJ ) given by the natural action. By Lemma 2.3, the latter is canonically
isomorphic toWI\J0 where J0 = cl(I \ J ). ��

4 Modified Lusztig Symmetries and Involutions σJ

Let C be a k-linear category whose objects are k-vector spaces and letG be a group.
An action of G on C is an assignment g 	→ g• = {gV : V ∈ C}, g ∈ G, where
gV ∈ GLk(V ) such that (gg′)V = gV ◦ g′V for all g, g′ ∈ G and V ∈ C and
gV ′ ◦ f = f ◦ gV for any g ∈ G and any morphism f : V → V ′ in C .

Recall that the braid group BrW associated with a Coxeter group W is generated
by the Ti , i ∈ I subject to the relations TiTj · · ·︸ ︷︷ ︸

mij

= TjTi · · ·︸ ︷︷ ︸
mij

for all i �= j ∈ I

in the notation of Sect. 2.1. In this section we discuss modified Lusztig symmetries
which provide an action of BrW associated with the Weyl group W of g on the
category O intq (g) and use them to construct an action of CactW on the same
category.

4.1 Modified Lusztig Symmetries

Given i ∈ I and V ∈ O intq (g) define T ±i ∈ Endk V by

T +i = T ′i,1K 1
2αi
, T −i = T ′′i,1K− 1

2αi
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where T ′i,1, T ′′i,1 ∈ Endk V are Lusztig symmetries (see [30, §5.2]). We refer to these

operators as modified Lusztig symmetries. By definition, T ±i (V (β)) = V (siβ) and
so T ±i Kλ = KsiλT ±i , λ ∈ 1

2P .

Lemma 4.1 The assignments Ti 	→ T +i (respectively, Ti 	→ T −i ) define an action
of BrW on O intq (g).

Proof It can be deduced from [30, Proposition 39.4.3] along the lines of [2,
Lemma 5.2] that the T +i (and the T −i ), i ∈ I , satisfy the defining relations of BrW
as endomorphisms of V for each V ∈ O intq (g). To prove that this action of BrW
commutes with morphisms, write, using [32, §3.1], for V ∈ O intq (g) and v ∈ V

T +i (v) =
∑

(a,b,c)∈Z3≥0

(−1)bqb−aci K 1
2 (a−c−1)αi

F
(a)
i E

(b)
i F

(c)
i K 1

2 (a−c)αi (v),

T −i (v) =
∑

(a,b,c)∈Z3≥0

(−1)bqb−aci K 1
2 (c−a+1)αi

E
(a)
i F

(b)
i E

(c)
i K 1

2 (c−a)αi (v)
(4.1)

where the sum is finite since V is integrable. It is now obvious that the T ±i , i ∈ I
commute with homomorphisms of Uq(g)-modules. ��

It is well-known (see, e.g., [30, §39.4.7]) that the element Ti1 · · · Tir with i =
(i1, . . . , ir ) ∈ I r reduced depends only on w = si1 · · · sir and not on i. This allows
to define the canonical section of the natural group homomorphism BrW → W ,
Ti 	→ si , i ∈ I , by w 	→ Tw := Ti1 · · · Tir where (i1, . . . , ir ) ∈ R(w). Denote
T ±w the linear endomorphisms of any V ∈ O intq (g) arising from Lemma 4.1
which correspond to the canonical element Tw of BrW . The elements Tw, T ±w are
characterized by the following well-known property.

Lemma 4.2 ([30, §39.4.7]) Let w,w′ ∈ W be such that �(w) + �(w′) = �(ww′).
Then Tww′ = TwTw′ and T ±

ww′ = T ±w ◦T ±w′ as linear endomorphisms of V ∈ O intq (g).

Proposition 4.3 Let V ∈ O intq (g). Then for any w,w′ ∈ W , λ ∈ P+ and v ∈
V+(λ) we have:

(a) if �(ww′) = �(w)+ �(w′), then

T +w (Fw′,λ(v)) = q
1
2 (w

′λ,ρ−w−1ρ)Fww′,λ(v),

T −w (Fw′,λ(v)) = (−1)ρ
∨(w′λ−ww′λ)q

1
2 (w

′λ,ρ−w−1ρ)Fww′,λ(v).

(b) if �(ww′) = �(w′)− �(w), then

T +w (Fw′,λ(v)) = (−1)ρ
∨(w′λ−ww′λ)q−

1
2 (w

′λ,ρ−w−1ρ)Fww′,λ(v),

T −w (Fw′,λ(v)) = q−
1
2 (w

′λ,ρ−w−1ρ)Fww′,λ(v).
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(c) if �(ww′) = �(w)− �(w′), then

T +w (Fw′,λ(v)) = (−1)ρ
∨(w′λ−λ)q

1
2 (λ,2ρ−w′−1(ρ+w−1ρ))Fww′,λ(v)

T −w (Fw′,λ(v)) = (−1)ρ
∨(λ−ww′λ)q

1
2 (λ,2ρ−w′−1(ρ+w−1ρ))Fww′,λ(v).

Proof To prove (a) we argue by induction on �(w), the case �(w) = 0 being
vacuously true. The following Lemma is the main ingredient in the proof of the
inductive steps in Proposition 4.3.

Lemma 4.4 In the notation of Proposition 4.3 we have, for all i ∈ I

T +i (Fw′,λ(v)) =
{
q

1
2 (w

′λ,αi )Fsiw′,λ(v), (w′λ, αi) ≥ 0,

(−1)w
′λ(α∨i )q− 1

2 (w
′λ,αi )Fsiw′,λ(v), (w′λ, αi) ≤ 0,

T −i (Fw′,λ(v)) =
{
(−1)w

′λ(α∨i )q
1
2 (w

′λ,αi )Fsiw′,λ(v), (w′λ, αi) ≥ 0,

q− 1
2 (w

′λ,αi )Fsiw′,λ(v), (w′λ, αi) ≤ 0.

(4.2)

Proof Clearly, Fw′,λ(v) is either a highest or a lowest weight vector in the ith simple
quantum sl2-submodule Vm it generates wherem = |(w′λ, α∨i )|. Then (4.2) follows
from [30, Propositions 5.2.2, 5.2.3]. Namely, let Vm be the standard simple Uv(sl2)-
module with the standard basis {zk}0≤k≤m such that K(zk) = vm−2kzk and zk =
F (k)(z0) = E(m−k)(zm), 0 ≤ k ≤ m. Recall that T + = T ′1K

1
2 and T − = T ′′1 K

− 1
2 .

Then by [30, Propositions 5.2.2, 5.2.3] we have

T+(zk) = (−1)kvk(m−k)+ 1
2mzm−k, T−(zk)=(−1)m−kvk(m−k)+ 1

2mzm−k, 0 ≤ k ≤ m.
(4.3)

Thus, (4.2) is obtained by applying (4.3) with k = 0 if w′λ(α∨i ) ≥ 0 and k = m if
w′λ(α∨i ) ≤ 0. ��

To prove the inductive steps in part (a) of Proposition 4.3, suppose that w,w′ ∈
W and i ∈ I satisfy �(siww′) = �(w)+�(w′)+1. In particular, �(siw) = �(w)+1
and �(ww′) = �(w)+ �(w′). Then we have, by the induction hypothesis and (4.2)

T +siw(Fw′,λ(v)) = T +i T +w (Fw′,λ(v)) = q
1
2 (w

′λ,ρ−w−1ρ)T +i (Fww′,λ(v))

= q 1
2 (w

′λ,ρ−w−1ρ)+ 1
2 (ww

′λ,αi )Fsiww′,λ(v) = q
1
2 (w

′λ,ρ−w−1ρ+w−1αi)Fsiww′,λ(v)

= q 1
2 (w

′λ,ρ−(siw)−1ρ)Fsiww′,λ(v),

where we used the W -invariance of (·, ·) and the obvious observation that αi =
ρ − siρ. The second identity in part (a) is proved similarly using the observation
that μ(α∨i ) = ρ∨(μ− siμ).
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The proof of part (b) is identical, the only difference being that we assume
�(siww

′) = �(w′) − �(w) − 1 which implies that �(siw) = �(w) + 1 and
�(ww′) = �(w)− �(w′).

To prove part (c), denote w1 = ww′. Then �(w) = �(w1) + �(w′−1), w =
w1w

′−1 and so T +w = T +w1
◦T +

w′−1 by Lemma 4.2. Applying part (b) with w = w′−1

and then part (a) with w′ = 1 and w = w1 we obtain

T +w (Fw′,λ(v)) = T +w1
(T +
w′−1(Fw′,λ(v)))

= (−1)ρ
∨(w′λ−λ)q−

1
2 (w

′λ,ρ−w′ρ)T +w1
(v)

= (−1)ρ
∨(w′λ−λ)q−

1
2 (λ,w

′−1ρ+w−1
1 ρ)Fw1,λ(v)

= (−1)ρ
∨(w′λ−λ)q(λ,ρ)−

1
2 (λ,w

′−1ρ)+ 1
2 (λ,ρ−w′−1w−1ρ)Fw1,λ(v)

= (−1)ρ
∨(w′λ−λ)q

1
2 (λ,2ρ−w′−1(ρ+w−1ρ))Fww′,λ(v).

The identity for T −w is proved similarly. ��
Recall from [30, Chapter 37] that BrW also acts on Uq(g) via Lusztig symmetries

and let T ±i be the automorphisms of Uq(g) defined as T +i = T ′i,1 adK 1
2αi

and T −i =
T ′′i,1 adK− 1

2αi
, i ∈ I where adKλ(u) = KλuK−λ, λ ∈ 1

2P , u ∈ Uq(g).
Remark 4.5 The operators T ±i , viewed as automorphisms of Uq(g), were already
used in [2] for studying double canonical bases of Uq(g).

Lemma 4.6 On Uq(g) we have

(a) T ±i ◦ adKλ = adKsiλ ◦ T ±i for all λ ∈ 1
2P , i ∈ I ;

(b) T +w = T ′w,1 ◦ adK 1
2 (ρ−w−1ρ)

and T −w = T ′′w,1 ◦ adK 1
2 (w

−1ρ−ρ) for all w ∈ W .

Proof Part (a) is immediate, while part (b) follows from (a) by induction similar to
that in Proposition 4.3. ��
Lemma 4.7 Suppose thatW is finite. Then for all i ∈ I we have

T ±w◦(Ei) = −q−
1
2 (αi ,αi )FiKαi , T ±w◦(Fi) = −q−

1
2 (αi ,αi )EiK−αi .

Proof By [1, Lemma 2.8] and Lemma 4.6(b) we have T ±w (Ei) = q±
1
2 (ρ−w−1ρ,αi )Ej

provided that wαi = αj . Since (w−1ρ, αi) = (ρ,wαi) = (ρ, αj ) and (αi, αi) =
(αj , αj ) it follows that T ±w (Ei) = Ej . In particular, since w◦siαi = αi we have
T ±w◦si (Ei) = Ei .

On the other hand, T ±w◦si (Ei) = T ±siw◦(Ei) and �(w◦) = �(siw◦) + 1 whence

T ±w◦(Ei) = T ±i (Ei) = −q−
1
2 (αi ,αi )FiKαi . The argument for T ±w◦(Fi) is similar.

��
The following Lemmata are immediate from [30, Proposition 37.1.2].
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Lemma 4.8 Let V ∈ O intq (g). Then T ±i (x(v)) = T ±i (x)(T
±
i (v)) for all i ∈ I ,

v ∈ V , x ∈ Uq(g).
Lemma 4.9 We have T ±w (Iλ(V )) = Iλ(V ) and T ±w (V (β)) = V (wβ) for any w ∈
W , V ∈ O intq (V ), λ ∈ P+ and β ∈ P .

4.2 σ via Modified Lusztig Symmetries

Let g be finite dimensional reductive and define

σ±(v) = (−1)ρ
∨(λ∓β)q

1
2 ((β,β)−(λ,λ))−(λ,ρ)T ±w◦(v), v ∈ V (β) ∩ Iλ(V ). (4.4)

The main ingredient in our proof of Theorem 1.5 is the following result which
generalizes [31, Proposition 5.5] to all reductive algebras including those whose
semisimple part is not necessarily simply laced.

Theorem 4.10 Let V ∈ O intq (g). Then

(a) σ+ = σ− and is an involution which thus will be denoted by σ ;
(b) σ(x(v)) = θ(x)(σ (v)) for any x ∈ Uq(g), v ∈ V ;
(c) σ commutes with morphisms in O intq (g).

Remark 4.11 For g = sln the involution σ coincides with the famous Schützen-
berger involution on Young tableaux which was established for the first time in [8].
Thus, we can regard σ as the generalized Schützenberger involution.

Proof We need the following properties of σ±.

Lemma 4.12 For any V ∈ O intq (g) we have

(i) σ±(Fw,λ(vλ)) = Fw◦w,λ(vλ) for any vλ ∈ Iλ(V )(λ), λ ∈ P+;
(ii) σ±(x(v)) = θ(x)(σ±(v)) for any x ∈ Uq(g), v ∈ V ;

(iii) σ+ = σ− and (σ±)2 = idV .

Proof Let vλ ∈ Iλ(V )(λ), λ ∈ P+. Since ρ + w◦ρ = 0, ρ∨(w◦μ) = −ρ∨(μ) for
any μ ∈ P and �(w◦u) = �(w◦) − �(u) for any u ∈ W , Proposition 4.3(c) with
w = w◦ and w′ = u yields

T ±w◦(Fu,λ(vλ)) = (−1)ρ
∨(±uλ−λ)q(λ,ρ)Fw◦u,λ(vλ),

Since Fu,λ(vλ) ∈ V (uλ), (4.4) yields

σ±(Fu,λ(vλ)) = (−1)ρ
∨(λ∓uλ)q−(λ,ρ)T ±w◦(Fu,λ(vλ)) = Fw◦u,λ(vλ).

This proves part (i). To prove part (ii), let v ∈ V (β). Then Ei(v) ∈ V (β + αi), and
we obtain, by (4.4) and Lemmata 4.6, 4.7
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σ±(Ei(v)) = (−1)ρ
∨(λ∓(β+αi))q

1
2 ((β+αi ,β+αi)−(λ,λ))−(λ,ρ)T ±w◦(Ei(v))

= −(−1)ρ
∨(λ∓β)q(β,αi )+

1
2 ((αi ,αi )+(β,β)−(λ,λ))−(λ,ρ)T ±w◦(Ei)(T

±
w◦(v))

= (−1)ρ
∨(λ∓β)q(β,αi )+

1
2 ((β,β)−(λ,λ))−(λ,ρ)FiKi(T ±w◦(v))

= θ(Ei)(q(β,αi+w◦αi )σ±(v)) = θ(Ei)σ±(v).

The identity σ±(Fi(v)) = θ(Fi)(σ
±(v)) is proved similarly. Finally, for any μ ∈

1
2P we have σ±(Kμ(v)) = q(β,μ)σ±(v) = q(w◦β,w◦μ)σ±(v) = θ(Kμ)(σ±(v)).

Let ε, ε′ ∈ {+,−}. It follows from part (ii) that

σ ε ◦ σ ε′(x(v)) = σ ε(θ(x)(v)) = θ2(x)(v) = x(v)

for any x ∈ Uq(g) and v ∈ V since θ is an involution. Thus, σε ◦ σ ε′ is an
endomorphism of V as a Uq(g)-module. By part (i) we have

σ ε ◦ σ ε′(Fw,λ(vλ)) = σ ε(Fw◦w,λ(vλ)) = Fw,λ(vλ)

for any w ∈ W , λ ∈ P+ and vλ ∈ Iλ(V )(λ). In particular, σε ◦ σ ε′(vλ) = vλ
and so σ ε ◦σ ε′ is the identity map on the (simple) Uq(g)-submodule of V generated
by vλ. Since V is generated by

⊕
λ∈P+ Iλ(V )(λ) as aUq(g)-module, σε◦σ ε′ = idV .

This proves part (iii). ��
Parts (a) and (b) of Theorem 4.10 were established in Lemma 4.12. To prove

part (b), note the following obvious fact.

Lemma 4.13 Let ξ• = {ξV ∈ EndUq(g) V : V ∈ O intq (g)} and suppose that ξ•
commute with morphisms in O intq (g), that is ξV ′ ◦ f = f ◦ ξV for any morphism

f : V → V ′ in O intq (g). Let χ : P+ × P → k and define ξχ• by ξχV (v) =∑
β∈supp v χ(λ, β)ξV (v(β)), v ∈ Iλ(V ), V ∈ O intq (g). Then ξχ• also commutes with

morphisms in O intq (g).

It is immediate from the definition (4.4) of σ that σ• = (T ±• )χ± where

χ±(λ, β) = (−1)ρ
∨(λ∓β)q

1
2 ((β,β)−(λ,λ))−(λ,ρ), (λ, β) ∈ P+ × P.

Then part (c) follows from Lemma 4.13. ��

4.3 Parabolic Involutions and the Proof of Theorem 1.5

In view of Theorem 4.10, given V ∈ O intq (g) and J ∈ J , let σJ : V → V be
defined by (4.4) with Uq(g) replaced by Uq(gJ ). Thus,
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σJ (v) = (−1)ρ
∨
J (λJ∓β)q−

1
2 ((λJ ,λJ )−(β,β))−(λJ ,ρJ )T ±

wJ◦
(v), (4.5)

for any λJ ∈ P+J , β ∈ P and v ∈ IJλJ (V )(β). Note that IJλJ (V )(β) = 0 unless

λJ − β ∈∑j∈J Z≥0αj . We need the following properties of σJ .

Proposition 4.14 Let V ∈ O intq (g). Then

(a) σJ (Fw,λJ (v)) = FwJ◦w,λ(v) for any v ∈ IJλJ (V )(λJ ), λJ ∈ P+. In particular,

σJ (v) = vJ := FwJ◦ ,λ(v).
(b) σJ is an involution;
(c) σJ commutes with morphisms in O intq (g

J ) and satisfies σJ (x(v)) =
θJ (x)(σ

J (v)), x ∈ Uq(gJ ), v ∈ V ;
(d) σJ (V (β)) = V (wJ◦ β), β ∈ P ;
(e) for any λJ ∈ P+J , β ∈ P and v ∈ IJλJ (V )(β) we have

σJ (v) = (−1)ρ
∨
J (−λJ∓β)q

1
2 ((λJ ,λJ )−(β,β))+(λJ ,ρJ )(T ±

wJ◦
)−1(v).

Proof Replacing g by gJ we obtain part (a) from Lemma 4.12(i) and parts (b), (c)
from Theorem 4.10. Part (d) is immediate from (4.5) and Lemma 4.9. To prove
part (e), let v′ = σJ (v). Then v = σJ (v′) and v′ ∈ IJλJ (V )(β

′) where β ′ = wJ◦ β.

Applying (T ±w◦)
−1 to (4.5) with v replaced by v′ we obtain

(T ±w◦)
−1(σ J (v′)) = (−1)ρ

∨
J (λJ∓β ′)q−

1
2 ((λJ ,λJ )−(β ′,β ′))−(λJ ,ρJ )v′.

Since ρ∨J (β ′) = ρ∨J (wJ◦ β) = −ρ∨J (β) and (·, ·) isW -invariant, it follows that

(T ±w◦)
−1(v) = (−1)ρ

∨
J (λJ±β)q−

1
2 ((λJ ,λJ )−(β,β))−(λJ ,ρJ )σ J (v).

The assertion is now immediate. ��
We need the following results.

Proposition 4.15 For any J ⊂ J ′ ∈J , σJ
′ ◦ σJ = σJ ◦ σJ ′ where  : J ′ → J ′

is the unique involution satisfying αj = −wJ ′◦ αj , j ∈ J ′.
Proof We may assume, without loss of generality, that J ′ = I (and so g is reductive
finite dimensional). Let wJ = w◦wJ◦ . Note that w◦ = wJw

J◦ = wJ


◦ wJ and
�(w◦) = �(wJ )+ �(wJ◦ ) = �(wJ )+ �(wJ◦ ). Then by Lemma 4.2

T ±wJ = T ±w◦ ◦ (T ±wJ◦ )
−1 = (T ±

wJ

◦
)−1 ◦ T ±w◦ . (4.6)

Let v ∈ V (β) ∩ Iλ(V ) ∩ IJλJ (V ), λ ∈ P+, λJ ∈ P+J , β ∈ P . Using
Lemma 4.14(e), (4.4), Lemma 4.9 and (4.6) we obtain
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σ ◦ σJ (v) = (−1)ρ
∨
J (−λJ∓β)q

1
2 ((λJ ,λJ )−(β,β))+(λJ ,ρJ )σ ((T ±

wJ◦
)−1(v))

= (−1)ρ
∨(λ∓wJ◦ β)+ρ∨J (−λJ∓β)q

1
2 ((λJ ,λJ )−(λ,λ))+(λJ ,ρJ )−(λ,ρ)T ±w◦(T

±
wJ◦
)−1(v)

= (−1)ρ
∨(λ∓wJ◦ β)+ρ∨J (−λJ∓β)q

1
2 ((λJ ,λJ )−(λ,λ))+(λJ ,ρJ )−(λ,ρ)T ±wJ (v).

Similarly,

σJ
 ◦ σ(v) = (−1)ρ

∨(λ∓β)q−
1
2 ((λ,λ)−(β,β))−(λ,ρ)σ J (T ±w◦(v))

= (−1)ρ
∨(λ∓β)+ρ∨

J
(w◦λJ∓w◦β)q

1
2 ((λJ ,λJ )−(λ,λ))−(w◦λJ ,ρJ )−(λ,ρ)(T ±

wJ

◦
)−1(T ±w◦(v))

= (−1)ρ
∨(λ∓β)+ρ∨J (−λJ±β)q

1
2 ((λJ ,λJ )−(λ,λ))+(λJ ,ρJ )−(λ,ρ)T ±wJ (v)

since ρ∨J (w◦μ) = −ρ∨J (μ), μ ∈ P andw◦ρJ = −ρJ . Since−ρ∨J (β) = ρ∨J (wJ◦ β)
and ρ∨(β −wβ) = ρ∨J (β −wβ) for any w ∈ WJ , it follows that σJ

 ◦ σ = σ ◦ σJ .
In particular, since ρ∨J (λJ − β) = ρ∨(λJ − β) we have

σ◦σJ = σJ◦σ = (−1)ρ
∨(λ±λJ )+ρ∨J (±λJ−λJ )q

1
2 ((λJ ,λJ )−(λ,λ))+(λJ ,ρJ )−(λ,ρ)T ±wJ (v),

(4.7)
that is, the right-hand side does not explicitly depend on β. ��
Proposition 4.16 Let J, J ′ ∈J be orthogonal. Then σJ�J ′ = σJ ◦ σJ ′ .
Proof As before we may assume, without loss of generality, that I = J � J ′. Then
w◦ = wJ◦wJ ′◦ = wJ ′◦ wJ◦ and hence T ±w◦ = T ±wJ◦ ◦ T

±
wJ

′
◦
= T ±

wJ
′
◦
◦ T ±

wJ◦
by Lemma 4.2.

Let λ ∈ P+, λJ ∈ P+J , λJ ′ ∈ P+J ′ , β ∈ P and v ∈ Iλ(V )∩IJ
λJ
(V )∩IJ

λJ
′ (V ). Then

γJ = λJ − β ∈∑j∈J Z≥0αj , γJ ′ = λJ ′ − β ∈∑j∈J ′ Z≥0αj ′ , and γ = λ − β =
γJ + γJ ′ . Then we can rewrite (4.5) and (4.4) as

σJ (v) = (−1)ρ
∨
J (γJ )q−

1
2 (γJ ,γJ )+(λJ ,γJ )−(λJ ,ρJ )T +

wJ◦
(v)

σ J
′
(v) = (−1)ρ

∨
J ′ (γJ ′ )q−

1
2 (γJ ′ ,γJ ′ )+(λJ ′ ,γJ ′ )−(λJ ′ ,ρJ ′ )T +

wJ
′
◦
(v)

σ (v) = (−1)ρ
∨(γ )q−

1
2 (γ,γ )+(λ,γ )−(λ,ρ)T +w◦(v).

Since wJ◦ (γJ ′) = γJ ′ we have

σJ (σJ
′
(v))

= (−1)ρ
∨
J (γJ )+ρ∨J ′ (γJ ′ )q−

1
2 ((γJ ,γJ )+(γJ ′ ,γJ ′ ))−(λJ ,ρJ )−(λJ ′ ,ρJ ′ )+(λJ ,γJ )+(λJ ′ ,γJ ′ )T +w◦(v)

= (−1)ρ
∨(γ )q−

1
2 (γ,γ )−(λ,ρ)+(λ,γ )T +w◦(v) = σ(v),
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since ρ∨(γ ) = ρ∨J (γJ ) + ρ∨J ′(γJ ′), (γ, γ ) = (γJ , γJ ) + (γJ ′ , γJ ′), (λJ , ζ ) +
(λJ ′, ζ ′) = (λJ + λJ ′, ζ + ζ ′) = (λ, ζ + ζ ′) for any ζ ∈ ∑

j∈J Qαj , ζ ′ ∈∑
j∈J ′ Qαj ′ . ��

Proof of Theorem 1.5 Parts (a) (respectively, (b), (c)) of Theorem 1.5 were estab-
lished in Lemma 4.14(b) (respectively, Proposition 4.16, Proposition 4.15). ��

4.4 Kernels of Actions of Cactus Groups

For any V ∈ O intq (g), denote �V be the subgroup of GLk(V ) generated by the σJV ,
J ∈J . We need the following basic properties of �V .

Lemma 4.17 For any injective morphism f : V ′ → V in O intq (g) the assignments

σJV 	→ σJ
V ′ , J ∈ J define a surjective homomorphism f ∗ : �V → �V ′ . In

particular, if f is an isomorphism then so is f ∗.

Proof Let V ′′ = f (V ′). By Theorem 4.10(c), we have σJV ◦ f = f ◦ σJ
V ′ for all

J ∈J and so the group�V acts on V ′′, that is, there is a canonical homomorphism
of groups ρ : �V → GLk(V

′′). Clearly, the assignments g 	→ f−1 ◦ g ◦ f , g ∈
GLk(V

′′) define an isomorphism ρf : GLk(V
′′) → GLk(V

′). Let f ∗ = ρf ◦ ρ :
�V → GLk(V

′). We claim that f ∗(�V ) = �V ′ . Indeed, f ∗(σ JV ) = σJ
V ′ for all

J ∈J . Since�V ′ is generated by the σJ
V ′ ,�V is generated by the σJV , J ∈J , and

f ∗ is a homomorphism of groups, the assertion follows. ��
Proposition 4.18 Let V ∈ O intq (g). Then �V ∼= �V where V =⊕
λ∈P+ :HomUq (g)(Vλ,V ) �=0

Vλ. In particular, for any V ∈ O intq (g) the group �V is

a quotient of �Cq (g) where Cq(g) =⊕λ∈P+ Vλ.

Proof Fix fλ ∈ HomUq(g)(Vλ, V ) \ {0} for all λ ∈ P+ with HomUq(g)(Vλ, V ) �= 0
and let f : V → V be the direct sum of these fλ. Then f is injective. Applying
Lemma 4.17 with V ′ = V we obtain a surjective group homomorphism f ∗ : �V →
�V . It remains to prove that its kernel is trivial. We apply Lemma 3.3 with R =
k[�V ] and S = {g − 1 : g ∈ �V } ⊂ R. Since �V is a subgroup of GLk(V ),
AnnS V = {0}. By our choice of V ,M = V andM ′ = f (V ) satisfy the assumptions
of Lemma 3.3 and so AnnS f (V ) = {0}. Since ker f ∗ = {g ∈ �V : g ◦ f = idV },
it follows that ker f ∗ is trivial. The second assertion is immediate from the first one
and Lemma 4.17. ��
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5 An Action of CactW on c-Crystal Bases and Proof of
Theorem 1.8

Retain the notation of Sect. 2.5 and observe that the assignment (l, k, s) 	→ (l, l −
k,−s), (l, k, s) ∈ D, defines an involution on D. The following is the main result of
this section.

Theorem 5.1 Let g be reductive. Suppose that c : D→ Q(z)× satisfies

cl,k,s = cl,l−k,−s , cl,0,−l = 1, (l, k, s) ∈ D (5.1)

in the notation of Lemma 2.12. Then for any V ∈ O intq (g)

(a) σ I (L) = L for any (c, I )-monomial lattice L in V ;
(b) If (L,B) is a c-crystal basis such that B+ = {b ∈ B : ẽc

i,1(b) = 0, i ∈ I }
is a basis of L+/qL+ where L+ = L ∩ V+, then the induced Q-linear map
σ̃ I : L/qL→ L/qL preserves B.

Proof We abbreviate σ = σ I , V I+ = V+ and Mc(v+) = Mc
I (v+) for any

homogeneous v+ ∈ V+. The key ingredient of our argument is the following

Proposition 5.2 Let g be reductive, let V ∈ O intq (g) and let c : D → Q(z)×.
Then

(a) If c satisfies the first condition in (5.1) then σ ◦ ẽc
i,s = ẽc

i,−s ◦ σ in Endk V for
any i ∈ I , s ∈ Z.

(b) If c satisfies (5.1), then
σ(Mc(v+)) = Mc(v+) for any homogeneous v+ ∈ V+.

Proof In view of Lemma 2.11 and (2.6), to prove (a) it suffices to verify the identity
for all v ∈ V of the form v = F (k)i (u), u ∈ kerEi ∩ ker(Kαi − qli ), 0 ≤ k ≤ l. We
have

σ ◦ ẽc
i,s (v) = cl,k,s(qi)σ (F

(k−s)
i (u)) = cl,k,s(qi)E

(k−s)
i (σ (u)). (5.2)

We need the following

Lemma 5.3 σ(u) ∈ kerFi ∩ ker(Kαi − q−li ).
Proof Indeed, Fi(σ (u)) = σ(Ei(u)) = 0 and Kαi (σ (u)) = σ(K−αi (u)) =
q−li σ (u) = q−li σ (u). ��
Using Lemmata 5.3 and 2.12, we obtain

ẽc
i,−s(σ (v)) = ẽc

i,−s(E
(k)
i (σ (u))) = cl,l−k,−s(qi)E

(k−s)
i (σ (u)). (5.3)

Since qi = qi , by the assumptions of Proposition 5.2 we have cl,l−k,−s(qi) =
cl,k,s(qi). Then (5.2) and (5.3) imply that ẽc

i,−s(σ (v)) = σ(ẽc
i,s (v)).
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To prove part (b), we need the following

Lemma 5.4 Suppose that cl,0,−l = 1/(l)z! for all l ∈ Z≥0 (that is, cl,0,−l = 1
in the notation of Lemma 2.12). Then for any λ ∈ P+, v+ ∈ V+(λ) and i =
(i1, . . . , im)∈ Im reduced Fi,λ(v+) = ẽc

i1,−a1(i,λ)
· · · ẽc

im,−am(i,λ)(v+) in the notation
of (3.1). In particular,

σ(v+) = ẽc
i1,−a1(i,λ) · · · ẽc

iN ,−aN (i,λ)(v+)

where i = (i1, . . . , iN ) ∈ R(w◦).
Proof We use induction on m, the case m = 0 being trivial. For i and λ ∈ P+
fixed we abbreviate ak = ak(i, λ). For the inductive step, note that Fi,λ = F (a1)

i1
Fi′,λ

where i′ = (i2, . . . , im) and so Fi,λ(v+) = F
(a1)
i1
(v′) where v′ = Fi′,λ(v+) =

ẽc
i2,−a2

· · · ẽc
im,−am(v+) by the induction hypothesis. Since v′ ∈ kerEi1 , it follows

from assumptions of the lemma and the first identity in (2.6) with i = i1, k = 0
and l = a1 = −s that F (a1)

i1
(v′) = ẽc

i1,−a1
(v′) = ẽc

i1,−a1
· · · ẽc

im,−am(v+). Since
σ(v+) = Fw◦,λ(v+) by Lemma 4.12(i) with w = 1, the second assertion follows
from the first and Lemma 3.1(a). ��

Suppose now that v ∈ Mc(v+) that is v = ẽc
j1,m1

· · · ẽc
jr ,mr

(v+) ∈ Mc(v+),
for some (j1, . . . , jr ) ∈ I r and (m1, . . . , mr) ∈ Z. Using Lemma 5.4 and
Proposition 5.2(a), we obtain

σ(v) = ẽc
j1 ,−m1

· · · ẽc
jr ,−mr (σ (v+))

= ẽc
j1 ,−m1

· · · ẽc
jr ,−mr ẽ

c
i1,−a1

· · · ẽc
iN ,−aN (v+) ∈ Mc(v+),

where i = (i1, . . . , iN ) ∈ R(w◦) and ak = ak(i, λ), 1 ≤ k ≤ N . Thus,
σ(Mc(v+)) ⊂ Mc(v+). Since σ is an involution, it follows that σ(Mc(v+)) =
Mc(v+). ��

Part (a) of Theorem 5.1 is immediate from Proposition 5.2(b). In particular, for
each (c, I )-monomial lattice L in V the involution σV induces an involution σ̃ on
the Q-vector space L̃ = L/qL satisfying

σ̃ ◦ ẽc
i,s = ẽc

i,−s ◦ σ̃ . (5.4)

The following is immediate from Proposition 5.2(b).

Corollary 5.5 LetL be a (c, I )-monomial lattice in V . Then σ̃ (M̃c(ṽ+)) = M̃c(ṽ+)
for any ṽ+ ∈ L+/qL+.

Using the assumptions of part (b) of Theorem 5.1 we conclude that⋃
b+∈B+ M̃c(b+) = B ∪ {0}. Then it follows from Corollary 5.5 that σ̃ preserves

B ∪ {0}. Since σ̃ is an involution, it follows that σ̃ (B) = B. This completes the
proof of Theorem 5.1(b). ��
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Note that (5.4) implies that for any upper crystal basis (L,B) of V ∈ O intq (g) the

operator σ̃ IV satisfies

σ̃ ◦ (ẽupi )s = (ẽupi )−s ◦ σ̃ IV . (5.5)

In particular, we obtain the following

Corollary 5.6 Let λ ∈ P+ and (Lλ, Bλ) be an upper crystal basis of Vλ. If f is
any non-zero map Bλ ∪ {0} → Bλ ∪ {0} satisfying (5.5), then f = σ̃ IVλ |Bλ∪{0}.
Proof of Theorem 1.8 Note that

clowl,k,s = 1, cupl,k,s =
(l − k + s)z!(k − s)z!

(l − k)z!(k)z! , (l, k, s) ∈ D. (5.6)

It is now immediate that (5.1) holds for c ∈ {cup, clow}.
Furthermore, by Lemma 2.15 and Remark 2.16, Theorem 5.1 applies to every

c-crystal basis at q = 0 for any J ∈ J with g replaced by gJ and c ∈ {cup, clow}.
Thus, σJ preserves a lower or upper crystal lattice L and σ̃ J preserves B.

In particular, �V acts on L and this action factors through to an action on L/qL
and induces an action on B by permutations. ��
Remark 5.7 Let L be an upper crystal lattice for V ∈ O intq (g). It follows from the

definition of σ iV that for any v ∈ L(β), β ∈ P we have σ iV (v) = ẽ
−β(α∨i )
i (v). In

particular, the action of σ̃ iV on an upper crystal basis (L,B) of V coincides with
Kashiwara’s crystal Weyl group action (see [26]).

We conclude this section with a discussion of the action of CactW on upper

global crystal bases. Let ·̄ be any field involution of k such that q
1

2d = q− 1
2d .

Proposition 5.8 Let (L,B) be an upper crystal basis of V ∈ O intq (g) and let
Gup(B) be the corresponding upper global crystal basis. Denote by ·̄ the (unique)
additive map V → V satisfying f · b = f · b for all f ∈ k, b ∈ Gup(B). Then
σJ (b) = σJ (b) for any J ∈J .

Proof Denote by ·̄ the ring automorphism of Uq(g) satisfying Ei = Ei , Fi = Fi ,
i ∈ I , Kλ = K−λ, λ ∈ 1

2P and f u = f · u for all f ∈ k, u ∈ Uq(g). The following
is immediate from the properties of the upper global crystal basis [25].

Lemma 5.9 The map ·̄ : V → V defined in Proposition 5.8 satisfies

u(v) = u(v), v ∈ V, u ∈ Uq(g). (5.7)

The following is immediate.

Lemma 5.10 Let η : Uq(g) → Uq(g) be any algebra automorphism commuting
with ·̄ : Uq(g)→ Uq(g) and let V ∈ O intq (g) with a fixed set V0 ⊂ V generating V
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as a Uq(g)-module. Let ·̄ : V → V be any map satisfying (5.7) and let σ ∈ Endk V
be such that:

(i) σ(u(v)) = η(u)(σ (v)), u ∈ Uq(g), v ∈ V ;
(ii) σ(v) = σ(v) for any v ∈ V0.

Then σ(v) = σ(v) for all v ∈ V .

The set V0 = Gup(B)∩V J+ generates V as a Uq(gJ )-module. Clearly, θJ commutes
with ·̄-involution on Uq(gJ ). The condition (i) of Lemma 5.10 holds with η = θJ by
Proposition 4.14(d). By Proposition 4.14(a), σJ (b) = FwJ◦ ,λ(b) for any b ∈ V0(λ),

λ ∈ P+J . Since FwJ◦ ,λ = FwJ◦ ,λ and b = b, the condition (ii) of Lemma 5.10 is also
satisfied. The assertion follows by Lemma 5.10. ��

6 σI and the Canonical Basis

6.1 Automorphisms and Skew Derivations of Localizations

Let R be a unital k-algebra. Given a monoid � written multiplicatively and acting
on R by algebra automorphisms, define the semidirect product of R with the
monoidal algebra k[�] of � as R ⊗ k[�] with the multiplication defined by

(r ⊗ γ ) · (r ′ ⊗ γ ′) = r(γ $ r ′)⊗ γ γ ′, r, r ′ ∈ R, γ, γ ′ ∈ �,

where $ denotes the action of � on R. Since (r ⊗ 1)(1 ⊗ γ ) = r ⊗ γ , we will
henceforth omit the symbol ⊗ when writing elements of R � k[�]. In other words,
R � k[�] is generated by R as a subalgebra and � subject to the relations

γ · r = (γ $ r) · γ, r ∈ R, γ ∈ �.

The following characterization of cross products is immediate.

Lemma 6.1 Let f : R→ R̂ be a homomorphism of k-algebras and let g : �→ R̂

be a homomorphism of multiplicative monoids. Suppose that R is a k[�]-module
algebra. Then assignments r · γ 	→ f (r) · g(γ ), r ∈ R, γ ∈ � define a
homomorphism of k-algebras if and only if

f (γ $ r)g(γ ) = g(γ )f (r), r ∈ R, γ ∈ �. (6.1)

Let S be a submonoid of R \ {0}. Denote Sop the opposite monoid of S and
denote its elements by [s], s ∈ S. Suppose that R is a k[Sop]-module algebra with
[s] $ r = �s(r), s ∈ S where �s is an algebra automorphism of R and assume that

�s(s) = s, s ∈ S. (6.2)
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Denote R[S−1] := (R � k[Sop])/〈s[s] − 1 : s ∈ S〉. We say that S as above is an
Ore submonoid if

rs = s�s(r), r ∈ R, s ∈ S. (6.3)

We use the convention that �λs = �s for all λ ∈ k
×. This notation is justified by

the following

Lemma 6.2 Suppose that (6.2) holds. Then the following are equivalent:

(i) the natural homomorphism 1R,S : R→ R[S−1] is injective;
(ii) S is an Ore submonoid of R, and the assignments r · [s] 	→ rs−1, r ∈ R,

s ∈ S define an isomorphism R[S−1] → R[S−1] where R[S−1] is the Ore
localization of R by S;

Proof In R � k[Sop] we have

[s] · r = �s(r) · [s], s ∈ S, r ∈ R. (6.4)

In particular, [s] · s = s · [s], s ∈ S. Multiplying both sides of (6.4) by s on the
left and on the right we conclude that rs = s�s(r) in R[S−1] for all r ∈ R, s ∈ S.
This identity clearly holds in 1R,S(R). Since 1R,S is injective, this implies that the
corresponding identity holds in R and so S satisfies the two-sided Ore condition and
so R admits the Ore localization R[S−1]. The assignments r[s] 	→ rs−1, r ∈ R,
s ∈ S define a surjective homomorphism from R[S−1] → R[S−1] which is easily
seen to be injective. Thus, (a) implies (b).

Conversely, the natural homomorphism R → R[S−1], r 	→ r · 1, r ∈ R is
injective. Since it equals the composition of 1R,S and the isomorphism R[S−1] →
R[S−1], it follows that 1R,S is injective. ��
The following Lemma is immediate.

Lemma 6.3 Let R be a k-algebra and S ⊂ R \ {0} be an Ore submonoid. Let
R′ be a k-subalgebra of R and suppose that S′ ⊂ R′ ∩ S is an Ore submonoid
of R′. Then R′[S′−1] is isomorphic to the subalgebra of R[S−1] generated by R′
and {s′−1 : s′ ∈ S′}.
Lemma 6.4 Suppose that (6.2) and the assumptions of Lemma 6.2(b) hold. Let
ϕ : R→ R′ be any k-algebra homomorphism, S be an Ore submonoid of R and S′
be an Ore submonoid of R′ such that ϕ(S) ⊂ S′. Suppose that �′ϕ(s) ◦ ϕ = ϕ ◦ �s
for all s ∈ S. Then there exists a unique homomorphism ϕ̂ : R[S−1] → R′[S′−1]
such that ϕ̂|R = ϕ.

Proof We apply Lemma 6.1 with � = Sop, R̂ = R′ � k[S′op] and g : Sop → R̂

defined by g([s]) = [ϕ(s)]. Then

[ϕ(s)]ϕ(r) = �′ϕ(s)(ϕ(r))[ϕ(s)] = ϕ(�s(r))[ϕ(s)] = ϕ([s] $ r)[ϕ(s)],
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and so (6.1) holds. Therefore, the assignments r[s] 	→ ϕ(r)[ϕ(s)], r ∈ R, s ∈ S,
define a homomorphism ̂̂ϕ : R�k[Sop] → R′�k[S′op]. Since ̂̂ϕ(s[s]) = ϕ(s)[ϕ(s)]
it follows that the image of the defining ideal of R[S−1] under ̂̂ϕ is contained in the
defining ideal of R′[S′−1]. Thus, ̂̂ϕ factors through to the desired homomorphism
ϕ̂ : R[S−1] → R′[S′−1]. ��

Let L± : R → R′ be k-algebra homomorphisms and E : R → R′ be a k-
linear map. We say that E is an (L+, L−)-derivation from R to R′ if E(rr ′) =
E(r)L+(r ′)+L−(r)E(r ′) for all r, r ′ ∈ R. Denote DerL+,L−(R,R

′) the k-subspace
of Homk(R,R

′) of (L+, L−)-derivations from R to R′. We refer to an (L,L−1)-
derivation as an L-derivation and abbreviate DerL+,L− R = DerL+,L−(R,R). The
following is immediate.

Lemma 6.5 Let R0 be a generating subset of R and let D,D′ ∈ DerL+,L−(R,R
′).

Then D|R0 = D′|R0 implies that D = D′.
Given r ′ ∈ R′, denote by D±

r ′ the linear maps R→ R′

D−
r ′ (x) = r ′L+(x)− L−(x)r ′, D+

r ′ (x) = L−(x)r ′ − r ′L+(x), x ∈ R.
(6.5)

Lemma 6.6 Let L± : R → R′ be k-algebra homomorphisms. The assignments
r ′ 	→ D+

r ′ (respectively, r ′ 	→ D−
r ′ ), r

′ ∈ R′ define k-linear maps R′ →
DerL+,L−(R,R

′).

Proof For any x, x′ ∈ R we have

D−
r ′ (xx

′) = r ′L+(xx′)− L−(xx′)r ′
= (r ′L+(x)− L−(x)r ′)L+(x′)+ L−(x)(r ′L+(x′)− L−(x′)r ′)

= D−
r ′ (x)L+(x

′)+ L−(x)D−r ′ (x′).

Thus, D−
r ′ ∈ DerL+,L−(R,R

′). The computation for D+
r ′ is similar and is omitted.

The linearity of both maps in r ′ is obvious. ��

6.2 The Gelfand–Kirillov Model for the Category O int
q (g)

Throughout this section we mostly follow the notation from [6, Section 6]. Let � be
the monoid P+ written multiplicatively, with its elements denoted by vλ, λ ∈ P+.
Let Aq(g) be an isomorphic copy of U−q (g) whose generators are denoted by xi ,
i ∈ I . We denote the degree of a homogeneous element x ∈ Aq(g) with respect to
itsQ-grading by |x| ∈ −Q+. Define an action of � on Aq(g) by vλ $ x = q(λ,|x|)x
for x ∈ Aq(g) homogeneous. Let Bq(g) = Aq(g)� k[�]. In particular, we have

vλx = q(λ,|x|)xvλ (6.6)
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for all λ ∈ P+ and for all x ∈ Aq(g) homogeneous. We extend the Q-grading
on Aq(g) to a P -grading on Bq(g) via |vλ| = λ for λ ∈ P+. Let Oq(g) be
the category of Uq(g)-modules whose objects satisfy all assumptions on objects
of O intq (g) except that we do not assume that theEi , Fi , i ∈ I , act locally nilpotently
while assuming that all weight subspaces are finite dimensional. The following
essentially coincides with [6, Lemma 6.1].

Lemma 6.7 The algebra Bq(g) is a module algebra in the category Oq(g) with
respect to the action given by the following formulae for all λ ∈ 1

2P , i ∈ I
• Kλ(y) = q(λ,|y|)y for all homogeneous elements y ∈ Bq(g) and λ ∈ 1

2P ;

• Fi(y) =
xiK 1

2αi
(y)−K− 1

2αi
(y)xi

qi − q−1
i

for all y ∈ Bq(g) and thus is a K 1
2αi

-

derivation of Bq(g);
• Ei is the uniqueK 1

2αi
-derivation of Bq(g) such that Ei(xj ) = δi,j and Ei(vμ) =

0 for all i, j ∈ I , μ ∈ P+.

Thus for all x, y ∈ Bq(g), i ∈ I we have

Xi(xy) = Xi(x)K 1
2αi
(y)+K− 1

2αi
(x)Xi(y) (6.7)

and more generally, for all n ≥ 0

X
(n)
i (xy) =

∑

r+s=n
X
(r)
i K− s

2αi
(x)X

(s)
i K r

2αi
(y) (6.8)

whereXi is eitherEi or Fi . The following is immediate from the definition of Bq(g)
and its Uq(g)-module structure.

Corollary 6.8 Bq(g) = ∑
λ∈P+ Aq(g)vλ where Aq(g)vλ is a Uq(g)-submodule

of Bq(g) for each λ ∈ P+ and the sum is direct.

In the sequel we will also use E∗i which is defined as the unique K− 1
2αi

-derivation

of Bq(g) satisfying E∗i (xj ) = δi,j , E∗i (vλ) = 0 for all λ ∈ P+, j ∈ I . It is easy to
check that E∗i (x) = (Ei(x∗))∗, x ∈ Aq(g), where ∗ : Aq(g)→ Aq(g) is the unique
anti-involution preserving the xi , i ∈ I .

In the spirit of [22], using the decomposition from Corollary 6.8 we can define a
linear map j : Bq(g)→ Aq(g) by

j(x · vλ) = q− 1
2 (λ,|x|)x (6.9)

for all λ ∈ P+ and x ∈ Aq(g) homogeneous. Clearly, j|Aq (g)vλ is a bijection
onto Aq(g).
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Lemma 6.9 For any symmetrizable Kac–Moody g we have:

(a) j is a surjective homomorphism of U+q (g)-modules, with respect to the action
defined in Lemma 6.7.

(b) j(x · y) = q
1
2 (λ,|j(y)|)− 1

2 (μ,j(|x|))j(x) · j(y) for all x ∈ Aq(g)vλ, y ∈ Aq(g)vμ
homogeneous.

Proof Part (a) is easily checked using Corollary 6.8. To prove part (b) note that

x = q 1
2 (λ,|j(x)|)j(x)vλ for all x ∈ Aq(g)vλ homogeneous and so we can write

x · y = q 1
2 (λ+μ,|j(x)|+|j(y)|)j(x · y)vλ+μ = q 1

2 (λ,|j(x)|)+ 1
2 (μ,|j(y)|)j(x)vλj(y)vμ

= q 1
2 (λ,|j(x)|)+ 1

2 (μ,|j(y)|)+(λ,|j(y)|)j(x) · j(y)vλ+μ.

The assertion is now immediate. ��
Given a Uq(g)-module M , denote by Mint the set of all m ∈ M such that
Uq(g)(m) ∈ O intq (g). The following is well-known and in fact is easy to check.

Lemma 6.10 The assignment M 	→ Mint for every Uq(g)-module M and f 	→ f

for any morphism of Uq(g)-modules defines an additive submonoidal functor from
the tensor category of Uq(g)-modules to O intq (g), that isMint⊗Nint ⊂ (M⊗N)int
for anyUq(g)-modulesM ,N . In particular, ifM is an algebra object in the category
of Uq(g)-modules, thenMint is its Uq(g)-module subalgebra and an algebra object
in the category O intq (g).

Proposition 6.11 For any λ ∈ P+ the Uq(g)-submodule of Aq(g)vλ generated
by vλ is naturally isomorphic to Vλ and coincides with (Aq(g)vλ)int .
Proof Given M ∈ Oq(g), define M∨ = ⊕

β∈P M∨(β) where M∨(β) =
Homk(M(β),k). Endow M∨ with a Uq(g)-module structure via (u · f )(m) =
f (uT (m)), u ∈ Uq(g), f ∈ M∨, m ∈ M , where u 	→ uT , u ∈ Uq(g) is the
unique anti-involution of Uq(g) such that EiT = Fi and KμT = Kμ, μ ∈ 1

2P . The
following is well-known

Lemma 6.12 For any symmetrizable Kac–Moody g, we have:

(a) The assignments M → M∨, M ∈ Oq(g) define an involutive contravariant
functor on Oq(g).

(b) For anyM ∈ Oq(g), (Mint )∨ = (M∨)int .
(c) For any V ∈ O intq (g), V

∨ is naturally isomorphic to V .

We need the following well-known fact which essentially coincides with [3,
Lemma 2.10].

Lemma 6.13 There exists a unique non-degenerate pairing �·, ·� : U−q (g) ⊗
Aq(g)→ k such that �Fi, xj � = δi,j , i, j ∈ I , �uFi, x� = �u,E∗i (x)�, �Fiu, x� =
�u,Ei(x)�, u ∈ U−q (g), x ∈ Aq(g) and �u, x� = 0 for u ∈ U−q (g), x ∈ Aq(g)
homogeneous unless deg u = |x|.
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Denote Mλ, λ ∈ P , the Verma module with highest weight λ (see, e.g., [30,
§3.4.5]). For every λ ∈ P+ we fix mλ ∈ Mλ(λ) \ {0}. Since Mλ is free as a
U−q (g)-module, every element ofMλ can be written, uniquely, as umλ for some u ∈
U−q (g). Let Mq(g) = ⊕

λ∈P+Mλ. Define 〈〈·, ·〉〉 : Mq(g) ⊗ Bq(g) → k by
〈〈u(mλ), xvμ〉〉 = δλ,μ�u, j(x)�, u ∈ U−q (g), x ∈ Aq(g), λ,μ ∈ P+. It is immediate
from the definition that 〈〈Mq(g)(β),Bq(g)(β ′)〉〉 = 0, β, β ′ ∈ P , unless β = β ′.

The following Lemma seems to be well-known. We provide a proof for reader’s
convenience.

Lemma 6.14 The pairing 〈〈·, ·〉〉 is non-degenerate and contragredient, that is

〈〈u′(m), b〉〉 = 〈〈m,u′T (b)〉〉, u′ ∈ Uq(g), m ∈Mq(g), b ∈ Bq(g). (6.10)

In particular, Aq(g)vλ, λ ∈ P+ naturally identifies withM∨
λ .

Proof The pairing 〈〈·, ·〉〉 is non-degenerate as a direct sum of non-degenerate
(in view of Lemma 6.13) pairings Mλ ⊗ Aq(g)vλ → k. To prove that it is
contragredient, it suffices to prove (6.10) for u′ ∈ {Kμ,Ei, Fi}, μ ∈ 1

2P , i ∈ I .
for all i ∈ I . Moreover, we may assume without loss of generality that m = u(mλ)
and b = xvλ with u ∈ U−q (g), x ∈ Aq(g) homogeneous. We have

〈〈Kμ(u(mλ)), xvλ〉〉 = q(μ,λ+deg u)δdegu,|x|〈〈u(mλ), xvλ〉〉
= 〈〈u(mλ),Kμ(xvλ)〉〉 = 〈〈u(mλ),KTμ (xvλ)〉〉.

Furthermore, by Lemmata 6.9(a) and 6.13 we obtain

〈〈Fi(u(mλ)), xvλ〉〉 = 〈〈(Fiu)(mλ), xvλ〉〉 = �Fiu, j(x)� = �u,Ei(j(x))�

= �u, j(Ei(x))� = 〈〈u(mλ),Ei(xvλ)〉〉 = 〈〈u(mλ), F Ti (xvλ)〉〉.

In particular, we proved (6.10) for u′ ∈ {Kμ,Fi}, μ ∈ 1
2P , i ∈ I for allm ∈Mq(g)

and b ∈ Bq(g).
It remains to prove that

〈〈Ei(m), b〉〉 = 〈〈m,Fi(b)〉〉,

for all m ∈ Mλ and for all b ∈ Aq(g)vλ homogeneous. We argue by induction
on ρ∨(λ− β) where m ∈ Mλ(β). If β = λ, then Ei(m) = 0 while Fi(b) = b′ with
|b′| = |b| − αi . Since |b| ∈ λ−Q+, |b′| �= β and so 〈〈m, b′〉〉 = 0. For the inductive
step, it suffices to assume that m = Fj (m′) where m′ is homogeneous. We have

〈〈Ei(Fj (m′)), b〉〉 = 〈〈[Ei, Fj ](m′), b〉〉 + 〈〈(FjEi)(m′), b〉〉
= 〈〈m′, [Ej , Fi](b)〉〉+ 〈〈m′, FiEj (b)〉〉 = 〈〈m′, Ej (Fi(b))〉〉 = 〈〈Fj (m′), Fi(b)〉〉,
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where we used (6.10) for u′ = Fj and u′ = [Ei, Fj ] = δi,j (qi − q−1
i )

−1(Kαi −
K−αi ) = [Ej , Fi].

The second assertion of the Lemma is immediate from the first. ��
By [30, Proposition 3.5.6],Mλ has a unique integrable quotient isomorphic to Vλ.

Applying int∨ to the surjection Mλ → Vλ we obtain, by Lemmata 6.12 and 6.14,
the desired isomorphism Vλ ∼= (M∨

λ )
int = (Aq(g)vλ)int such that vλ 	→ vλ. ��

In view of Proposition 6.11, from now on we identify Vλ, λ ∈ P+, with the
Uq(g)-submodule of Aq(g)vλ generated by vλ.

Lemma 6.15 For any λ,μ ∈ P+ we have Vλ · Vμ = Vλ+μ in Bq(g).
Proof It is immediate from the definition of Bq(g) and Corollary 6.8 that Vλ ·Vμ ⊂
Aq(g)vλ+μ. Furthermore, since Vλ ·Vμ is the image of Vλ⊗Vμ which is integrable,
by Proposition 6.11 we have Vλ · Vμ ⊂ (Aq(g)vλ+μ)int = Vλ+μ. As the latter is a
simple Uq(g)-module, Vλ · Vμ = Vλ+μ. ��

Denote Cq(g) = Bq(g)int . The following is an immediate corollary of Proposi-
tion 6.11 and Lemma 6.15.

Corollary 6.16 Cq(g) decomposes as Cq(g) = ∑
λ∈P+ Vλ as a Uq(g)-module

algebra.

Proposition 6.17 For any symmetrizable Kac–Moody g and λ ∈ P+ we have:

j(Vλ) =
⋂

i∈I
kerE∗i

λ(α∨i )+1
. (6.11)

Proof Note that Lemma 6.13 yields an isomorphism of k-vector spaces ξ :
Aq(g) → U−q (g)∨ := ⊕

γ∈Q+ Homk(U
−
q (g)(−γ ),k) defined by ξ(x)(u) =

�u, x�, x ∈ Aq(g), u ∈ U−q (g). Define φ∨λ : M∨
λ → U−q (g)∨ by φ∨λ (f )(u) =

f (u(mλ)) for all f ∈ M∨
λ , u ∈ U−q (g).

Define an action of U+q (g) on U−q (g)∨ by (u+ · f )(u−) := f (uT+u−), u± ∈
U±q (g). The following is an immediate consequence of Lemmata 6.13 and 6.14.

Lemma 6.18 For any λ ∈ P+, φ∨λ is an isomorphism of U+q (g)-modules.
Moreover, the following diagram in the category of U+q (g)-modules commutes

(6.12)

where the left vertical arrow is obtained by the identification M∨
λ
∼= Aq(g)vλ from

Proposition 6.11.
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Let Jλ, λ ∈ P+, be the kernel of the canonical projection of Mλ on Vλ. It is well-

known (see, e.g., [30, Proposition 3.5.6]) that Jλ = ∑
i∈I U−q (g)F

λ(α∨i )+1
i (mλ).

Applying ∨ to the projection Mλ → Vλ and using that Vλ ∼= V ∨λ we obtain an
embedding Vλ→ M∨

λ . Note that

φ∨λ (Vλ) = {f ∈ U−q (g)∨ : f
(∑

i∈I
U−q (g)F

λ(α∨i )+1
i

)
= {0}}.

Therefore, φ∨λ (Vλ) =
⋂
i∈I Ki where Ki = {f ∈ U−q (g)∨ : f (U−q (g)F λ(α

∨
i )+1

i ) =
0}. By Lemma 6.13, ξ−1(Ki ) = kerE∗i

λ(α∨i )+1. Using (6.12) we obtain j(Vλ) =⋂
i∈I ξ−1(Ki ) =⋂i∈I kerE∗i

λ(α∨i )+1. ��

6.3 Realization of σI via Quantum Twist

Let vwλ = Fw,λ(vλ), λ ∈ P+ where we use the notation from Sect. 3.1 (see also
Sect. 3.2). This notation agrees with that in [6, (6.3)]. We need the following

Lemma 6.19 Let g be a symmetrizable Kac–Moody algebra. Then for any w,w′ ∈
W and λ,μ ∈ P+ we have

(a) vwλ ·vwμ = vw(λ+μ). In particular, for any w ∈ W , the assignments vλ 	→ vwλ,
λ ∈ P+, define a homomorphism of monoids gw : �→ Bq(g);

(b) if �(w′w) = �(w)+ �(w′), then we have

vw′μ · vw′wλ = q(wλ−λ,μ)vw′wλ · vw′μ;

(c) if �(siw) = �(w)− 1, i ∈ I , then vwλxi = q(wλ,αi )xivwλ for all λ ∈ P+;
(d) if g is finite dimensional, then vw◦λx = q−(w◦λ,|x|)xvw◦λ for all x ∈ Aq(g)

homogeneous.

Proof To prove (a) we use induction on �(w), the induction base being trivial. For
the inductive step, suppose that �(siw) = �(w)+ 1. Then by Lemma 3.1(b) and the
induction hypothesis

vsiw(λ+μ)=Fsiw,λ+μ(vλ+μ)=F (w(λ+μ)(α
∨
i ))

i (vw(λ+μ)) = F (w(λ+μ)(α
∨
i ))

i (vwλ ·vwμ).

Using (6.8) and observing that F (r)i (vwλ)F
(s)
i (vwμ) = 0 if r > wλ(α∨i ) or s >

wμ(α∨i ) we obtain by Lemma 3.1(b)

vsiw(λ+μ) =
∑

r+t=w(λ+μ)(α∨i )
q

1
2 (rwμ−twλ,αi )F (r)i (vwλ) · F (t)i (vwμ)

= F (wλ(α∨i ))i (vwλ) · F (wμ(α
∨
i ))

i (vwμ) = vsiwλ · vsiwμ.
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Part (b) was established in [6, Lemma 6.4]. To prove part (c), note that if �(siw) =
�(w) − 1 then Fi(vwλ) = 0. Then xiK 1

2αi
(vwλ) − K− 1

2αi
(vwλ)xi = 0, whence

xivwλ = q−(αi ,wλ)vwλxi = q(wλ,|xi |)vwλxi . In particular, applying part (c) withw =
w◦ we obtain, using an obvious induction on −ρ∨(|x|),

vw◦λx = q−(w◦λ,|x|)xvw◦λ,

which yields part (d). ��
Following [6, §6.1], define generalized quantum minors �wλ ∈ Aq(g), w ∈ W ,

λ ∈ P+ by �wλ := j(vwλ). In particular,

vwλ = q 1
2 (wλ−λ,λ)�wλvλ. (6.13)

We list some properties of generalized quantum minors which will be used in the
sequel.

Lemma 6.20 Let w,w′ ∈ W , λ,μ ∈ P+. Then

(a) �wλ ·�wμ = q 1
2 (wμ−w−1μ,λ)�w(λ+μ);

(b) �wμ ·�ww′λ = q(wμ−μ,ww′λ+λ)�ww′λ ·�wμ;
(c) If g is finite-dimensional reductive, then�w◦λ ·�w◦μ = �w◦(λ+μ) and�w◦λx =

q−(w◦λ+λ,|x|)x�w◦λ for any x ∈ Aq(g) homogeneous.

Proof Parts (a) and (b) follow immediately from Lemma 6.19(a) and (b), respec-
tively, by applying Lemma 6.9(b). The first assertion of part (c) is a special case
of (a). Finally, using (6.6), (6.13) and Lemma 6.19(d) we can write

q(λ,|x|)�w◦λxvλ = �w◦λvλx = q−(w◦λ,|x|)x�w◦λvλ.

It remains to apply j and use the fact that j|Aq (g)vλ is injective. ��
Let Sw = {�wλ : λ ∈ P+}. It follows from Lemma 6.20(c) that Sw◦ is an

abelian submonoid of Aq(g) and in fact is an Ore submonoid with ��w◦λ(xi) =
q(λ,αi−αi)xi for λ ∈ P+, i ∈ I .

Define B̂q(g) := Bq(g)[S−1
w◦ ] and let Âq(g) be the subalgebra of B̂q(g) generated

by Aq(g), as a subalgebra, and the �−1
w◦λ, λ ∈ P+. Clearly, Âq(g) is isomorphic

to Aq(g)[S−1
w◦ ]. The following is the main result of Sect. 6.

Theorem 6.21 Let g be finite dimensional. Then

(a) the assignments xi 	→ q
1
2 (δi,i−1)
i Ei(�w◦ωi )�

−1
w◦ωi , vλ 	→ vw◦λ, λ ∈ P+, define

an injective algebra homomorphism σ̂ : Bq(g)→ B̂q(g)op;
(b) σ̂ (Vλ) = Vλ and σ̂ |Vλ = σ IVλ . In particular, the restriction of σ̂ to Cq(g) is an

anti-involution on Cq(g).
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Proof The first step is to construct a homomorphism of algebras σ0 : Aq(g) →
Âq(g)op.

Proposition 6.22 The assignments

xi 	→ q
− 1

2 (1−δi,i )
i Ei(�w◦ωi )�

−1
w◦ωi = q

1
2 (1−δi,i )
i �−1

w◦ωiEi(�w◦ωi ), i ∈ I,

define a homomorphism σ0 : Aq(g) → Âq(g)op such that σ0(Aq(g)(−γ )) ⊂
Âq(g)(−w◦γ ), γ ∈ Q+.

Proof Let δ be the unique involution of Aq(g) defined by δ(xi) = xi , i ∈ I . Then
κ : Aq(g) → Aq(g) defined by κ(x) = δ(x∗) = (δ(x))∗, x ∈ Aq(g) is an anti-
involution. We need the following

Lemma 6.23 For any λ ∈ P+, κ(�w◦λ) = ελ�w◦λ where ελ ∈ {±1}.
Remark 6.24 Later we will show that ελ = 1. However, for the purposes of proving
Proposition 6.22 this is irrelevant.

Proof Define

Aq(g)λ := {x ∈ Aq(g)w◦λ−λ : (E∗i )λ(α
∨
i )+1(x) = 0, ∀ i ∈ I }.

It follows from the definition and Lemma 6.9 that

Aq(g)λ = j(Vλ(w◦λ)) = k�w◦λ.

In particular, E
1−w◦λ(α∨i )
i (Aq(g)λ) = 0 for all i ∈ I . Since κ(Ei(x)) = E∗i (κ(x)),

it follows that κ(�w◦λ) ∈ Aq(g)λ and so is a multiple of �w◦λ. Since κ is an
involution, the assertion follows. ��

It follows from Lemmata 6.4 and 6.23 that κ lifts to an anti-involution κ̂ on
Âq(g). By [27, Theorem 5.4], for any c = (ci)i∈I ∈ (k×)I the assignments

xi 	→ ciE
∗
i (�w◦ωi )�

−1
w◦ωi = ciq

δi,i−1
i �−1

w◦ωiE
∗
i (�w◦ωi ), i ∈ I,

define a homomorphism of algebras ζc : Aq(g) → Âq(g)op. Let c0 =
(q

1
2 (1−δi,i )
i )i∈I and set σ0 := κ̂ ◦ ζc0 . Since κ̂ is an anti-involution, we have

σ0(xi) = q
1
2 (1−δi,i )
i (κ(�w◦ωi ))

−1κ(E∗i (�w◦ωi )) = q
1
2 (1−δi,i )
i �−1

w◦ωiEi(�w◦ωi ).

Thus, σ0 is the desired homomorphism Aq(g)→ Âq(g)op. Since |σ0(xi)| = αi =
−w◦αi , it follows that |σ0(x)| = w◦|x| for all x ∈ Aq(g) homogeneous. ��

Now we have all the necessary ingredients to prove Theorem 6.21(a). We apply
Lemma 6.1 with R = Aq(g), R̂ = B̂q(g)op, f = σ0 and g = gw◦ viewed as a
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homomorphism � → R̂ since � is abelian. Take x ∈ Aq(g) homogeneous. Then
the following holds in B̂q(g)

gw◦(vλ)σ0(vλ$x) = q(λ,|x|)vw◦λσ0(x) = q(λ,|x|)−(w◦λ,w◦|x|)σ0(x)vw◦λ = σ0(x)gw◦(vλ),

which is (6.1) in R̂. Then by Lemma 6.1, σ̂ : Bq(g)→ B̂q(g)op, vλx 	→ σ0(x)vw◦λ,
x ∈ Aq(g), λ ∈ P+, is a well-defined homomorphism of algebras. Part (a) of
Theorem 6.21 is proven.

Note that the Kλ, λ ∈ 1
2P , satisfy the assumptions of Lemma 6.4 and so can be

lifted to automorphisms K̂λ of B̂q(g). Define

F̂i(x) =
xiK̂ 1

2αi
(x)− K̂− 1

2αi
(x)xi

qi − q−1
i

, Êi(x) =
K̂− 1

2αi
(x)zi − ziK̂ 1

2αi
(x)

qi − q−1
i

,

(6.14)

where zi = σ̂ (xi ) = q
1
2 (δi,i−1)
i Ei(�w◦ωi )�

−1
w◦ωi .

Proposition 6.25 We have for all λ ∈ 1
2P , i ∈ I :

(a) K̂λ|Bq (g) = Kλ, F̂i |Bq (g) = Fi and Êi |Bq (g) = Ei;
(b) K̂λ ◦ σ̂ = σ̂ ◦Kw◦λ, F̂i ◦ σ̂ = σ̂ ◦ Ei and Êi ◦ σ̂ = σ̂ ◦ Fi .
Proof The first and the second assertions in part (a) are obvious. Furthermore, since
F̂i = D−

(qi−q−1
i )−1xi

and Êi = D+
(qi−q−1

i )−1zi
with L± = K̂± 1

2αi
in the notation

of (6.5), we immediately obtain the following

Lemma 6.26 F̂i and Êi , i ∈ I are K̂ 1
2αi

-derivations of B̂q(g).

Thus, by Lemma 6.5 the last assertion in part (a) is equivalent to

Êi(vλ) = 0, Êi(xj ) = δi,j , λ ∈ P+, i, j ∈ I.

Since |zi | = αi and zi ∈ Âq(g), we have

K− 1
2αi
(vλ)zi − ziK 1

2αi
(vλ) = q− 1

2 (αi ,λ)vλzi − q 1
2 (λ,αi )zivλ = 0.

Thus, Êi(vλ) = 0 for all λ ∈ P+. We need the following

Lemma 6.27 The following identity holds in Aq(g) for all i, j ∈ I

q
1
2 (δi,i−1)
i (q

1
2 (αi ,αj )xjEi(�w◦ωi )− q−

1
2 (αi ,αj )q

δi,j−δi,j
j Ei(�w◦ωi )xj )

= δi,j (qi − q−1
i )�w◦ωi .
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Proof This results from a straightforward computation by applying Ei to the
identity

xj�w◦ωi = q
δi,j−δi,j
j �w◦ωi xj

which is a special case of Lemma 6.20(c). ��
Since �−1

w◦ωi xj�w◦ωi = q−(w◦ωi+ωi ,αj )xj = q
δi,j−δi,j
j xj , we can write

(qi − q−1
i )Êi(xj )�w◦ωi

= q
1
2 (δi,i−1)
i (q

1
2 (αi ,αj )xjEi(�w◦ωi )− q−

1
2 (αi ,αj )q

δi,j−δi,j
j Ei(�w◦ωi )xj ).

Using Lemma 6.27 we conclude that (qi − q−1
i )Êi(xj )�w◦ωi = δi,j (qi −

q−1
i )�w◦ωi and so Êi(xj ) = δi,j . Part (a) of Proposition 6.25 is proven.

The first assertion in Proposition 6.25(b) is immediate since |̂σ(x)| = w◦|x|
for x ∈ Bq(g) homogeneous. Furthermore, by (6.14) we obtain for all x ∈ Bq(g).

σ̂ (Fi(x)) =
σ̂ (xiK̂ 1

2αi
(x))− σ̂ (K̂− 1

2αi
(x)xi)

qi − q−1
i

=
K̂− 1

2αi
(̂σ (x))zi − zi K̂ 1

2αi
(̂σ (x))

qi − q−1
i

= Êi (̂σ (x)).

It remains to prove that σ̂ (Ei(x)) = F̂i (̂σ (x)) for all x ∈ Bq(g). LetDi = σ̂ ◦Ei−
F̂i ◦ σ̂ . Since σ̂ ◦K± 1

2αi
= K̂∓ 1

2αi
◦ σ̂ it follows that Di is a K̂ 1

2αi
◦ σ̂ -derivation

from Bq(g) to B̂q(g)op. We have

Di(vλ) = σ̂ (Ei(vλ))− F̂i (vw◦λ) = 0,

By Proposition 6.25(a) we have

δi,j = Êi(xj ) = q
1
2 (αi ,αj )xj zi − q− 1

2 (αi ,αj )zixj

qi − q−1
i

= qj − q−1
j

qi − q−1
i

F̂j (zi) (6.15)

and so

Di(xj ) = σ̂ (Ej (xi))− F̂i (zj) = δi,j − δi,j = 0.

Thus Di = 0 on generators of Bq(g). Then Di = 0 by Lemma 6.5. This completes
the proof of Proposition 6.25(b). ��

To prove part (b) of Theorem 6.21, we need to show that σ̂ (Vλ) ⊂ Vλ. The
following lemma results from Proposition 6.25(a) by an obvious induction.
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Lemma 6.28 For any b ∈ Bq(g), r ≥ 1, (i1, . . . , ir ) ∈ I r , Êi1 · · · Êir (b) =
Ei1 · · ·Eir (b) ∈ Bq(g). In particular, for any v ∈ Vλ, λ ∈ P+ we have
Êi1 · · · Êir (v) ∈ Vλ.

Since Vλ is spanned by the Fi1 · · ·Fir (vλ), r ≥ 0, (i1, . . . , ir ) ∈ I r , it suffices to
show that σ̂ (Fi1 · · ·Fir (vλ)) ∈ Vλ. We have by Proposition 6.25(b)

σ̂ (Fi1 · · ·Fir (vλ)) = Êi1 · · · Êir (vw◦λ) ∈ Vλ
by Lemma 6.28 applied with v = vw◦λ.

Consider the operator σ IVλ ◦ σ̂ . Clearly, it maps vλ to itself and commutes with the
Uq(g)-action by Proposition 6.25(b). Since Vλ is a simple Uq(g)-module generated
by vλ, it follows that σ̂ |Vλ = (σ IVλ)

−1 = σ IVλ . In particular, σ̂ is an involution on
each Vλ and hence an anti-involution on Cq(λ). ��
Corollary 6.29 Let g be finite-dimensional reductive. Then σ I is an anti-involution
on the algebra Cq(g).

6.4 σI on Upper Global Crystal Basis

Denote Bup the dual canonical basis in Aq(g) and denote Bλ the upper global crystal
basis of Vλ. Let B =⊔λ∈P+ Bλ be the upper global crystal basis of Cq(g).
Theorem 6.30 For any finite dimensional reductive g we have σ̂ (B) = B. In
particular, σ IVλ(Bλ) = Bλ.

Proof We need the following

Lemma 6.31 (See e.g. [27, Proposition 2.33]) For any λ ∈ P+, j(Bλ) ⊂ Bup.

In particular, since vw◦λ ∈ Bλ, it follows that �w◦λ ∈ Bup.
Denote

B̂up = {q 1
2 (w◦λ+λ,|b|)b�−1

w◦λ : b ∈ Bup, λ ∈ P+}
= {q− 1

2 (w◦λ+λ,|b|)�−1
w◦λb : b ∈ Bup, λ ∈ P+}.

We need the following

Lemma 6.32 In the notation of Proposition 6.22, σ0(Bup) ⊂ B̂up.

Proof Note that κ(Bup) = Bup since it is a composition of two involutions
preserving Bup. In particular, κ(�w◦λ) = �w◦λ for all λ ∈ P+.

Let b ∈ Bup, λ ∈ P+. We have

κ̂(q
1
2 (w◦λ+λ,|b|)b�−1

w◦λ) = q
1
2 (w◦λ+λ,|b|)(κ(�w◦λ))−1κ(b)

= q− 1
2 (w◦λ+λ,w◦|κ(b)|�−1

w◦λκ(b) ∈ B̂up.



On Cacti and Crystals 61

By [27, Theorem 5.4] we have ζc0(B
up) ⊂ B̂up where ζc0 : Aq(g) → Âq(g) is as

in the proof of Proposition 6.22. Since σ0 = κ̂ ◦ ζc0 , the assertion follows. ��
Define

B̃ = {q 1
2 (λ,|b|)bvλ : b ∈ Bup, λ ∈ P+}.

It is immediate from the definition that j(B̃) = Bup and that B̃ is a basis in Bq(g).
Moreover, it follows from Lemma 6.31 that B ⊂ B̃ and

B = Cq(g) ∩ B̃. (6.16)

Finally, define

B̂ = {q− 1
2 (w◦λ,|b|)bvw◦λ : b ∈ B̂up, λ ∈ P+} ⊂ B̂q(g).

Proposition 6.33 B̂ = {q 1
2 (λ,|b|)bvλ : b ∈ B̂up, λ ∈ P+}. In particular, B̂ is a

basis of B̂q(g). Finally, B̃ ⊂ B̂.

Proof We need the following

Lemma 6.34 Let R be a k-algebra and let S ⊂ R \ {0} be a commutative Ore
submonoid. Let B be a basis of R and suppose that B̂ = {τs(b)s−1 : b ∈ B, s ∈ S}
is a basis of R[S−1] where τs : R→ R is some family of automorphisms satisfying
τss′ = τs ◦τs′ , τs |S = idS . Then τ̂s (B̂)s−1 = B̂ for any s ∈ S, where τ̂s is the unique
lifting of τs to R[S−1] provided by Lemma 6.4.

Proof Define fs : R[S−1] → R[S−1] by fs(x) = τ̂s (x)s−1, x ∈ R[S−1]. We claim
that

fs ◦ fs′ = fss′ , s, s′ ∈ S (6.17)

and fs is invertible with f−1
s (x) = τ̂−1

s (x)s. Indeed, for all x ∈ R[S−1] we have

fs(fs′(x)) = τ̂s (τ̂s′(x)s′−1)s−1 = τ̂ss′(x)s′−1s−1 = fss′(x).

and also fs(τ̂−1
s (x)s) = x and τ̂s−1(fs(x)) = x = fs(τ̂s−1(x)).

We have B̂ = {fs(b) : b ∈ B, s ∈ S} and the assertion of the lemma is
equivalent to fs(B̂) = B̂ for all s ∈ S. Clearly, (6.17) implies that fs(B̂) ⊂ B̂ for
all s ∈ S. To prove the opposite inclusion, let b̂ ∈ B̂. Write

f−1
s (b̂) =

∑

b̂′∈B̂
λ
b̂′ b̂
′.
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Then

b̂ =
∑

b̂′∈B̂
λ
b̂′fs(b̂

′) =
∑

b̂′′∈fs(B̂)⊂B̂
λ
f−1
s (b̂′′)b̂

′′,

where we used that fs(B̂) ⊂ B̂. Since B̂ is a basis, this implies that λ
f−1
s (b̂′′) = δb̂,b̂′′

and so b̂ ∈ fs(B̂). Therefore, B̂ ⊂ fs(B̂). ��
Apply this lemma to R = Aq(g), S = Sw◦ , B = Bup and B̂ = B̂up.

By [27, Proposition 3.9], B̂up is a basis of Âq(g).1 We have τ�w◦λ(b) =
q

1
2 (w◦λ+λ,|b|)b. Then all assumptions of Lemma 6.34 are satisfied. Indeed,

τ�w◦λτ�w◦μ(b) = q
1
2 (w◦(λ+μ)+λ+μ,|b|)b = τ�w◦(λ+μ)(b) and τ�w◦λ(�w◦μ) =

q
1
2 (w◦λ+λ,w◦μ−μ)�w◦μ = �w◦μ, λ,μ ∈ P+. Thus by Lemma 6.34 we have, for

any λ ∈ P+, B̂up = τ̂−1
�w◦λ(B̂

up)�w◦λ = {q−
1
2 (w◦λ+λ,|b|)b�w◦λ : b ∈ B̂up}.

Since vw◦λ = q
1
2 (w◦λ−λ,λ)�w◦λvλ we have

B̂ = {q− 1
2 (w◦λ,|b|)bvw◦λ : b ∈ B̂up, λ ∈ P+}

= {q 1
2 (λ,|b|)τ−1

�w◦λ(b)vw◦λ : b ∈ B̂up, λ ∈ P+}

= {q 1
2 (λ,|b|+w◦λ−λ)τ−1

�w◦λ(b)�w◦λvλ : b ∈ B̂up, λ ∈ P+}

= {q 1
2 (λ,|b′|)b′vλ : b′ ∈ B̂up, λ ∈ P+}

where we denoted b′ = τ−1
�w◦λ(b)�w◦λ and observed that |b′| = |b| +w◦λ− λ. This

proves the first assertion of Proposition 6.33. The second and third assertions are
now immediate. ��

Now we can complete the proof of Theorem 6.30. It follows from Proposi-
tion 6.33 and Lemma 6.32 that for any b ∈ Bup, λ ∈ P+ we have

σ̂ (q
1
2 (λ,|b|)bvλ) = q 1

2 (λ,|b|)vw◦λσ0(b) = q− 1
2 (w◦λ,|σ0(b)|)σ0(b)vw◦λ ∈ B̂.

Thus, σ̂ (B̃) ⊂ B̂. Since B ⊂ B̃, it follows that σ̂ (B) ⊂ B̂. Then by The-
orem 6.21(b) we conclude that σ̂ (B) ⊂ B̂ ∩ Cq(g). On the other hand, since
B̂ is linearly independent by Proposition 6.33, its intersection with Cq(g) is also
linearly independent. Since B̃ ⊂ B̂ by Proposition 6.33, it follows from (6.16) that
B = B̃∩ Cq(g) ⊂ B̂∩ Cq(g). But B is a basis of Cq(g) and so B = B̂∩ Cq(g). Thus,
σ̂ (B) ⊂ B. Since by Theorem 6.21(b) σ̂ is an involution on Cq(g), σ̂ (B) = B which

1The difference between our notation and that of [7, 27] is in the linear automorphism of Aq(g)
defined on homogeneous elements x by x 	→ q

1
2 (|x|,|x|)−(|x|,ρ)x.
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completes the proof of the first assertion of Theorem 6.30. The second assertion is
immediate from the first and Theorem 6.21(b). ��

6.5 Proof of Theorem 1.10

Proof Let V be any object in O intq (g). Let (Lup, Bup) be an upper crystal basis
of V and let G(Bup) be the corresponding upper global crystal basis (see [25]).
By [25, Theorem 3.3.1] there exists a direct sum decomposition V = ∑j V

j such

that Bj := G(Bup) ∩ V j is a basis of V j and each V j ∼= Vλj , λj ∈ P+. The
latter isomorphism identifies Bj with Bλj . Since by Theorem 4.10, σ IV is compatible
with direct sum decompositions, the restriction of σ IV to V j coincides with σ IVj
and under the above isomorphism it identifies with σ IVλj

and thus preserves Bλj by

Theorem 6.30. ��

7 Examples

7.1 Thin Modules

Let λ ∈ P+. We say that Vλ is quasi-miniscule if Vλ(β) �= 0 implies that β ∈
Wλ ∪ {0}. For example, Vωi , i ∈ I for g = sln are (quasi)-miniscule, as well as the
quantum analogue of the adjoint representation of g.

Lemma 7.1 Conjecture 1.2 holds for any quasi-miniscule V = Vλ.

Proof Let v = v(λ) ∈ Vλ(λ). Then in the notation of (3.2) we have Vλ = k ·
[v]W ⊕ Vλ(0). As shown in Proposition 3.8, the action of W(V ) on the basis [v]W
of k · [v]W is given by the Weyl group action onW/WJλ . It remains to observe that
σ i |Vλ(0) = idVλ(0), i ∈ I . ��

This result can be extended to a larger class of modules. We say that V ∈ O intq (g)
is thin if dimV (β) ≤ 1 for all β ∈ P \ {0}. By definition, every quasi-miniscule
module is thin. Furthermore, all modules Vmω1 , Vmωn , m ∈ Z≥0 are thin for g =
sln+1.

Theorem 7.2 Conjecture 1.2 holds for thin modules.

Proof Let (L,B) be an upper crystal basis of V ∈ O intq (g) and let Gup(B) ⊂ V be
the corresponding global crystal basis. We say that b ∈ Gup(B) of weight β ∈ P
is thin if either β = 0 or V (β) = kb. Denote Gup0 (B) the set of thin elements
in Gup(B). Clearly, V is thin if and only if Gup0 (B) = Gup(B). We need the
following
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Proposition 7.3 For any b ∈ Gup(B) ∩ V (β), β ∈ P with dimV (β) = 1 we have
�V (b) ⊂ Gup(B).
Proof It suffices to prove that σJ (b) ∈ Gup(B) for all J ∈J . Since σJ (V (β)) =
V (wJ◦ β) and dimV (wJ◦ β) = dimV (β) = 1, it follows that σJ (b) = cb′ for
some b′ ∈ Gup(B) ∩ V (wJ◦ β). Let b be the image of b in B under the quotient
map L 	→ L/qL. By Theorem 1.8, σ̃ J (b) = b′ and so c ∈ 1+ qA. It follows from
Proposition 5.8 that c = c and so c = 1. ��

Let g : B → Gup(B) be Kashiwara’s bijection (cf. [25]) and let B0 =
g−1(G

up

0 (B)). Then by Theorem 1.8 and Proposition 7.3 we have g(σ̃ i(b)) =
σ i(g(b)) for all b ∈ B0. Since the action of σ̃ i on B coincides with the action ofW
defined in [26], it follows from [26, Theorem 7.2.2] that W(V ) is a homomorphic
image ofW .

We may assume, without loss of generality, that V = Vλ and J (V ) = ∅. In
view of Proposition 3.8(b), the action of W(V ) on the set [vλ]W , vλ ∈ Vλ(λ) is
faithful and coincides with that of W . This implies that ψV from Theorem 1.1 is an
isomorphism. ��

7.2 Crystallizing Cactus Group Action for g = sl3

We now describe combinatorial consequences of Theorem 1.8 for g = sl3. It turns
out that the corresponding action of CactS3 lifts to the ambient set

M̂ = {(m1,m2,m12,m21,m01,m02) ∈ Z
2≥0 × Z

4 : m1m2 = 0}

where the crystal basis for Cq(sl3) identifies with M = M̂ ∩ Z
6
≥0.

We need some notation. Define wti : M̂ → Z by

wti (m) = m0i −mi +mj −mij , {i, j} = {1, 2}.

Furthermore, define eri : M̂ → M̂, i ∈ {1, 2}, r ∈ Z, by

eri (m1,m2,m12,m21,m01,m02) = (m′1,m′2,m′12,m
′
21,m

′
01,m

′
02)

where, for m = (m1,m2,m12,m21,m01,m02) ∈ M̂ we set

m′i = [mi −mj − r]+, m′j = [mj −mi + r]+, m′ji = mji, m′0j = m0j ,

m′ij = mij +min(mi − r,mj ), m′0i = m0i + r +min(mi − r,mj ), {i, j} = {1, 2},

and [x]+ := max(x, 0), x ∈ Z. The following is well-known (cf. [5, Example 6.26]).
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Lemma 7.4 The eri , i ∈ {1, 2}, r ∈ Z satisfy

er1e
s
1 = er+s1 , er2e

s
2 = er+s2 , er1e

r+s
2 es1 = es2er+s1 er2, r, s ∈ Z. (7.1)

In particular, e0
i = id and (eri )

−1 = e−ri , r ∈ Z, i ∈ {1, 2}.
Proof Define a map k̂ : M̂ → Z

5 by k̂(m1,m2,m12,m21,m01,m02) 	→
(a1, a2, a3, l1, l2) where

a1 = m1 +m21, a2 = m2 +m12 +m21, a3 = m12, li = mi +m3−i,i +m0i

with i ∈ {1, 2}. It is easy to see that k̂ is a bijection with its inverse given by

(a1, a2, a3, l1, l2) 	→ (m1,m2,m12,m21,m01,m02),

wherem1 = [a1+a3−a2]+,m2 = [a2−a1−a3]+,m12 = a3,m21 = min(a1, a2−
a3), m01 = l1 − a1, m02 = l2 − a2 +min(a1, a2 − a3).

The action of operators eri , i ∈ {1, 2}, r ∈ Z on Z
5 induced by this bijection

coincides with the action constructed in [5, Example 6.26]

er1(a1, a2, a3, l1, l2) = (a1 + [δ − r]+ − [δ]+, a2, a3 + [δ]+ −max(δ, r), l1, l2)

er2(a1, a2, a3, l1, l2) = (a1, a2 − r, a3, l1, l2).

where δ = a1 + a3 − a2. The identities from the Lemma are now easy to obtain by
using tropicalized relations for the ei given after Definition 2.20 in [5] in the context
of [5, Example 6.26]. ��

Define σ = σ {1,2} : M̂ → M̂ by

(m1,m2,m12,m21,m01,m02) 	→ (m1,m2,m02,m01,m21,m12).

Clearly, σ is an involution and σ(M) = M. Furthermore, define σ i : M̂ → M̂,
i ∈ {1, 2} by

σ i(m) = e−wti (m)
i (m), m ∈ M̂.

Proposition 7.5 The following identities hold in Bij(M̂)

σ i ◦ σ i = id, σ i ◦ eri = e−ri ◦ σ i, σ ◦ eri = e−rj ◦ σ ,
σ i ◦ σ j ◦ σ i = σ j ◦ σ i ◦ σ j , σ i ◦ σ = σ ◦ σ j ,

where {i, j} = {1, 2}. In particular, the assignments τi,i+1 	→ σ i , i ∈ {1, 2}, τ13 	→
σ define an action of CactS3 on M̂.
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Proof Since wti (eri (m)) = wti (m)+ 2r for any m ∈ M̂, we have

σ i ◦ σ i(m) = e−(wti (m)−2 wti (m))−wti (m)
i (m) = m,

while

σ i ◦ eri (m) = e−r−wti (m)
i (m) = e−ri ◦ σ i(m).

To prove the third identity, note that eri (σ (m)) = (m̃1, m̃2, m̃12, m̃21, m̃01, m̃02),
where

m̃i = [mi −mj − r]+, m̃j = [mj −mi + r]+, m̃ji = m0i , m̃0j = mij ,
m̃ij = m0j +min(mi − r,mj ), m̃0i = mji +min(mi,mj + r), {i, j} = {1, 2},

which is easily seen to coincide with σ(e−rj (m)). The braid identity follows from
the last relation in (7.1) (known as Verma relations) and the identity wtj (eri (m)) =
wtj (m)− r , {i, j} = {1, 2}. Finally,

σ ◦σ j (m) = σ ◦e−wtj (m)
j (m) = ewtj (m)

i (σ (m)) = e−wti (σ (m))
i (σ (m)) = σ i ◦σ(m),

where we used the identity wti (σ (m)) = mji −mi +mj −m0j = −wtj (m). ��
Remark 7.6 It would be interesting to define analogues of M̂ for other g and study
the action of the corresponding cactus groups on M̂. We plan to study this in a
subsequent publication via the approach of [5].

Given l1, l2 ∈ Z define

M̂l1,l2 ={(m1,m2,m12,m21,m01,m02) ∈ M̂

: m01 +m1 +m21 = l1, m02 +m2 +m12 = l2}.

Clearly, σ , σ i , eri , i ∈ {1, 2}, r ∈ Z preserve M̂l1,l2 for any l1, l2 ∈ Z. Set Ml1,l2 =
M̂l1,l2 ∩M.

In view of [5, Example 6.26], k̂(Ml1,l2), where k̂ is defined in the proof of
Lemma 7.4, identifies with the upper crystal basis Bup(Vl1ω1+l2ω2) of Vl1ω1+l2ω2 . In
particular, k̂(M) identifies with the upper crystal basis Bup(C2) =⊔λ∈P+ Bup(Vλ)
of C2 = Cq(sl3). We use this identification throughout the rest of this chapter.

Proposition 7.7 Under the above identification, the restrictions of σ , σ i , i ∈ {1, 2}
to M coincide with the action of CactS3 on Bup(C2) provided by Theorem 1.8 with
g = sl3 and V = C2.



On Cacti and Crystals 67

Proof It follows from Corollary 5.6 applied to f = σ extended to Bλ ∪ {0}, and
Proposition 7.5 that σ coincides with σ̃ {1,2}Vλ

for all λ ∈ P+. On the other hand, by

Remark 5.7 we have σ i = σ̃ {i}Vλ , i ∈ {1, 2}, λ ∈ P+. ��

7.3 Gelfand–Kirillov Model for g = sl3

Our goal here is to illustrate results and constructions from Sect. 6 for g = sl3 and
provide some evidence for Conjecture 1.2. We freely use the notation from Sects. 6
and 7.2. In this case the algebra A2 = Aq(g) is generated by the xi , i ∈ {1, 2}
subject to the relations

x2
i xj − (q + q−1)xixj xi + xjx2

i = 0, {i, j} = {1, 2}. (7.2)

Define

xij = q
1
2 xixj − q− 1

2 xjxi

q − q−1 , {i, j} = {1, 2}.

Then xixj = q
1
2 xij + q− 1

2 xji , {i, j} = {1, 2} and (7.2) is equivalent to xixij =
qxij xi or xixji = q−1xjixi , {i, j} = {1, 2}. The following is well-known1 (see
e.g. [7]).

Lemma 7.8 The dual canonical basis Bup in the algebra A2 is

Bup ={q 1
2 (m1−m2)(m21−m12)x

m1
1 x

m2
2 x

m12
12 x

m21
21

: (m1,m2,m12,m21) ∈ Z
4≥0, m1m2 = 0}.

We have Â2 = A2[S−1
w◦ ] = A2[x−1

12 , x
−1
21 ]. It follows from Lemma 7.8 that

B̂up ={q 1
2 (m1−m2)(m21−m12)x

m1
1 x

m2
2 x

m12
12 x

m21
21

: (m1,m2,m12,m21) ∈ Z
2≥0 × Z

2, m1m2 = 0}.

The following is immediate

Lemma 7.9

(a) The algebra B2 := Bq(g) is generated by A2 and k[v1, v2], where vi = vωi , as
subalgebras subject to the relations

vixj = q−δi,j xj vi, i, j ∈ {1, 2}.
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(b) B2 is a Uq(g)-module algebra with the Uq(g)-action defined in Lemma 6.7.

Abbreviate zi = Fi(vi) = vsiωi and zij = FiFj (vj ) = vsisj ωj . Clearly,

zi = q− 1
2 xivi, zij = q− 1

2 xij vj , {i, j} = {1, 2}. (7.3)

The following Lemma is an immediate consequence of Lemma 7.9

Lemma 7.10

(a) The algebra C2 = Cq(sl3) is generated by v1, v2, z1, z2, z12 and z21 subject to
the relations

v1v2 = v2v1, vizj = q−δi,j zj vi, viz12 = q−1z12vi, viz21 = q−1z21vi,

i, j ∈ {1, 2}.
zizj = qvizij + q−1zjivj , zkzij = q−δj,k zij zk, {i, j} = {1, 2}, k ∈ {1, 2}

and z12z21 = z21z12.
(b) C2 is a Uq(g)-module algebra via

Ek(vi) = 0, Ek(zi) = δk,ivi, Ek(zji) = δk,j zi,
Fk(vi) = δi,kzi, Fk(zi) = δk,j zji , Fk(zij ) = 0, {i, j} = {1, 2}, k∈{1, 2}.

(c) The P -grading on Cq(g) is given by |vi | = ωi , |zi | = siωi = ωi − αi , |zij | =
sj siωj = ωj − αi − αj , {i, j} = {1, 2}.

The following is an immediate corollary of Theorem 6.21.

Corollary 7.11 The assignments

vi 	→ zji, zi 	→ zi, zij 	→ vj , {i, j} = {1, 2}.

define an anti-involution of C2 which coincides with σ = σ {1,2}C2
.

Given m ∈ M̂, define bm ∈ C2 as

bm = q 1
2 (m1(m21−m01)+m2(m12−m02)−(m12+m21)(m01+m02))z

m1
1 z

m2
2 z

m12
12 z

m21
21 v

m01
1 v

m02
2
(7.4)

if m ∈ M and bm = 0 if m ∈ M̂ \M. Thus, |bm| = (m01+m1+m21)ω1+ (m02+
m2+m12)ω2−(m1+m12+m21)α1−(m2+m12+m21)α2 = wt1(m)ω1+wt2(m)ω2,
m ∈ M.

The following is a consequence of Lemma 7.10, (6.16) and Proposition 6.33

Lemma 7.12 The upper global crystal basis B of C2 is B = {bm : m ∈ M}.
Furthermore, for each λ = l1ω1 + l2ω2 ∈ P+ we have Bλ = {bm : m ∈ Ml1,l2}.
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Moreover, under the identification of M with the upper crystal basis of Cq(g)
(cf. Sect. 7.2), the map M → B defined by m 	→ bm, m ∈ M is Kashiwara’s
bijection G [25] between an upper crystal basis of C2 and its upper global crystal
basis.

The following is an explicit form of Theorem 6.30 for g = sl3 and is immediate
from (7.4) and Corollary 7.11.

Lemma 7.13 We have σ(bm) = bσ(m) for all m ∈ M.

Remark 7.14 It is easy to check that

|Bλ(0)| = |{m ∈ Ml1,l2 : wt1(m)

= wt2(m) = 0}| =
{

min(l1, l2)+ 1, l1 ≡ l2 (mod 3)

0, otherwise.

It follows from the definition of σ that σ is trivial on Bλ(0) if and only
if dimVλ(0) = 1 (that is, if and only if min(l1, l2) = 0 and max(l1, l2) ∈ 3Z>0).
Thus, τ1,3 /∈ Ksl3 in the notation introduced after Problem 1.7. On the other hand,
it is immediate from the definitions that the σ i , i ∈ {1, 2} act trivially on Vλ(0) for
any V ∈ O intq (g). In particular, σ is not contained in W(Vλ) if dimVλ(0) > 1.

In order to calculate σ i , i ∈ {1, 2} we need the following result.

Lemma 7.15 For any m ∈ M, r ≥ 0 and i ∈ {1, 2} we have

E
(r)
i (bm) =

(
mi +mij

r

)

q

beri (m) +
∑

1≤t≤r
C
(r)
t (mj +mij ,mi +mij )beri (m)+ta+i

F
(r)
i (bm) =

(
mj +m0i

r

)

q

be−ri (m) +
∑

1≤t≤r
C
(r)
t (mi +m0i , mj +m0i )be−ri (m)−ta+i

where a+1 = (0, 0,−1, 1,−1, 1), a+2 = −a+1 and

C
(r)
t (c, d) =

⎧
⎪⎪⎨

⎪⎪⎩

(
c

t

)

q

(
d − t
r − t

)

q

, d − c ≥ r,
(
d − c
t

)

q

(
d − t
r

)

q

, d − c < r,
(7.5)

with the convention that
(
k
l

)
q
= 0 if k < l.

Proof Both identities can be proven by induction on r using Lemma 7.10 and the
fact that the Ei , Fi act on C2 by K 1

2αi
-derivations. ��
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Denote

b(i)m = E(ri)i (b
e
−ri
i (m)

), ri = mj +m0i , i ∈ {1, 2}, m ∈ M.

The following is immediate from Lemma 7.15.

Lemma 7.16 For each i ∈ {1, 2}, B(i) = {b(i)m : m ∈ M} is a basis of C2.
Moreover, for each i ∈ {1, 2}, λ = l1ω1 + l2ω2 ∈ P+, B(i)λ := {b(i)m , : m ∈ Ml1,l2}
is a basis of Vλ. Finally,

σ i(b(i)m ) = b(i)
σ i (m), i ∈ {1, 2}, m ∈ M.

In particular, σ i(B(i)λ ) = B(i)λ .

Thus, σ i , i ∈ {1, 2} are easy to calculate in respective bases B(i). To attack
Conjecture 1.2 we need to find the matrix of both of them in a same basis. Note the
following consequence of Lemma 7.15.

Corollary 7.17 For each λ = l1ω1 + l2ω2 ∈ P+ we have

b(i)m =
∑

m′∈Ml1,l2

C
i;λ
m′,mbm′

where Ci;λ is an Ml1,l2 ×Ml1,l2 -matrix given by

C
i;λ
m′,m =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
mi +m0i +mj +mij

mi +mij
)

q

, m′ = m,

C
(mj+m0i )

t (mj +mij ,mi +m0i +mj +mij ), m′ −m = ta+i , t ∈ Z>0,

0, otherwise.

Remark 7.18 The bases B(i)λ , i ∈ {1, 2}, λ ∈ P+ are in fact Gelfand-Tsetlin bases.
The matrices Ci;λ appeared first in the classical limit (q = 1) in [17]. According
to [17, Theorem 10] their entries are closely related to Clebsch-Gordan coefficients,
and so one should expect that our matrices are related to quantum Clebsch-Gordan
coefficients. It is easy to see that σ i(Bλ) = Bλ if and only if Vλ is thin.

Theorem 7.19 For each λ = l1ω1 + l2ω2 ∈ P+ and i ∈ {1, 2} the matrix Ni;λ of
σ i with respect to the basis Bλ of Vλ is given by

Ni;λ = Ci;λP i;λ(Ci;λ)−1

where P i;λ = (P i;λm′,m)m,m′∈Ml1,l2
with

P
i;λ
m′,m = δm′,σ i (m), m,m′ ∈ Ml1,l2 .
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Conjecture 7.20 (Conjecture 1.2 for g = sl3) For each λ = l1ω1 + l2ω2 ∈ P+ we
have

(N1;λN2;λ)3 = 1.

This was verified using Mathematica R© for all l1, l2 ∈ Z≥0 such that l1 + l2 ≤ 14.
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12. V. Chari, D. Jakelić, and A. A. Moura, Branched crystals and the category O, J. Algebra 294
(2005), no. 1, 51–72, DOI 10.1016/j.jalgebra.2005.03.008.

13. M. Davis, T. Januszkiewicz, and R. Scott, Fundamental groups of blow-ups, Adv. Math. 177
(2003), no. 1, 115–179, DOI 10.1016/S0001-8708(03)00075-6.

14. S. L. Devadoss, Tessellations of moduli spaces and the mosaic operad, Homotopy invariant
algebraic structures (Baltimore, MD, 1998), Contemp. Math., vol. 239, Amer. Math. Soc.,
Providence, RI, 1999, pp. 91–114, DOI 10.1090/conm/239/03599.

15. V. G. Drinfel′ d, Quasi-hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148.



72 A. Berenstein et al.

16. R. Jiménez Rolland and J. Maya Duque, Representation stability for the pure cactus
group, Contributions of Mexican mathematicians abroad in pure and applied mathematics,
Contemp. Math., vol. 709, Amer. Math. Soc., Providence, RI, 2018, pp. 53–67, DOI
10.1090/conm/709/14291.

17. I. M. Gel′ fand and A. V. Zelevinskiı̆, Polyhedra in a space of diagrams and the canonical basis
in irreducible representations of gl3, Funktsional. Anal. i Prilozhen. 19 (1985), no. 2, 72–75.

18. J. Greenstein and P. Lamprou, Path model for quantum loop modules of fundamental type, Int.
Math. Res. Not. 14 (2004), 675–711, DOI 10.1155/S1073792804131917.

19. I. Halacheva, J. Kamnitzer, L. Rybnikov, and A. Weekes, Crystals and monodromy of Bethe
vectors, available at arXiv:1708.05105.

20. A. Henriques and J. Kamnitzer, Crystals and coboundary categories, Duke Math. J. 132
(2006), no. 2, 191–216, DOI 10.1215/S0012-7094-06-13221-0.

21. A. Joseph, A pentagonal crystal, the golden section, alcove packing and aperiodic tilings,
Transform. Groups 14 (2009), no. 3, 557–612, DOI 10.1007/s00031-009-9064-y.

22. A. Joseph and G. Letzter, Local finiteness of the adjoint action for quantized enveloping
algebras, J. Algebra 153 (1992), no. 2, 289–318, DOI 10.1016/0021-8693(92)90157-H.

23. V. G. Kac, Infinite-dimensional Lie algebras, 2nd ed., Cambridge University Press, Cambridge,
1985.

24. M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke
Math. J. 63 (1991), no. 2, 465–516, DOI 10.1215/S0012-7094-91-06321-0.

25. ——, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485,
DOI 10.1215/S0012-7094-93-06920-7.

26. ——, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2,
383–413, DOI 10.1215/S0012-7094-94-07317-1.

27. Y. Kimura and H. Oya, Twist automorphisms on quantum unipotent cells and dual canonical
bases, available at arXiv:1701.02268.

28. A. Kirillov and A. Berenstein, Groups generated by involutions, Gel′fand-Tsetlin patterns, and
combinatorics of Young tableaux, Algebra i Analiz 7 (1995), no. 1, 92–152.

29. I. Losev, Cacti and cells, available at arXiv:1506.04400.
30. G. Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser

Boston, Inc., Boston, MA, 1993.
31. ——, Canonical bases arising from quantized enveloping algebras. II, Progr. Theoret.

Phys. Suppl. 102 (1990), 175–201 (1991) DOI 10.1143/PTPS.102.175. Common trends in
mathematics and quantum field theories (Kyoto, 1990).

32. ——, Problems on canonical bases, Algebraic groups and their generalizations: quantum and
infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., vol. 56,
Amer. Math. Soc., Providence, RI, 1994, pp. 169–176.

33. L. Rybnikov, Cactus group and monodromy of Bethe vectors, available at arXiv:1409.0131.
34. A. Savage, Crystals, quiver varieties, and coboundary categories for Kac–Moody algebras,

Adv. Math. 221 (2009), no. 1, 22–53, DOI 10.1016/j.aim.2008.11.016.
35. N. White, The monodromy of real Bethe vectors for the Gaudin model, available at

arXiv:1511.04740.



Quotients for Sheets of Conjugacy
Classes

Giovanna Carnovale and Francesco Esposito

To Anthony Joseph, for 50 years of significant contributions to
representation theory.

Abstract We provide a description of the orbit space of a sheet S for the
conjugation action of a complex simple simply connected algebraic group G. This
is obtained by means of a bijection between S/G and the quotient of a shifted torus
modulo the action of a subgroup of the Weyl group and it is the group analogue of a
result due to Borho and Kraft. We also describe the normalisation of the categorical
quotient S//G for arbitrary simple G and give a necessary and sufficient condition
for S//G to be normal in analogy to results of Borho, Kraft and Richardson. The
example of G2 is worked out in detail.

MSC: 20G20, 20G07

1 Introduction

Sheets for the action of a connected algebraic group G on a variety X have their
origin in the work of Kostant [17], who studied the union of regular orbits for the
adjoint action on a semisimple Lie algebra, and in the work of Dixmier [11]. Sheets
are the irreducible components of the level sets of X consisting of points whose
orbits have the same dimension. In a sense they provide a natural way to collect
orbits in families in order to study properties of one orbit by looking at others in its
family. For the adjoint action of a complex semisimple algebraic groupG on its Lie
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algebra they were deeply and systematically studied in [2, 4]. They were described
as sets, their closure was well-understood, they were classified in terms of pairs
consisting of a Levi subalgebra and suitable nilpotent orbit therein, and they were
used to answer affirmatively to a question posed by Dixmier on the multiplicities
in the module decomposition of the ring of regular functions of an adjoint orbit in
sl(n,C). If G is classical then all sheets are smooth [15, 25]. The study of sheets in
positive characteristic has appeared more recently in [27].

In analogy to this construction, sheets of primitive ideals were introduced and
studied by Borho and Joseph in [3], in order to describe the set of primitive ideals
in a universal enveloping algebra as a countable union of maximal varieties. More
recently, Losev in [19] has introduced the notion of birational sheet in a semisimple
Lie algebra, he has shown that birational sheets form a partition of the Lie algebra
and has applied this result in order to establish a version of the orbit method for
semisimple Lie algebras. Sheets were also used in [26] in order to parametrise the set
of 1-dimensional representations of finite W -algebras, with some applications also
to the theory of primitive ideals. Closures of sheets appear as associated varieties of
affine vertex algebras, [1].

In characterisitc zero, several results on quotients S/G and S//G, for a sheet S
were addressed: Katsylo has shown in [16] that S/G has the structure of a quotient
and is isomorphic to the quotient of an affine variety by the action of a finite group
[16]; Borho has explicitly described the normalisation of S//G and Richardson,
Broer, Douglass-Röhrle in [6, 12, 28] have provided the list of the quotients S//G
that are normal.

Sheets for the conjugation action of G on itself were studied in [8] in the spirit
of [4]. If G is semisimple, they are parametrised in terms of pairs consisting of
a Levi subgroup of a parabolic subgroup and a suitable isolated conjugacy class
therein. Here isolated means that the connected centraliser of the semisimple part
of a representative is semisimple. An alternative parametrisation can be given
in terms of triples consisting of a pseudo-Levi subgroup M of G, a coset in
Z(M)/Z(M)◦ and a suitable unipotent class in M . Pseudo-Levi subgroups are, in
good characteristic, centralisers of semisimple elements and up to conjugation they
are subroot subgroups whose root system has a base in the extended Dynkin diagram
of G [23]. It is also shown in [7] that sheets in G are the irreducible components
of the parts in Lusztig’s partition introduced in [20], whose construction is given in
terms of Springer’s correspondence.

Also in the group case one wants to reach a good understanding of quotients
of sheets. An analogue of Katsylo’s theorem was obtained for sheets containing
spherical conjugacy classes and all such sheets are shown to be smooth [9]. The
proof in this case relies on specific properties of the intersection of spherical
conjugacy classes with Bruhat double cosets, which do not hold for general classes.
Therefore, a straightforward generalisation to arbitrary sheets is not immediate.
Even in absence of a Katsylo type theorem, it is of interest to understand the orbit
space S/G. In this paper we address the question forG simple providedG is simply
connected if the root system is of type C orD. We give a bijection between the orbit
space S/G and a quotient of a shifted torus of the form Z(M)◦s by the action of
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a subgroup of the Weyl group, giving a group analogue of [18, Theorem 3.6], [2,
Satz 5.6]. In most cases the subgroup does not depend on the unipotent part of the
triple corresponding to the given sheet although it may depend on the isogeny type of
G. This is one of the difficulties when passing from the Lie algebra case to the group
case. The restriction on G needed for the bijection depends on the symmetry of the
extended Dynkin diagram in this case: type C and D are the only two situations in
which two distinct subsets of the extended Dynkin diagram can be equivalent even if
they are not of typeA. We illustrate by an example in HSpin10(C) that the restriction
we put is necessary in order to have injectivity so our theorem is somehow optimal.

We also address some questions related to the categorical quotient S//G, for a
sheet in G. We obtain group analogues of the description of the normalisation of
S//G from [2] and of a necessary and sufficient condition on S//G to be normal
from [28]. Finally we apply our results to compute the quotients S/G of all sheets
in G of type G2 and verify which of the quotients S//G are normal. This example
served as a toy example for [10] (completed while the present paper was under
review) in which we list all normal quotients for G simple.

2 Basic Notions

In this paper G is a complex connected simple algebraic group with maximal torus
T , root system Φ, weight lattice Λ, set of simple roots Δ = {α1, . . . , α�}, Weyl
group W = N(T )/T and corresponding Borel subgroup B. The numbering of
simple roots is as in [5]. Root subgroups are denoted by Xα for α ∈ Φ and their
elements have the form xα(ξ) for ξ ∈ C. Let −α0 be the highest root and let
Δ̃ = Δ ∪ {α0}. The centraliser of an element h in a closed subgroup H ≤ G

will be denoted by Hh and the identity component of H will be indicated by H ◦. If
Π ⊂ Δ̃, we set

GΠ := 〈T , X±α | α ∈ Π〉.

Conjugates of such groups are called pseudo-Levi subgroups. We recall from [23,
§6] that if s ∈ T then its connected centraliser Gs◦ is conjugated to GΠ for some
Π by means of an element in N(T ). By [14, 2.2] we have Gs = 〈Gs◦, N(T )s〉.
WΠ indicates the subgroup ofW generated by the simple reflections with respect to
roots in Π and it is the Weyl group of GΠ .

We realise the groups Sp2�(C), SO2�(C) and SO2�+1(C), respectively, as the
groups of matrices of determinant 1 preserving the bilinear forms with associated

matrices:
(

0 I�−I� 0

)
,
(

0 I�
I� 0

)
and

(
1

I�
I�

)
, respectively.

If G acts on a variety X, the action of g ∈ G on x ∈ X will be indicated by
(g, x) 	→ g · x. If X = G with adjoint action, we thus have g · h = ghg−1. For
n ≥ 0 we shall denote by X(n) the union of orbits of dimension n. The nonempty
sets X(n) are locally closed and a sheet S for the action of G on X is an irreducible
component of any of these. For any Y ⊂ X we set Y reg to be the set of points of Y
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whose orbit has maximal dimension. We recall the parametrisation and description
of sheets for the action of G on itself by conjugation and provide the necessary
background material.

A Jordan class in G is an equivalence class with respect to the equivalence
relation: g, h ∈ G with Jordan decomposition g = su, h = rv are equivalent
if up to conjugation Gs◦ = Gr◦, r ∈ Z(Gs◦)◦s and Gs◦ · u = Gs◦ · v. As a
set, the Jordan class of g = su is thus J (su) = G · ((Z(Gs◦)◦s)regu) and it is
contained in some G(n). Jordan classes are parametrised by G-conjugacy classes
of triples (M,Z(M)◦s,M · u) where M is a pseudo-Levi subgroup, Z(M)◦s is a
coset in Z(M)/Z(M)◦ such that (Z(M)◦s)reg ⊂ Z(M)reg andM · u is a unipotent
conjugacy class inM . They are finitely many, locally closed, G-stable, smooth, see
[21, 3.1] and [8, §4] for further details.

Every sheet S ⊂ G contains a unique dense Jordan class, hence sheets are
parametrised by conjugacy classes of a subset of the triples above mentioned. More
precisely, a Jordan class J = J (su) is dense in a sheet if and only if it is not
contained in (J ′)reg for any Jordan class J ′ different from J . We recall from [8,
Propositions 4.6, 4.8] that, setting L = CG(Z(Gs◦)◦) we have

J (su)
reg =

⋃

z∈Z(Gs◦)◦
G · (szIndG

zs◦
Gs◦ (G

s◦ · u)) =
⋃

z∈Z(Gs◦)◦
IndGL(L · (szu)), (1)

where IndG
zs◦

Gs◦ (G
s◦ · u) is Lusztig-Spaltenstein’s induction of the class of u in the

Levi subgroup Gs◦ of a parabolic subgroup ofGzs◦, see [22] and IndGL(L · (szu)) is
its natural generalisation to arbitrary elements. So, Jordan classes that are dense in a
sheet correspond to triples where u is a rigid orbit in Gs◦, i.e., such that its class in
Gs◦ is not induced from a conjugacy class in a proper Levi subgroup of a parabolic
subgroup of Gs◦.

A sheet consists of a single conjugacy class if and only if S = J (su) = G · su
where u is rigid in Gs◦ and Gs◦ is semisimple, i.e., if and only if s is isolated
and u is rigid in Gs◦. Any sheet S in G is the image through the isogeny map
π of a sheet S′ in the simply-connected cover Gsc of G, where S′ is determined
up to multiplication by an element in Ker(π). Also, Z(Gπ(s)◦) = π(Z(Gs◦sc)) and
Z(Gπ(s)◦)◦ = π(Z(Gs◦sc)◦) = Z(Gs◦sc)◦Ker(π).

3 A Parametrisation of Orbits in a Sheet

In this section we parametrise the set S/G of conjugacy classes in a given sheet. Let
S = J (su)reg with s ∈ T and u ∈ U ∩Gs◦. Let Z = Z(Gs◦) and L = CG(Z◦). The
latter is always a Levi subgroup of a parabolic subgroup ofG, [30, Proposition 8.4.5,
Theorem 13.4.2] and if Ψs is the root system of Gs◦ with respect to T , then L has
root system Ψ := QΨs ∩Φ. Assume in addition that Ψs has base Π ⊂ Δ̃.
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Let WX denote the stabiliser of X in W for X = Z◦s, Gs◦, Z, Z◦, Π. We
recall that CG(Z(Gs◦)◦s)◦ = Gs◦. Thus, for any lift ẇ of w ∈ WZ◦s we have
ẇ · Gs◦ = Gs◦, so ẇ · Z◦ = Z◦ and therefore ẇ · L = L. Thus, any w ∈ WZ◦s

determines an automorphism of Ψs and Ψ . Let O = Gs◦ · u. We set:

WO = {w ∈ WZ◦s | ẇ · O = O}. (2)

The definition is independent of the choice of the representative of each w because
T ⊂ Gs◦.
Lemma 1 LetΨs be the root system ofGs◦ with respect to T and letΠ ⊂ Δ∪{−α0}
be a base. LetWΠ be the Weyl group of Gs◦. Then

WZ◦s = WΠ � (WΠ ∩WZ◦s) = {w ∈ WΠWΠ | w · (Z◦s) = Z◦s}.

In particular, if Gs◦ is a Levi subgroup of a parabolic subgroup of G, then

WZ◦s = WΠ �WΠ = NW(WΠ)

and it is independent of the isogeny class of G.

Proof We have the following chain of inclusions:

WZ◦s ≤ WGs◦ ≤ WZ ≤ WZ◦ .

We claim that WGs◦ = WΠ � WΠ . Indeed, WΠWΠ ≤ WGs◦ is immediate and
if w ∈ WGs◦ then wΨs = Ψs and wΠ is a basis for Ψs . Hence, there is some
σ ∈ WΠ such that σw ∈ WΠ . By construction WΠ normalises WΠ . The elements
of WGs◦ permute the connected components of Z = Z(Gs◦) and WZ◦s is precisely
the stabiliser of Z◦s in there. Since the elements of WΠ fix the elements of Z(Gs◦)
pointwise, they stabiliseZ◦s, whence the statement. The last statement follows from
the equality WΠ � WΠ = NW(WΠ) in [13, Corollary 3] and [23, Lemma 33]
because in this case Z◦s = zZ◦ for some z ∈ Z(G), soWZ◦s = WZ◦ . ��
Remark 1 If Gs◦ is not a Levi subgroup of a parabolic subgroup of G, then WZ◦s

might depend on the isogeny type of G. For instance, if Φ is of type C5 and s =
diag(−I2, x, I2,−I2, x−1, I2) ∈ Sp10(C) for x2 �= 1, 0, then:

Π = {α0, α1, α4, α5}
Z = Z(Gs◦) = {diag(εI2, y, ηI2, εI2, y

−1, ηI2), y ∈ C
∗, ε2 = η2 = 1},

Z◦s = {diag(−I2, y, I2,−I2, y−1, I2), y ∈ C
∗},

and WΠ = 〈sα1+α2+α3+α4sα2+α3〉. Since sα1+α2+α3+α4sα2+α3 · (Z◦s) = −Z◦s we
have WZ◦s = WΠ . However, if π : Sp10(C)→ PSp10(C) is the isogeny map, then
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WΠ preserves π(Z◦s) so Wπ(Z◦s) = WΠ �WΠ . Taking u = 1 gives an example
in which alsoWO depends on the isogeny type.

The following lemma shows that in most cases WO can be determined without
any knowledge of u.

Lemma 2 Let S = J (su)reg be a sheet. Then, WZ◦s = WO if and only if we are
not in the following situation:

G is either PSp2�(C), HSpin2�(C), or PSO2�(C);
[Gs◦, Gs◦] has two isomorphic simple factors G1 and G2 that are not of type A;
the components of u in G1 and G2 do not correspond to the same partition.

Proof The element u is rigid in [Gs◦,Gs◦] ≤ Gs◦ and this happens if and only if
each of its components in the corresponding simple factor of [Gs◦,Gs◦] is rigid.
Rigid unipotent elements in type A are trivial [29, Proposition 5.14], therefore
what matters are only the components of u in the simple factors of type different
from A. In addition, rigid nilpotent classes are characteristic in simple Lie algebras
[2, Lemma 3.9, Korollar 3.10], hence using Springer’s equivariant isomorphism
between the nilpotent cone and the unipotent variety we deduce that rigid unipotent
classes are characteristic in a simple algebraic group. In particular, in classical
groups rigid unipotent elements are completely determined by their partition. For
all Φ different from C and D, simple factors that are not of type A are never
isomorphic. Therefore WZ◦s = WO in all cases with a possible exception when:
Φ is of type C� or D�; [Gs◦,Gs◦] has two isomorphic factors of type different
from A; and the components of u in those two factors, that are of type Cm or Dm,
respectively, correspond to different partitions.

Let us assume that we are in this situation. Then, WZ◦s = WO if and only if
the elements of WZ◦s , acting as automorphisms of Ψs , do not interchange the two
isomorphic factors in question. We have 2 isogeny classes in type C�, 3 in type D�
for � odd, and 4 (up to isomorphism) in type D� for � even.

If Φ is of type C� and G = Sp2�(C) up to a central factor s can be chosen to be
of the form:

s = diag(Im, t,−Im, Im, t−1,−Im) (3)

where t is a diagonal matrix in GL�−2m(C) with eigenvalues different from ±1.
Then Π is the union of {α0, . . . , αm−1}, {α�, α�−1, . . . , α�−m+1} and possibly
other subsets of simple roots orthogonal to these. Then WΠ is the direct product
of terms permuting isomorphic components of type A with the subgroup generated
by σ = ∏m

j=1 sαj+···+α�−j . In this case the elements of Z◦s are of the form

diag(Im, r,−Im, Im, r−1,−Im), where r has the same shape as t and σ(Z◦s) =
−Z◦s �= Z◦s. Thus, WΠ ∩WZ◦s does not permute the two factors of type Cm and
WZ◦s = WO .

If, instead, G = PSp2�(C) and the sheet is π(S), we may take J = J (π(su))

where s is as in (3). Then, σ preserves π(Z◦s) and thereforeWπ(Z◦s) �= Wπ(O ).
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Let now Φ be of type D� and G = Spin2�(C). With notation as in [30], we may
take

s =
⎛

⎝
m∏

j=1

α∨j (εj )

⎞

⎠
(
l−m−1∏

i=m+1

α∨i (ci)
)(

m∏

b=2

α∨�−b(d2ηb)

)
α∨�−1(ηd)α�(d) (4)

with ε2 = η2 = 1, ε �= η, and d, ci ∈ C
∗ generic.

Here Π is the union of {α0, . . . , αm−1}, {α�, α�−1, . . . , α�−m+1} and possibly
other subsets of simple roots orthogonal to these. Then WΠ is the direct product
of terms permuting isomorphic components of type A and 〈σ 〉 where σ =∏m
j=1 sαj+···+α�−j+1 . The coset Z◦s = Zε,η consists of elements of the same form

as (4) with constant value of ε and η and m, and Z◦ = Z1,1 consists of the elements
of similar shape with η = ε = 1. Then σ · Zε,η = Zη,ε , hence σ �∈ WZ◦s , so WZ◦s

preserves the components of Ψs of type D andWZ◦s = WO .
If � = 2q andG = HSpin2�(C) and π : Spin2�(C)→ HSpin2�(C) is the isogeny

map we see from Table 1 that Ker(π) is generated by an element k such that kZε,η =
Z−ε,−η, so σ as above preserves π(Z◦s) whereas it does not preserve the conjugacy

class of π(u). Therefore σ ∈ Wπ(Z◦s) �= Wπ(O ).
IfG = SO2�(C) and π : Spin2�(C)→ SO2�(C) is the isogeny map, then Ker(π)

is generated by an element k such that kZε,η = Zε,η. In this case σ does not preserve

π(Z◦s), whence σ �∈ Wπ(Z◦s) = Wπ(O ).
IfG = PSO2�(C) and π : Spin2�(C)→ PSO2�(C), then by the discussion of the

previous isogeny types we see that σ(Zε,η) ⊂ Ker(π)Zε,η, so σ preserves π(Z◦s)
whence σ ∈ Wπ(Z◦s) �= Wπ(O ). ��

Table 1 Kernel of the isogeny map; Φ of type B�, C� or D�

Type Parity of � Group Kerπ

B� Any SO2�+1(C)
〈
α∨� (−1)

〉

C� Any PSp2�(C)

〈
∏

j odd

α∨j (−1)

〉
= 〈−I2�〉

D� Even PSO2�(C)

〈
∏

j odd

α∨j (−1), α∨�−1(−1)α∨� (−1)

〉

D� Odd PSO2�(C)

〈
∏

j odd≤�−2

α∨j (−1)α∨�−1(i)α
∨
� (i

3)

〉

D� Any SO2�(C)
〈
α∨�−1(−1)α∨� (−1)

〉

D� Even HSpin2�(C)

〈
∏

j odd

α∨j (−1))

〉



80 G. Carnovale and F. Esposito

Following [2, §5] and according to (1) we define the map

θ : Z◦s → S/G

zs 	→ IndGL(L · szu)

where L = CG(Z(Gs◦)◦).
Lemma 3 With the above notation, θ(zs) = θ(w · (zs)) for every w ∈ WO .

Proof Let us observe that, since z ∈ Z(L) andGs◦ ⊂ L there holds Lzs◦ = Gs◦. In
particular, Gs◦ is a Levi subgroup of a parabolic subgroup of Gzs◦. Let UP be the
unipotent radical of a parabolic subgroup P of G with Levi factor L and let ẇ be a
representative of w in NG(T ). By [8, Proposition 4.6] we have

IndGL(L · (w · zs)u) = G · ((w · zs)uUP )reg
= G · (zs(ẇ−1 · u)Uẇ−1·P )reg
= IndGL(L · (zs(ẇ−1 · u)))
= G ·

(
zs IndG

zs◦
Gs◦ (ẇ

−1 · (Gs◦ · u))
)

= G ·
(
zs IndG

zs◦
Gs◦ (G

s◦ · u)
)

= IndGL(L · (zsu))

where we have used that L = ẇ · L for every w ∈ WO ≤ WZ◦s and independence
of the choice of the parabolic subgroup with Levi factor L, [8, Proposition 4.5]. ��
Remark 2 The requirement that w lies in WO rather than in WZ◦s is necessary.
For instance, we consider G = PSp2�(C) with � = 2m + 1 and s the class
of diag(Im, λ,−Im, Im, λ−1,−Im) with λ4 �= 1 and u rigid with non-trivial
component only in the subgroup H = 〈X±αj , j = 0, . . . m − 1〉 of Gs◦. The

element σ =∏m
j=1 sαj+···+α�−j lies inWZ◦s \WO . Taking θ(s) we have

IndGL(L · su) = G · su

whereas

IndGL(L · (w · s)u) = IndGL(L · s(ẇ · u)) = G · (s(ẇ · u)),

where ẇ is any representative of w in NG(T ). These classes would coincide only if
u and ẇ · u were conjugate in Gs . They are not conjugate in Gs◦ because they lie
in different simple components. Moreover, Gs is generated by Gs◦ and the lifts of
elements in the centraliserWs of s inW [14, 2.2], which is contained inWZ◦s . Since
λ4 �= 1 we see that the elements of Ws cannot interchange the two components of
type Cm in Gs◦. Hence,

θ(s) = IndGL(L · su) �= IndGL(L · (w · s)u) = θ(w · s).
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In analogy with the Lie algebra case we formulate the following theorem. The
proof follows the lines of [2, Satz 5.6] but a more detailed analysis is necessary
because the naive generalisation of statement [2, Lemma 5.4] from Levi subalgebras
in a Levi subalgebra to Levi subgroups in a pseudo-Levi subgroup does not hold.

Theorem 1 Assume G is simple and different from PSO2�(C), HSpin2�(C) and
PSp2�(C), � ≥ 5. Let S = J (su)

reg
be a sheet with s ∈ T , Z = Z(Gs◦) and

let WZ◦s be the stabiliser of Z◦s in W . The map θ induces a bijection θ between
Z◦s/WZ◦s and S/G.

Proof Recall that under our assumptions Lemma 2 gives WZ◦s = WO . By
Lemma 3, θ induces a well-defined map θ : Z◦s/WZ◦s → S/G. It is surjective
by [8, Proposition 4.8]. We prove injectivity.

Let us assume that θ(zs) = θ(z′s) for some z, z′ ∈ Z◦. By construction, Z◦ ⊂ T .
By [8, Proposition 4.5] we have

G ·
(
zs
(

IndG
zs◦

Gs◦ (G
s◦ · u)

))
= G ·

(
z′s
(

IndG
z′s◦

Gs◦ (G
s◦ · u)

))
.

This implies that z′s = σ · (zs) for some σ ∈ W . Let σ̇ ∈ N(T ) be a representative
of σ . Then

θ(zs) = θ(z′s) = G ·
(
(σ · zs)(IndG

z′s◦
Gs◦ (G

s◦ · u))
)

= G ·
(
zs
(

Indσ̇
−1·Gz′s◦
σ̇−1·Gs◦

(
σ̇−1 · (Gs◦ · u)

)))

= G ·
(
zs
(

IndG
zs◦

σ̇−1·Gs◦
(
σ̇−1 · (Gs◦ · u)

)))
.

Since the unipotent parts of θ(zs) and θ(z′s) coincide, for some x ∈ Gzs we have

x · (IndG
zs◦

Gs◦ (G
s◦ · u)) = IndG

zs◦
σ̇−1·(Gs◦)

(
σ̇−1 · (Gs◦ · u)

)
.

The element x may be written as ẇg for some ẇ ∈ N(T )∩Gzs and some g ∈ Gzs◦
[14, §2.2]. Hence,

IndG
zs◦

Gs◦ (G
s◦ · u) = ẇ−1 ·

(
IndG

zs◦
σ̇−1·(Gs◦)

(
σ̇−1 · (Gs◦ · u)

))

= IndG
zs◦

ẇ−1σ̇−1·(Gs◦)
(
(ẇ−1σ̇−1) · (Gs◦ · u)

)
.

Let us put

M := Gzs◦ = 〈T ,Xα, α ∈ ΦM 〉, L1 := Gs◦ = 〈T ,Xα, α ∈ Ψ 〉
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with ΦM = ⋃l
j=1Φj and Ψ = ⋃m

i=1 Ψi the decompositions in irreducible root

subsystems. We recall that L1 and L2 := (ẇ−1σ̇−1) · L1 are Levi subgroups of
some parabolic subgroups of M . We claim that if L1 and L2 are conjugate in M ,
then zs and z′s are WZ◦s-conjugate. Indeed, under this assumption, since L1 and
L2 contain T , there is τ̇ ∈ NM(T ) such that L1 = τ̇ · L2 = τ̇ ẇ−1σ̇−1 · L1, so
τw−1σ−1(Z◦) = Z◦. Then, τw−1σ−1(z′s) = zs and therefore

τw−1σ−1 · (Z◦s) = τw−1σ−1 · (Z◦z′s) = Z◦zs = Z◦s.

Hence zs and z′s are WZ◦s-conjugate. We show that if ΦM has at most one
component different from type A, then L1 is always conjugate to L2 in M . We
analyse two possibilities.

Φj Is of Type A for Every j In this case the same holds for Ψi and u = 1. We recall
that in type A induction from the trivial orbit in a Levi subgroup corresponding
to a partition λ yields the unipotent class corresponding to the dual partition [29,
7.1]. Hence, equivalence of the induced orbits in each simple factorMj ofM forces
Φj∩Ψ ∼= Φj∩w−1σ−1Ψ for every j . Invoking [2, Lemma 5.5], in each component
Mi we deduce that L1 and L2 areM-conjugate.

There Is Exactly One Component inΦM Which Is Not of Type A We set it to beΦ1.
Then, there is at most one Ψj , say Ψ1, which is not of type A, and Ψ1 ⊂ Φ1. In this
case, w−1σ−1Φ1 ⊂ Ψ1. Equivalence of the induced orbits in each simple factorMj
of M forces Φj ∩ Ψ ∼= Φj ∩ w−1σ−1Ψ for every j > 1. By exclusion, the same
isomorphism holds for j = 1. Invoking once more [2, Lemma 5.5] for each simple
component, we deduce that L1 and L2 areM-conjugate.

Assume now that there are exactly two components of ΦM which are not of type
A. This situation can only occur if Φ is of type B� for � ≥ 6, C� for � ≥ 4 orD� for
� ≥ 8 (we recall that D2 = A1 × A1 and D3 = A3). By a case-by-case analysis we
directly show that σ can be taken inWZ◦s .

If G = Sp2�(C) we may assume that

s = diag(Im, t,−Ip, Im, t−1,−Ip)

with p, m ≥ 2 and t a diagonal matrix with eigenvalues different from 0 and ±1.
Then Z◦s consists of matrices of similar form but with t invertible, so zs and z′s are
zs = diag(Im, h,−Ip, Im, h−1,−Ip) and z′s = diag(Im, g,−Ip, Im, g−1,−Ip),
where h and g are invertible diagonal matrices. The elements zs and z′s are
conjugate in G if and only if diag(h, h−1) and diag(g, g−1) are conjugate in
G′ = Sp2(�−p−m)(C). This is the case if and only if they are conjugate in the
normaliser of the torus T ′ = G′ ∩ T . The natural embedding G′ → G given by
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(
A B

C D

)
	→

⎛

⎜⎜⎜⎜⎜⎝

Im

A B

Ip+m
C D

Ip

⎞

⎟⎟⎟⎟⎟⎠

gives an embedding of NG′(T ′) ≤ NG(T ) whose image lies in WZ◦s . Hence, zs
and z′s are necessarily WZ◦s-conjugate. This concludes the proof of injectivity for
G = Sp2�(C).

If G = Spin2�+1(C), then we may assume that

s =
⎛

⎝
m∏

j=1

α∨j ((−1)j )

⎞

⎠

⎛

⎝
�−p−1∏

b=m+1

α∨b (cb)

⎞

⎠

⎛

⎝
p∏

q=1

α∨�−q(c2)

⎞

⎠α∨� (c)

where m ≥ 4, p ≥ 2, c, cb ∈ C
∗ are generic. Here Z◦s consists of elements of the

form
⎛

⎝
m∏

j=1

α∨j ((−1)j )

⎞

⎠

⎛

⎝
�−p−1∏

b=m+1

α∨b (db)

⎞

⎠

⎛

⎝
p∏

q=1

α∨�−q(d2)

⎞

⎠α∨� (d)

with db, d ∈ C
∗. The reflection sα1+···+α� = sε1 maps any y ∈ Z◦s to yα∨� (−1) ∈

Z(G)Z◦s = Z◦s.
Let us consider the natural isogeny π : G→ Gad = SO2�+1(C). Then

π(s) = diag(1,−Im, t, Ip,−Im, t−1, Ip)

where t is a diagonal matrix with eigenvalues different from 0 and ±1. A similar
calculation as in the case of Sp2�(C) shows that π(zs) is conjugate to π(z′s) by an

element σ1 ∈ Wπ(Z◦s) = Wπ(O ). Then, σ1 · (zs) = kz′s, where k ∈ Z(G). If
k = 1, then we set σ = σ1 whereas if k = α∨� (−1) we set σ = sα1+···+α�σ1. Then
σ · (zs) = z′s and σ · (Z◦s) = Z(G)Z◦s = Z◦s. This concludes the proof for
Spin2�+1(C) and SO2�+1(C).

IfG = Spin2�(C), up to multiplication by a central element we may assume that

s =
⎛

⎝
�−p−1∏

j=m+1

α∨j (cj )

⎞

⎠

⎛

⎝
p∏

q=2

α∨�−q((−1)qc2)

⎞

⎠α∨�−1(−c)α∨� (c)

where m, p ≥ 4, c, cj ∈ C
∗ are generic. The elements in Z◦s are of the form
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⎛

⎝
�−p−1∏

j=m+1

α∨j (dj )

⎞

⎠

⎛

⎝
p∏

q=2

α∨�−q((−1)qd2)

⎞

⎠α∨�−1(−d)α∨� (d)

with dj , d ∈ C
∗. We argue as we did for type B�, using the isogeny π : G →

SO2�(C). The element sα�sα�−1 maps any y ∈ Z◦s to yα∨�−1(−1)α∨� (−1) ∈
Ker(π)Z◦s = Z◦s. The shifted torus π(Z◦s) consists of elements of the form

diag(Im, t,−Ip, Im, t−1,−Ip)

where t is a diagonal matrix in GL2(�−m−p)(C). Two elements

π(zs) = diag(Im, h,−Ip, Im, h−1,−Ip),
π(z′s) = diag(Im, g,−Ip, Im, g−1,−Ip)

therein are W -conjugate if and only if diag(1, h, 1, h−1) and (1, g, 1, g−1) are
conjugate by an element σ1 of the Weyl groupW ′ ofG′ = SO2(�−m−p+1)(C). More
precisely, even if h and g may have eigenvalues equal to 1, we may choose σ1 in
the subgroup ofW ′ that either fixes the first and the (�−m−p+ 2)-th eigenvalues
or interchanges them. Considering the natural embedding of G′ into SO2�(C) in
a similar fashion as we did for Sp2�(C), we show that σ1 ∈ Wπ(Z◦s). This proves
injectivity for SO2�(C). Arguing as we did for Spin2�+1(C) using sα�sα�−1 concludes
the proof of injectivity for Spin2�(C). ��

The translation isomorphism Z◦s → Z◦ determines a WZ◦s-equivariant map
where Z◦ is endowed with the action w • z = (w · zs)s−1, which is in general not
an action by automorphisms on Z◦. Hence, S/G is in bijection with the quotient
Z◦/WZ◦s of the torus Z◦ where the quotient is with respect to the • action.

Remark 3 Injectivity of θ does not necessarily hold for the adjoint groups G =
PSp2�(C), PSO2�(C) and for G = HSpin2�(C). We give an example for G =
HSpin20(C), in which WZ◦s = WO and Gs◦ is a Levi subgroup of a parabolic
subgroup of G. Let π : Spin20(C)→ G be the isogeny with kernel K as in Table 1.
Let u = 1 and let

s = α∨1 (a)α∨2 (a2)α∨3 (a3)α∨4 (b)α∨5 (c)α∨6 (d−2e2)α∨7 (e)α∨8 (d2)α∨9 (d)α∨10(−d)K

with a, b, c, d, e ∈ C
∗ sufficiently generic. Then, Gs◦ is generated by T and

the root subgroups of the subsystem with basis indexed by the black nodes in the
following extended Dynkin diagram:

•− • − ◦ − ◦ − ◦ − ◦ − •− ◦ − •
| |
◦ •
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Here Z◦s is given by elements of shape:

α∨1 (a1)α
∨
2 (a

2
1)α

∨
3 (a

3
1)α

∨
4 (b1)α

∨
5 (c1)α

∨
6 (d

−2
1 e2

1)α
∨
7 (e1)α

∨
8 (d

2
1 )α

∨
9 (d1)α

∨
10(−d1)K

with a1, b1, c1, d1, e1 ∈ C
∗. Let

zs = α∨5 (c)α∨6 (d2)α∨7 (−d2)α∨8 (d2)α∨9 (d)α∨10(−d)K ∈ Z◦sK

obtained by setting a1 = b1 = 1, c1 = c, d1 = d and e1 = −d2, and

z′s = α∨5 (−c)α∨6 (d2)α∨7 (−d2)α∨8 (d2)α∨9 (d)α∨10(−d)K ∈ Z◦sK,

obtained by setting a1 = b1 = 1, c1 = −c, d1 = d and e1 = −d2. The subgroup
M := Gzs◦ = Gz′s◦ is generated by T and the root subgroups of the subsystem with
basis indexed by the black nodes in the following extended Dynkin diagram:

•− • − • − ◦ − ◦ − ◦ − •− • − •
| |
• •

For σ = ∏4
j=1 sαj+···+α10−j we have σ · zs = z′s. We claim that zs and z′s are not

WZ◦s-conjugate. Equivalently, we show that σWzsK ∩WZ◦s = ∅, where WszK is
the stabiliser of zsK in W . Let σw be an element lying in such an intersection. We
observe that if σw ∈ WZ◦s , then σw ·Gs◦ = Gs◦ hence σw cannot interchange the
component of type 3A1 with the component of type A2 therein. Thus, it cannot
interchange the two components of type D4 in M . However, by looking at the
projection π ′ onto G/Z(G) = PSO10(C), we see that zsZ(G) is the class of the
matrix

diag(I4, c, c
−1d2,−I4, I4, d−2c, c−1,−I4)

which cannot be centralised by a Weyl group element interchanging these two
factors if c and d are sufficiently generic. A fortiori, this cannot happen for the
class zsK . Hence, zs and z′s are notWZ◦s-conjugate.

Let now M1 and M2 be the simple factors of M corresponding, respectively,
to the roots {αj , 0 ≤ j ≤ 3}, and {αk, 7 ≤ k ≤ 10}, let L1 = M1 ∩ Gs◦ and
L2 = M2 ∩Gs◦. Then,

θ(zs) = IndGL(L · zs) = G ·
(
zs(IndMGs◦(1))

)
= G · (zs(IndM1

L1
(1))(IndM2

L2
(1)))

and

θ(z′s) = IndGL(L · z′s) = G ·
(
z′s(IndMGs◦(1)

)
= G · (z′s(IndM1

L1
(1))(IndM2

L2
(1))).
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Since σ(zs) = z′s we have, for some representative σ̇ ∈ N(T ):

θ(z′s) = G ·
(
zs(Indσ̇

−1·M1
σ̇−1·L1

(1))(Indσ̇
−1·M2
σ̇−1·L2

(1)))
)

= G ·
(
zs(IndM2

σ̇−1·L1
(1))(IndM1

σ̇−1·L2
(1)))

)
.

By [24, Example 3.1] we have IndM2
σ̇−1·L1

(1) = IndM2
L1
(1) and IndM1

σ̇−1·L2
(1) =

IndM1
L1
(1) so θ(zs) = θ(z′s).

Remark 4 The parametrisation in Theorem 1 cannot be directly generalised to
arbitrary Jordan classes. Indeed, if u ∈ L is not rigid, then L · u is not necessarily
characteristic and it may happen that for some external automorphism τ of L, the
class τ(L · u) differs from L · u even if they induce the sameG-orbit. Then the map
θ is not necessarily injective.

4 The Quotient S//G

In this section we discuss some properties of the categorical quotient S//G =
Spec(C[S])G for G simple in any isogeny class. Since S//G parametrises only
semisimple conjugacy classes it is enough to look at the so-called Dixmier sheets,
i.e., the sheets containing a dense Jordan class consisting of semisimple elements.
In addition, since every such Jordan class is dense in some sheet, studying the
collection of S//G for S a sheet in G is the same as studying the collection of
J (s)//G for J (s) a semisimple Jordan class in G.

The following Theorem is a group version of [2, Satz 6.3], [18, Theorem 3.6(c)]
and [28, Theorem A].

Theorem 2 Let S = J (s)reg ⊂ G.

1. The normalisation of S//G is Z(Gs◦)◦s/WZ◦s .
2. The variety S//G is normal if and only if the natural map

ρ : C[T ]W → C[Z(Gs◦)◦s]WZ◦s
(5)

induced from the restriction map C[T ] → C[Z(Gs◦)◦s] is surjective.

Proof 1. The variety Z(Gs◦)◦s/WZ◦s is the quotient of a smooth variety (a shifted
torus) by the action of a finite group, hence it is normal. Every semisimple class
in J (s) meets T and T ∩ J (s) = W · (Z(Gs◦)◦s). Also, two elements in T are
G-conjugate if and only if they areW -conjugate, hence we have an isomorphism
J (s)//G ) W · (Z(Gs◦)◦s)/W induced from the isomorphism G//G ) T/W .

We consider the morphism γ : Z(Gs◦)◦s/WZ◦s → W · (Z(Gs◦)◦s)/W
induced by zs 	→ W · (zs). It is surjective by construction, bijective on the dense
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subset (Z(Gs◦)◦s)reg/WZ◦s and finite, since the intersection of W · (zs) with
Z(Gs◦)◦s is finite. Hence γ is a normalisation morphism.

2. The variety S//G is normal if and only if the normalisation morphism is an
isomorphism. This happens if and only if the composition

Z(Gs◦)◦s/WZ◦s → S//G ⊆ G//G ) T/W

is a closed embedding, i.e., if and only if the corresponding algebra map between
the rings of regular functions is surjective. ��

5 An Example: Sheets and Their Quotients in Type G2

We list here the sheets in G of type G2 and all the conjugacy classes they contain.
We shall denote by α and β, respectively, the short and the long simple roots.
Since G is adjoint, by [7, Theorem 4.1] the sheets in G are in bijection with G-
conjugacy classes of pairs (M, u) where M is a pseudo-Levi subgroup of G and u
is a rigid unipotent element in M . The corresponding sheet is J (su)

reg
where s is

a semisimple element whose connected centraliser is M . The conjugacy classes of
pseudo-Levi subgroups of G are those corresponding to the following subsets Π of
the extended Dynkin diagram:

1. Π = ∅, so M = T , u = 1, s is a regular semisimple element and S consists of
all regular conjugacy classes;

2. Π = {α}. Here [M,M] is of type Ã1, so s = α∨(ζ )β∨(ζ 2) = (3α + 2β)∨(ζ−1)

for ζ �= 0, ±1 and u = 1;
3. Π = {β}. Here [M,M] is of type A1 so s = α∨(ζ 2)β∨(ζ 3) = (2α+ β)∨(ζ ) for
ζ �= 0, 1 e2πi/3, e−2πi/3 and u = 1;

4. Π = {α0, β}. Here [M,M] is of type A2; so u = 1 and s = (2α + β)∨(e2πi/3)

is isolated, whence S = G · s;
5. Π = {α0, α}. Here [M,M] is of type Ã1×A1 so u = 1 and s = (3α+2β)∨(−1)

is isolated, whence S = G · s;
6. Π = {α, β} so L = G. In this case we have three possible choices for u rigid

unipotent, namely 1, xα(1) or xβ(1) (cfr. [29]). Each of these classes is a sheet
on its own.

The only sheets containing more than one conjugacy classes are the regular one
S0 = Greg corresponding to Π = ∅ and the two subregular ones, corresponding
to Π1 = {α} and Π2 = {β}. For S0 we have Z◦s = T , WZ◦s = W so S0/G is in
bijection with T/W and S0//G ) G//G which is normal. For S1 and S2 we have:
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S1 = J ((3α + 2β)∨(ζ0))
reg

=
⎡

⎣
⋃

ζ 2 �=0,1

G · (3α + 2β)∨(ζ )

⎤

⎦ ∪ IndG
Ã1
(1) ∪G ·

(
(3α + 2β)∨(−1)IndA1×Ã1

Ã1
(1)
)

=
⎡

⎣
⋃

ζ 2 �=0,1

G · (3α + 2β)∨(ζ )

⎤

⎦ ∪G · (xβ(1)xα0(1)) ∪G · ((3α + 2β)∨(−1)xα0(1)
)

for some ζ0 �= 0,±1 and

S2 = J ((2α + β)∨(ξ0))reg

=
⎡

⎣
⋃

ξ3 �=0,1

G · (2α + β)∨(ξ)
⎤

⎦ ∪ IndGA1
(1) ∪G ·

(
(2α + β)∨(e2πi/3)IndA2

A1
(1)
)

=
⎡

⎣
⋃

ξ3 �=0,1

G · (2α + β)∨(ξ)
⎤

⎦ ∪G · (xβ(1)xα0(1)) ∪G ·
(
(2α + β)∨(e2πi/3)xα0(1)

)

for some ξ0 �= 0, 1, e±2πi/3.
In both casesM is a Levi subgroup of a parabolic subgroup ofG. By Lemmata 1

and 2 we haveWZ◦s = WO = 〈sα, s3α+2β〉 for S1 andWZ◦s = WO = 〈sβ, s2α+β〉
for S2. Also Z(M)◦ = Z(M)◦s in both cases because we are in an adjoint group
andM is a Levi subgroup [23, Lemma 33], so

S1/G ) (3α + 2β)∨(C×)/〈sα, s3α+2β〉 ) (3α + 2β)∨(C×)/〈s3α+2β〉
S2/G ) (2α + β)∨(C×)/〈sβ, s2α+β〉 ) (2α + β)∨(C×)/〈s2α+β〉,

where the ) symbols stand for the bijection θ .
Let us analyse normality of S1//G. Here, Z(M)◦ = (3α + 2β)∨(C∗) ) C

∗, so

C[Z(M)◦]WZ◦s = C[ζ + ζ−1]. Since G is simply connected, C[T ]W = (CΛ)W is
the polynomial algebra generated by f1 = ∑γ∈Φ,short e

γ and f2 = ∑γ∈Φ,long e
γ ,

[5, Ch.VI, §4, Théorème 1] Then,

ρ(f1)(3α+2β)∨(ζ ) = f1((3α+2β)∨(ζ )) =
∑

γ∈Φ,short

ζ (γ,(3α+2β)∨) = 2+2ζ+2ζ−1

so the restriction map is surjective and S1//G is normal.
Let us consider normality of S2//G. Here, Z(M)◦ = (2α + β)∨(C∗) ) C

∗, so
C[Z]Γ = C[ζ + ζ−1]. Then,

ρ(f1)(2α + β)∨(ζ ) = f1((2α + β)∨(ζ ))
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=
∑

γ∈Φ,short

ζ (γ,(2α+β)∨) = ζ 2 + ζ−2 + 2(ζ + ζ−1)

whereas

ρ(f2)(2α + β)∨(ζ )=f2((2α+β)∨(ζ ))=
∑

γ∈Φ,long

ζ (γ,(2α+β)∨) = 2+ 2ζ 3 + 2ζ−3.

Let us write y = ζ + ζ−1. Then, (ζ 2 + ζ−2) = y2 − 2 and ζ 3 + ζ−3 = y3 − 3y so

Im(ρ) = C[y2 + 2y, y3 − 3y] = C[(y + 1)2, y3 + 3y2 + 6y + 3− 3y]
= C[(y + 1)2, (y + 1)3].

Hence, ρ is not surjective and S2//G is not normal.
We observe that Im(ρ) is precisely the identification of the coordinate ring of

S2//G in C[T ]W . We may thus see where this variety is not normal. We have:
Im(ρ) = C[(y + 1)2, (y + 1)3] ∼= C[Y,Z]/(Y 3 − Z2) so this variety is not normal
at y + 1 = 0, that is, for ζ + ζ−1 + 1 = 0. This corresponds precisely to the closed,
isolated orbit G · ((2α + β)∨(e2πi/3))xα0(1) = G · ((2α + β)∨(e−2πi/3))xα0(1).
This example shows two phenomena: the first is that even if the sheet corresponding
to the set Π2 in Lie(G) has a normal quotient [6, Theorem 3.1], the same does not
hold in the group counterpart. The second phenomenon is that the non-normality
locus corresponds to an isolated class in S2. In [10] we address the general problem
of normality of S//G and we prove and make use of the fact that if the categorical
quotient of the closure a sheet in G is not normal, then it is certainly not normal at
some isolated class.
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27. A. PREMET, D. STEWART, Rigid orbits and sheets in reductive Lie algebras over fields of
prime characteristic, Journal of the Institute of Mathematics of Jussieu, 1–31, (2016).

28. R. W. RICHARDSON, Normality of G-stable subvarieties of a semisimple Lie algebra, In:
Cohen et al., Algebraic Groups, Utrecht 1986, Lecture Notes in Math. 1271, Springer-Verlag,
New York, (1987).

29. N. SPALTENSTEIN, Classes Unipotentes et Sous-Groupes de Borel, Springer-Verlag, Berlin
(1982).

30. T.A. SPRINGER, Linear Algebraic Groups, Second Edition Progress in Mathematics 9,
Birkhäuser (1998).

http://edoc.unibas.ch/257/PhDthesis


About Polynomiality of the Poisson
Semicentre for Parabolic Subalgebras

Florence Fauquant-Millet

I would like to dedicate this paper to Anthony Joseph for his
75th birthday, thanks to whom I discovered the world of
quantum groups and then of (classical) enveloping algebras and
with whom I worked a long time on this interesting subject of
polynomiality of the Poisson semicentre associated to parabolic
subalgebras.

Abstract Here we explain some results about the polynomiality of the Poisson
semicentre for parabolic subalgebras in a complex simple Lie algebra in the
particular case of maximal parabolic subalgebras in a simple Lie algebra of type B.

Mathematics Subject Classification (2000): 16W22, 17B22, 17B35

1 Introduction

Let a be an algebraic complex Lie algebra and A be its adjoint group. Denote by
S(a) the symmetric algebra of a and by S(a)A = S(a)a =: Y (a) the algebra of
invariants of S(a) under the action of A or under the adjoint action of a (observe
that Y (a) is also the Poisson centre of S(a) for its natural Poisson structure).

Here we are interested in the question of polynomiality of Y (a) especially for the
particular case when a is the truncated maximal parabolic subalgebra of a simple
Lie algebra g of type Bn.
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Indeed it was not yet known whether for this case Y (a) is a polynomial algebra,
at least for roughly half of the maximal parabolic subalgebras in this type.

To show polynomiality of Y (a) in this case, we construct a so-called adapted
pair for a (which is a generalization of a principal sl2-triple for a non-reductive Lie
algebra) and which was introduced in [17]. This adapted pair allows us to construct
an affine and algebraic slice (which is the analogue of a Kostant slice).

The construction of an adapted pair for a is based on [13, Thm. 8.6] (where a
small modification is introduced). Then we need to compute an improved upper
bound using [14, Lem. 6.11] to conclude that Y (a) is polynomial.

2 The Background

We consider a parabolic subalgebra p of a complex simple Lie algebra g.
Set, for λ ∈ p∗, S(p)λ := {s ∈ S(p) | ∀x ∈ p, (ad x)(s) = λ(x) s} where

ad denotes the adjoint action of p on S(p) which extends by derivation the adjoint
action on p defined by the Lie bracket.

Then the Poisson semicentre of S(p) is Sy(p) =⊕λ∈p∗ S(p)λ,while the Poisson
centre is Y (p) = S(p)0.

We have that Sy(p) = S(p)p′ (that is, Sy(p) is the algebra of invariants in S(p)
under the adjoint action of p′) where p′ = [p, p] and Y (p) ⊂ Sy(p).

If p = g, then Y (g) = Sy(g). Otherwise by [11, Proof of Lemma 7.9], Y (p) =
C � Sy(p) by [3].

By [1] there exists a canonically defined truncation p' of p which is the largest
subalgebra of p that vanishes on each weight of Sy(p). Then Sy(p') = Y (p') =
Sy(p).

Fix a Cartan subalgebra h of g, set n = dim h = rank g and choose a set
π = {αk}1≤k≤n of simple roots. These simple roots can be expressed as linear
combinations of elements εi , 1 ≤ i ≤ m, of an orthonormal basis of Rm as in [2,
Planches I–IX].

The set of roots in g is denoted by � = �+ � �−, with �+, resp. �−, the set
of positive, resp. negative, roots. The root subspace of g corresponding to α ∈ �
is denoted by gα . For A ⊂ �, we denote by gA := ⊕

α∈A gα . For each α ∈ �,
denote by α∨ its corresponding coroot. Then we have that h = ⊕1≤k≤nCα∨k and
g = n− ⊕ h⊕ n, where n− = g�− , resp. n = g�+ .

Fix a subset π ′ � π and set �+
π ′ = �+ ∩ Nπ ′, resp. �−

π ′ = �− ∩ (−Nπ ′). Let
p = n− ⊕ h⊕ nπ ′ be a parabolic subalgebra of g where nπ ′ = g�+

π ′
.

Then the canonical truncation p' of p verifies p' = n−⊕h'⊕nπ ′ with h' ⊂ h.
One always has that h' ⊃ h′, where h′ = h ∩ [p, p] is the Cartan subalgebra of the
Levi factor g′ = n−

π ′ ⊕ h′ ⊕ nπ ′ (where n−
π ′ = g�−

π ′
) of p.

When the parabolic subalgebra p is maximal, it is easily shown that h' = h′.
By the Killing form K on g, one may identify p∗ with p− = n⊕ h⊕ n−

π ′ and p∗'
with p−' = n⊕ h' ⊕ n−

π ′ .
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For a h-module M = ⊕
ν∈h∗Mν , resp. M ′ = ⊕

ν∈h∗M ′
ν , with finite dimen-

sional weight subspaces Mν , resp. M ′
ν , we define its formal character chM =∑

ν∈h∗ dimMνeν , resp. chM ′ = ∑
ν∈h∗ dimM ′

νe
ν , and write chM ≤ chM ′ if

dimMν ≤ dimM ′
ν for all ν ∈ h∗.

Theorem 1 (Upper and Lower Bounds, See [6]) There are two polynomial
algebras A and B , which are also h-modules, such that

chA ≤ ch Sy(p) ≤ chB .

Moreover if chA = chB , then Sy(p) is a polynomial algebra.
For example, it occurs when g is simple of type A or C for any parabolic

subalgebra p of g.

Let E(π ′) be the set of 〈ij 〉-orbits of π , where i and j are the involutions of π
defined, for example, in [8, 2.2].

For any algebraic complex Lie algebra a withA its adjoint group and any x ∈ a∗,
we say that x is regular if the coadjoint orbit A.x is of minimal codimension (equal
to ind a, the index of a). We denote by a∗reg the set of regular elements in a∗ (see [4,
1.11.6]).

Since Sy(p') = Y (p') = Sy(p) a theorem of Rosenlicht implies that

GKdim Sy(p) = ind p' (1)

and by [5, 3.2]

GKdim Sy(p) = |E(π ′)|. (2)

Denote by {*αk }αk∈π , or simply {*k}1≤k≤n, resp. {* ′
αk
}αk∈π ′ , or simply

{* ′
k}1≤k≤n|αk∈π ′ the set of fundamental weights associated to π , resp. to π ′. Let

Bπ , resp. Bπ ′ , be the set of weights of the Poisson semicentre of S(n ⊕ h), resp.
of S(nπ ′ ⊕ h′), which by [10] is a polynomial algebra in rank g, resp. in rank g′,
generators whose weights are listed in [10, Tables I and II] and [6, Table] for an
erratum.

For all � ∈ E(π ′), set

δ� = −
∑

γ∈�
*γ −

∑

γ∈j (�)
*γ +

∑

γ∈�∩π ′
* ′
γ +

∑

γ∈i(�∩π ′)
* ′
γ (3)

ε� =
{

1/2 if � = j (�), ∑γ∈� *γ ∈ Bπ , and
∑
γ∈�∩π ′ * ′

γ ∈ Bπ ′ .

1 otherwise.
(4)

It is shown in [12, Thm. 6.7] that

chA =
∏

�∈E(π ′)
(1− eδ� )−1 ≤ ch Sy(p) ≤

∏

�∈E(π ′)
(1− eε�δ� )−1 = chB . (5)
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Then when ε� = 1 for all � ∈ E(π ′) we have that chA = chB , and one
concludes that Sy(p) = Y (p') is a polynomial algebra over C. In particular, the
bounds chA and chB coincide for any parabolic subalgebra of g simple of type A
or C.

When g is simple of type B or D and p is a maximal parabolic subalgebra, then
the bounds coincide in roughly half of the cases.

Note that the above criterion is not a necessary condition for polynomiality of
Sy(p).

For instance, when p = b− = h⊕n−, then the criterion does not hold in g simple
of type outside A or C, but Sy(b−) is a polynomial algebra by [10].

Theorem 2 (Kostant Slice, See [18])
Assume that g is a complex simple Lie algebra with h a Cartan subalgebra and

G the adjoint group of g. Identify g and g∗ via the Killing form on g. Let (x, h, y)
be a principal sl2-triple (h ∈ h, x, y regular nilpotent in g, such that [h, x] = x

and [h, y] = −y). Then we have the following.
Restriction of functions gives an algebra isomorphism Y (g)

∼−→ R[y+gx] where
R[y + gx] is the algebra of regular functions on the affine variety y + gx , gx being
the centralizer of the element x in g.

The set of degrees of the homogeneous generators of Y (g) is equal to the set of
the eigenvalues plus one of ad h on an h-stable basis of gx .

Every G-orbit in G(y + gx) meets y + gx transversally at exactly one point and
g∗ is equal to the Zariski closureG(y + gx) ofG(y + gx) : such an affine subspace
y + gx is called in [15] an affine slice to the coadjoint action of g - we will call
it the Kostant slice. Actually the space g∗reg of regular elements in g∗ is equal to
G(y + gx).

When the algebraic Lie algebra a is not semisimple, there exists no principal
sl2-triple in general in a. Hence we need another notion which plays the role of a
principal sl2-triple in a non-reductive Lie algebra. This is the notion of an adapted
pair, introduced by A. Joseph and P. Lamprou and for which we recall the following
definition.

Definition 3 (Adapted Pair, See [17])
An adapted pair for a is a pair (h, y) ∈ a× a∗, with h ad-semisimple, y regular

in a∗ and (adh)(y) = −y, where ad is the coadjoint action of a on a∗.

Remarks 4
Adapted pairs were constructed for all truncated (bi)parabolic subalgebras in g

simple of type A (see [13]).
Adapted pairs need not exist, for instance they do not exist for the canonical

truncation b' of the Borel subalgebra b of g when h' = {0} as it occurs when g is
simple of type Bn, E7, E8, F4 or G2.

Lemma 5 (Improved Upper Bound, See [14, Lem. 6.11])
Let p = n−⊕h⊕nπ ′ be a parabolic subalgebra of a simple Lie algebra g. Assume

that there exists an adapted pair (h, y) ∈ h' × p∗' for the canonical truncation p'
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of p such that y =∑γ∈S xγ with xγ ∈ gγ \ {0}, S ⊂ �+ ��−π ′ and that S|h' is a
basis for h∗'.

Then there exists an “improved upper bound” B ′ such that ch Sy(p) ≤ B ′.
Assume now that equality holds.
Then restriction of functions gives an isomorphism of algebras Sy(p)

∼−→ R[y +
V ] where V is an h-stable vector space such that (ad p')(y)⊕ V = p∗' (where ad
is the coadjoint action). In particular Sy(p) is a polynomial algebra over C.

Such an affine subspace y + V is called a Weierstrass section or an algebraic
slice for Sy(p). It is also an affine slice to the coadjoint action of p' by [7] in the
sense of Theorem 2.

With the hypotheses of the above Lemma, the improved upper bound B ′ is
given by

ch Sy(p) ≤
∏

γ∈T
(1− e−(γ+t (γ )))−1 = B ′ (6)

where T ⊂ �+��−
π ′ is such that p∗' = (ad p') (y)⊕gT , |T | = ind p' and for each

γ ∈ T , t (γ ) ∈ QS is uniquely determined by the condition that γ + t (γ ) vanishes
on h'.

Theorem 6 (Degrees of Homogeneous Generators, See [16])
Assume that Sy(p) = Y (p') is a polynomial algebra in � := ind p' generators

and that p' admits an adapted pair (h, y) ∈ h' × p∗'.

• Then y+V is a Weierstrass section for Sy(p) (in the sense of Lemma 5) and also
an affine slice to the coadjoint action of p' (where V is an h-stable complement
of (ad p')(y) in p∗').

• If {mi}�i=1 are the eigenvalues of adh on a basis of V , then {mi + 1}�i=1 are the
degrees of the homogeneous generators of Y (p').

• In particular, mi ≥ 0.

3 Maximal Parabolic Subalgebras

From now on, we focus on a maximal parabolic subalgebra p of g simple of type
Bn (n ≥ 2) and we will explain how to construct an adapted pair for the canonical
truncation p', which will provide a Weierstrass section for Sy(p) = Y (p') by
Lemma 5.

We have that p = n− ⊕ h⊕ nπ ′ with π ′ = π \ {αs} and the canonical truncation
p' of p is such that p' = n− ⊕ h′ ⊕ nπ ′ with h′ = h ∩ [p, p]. By the Killing form
on g, we may identify p∗' with n⊕ h′ ⊕ n−

π ′ .
The bounds in Theorem 1 coincide exactly when s is odd (with Bourbaki’s

labeling [2]), and when n = s = 2 or n = s = 4. Then Sy(p) is a polynomial
algebra over C in these cases. Moreover the weights and degrees of homogeneous
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generators are those of the homogeneous generators of the polynomial algebra
B , which can be computed easily : the weights are the δ� , � ∈ E(π ′), given
by equality (3) and the degrees can be computed, thanks to the degrees of the
homogeneous generators of the semicentre of the Borel given in [10], see [6,
Cor. 5.4.2].

The case s even is more complicated since in general the bounds in Theorem 1
do not coincide. The polynomiality of Sy(p) will follow from the construction of an
adapted pair for p', and from the fact that in this case the improved upper bound B ′
of Lemma 5 is attained. Then Theorem 6 will give the degrees of the homogeneous
generators of Sy(p).

In [8] we already have constructed adapted pairs for truncated maximal parabolic
subalgebras when the upper and lower bounds in Theorem 1 coincide. To construct
such adapted pairs, we used the notion of a Heisenberg set for which we recall the
definition below.

4 Construction of an Adapted Pair

Keep the above notations and hypotheses.

Definition 7 (Heisenberg Set, See [8, Def. 2]) Let γ ∈ �. A Heisenberg set �γ of
centre γ is a subset of � such that γ ∈ �γ and for all α ∈ �γ \ {γ } there exists
α′ ∈ �γ such that α + α′ = γ .

Example 8
Assume that g is a semisimple Lie algebra with a Cartan subalgebra h. Denote

by ( , ) the non-degenerate symmetric bilinear form on h∗ × h∗ invariant under the
action of the Weyl group of g, induced by the Killing form on h× h. Let � = ��i
be a root system of g, where �i are irreducible root systems with βi the unique
highest root of �i .

Take (�i)βi := {α ∈ �i | (α, βi) = 0} and decompose it into irreducible root
systems �ij with highest roots βij .

Continuing we obtain a set of strongly orthogonal positive roots βK (called the
Kostant cascade for g) indexed by elements K ∈ N ∪ N

2 ∪ · · · and irreducible
subsystems �K of �.

The set HβK := {α ∈ �K | (α, βK) > 0} is a Heisenberg set of centre βK and
actually it is the maximal Heisenberg set of centre βK which is included in �+
by [10, Lem. 2.2].

We set −HβK = {α ∈ �K | −α ∈ HβK }. Let S be a subset of �+ ��−
π ′ .

We choose for all γ ∈ S a Heisenberg set �γ ⊂ �+ ��−π ′ of centre γ such that
all �γ ’s are disjoint.

We set O =⊔γ∈S �0
γ (with �0

γ = �γ \ {γ }).
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We set S = S+ � S− with S+, resp. S−, being the subset of S containing those
γ ∈ S such that �γ ⊂ �+, resp. �γ ⊂ �−π ′ .

Set O± =⊔γ∈S± �0
γ , so that O = O+ �O−.

Let y =∑γ∈S xγ , with xγ ∈ gγ \ {0} for all γ ∈ S. The set S will be said to be
the support of the element y.

Choose also disjoint subsets of�+��−
π ′ : T = T +�T − and T ∗ (T + ⊂ �+ and

T − ⊂ �−
π ′ ), also disjoint from � = ⊔γ∈S �γ . We can now give a generalization

of [13, Thm. 8.6] (see also [8, Lem. 6]).

Proposition 9 Assume that

(1) S|h' is a basis for h∗'.
(2) If α ∈ �0

γ , with γ ∈ S+, is such that there exists β ∈ O+, with α + β ∈ S, then

β ∈ �0
γ and α + β = γ .

(3) If α ∈ �0
γ , with γ ∈ S−, is such that there exists β ∈ O−, with α + β ∈ S, then

β ∈ �0
γ and α + β = γ .

(4) �+ ��−
π ′ =

⊔
γ∈S �γ � T � T ∗.

(5) For all α ∈ T ∗, gα ⊂ (ad p')(y)+ gT .
(6) |T | = ind p'.

Then y is regular in p∗' and (ad p')(y)⊕gT = p∗'. Moreover if we uniquely
define h ∈ h' by h(γ ) = −1 for all γ ∈ S, then (h, y) is an adapted pair
for p'.

Proof The proof follows that of [13, Thm. 8.6] with only a small modification. We
give it for completeness. Condition (4) implies that p' = h'⊕g−O⊕g−S⊕g−T ∗ ⊕
g−T and that p∗' = h' ⊕ gO ⊕ gS ⊕ gT ∗ ⊕ gT .

Let �y denote the skew-symmetric bilinear form defined by �y(x, x′) =
K(y, [x, x′]) for all x, x′ ∈ g where recall K is the Killing form on g.

Conditions (2) and (3) imply by [13, Lem. 8.5] that the restriction of�y to g−O×
g−O is non-degenerate. Then gO ⊂ (ad g−O)(y)+ h' + gS + gT + gT ∗ .

But since O ∩ S = ∅ one has that for all x ∈ gO and x′ ∈ g−O , the element
x − (ad x′)(y) belongs to the orthogonal of h' for the Killing form. Then gO ⊂
(ad g−O)(y)+ gS + gT + gT ∗ .

Condition (1) implies that gS = (ad h')(y) and that h' ⊂ (ad g−S)(y) + gO +
gS + gT + gT ∗ . Condition (5) implies that gT ∗ ⊂ (ad p')(y) + gT . Hence p∗' =
h' ⊕ gO ⊕ gS ⊕ gT ∗ ⊕ gT ⊂ (ad p')(y) + gT . Finally condition (6) implies that
the latter sum is direct, since dim gT = ind p' ≤ codim (ad p')(y). ��
Remarks 10

(1) Proposition 9 is exactly [13, Thm. 8.6] when T ∗ = ∅ (then condition (5) is
empty) and was used (with T ∗ = ∅) in the case when s is odd in [8]. Also
in [8], we took all the elements of the Kostant cascade for the elements or their
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opposite in S and in T , the elements of T being the simple roots or their opposite
in the Kostant cascade (see [8]). Moreover for each γ ∈ S+, resp. S−, we took
for the Heisenberg set �γ the maximal Heisenberg setHγ , resp.−H−γ , defined
in Example 8. Then the proof follows easily since by [10, Lem. 2.2] �+ is the
disjoint union of all the maximal Heisenberg sets Hγ ’s, γ being any root in
the Kostant cascade, and moreover if two positive roots α, α′ are such that
α + α′ = γ , with γ a root in the Kostant cascade, then α, α′ both belong to the
same maximal Heisenberg set Hγ .

(2) Unfortunately when s is even the strategy used for s odd does no more work.
Indeed the element h of the adapted pair for p' must belong to h' = h′ and then
must vanish on*s . On the other hand, it must take the value−1 on each element
of S. Then if the elements of the Kostant cascade ε2i−1 + ε2i , for 1 ≤ i ≤ s/2,
would belong to S, then we would have both h(ε1 + . . . + εs) = (−1) × s/2
and h(ε1 + . . .+ εs) = 0 since*s = ε1 + . . .+ εs .

Then we need to modify the sets S and T of the odd case and to add a set T ∗
which makes the verification of the regularity of y more complicated.

(3) The case s = 2 was already treated in [19] where polynomiality was shown,
and in [14] an adapted pair for this case was also constructed. Our adapted pair
is equivalent to Joseph’s adapted pair in [14] in the sense of [7] since an element
of the Weyl group of the Levi of p sends bijectively the supports of the nilpotent
elements of both adapted pairs (for more details, see [9, Remark 7.11]).

5 The Kostant Cascades

Recall that we assume that g is simple of type Bn (n ≥ 2) and that p is a parabolic
subalgebra of g associated to π ′ = {αi}1≤i≤n,i �=s ⊂ π = {αi}1≤i≤n. Since the case
s odd was already treated in [8], we will assume that s is even.

Then the Levi factor of p is semisimple of type As−1 × Bn−s . We will denote
by βi and βi′ the elements of the Kostant cascade for g, by β ′i the elements of the
Kostant cascade of the simple part of the Levi factor of p of type As−1 and by β ′′i ,
β ′′
i′ the elements of the Kostant cascade of the simple part of the Levi factor of p of

type Bn−s .
Denote by {εi}ni=1 an orthonormal basis of Rn according to which the roots in

� are expanded as in [2, Planche II]. Then the Kostant cascade for g of type Bn is
formed by the following strongly orthogonal positive roots : βi = ε2i−1 + ε2i =
α2i−1 + 2α2i + . . . + 2αn, for all 1 ≤ i ≤ [n/2], and βi′ = α2i−1, for all 1 ≤ i ≤
[(n+ 1)/2].

The Kostant cascade of the simple part of the Levi factor of type As−1 is formed
by the following positive roots : β ′i = εi − εs+1−i = αi + . . . + αs−i , for all
1 ≤ i ≤ s/2, with β ′s/2 = αs/2.
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6 Examples

6.1 First Example in Type B6

Here we assume that g is of type B6 and that π ′ = π \ {α2}.
We choose

S+ = {ε2, β̃1 = β1 − α2 = ε1 + ε3, ε4 + ε5}

S− = {−β ′′1 = −ε3 − ε4, −β ′′2 = −ε5 − ε6}

T + = {β1 = ε1 + ε2, ε1 − ε3, β1′ = ε1 − ε2, ε4 − ε5}

T − = {−β ′′1′ = −ε3 + ε4, −β ′′2′ = −ε5 + ε6}

T ∗ = {ε6, ε2 − ε1, ε2 − ε3, ε2 − ε4, ε2 − ε5, ε2 − ε6,

ε2 + ε3, ε2 + ε4, ε2 + ε5, ε2 + ε6}

Then the semisimple element h ∈ h′ of the adapted pair is

h = ε1 − ε2 − 2ε3 + 3ε4 − 4ε5 + 5ε6 = α∨1 − 2α∨3 + α∨4 − 3α∨5 + α∨6 .

Let λ be an eigenvalue of ad h in p∗'. Then −λ is an eigenvalue of adh in p'.
Denote by m∗λ the multiplicity of λ in p∗' and by m−λ the multiplicity of −λ in p'.
We have thatm−λ = m∗λ. Setm′λ the multiplicity of λ in h'⊕gO ⊕gS⊕gT ∗ ⊂ p∗'.

Recall that the regularity of y means that p∗' = (ad p')(y) ⊕ gT , with |T | =
ind p'.

Since (ad h)(y) = −y, we must have that, for each eigenvalue λ of ad h in p∗',
m′λ ≤ mλ+1.

In the table below are the multiplicities m′λ and m−λ for each eigenvalue λ of
ad h in p∗' :

λ −9 −8 −7 −6 −5 −4 −3 −2 −1 0

m′λ 1 1 2 2 3 3 4 5 5 5

m−λ 1 1 2 2 3 3 4 5 5 6

λ 1 2 3 4 5 6 7 8 9

m′λ 5 4 3 3 2 2 1 1 0

m−λ 5 5 4 3 3 2 2 1 1

We can see that the inequality m′λ ≤ mλ+1 is satisfied for each eigenvalue λ of
ad h in p∗'.
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6.2 Second Example in Type B6

Here we assume that g is of type B6 and that π ′ = π \ {α4}.
We choose

S+ = {β1 = ε1 + ε2, β̃2 = β2 − α4 = ε3 + ε5, ε4}

S− = {−β̃ ′1 = −β ′1 + α3 = ε3 − ε1,−β ′′1 = −ε5 − ε6}

T + = {α1, β2, α3, α3 + α4}

T − = {−α5}

T ∗ = {ε4 + ε5, ε4 + ε6, ε4 − ε5, ε4 − ε6, ε6, ε4 − ε1, ε4 − ε2, ε4 − ε3}

Then the semisimple element h ∈ h′ of the adapted pair is

h = 3ε1 − 4ε2 + 2ε3 − ε4 − 3ε5 + 4ε6 = 3α∨1 − α∨2 + α∨3 − 3α∨5 + 1/2α∨6 .

Adopt the same notations as in the previous example. In the table below are the
multiplicities m′λ and m−λ for each eigenvalue λ of adh in p∗' :

λ −8 −7 −6 −5 −4 −3 −2 −1 0

m′λ 1 3 1 2 4 3 2 7 7

m−λ 1 3 1 2 4 3 2 7 7

λ 1 2 3 4 5 6 7

m′λ 2 3 4 2 1 3 1

m−λ 3 3 5 2 2 3 3

We can see that the inequality m′λ ≤ mλ+1 is satisfied for each eigenvalue λ of
ad h in p∗'.

7 General Case

Consider now the general case of a maximal parabolic subalgebra p associated to
π ′ = π \ {αs} in g simple of type Bn (n ≥ 2) with s even (2 ≤ s ≤ n).

We will show below that all conditions of Proposition 9 are satisfied, for a good
choice of subsets S+, S−, T +, T −, T ∗ of �+ ��−

π ′ and disjoint Heisenberg sets
�γ of centre γ , for all γ ∈ S+ � S−.
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We choose the set S = S+ � S− as follows :

S− = {−β̃ ′i = −β ′i + αs−i = εs−i − εi, −β ′′j−s/2 = −ε2j−1 − ε2j ;
1 ≤ i ≤ s/2− 1, s/2+ 1 ≤ j ≤ [n/2]}

If n = s,

S+ = {εs, βi = ε2i−1 + ε2i; 1 ≤ i ≤ s/2− 1}

If n > s,

S+ = {εs, βi = ε2i−1 + ε2i , β̃s/2 = βs/2 − αs = εs−1 + εs+1,

ε2j + ε2j+1; 1 ≤ i ≤ s/2− 1, s/2+ 1 ≤ j ≤ [(n− 1)/2]}

One easily checks that |S| = n − 1. Moreover condition (1) of Proposition 9 is
satisfied, thanks to the following lemma.

Lemma 11 S|h' is a basis for h∗'.

Proof It is sufficient to show that if S = {s1, . . . , sn−1} and {h1, . . . , hn−1} is a
basis of h', then det(si(hj ))i,j �= 0. We will prove this statement by induction on
n. We choose {α∨i | 1 ≤ i ≤ n, i �= s} as a basis of h'.

Add temporarily a lower subscript n to S±, π, h′ = h' to emphasize that they
are defined for type Bn.

Identify an element (x1, x2, . . . , xn) of Rn with the element (x1, x2, . . . , xn, 0)
of Rn+1. Observe that S+s+1 = S+s �{εs−1+εs+1}, whereas for n even and n ≥ s+2
we have S+n+1 = S+n � {εn + εn+1} and for n odd we have S+n+1 = S+n .

Similarly for n even, S−n+1 = S−n and for n odd, S−n+1 = S−n � {−εn − εn+1}.
Finally set Sn = S+n � S−n .

We first consider the case n = s.
If n = s = 2, then S = {s1 = ε2 = α2} and det (s1(α∨1 )) = −1 �= 0.
Assume now that n ≥ 4 and n = s. Then S = {εn, εn−i − εi, βj | 1 ≤

i, j ≤ n/2− 1}. Recall that {*i}1≤i≤n is the set of fundamental weights of g. One
has that for all i ∈ N, 1 ≤ i ≤ n/2 − 1, βi = *2i − *2i−2 (where we have
set *0 = 0) and εn = −*n−1 + 2*n. Also, for all i ∈ N, 1 ≤ i ≤ n/2 − 1,
εn−i − εi = −*i +*i−1 −*n−1−i +*n−i .

Then, by ordering the basis of h' as
{α∨2 , α∨4 , . . . , α∨n−2, α

∨
n−1, α

∨
1 , α

∨
n−3, α

∨
3 , . . . , α

∨
n/2+1, α

∨
n/2−1} if n/2 is even, and

as {α∨2 , α∨4 , . . . , α∨n−2, α
∨
n−1, α

∨
1 , α

∨
n−3, α

∨
3 , . . . , α

∨
n/2−2, α

∨
n/2} if n/2 is odd,

and by ordering elements of S as {β1, β2, . . . , βn/2−1, εn, εn−1 − ε1, εn−2 −
ε2, . . . , εn/2+1 − εn/2−1}, we have that (si(hj ))ij =

(
A 0
C D

)
where A is an

(n/2)×(n/2) lower triangular matrix with 1 everywhere on the diagonal, except the
last element which is equal to−1 andD is a (n/2− 1)× (n/2− 1) lower triangular
matrix with −1 everywhere on the diagonal. Hence det(si(hj ))ij = (−1)n/2 �= 0.
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For every n ≥ s, let {h1, . . . , hn−1, hn} be a basis for the truncated Cartan
h′n+1 of the truncated parabolic associated to πn+1 \ {αs} in type Bn+1, such that
{h1, . . . , hn−1} is a basis of the truncated Cartan h′n for the truncated parabolic
associated to πn \ {αs} in type Bn with the identification in the beginning of the
proof.

Then, using the observation in the beginning of the proof, and ordering the
elements of Sn+1 = {s1, s2, , . . . , sn} such that its first n− 1 elements are those of
Sn, we get that det(si(hj ))1≤i, j≤n = (−1)n det(si(hj ))1≤i, j≤n−1, which completes
the proof of the lemma. ��

For the set T = T + � T −, we choose :
If n = s,

T + = {βs/2 = εs−1 + εs, βi′ = ε2i−1 − ε2i = α2i−1; 1 ≤ i ≤ s/2}
T − = ∅

If n > s,

T + = {βs/2 = εs−1 + εs, εs−1 − εs+1, βi′ = ε2i−1 − ε2i = α2i−1,

εs+2j − εs+2j+1 = αs+2j ; 1 ≤ i ≤ s/2, 1 ≤ j ≤ [(n− s − 1)/2]}
T − = {−β ′′i′ = −εs+2i−1 + εs+2i = −αs+2i−1; 1 ≤ i ≤ [(n− s)/2]}

One easily checks that |T | = n− s/2+ 1. Then condition (6) of Proposition 9 is
satisfied, thanks to the following lemma.

Lemma 12 We have that ind p' = n− s/2+ 1.

Proof The set of 〈ij 〉-orbits in π is

E(π ′) = {{αs/2}, {αt , αs−t }, {αu} | 1 ≤ t ≤ s/2− 1, s ≤ u ≤ n}.

Hence the lemma, by equalities (1) and (2) of Sect. 2. ��
Now for the Heisenberg sets �γ of centre γ ∈ S, we choose the following sets,

where recall Hγ is the maximal Heisenberg set of centre γ given in Example 8,
when γ lies in the Kostant cascade :

• for all 1 ≤ i ≤ s/2− 1, �βi = Hβi
• �β̃s/2

= {β̃s/2, εs−1, εs+1, εs−1 ± εi, εs+1 ∓ εi; s + 2 ≤ i ≤ n}
• for all s/2+ 1 ≤ i ≤ [(n− 1)/2], �ε2i+ε2i+1 = {ε2i + ε2i+1, ε2i , ε2i+1, ε2i ±
εj , ε2i+1 ∓ εj ; 2i + 2 ≤ j ≤ n}

• for all 1 ≤ i ≤ s/2 − 1, �εs−i−εi = {εs−i − εi, εj − εi, εs−i − εj ; i + 1 ≤
j ≤ s − i − 1}

• for all s/2+ 1 ≤ i ≤ [n/2], �−β ′′i−s/2 = −Hβ ′′i−s/2
• �εs = {εs}
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By construction, all the above sets are disjoint and are Heisenberg sets.
Finally we choose :

⎧
⎪⎪⎨

⎪⎪⎩

T ∗ = {εn, εs − εi, εs + εj ;
1 ≤ i ≤ n, i �= s, s + 1 ≤ j ≤ n} if n even, (without εn if n = s)

T ∗ = {−εn, εs − εi, εs + εj ; 1 ≤ i ≤ n, i �= s, s + 1 ≤ j ≤ n} if n odd

By construction the sets T and T ∗ are disjoint and also disjoint from all the
Heisenberg sets given above.

Below we show that condition (4) of Proposition 9 is satisfied.

Lemma 13 We have that �+ ��−
π ′ =

⊔
γ∈S �γ � T � T ∗.

Proof By [10, Lem. 2.2], we have that

�+ =
⊔

1≤i≤[n/2]
Hβi �

⊔

1≤i≤[(n+1)/2]
Hβi′ .

Moreover for all 1 ≤ i ≤ [(n+ 1)/2], Hβi′ = {βi′ } = {α2i−1}.
We already have that

⊔
1≤i≤s/2−1Hβi =

⊔
1≤i≤s/2−1 �βi .

• Let γ ∈ Hβs/2 .

If γ = βs/2 = εs−1 + εs , then γ ∈ T .
If γ = εs−1 ± εi with s + 1 ≤ i ≤ n, or if γ = εs−1, then γ ∈ �β̃s/2 , unless
γ = εs−1 − εs+1 in which case γ ∈ T .
If γ = εs ± εi with s + 1 ≤ i ≤ n, then γ ∈ T ∗.
If γ = εs , then γ ∈ �εs .
• Let γ ∈ Hβs/2+1 .

If γ = εs+1 ± εi , with s + 2 ≤ i ≤ n, or if γ = εs+1, then γ ∈ �β̃s/2 .

If s = n− 2 and γ = εs+2 = εn, then γ ∈ T ∗.
If γ = εs+2 ± εi , with s + 3 ≤ i ≤ n or if γ = εs+2 (with s ≤ n − 3), then
γ ∈ �εs+2+εs+3 unless γ = εs+2 − εs+3 in which case γ ∈ T .

• Let γ ∈ Hβi , with s/2+ 2 ≤ i ≤ [n/2].
If γ = ε2i−1 ± εj , with 2i ≤ j ≤ n, or if γ = ε2i−1, then γ ∈ �ε2i−2+ε2i−1 .
If i = n/2 (with n even), then γ = ε2i = εn ∈ T ∗.
If γ = ε2i ± εj , with 2i + 1 ≤ j ≤ n, or if γ = ε2i (with 2i ≤ n − 1) then
γ ∈ �ε2i+ε2i+1 , unless γ = ε2i − ε2i+1 in which case γ ∈ T .

• Let γ = α2i−1, with 1 ≤ i ≤ [(n+ 1)/2].
If 1 ≤ i ≤ s/2, then γ ∈ T .
If i = s/2+ 1, then γ ∈ �β̃s/2 .
If i ≥ s/2+ 2, then γ ∈ �ε2i−2+ε2i−1 .
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Similarly one has that

�−
π ′ =

⊔

1≤i≤s/2
(−Hβ ′i ) �

⊔

1≤i≤[(n−s)/2]
(−Hβ ′′i ) �

⊔

1≤i≤[(n−s+1)/2]
{−αs+2i−1}

• Let γ ∈ (−Hβ ′i ), with 1 ≤ i ≤ s/2.

If γ = εs+1−i − εj , with i ≤ j ≤ s − i, then γ ∈ �εs−i+1−εi−1 , unless γ = εs − εj ,
with 1 ≤ j ≤ s − 1, in which case γ ∈ T ∗.
If γ = εj − εi , with i + 1 ≤ j ≤ s − i, then γ ∈ �εs−i−εi .
• Let γ ∈ (−Hβ ′′i ), with 1 ≤ i ≤ [(n− s)/2].
Then γ ∈ �−β ′′i .

• Let γ = −αs+2i−1, with 1 ≤ i ≤ [(n+ 1− s)/2].
Then γ ∈ T −, unless γ = −αn = −εn and n odd, in which case γ ∈ T ∗. This
completes the lemma. ��

Below we check that condition (2) of Proposition 9 is satisfied.

Lemma 14 Let α ∈ �0
γ , with γ ∈ S+, be such that there exists β ∈ O+, with

α + β ∈ S. Then β ∈ �0
γ and α + β = γ .

Proof Apply again [10, Lem. 2.2]. Let α, α′ be two positive roots such that α ∈ Hβi
and α′ ∈ Hβj with 1 ≤ i, j ≤ [n/2] and α + α′ ∈ �.

Then either i ≤ j and one has that α + α′ ∈ Hβi or i ≥ j and α + α′ ∈ Hβj .
Moreover if α + α′ = βi , then i = j and α, α′ ∈ Hβi \ {βi}.
Assume now that α ∈ Hβi and α′ ∈ Hβk′ with 1 ≤ i ≤ [n/2] and 1 ≤ k ≤

[(n+ 1)/2] are such that α + α′ ∈ �.
Then k = i or if k = (n+1)/2 and n odd then k = i+1, and α+α′ ∈ Hβi \{βi}.
If α ∈ Hβi′ and α′ ∈ Hβk′ with 1 ≤ i, k ≤ [(n+ 1)/2], then α + α′ �∈ �.
If α ∈ Hβi′ and α′ ∈ Hβj with 1 ≤ j ≤ [n/2] and 1 ≤ i ≤ [(n+ 1)/2] are such

that α+ α′ ∈ �, then i = j and α+ α′ ∈ Hβj \ {βj }, or if i = (n+ 1)/2 and n odd
then i = j + 1 and α + α′ ∈ Hβj \ {βj }.
• Let α ∈ �0

βi
= H 0

βi
, with 1 ≤ i ≤ s/2 − 1, be such that there exists α′ ∈ O+

with α + α′ ∈ S. Recall the decomposition of �+ given in the proof of Lemma 13.
If α′ ∈ �0

βj
, with 1 ≤ j ≤ s/2− 1, then one has necessarily i = j . Indeed by the

above if i ≤ j then α+α′ ∈ Hβi∩S, hence α+α′ = βi and then α, α′ ∈ H 0
βi
= �0

βi
.

If i > j then α, α′ ∈ �0
βj

, which is not possible, since the sets Hβi and Hβj are
disjoint.

If α′ ∈ Hβj with s/2 ≤ j ≤ [n/2], then by a similar reasoning as above, we
obtain that α, α′ ∈ Hβi which is not possible.

If α′ ∈ Hβj ′ with 1 ≤ j ≤ [(n + 1)/2], then by the above j = i and α + α′ ∈
Hβi \ {βi} which is not possible since Hβi ∩ S = {βi}.
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• Let α ∈ �0
β̃s/2

be such that there exists α′ ∈ O+ \ ⊔1≤i≤s/2−1 �
0
βi

with

α + α′ ∈ S.
Then one checks that α + α′ ∈ Hβs/2 ∩ S. Hence α + α′ = β̃s/2 or α + α′ = εs .

The latter case is not possible since α + α′ = εs implies that α = εs+1 and α′ =
εs − εs+1 ∈ T ∗. The former case implies that α′ ∈ �0

β̃s/2
.

• Let α ∈ �0
ε2i+ε2i+1

with s/2 + 1 ≤ i ≤ [(n − 1)/2] be such that there exists

α′ ∈ �0
ε2j+ε2j+1

with s/2+ 1 ≤ j ≤ [(n− 1)/2] with α + α′ ∈ S. Then one checks
that necessarily one has i = j and α + α′ = ε2i + ε2i+1. This completes the proof.

��
We also check that condition (3) of Proposition 9 is satisfied.

Lemma 15 Let α ∈ �0
γ , with γ ∈ S−, be such that there exists β ∈ O−, with

α + β ∈ S. Then β ∈ �0
γ and α + β = γ .

Proof Denote by π ′1, resp. π ′2, the connected component of π ′ corresponding to the
simple roots of type As−1, resp. of type Bn−s and by �−

π ′1
, resp. �−

π ′2
the subset of

�−
π ′ generated by π ′1, resp. by π ′2.
• Let α ∈ �0

εs−i−εi , with 1 ≤ i ≤ s/2 − 1, be such that there exists α′ ∈ O−
with α+ α′ ∈ S. Since α ∈ �−

π ′1
, there exists necessarily 1 ≤ j ≤ s/2− 1 such that

α′ ∈ �0
εs−j−εj . Then one easily checks that i = j and that α + α′ = εs−i − εi .

• Let α ∈ �0
−β ′′i , with 1 ≤ i ≤ [(n − s)/2], be such that there exists α′ ∈ O−

with α + α′ ∈ S. Since α ∈ �−
π ′2

, there exists necessarily 1 ≤ j ≤ [(n− s)/2] such

that α′ ∈ �0
−β ′′j . Then one easily checks that i = j and that α + α′ = −β ′′i . This

completes the proof. ��
Finally we check below condition (5) : recall that we denote by xα , α ∈ �, a

chosen non-zero root vector in gα and we will rescale the vectors xα if necessary.
Examine first the case of εs + εj , with s + 1 ≤ j ≤ n.

Lemma 16 For all j ∈ N, s + 1 ≤ j ≤ n, we have that xεs+εj ∈ (ad p')(y)+ gT .

Proof One has that (ad xεs+1)(y) = xεs+εs+1 + x−εs+2 and that x−εs+2 =
(ad x−εs−εs+2)(y).

Hence xεs+εs+1 = (ad (xεs+1 − x−εs−εs+2))(y) ∈ (ad p')(y)+ gT .
One has that (ad xεs+2)(y) = xεs+εs+2 + x−εs+1 and x−εs+1 + xεs−1−εs =

(ad x−εs−εs+1)(y). Hence xεs+εs+2 = (ad (xεs+2 − x−εs−εs+1))(y) + xεs−1−εs ∈
(ad p')(y)+ gT .

Let s + 3 ≤ j ≤ n− 1, j odd.
We have that (ad xεj )(y) = xεs+εj + x−εj+1 and x−εj+1 = (ad x−εs−εj+1)(y).

Hence xεs+εj = (ad (xεj − x−εs−εj+1))(y) ∈ (ad p')(y)+ gT .
For j = n, j odd, we have that
xεs+εj = (ad xεj )(y) ∈ (ad p')(y)+ gT .
Let s + 4 ≤ j ≤ n, j even.
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We have that (ad xεj )(y) = xεs+εj + x−εj−1 and x−εj−1 = (ad x−εs−εj−1)(y).
Hence xεs+εj = (ad (xεj − x−εs−εj−1))(y) ∈ (ad p')(y)+ gT . ��

Examine now the case of εs − εi , 1 ≤ i ≤ s − 1.

Lemma 17 For all i ∈ N, 1 ≤ i ≤ s − 1, we have that xεs−εi ∈ (ad p')(y)+ gT .

Proof One has that xεs−ε1 = (ad xεs−εs−1)(y) + xεs+εs+1 ∈ (ad p')(y) + gT by
Lemma 16.

Moreover (ad x−ε2)(y) = xε1+xεs−ε2 and (ad xε1−εs )(y) = xε1+xεs−1−εs hence
xεs−ε2 = (ad(x−ε2 − xε1−εs ))(y)+ xεs−1−εs ∈ (ad p')(y)+ gT .

Let 4 ≤ i ≤ s−2 with i even. One has that (ad x−εi )(y) = xεs−εi +xεi−1 . More-
over if i ≤ s/2 then (ad xεi−1−εs )(y) = xεi−1+xεs−i+1−εs and (ad x−εs−i+2−εs )(y) =
xεs−i+1−εs . Hence xεs−εi = (ad(x−εi − xεi−1−εs + x−εs−i+2−εs ))(y) ∈ (ad p')(y)+
gT .

If i is even and s/2 + 1 ≤ i ≤ s − 2, then xεs−εi = (ad(x−εi − xεi−1−εs ))(y) ∈
(ad p')(y)+ gT .

Let 3 ≤ i ≤ s − 3 with i odd. One has that (ad x−εi )(y) = xεs−εi + xεi+1 and if
i ≤ s/2 − 2, then (ad xεi+1−εs )(y) = xεi+1 + xεs−i−1−εs and (ad x−εs−i−2−εs )(y) =
xεs−i−1−εs . Hence xεs−εi = (ad(x−εi − xεi+1−εs + x−εs−i−2−εs ))(y) ∈ (ad p')(y)+
gT .

If i ≥ 3, i odd and s/2−1 ≤ i ≤ s−3, then xεs−εi = (ad(x−εi −xεi+1−εs ))(y) ∈
(ad p')(y)+ gT .

Finally xεs−εs−1 = (ad(x−εs−1 − xεs+1−εs ))(y) ∈ (ad p')(y)+ gT . ��
Now examine the case of εs − εi , with s + 1 ≤ i ≤ n.

Lemma 18 For all i ∈ N, s + 1 ≤ i ≤ n, we have that xεs−εi ∈ (ad p')(y)+ gT .

Proof One has that (ad x−εs+1)(y) = xεs−εs+1 + xεs−1 and (ad xεs−1−εs )(y) = xεs−1 .
Hence xεs−εs+1 = (ad(x−εs+1 − xεs−1−εs ))(y) ∈ (ad p')(y)+ gT .

Assume that s+ 2 ≤ i ≤ n− 1 and i even. One has that (ad x−εi )(y) = xεs−εi +
xεi+1 and (ad xεi+1−εs )(y) = xεi+1 . Hence xεs−εi = (ad(x−εi − xεi+1−εs ))(y) ∈
(ad p')(y)+ gT .

Moreover if n is even (and s �= n) then xεs−εn = (ad x−εn)(y) ∈ (ad p')(y) +
gT .

Assume that s + 3 ≤ i ≤ n and i odd. One has that (ad x−εi )(y) = xεs−εi +
xεi−1 and (ad xεi−1−εs )(y) = xεi−1 . Hence xεs−εi = (ad(x−εi − xεi−1−εs ))(y) ∈
(ad p')(y)+ gT . ��

It remains to examine the case of εn if n is even and of −εn if n is odd.

Lemma 19 If n is even, then xεn ∈ (ad p')(y) + gT . If n is odd, then x−εn ∈
(ad p')(y)+ gT .

Proof Assume that n is even and s < n.
Then xεn = (ad xεn−εs )(y) ∈ (ad p')(y)+ gT .
Now if s = n then xεn ∈ gS ⊂ (ad h')(y).
Finally assume that n is odd. If s = n − 1, then x−εn = (ad x−εn−1−εn)(y) +

xεn−2−εn−1 ∈ (ad p')(y)+ gT .
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If s ≤ n− 3, then x−εn = (ad x−εs−εn)(y) ∈ (ad p')(y)+ gT . ��
Hence condition (5) of Proposition 9 is satisfied.
By the above, all conditions of Proposition 9 are satisfied. Then one can give the

following theorem.

Theorem 20 Let g be a simple Lie algebra of type Bn (n ≥ 2). Let p be a maximal
parabolic subalgebra of g associated to π ′ = π \ {αs} with s even and let p' be its
canonical truncation. There exists an adapted pair (h, y) ∈ h′ × p∗' for p'.

Proof It suffices to apply Proposition 9 since all its conditions are satisfied.
Moreover condition (1) of Proposition 9 implies that there is a unique h ∈ h' = h′
such that h(γ ) = −1 for all γ ∈ S.

By a direct computation the expansion of h in terms of the elements εk , 1 ≤ k ≤
n is as follows:

h =∑[s/4]
k=1

(
s
2 + 2k − 1

)
ε2k−1 +∑s/2−1

k=[s/4]+1

( 3s
2 − 2k

)
ε2k−1

−∑[s/4]
k=1

(
s
2 + 2k

)
ε2k −∑s/2−1

k=[s/4]+1

( 3s
2 + 1− 2k

)
ε2k + s

2εs−1 − εs
+∑[(n−s+1)/2]

k=1

(− 2k + 1− s
2

)
εs+2k−1 +∑[(n−s)/2]

k=1

(
2k + s

2

)
εs+2k.

Let us give also the expansion of h in terms of the coroots α∨k for 1 ≤ k ≤ n,
k �= s.

If n is even, one has that

h = −∑s/2−1
k=1 kα∨2k +

∑[s/4]
k=1 (s/2+ k)α∨2k−1

+∑s/2
k=[s/4]+1(3s/2+ 1− 3k)α∨2k−1 −

∑n/2
k=s/2+1 kα

∨
2k−1

+∑(n−2)/2
k=s/2+1(k − s/2)α∨2k + ((n− s)/4)α∨n

If n is odd, one has that

h = −∑s/2−1
k=1 kα∨2k +

∑[s/4]
k=1 (s/2+ k)α∨2k−1

+∑s/2
k=[s/4]+1(3s/2+ 1− 3k)α∨2k−1 −

∑(n−1)/2
k=s/2+1 kα

∨
2k−1

+∑(n−1)/2
k=s/2+1(k − s/2)α∨2k − ((n+ 1)/4)α∨n ��

8 The Polynomiality of Sy(p) and the Existence of a Slice

By Lemma 5 it suffices to verify that the improved upper bound B ′ mentioned in
Lemma 5 is equal to the lower bound chA mentioned in Theorem 1 to conclude
that Sy(p) is a polynomial algebra, and that we have a Weierstrass section and an
affine slice too. This is the following lemma.
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Lemma 21 If n = s, one has that

chA = (1− e−2*n)−2(1− e−4*n)−(n/2−1) (∗)

If n > s, one has that

chA = (1− e−*s )−2(1− e−2*s )−(n−1−s/2) (∗∗)

Proof By equality in (5) of Sect. 2, the lower bound for ch Sy(p) is chA =∏
�∈E(π ′)(1 − eδ� )−1. Recall (see proof of Lemma 12) that the set of 〈ij 〉-orbits

in π is E(π ′) = {�s/2 := {αs/2}, �t := {αt , αs−t }, �u := {αu} | 1 ≤ t ≤
s/2 − 1, s ≤ u ≤ n}. Let � ∈ E(π ′). Since j = idπ and i(� ∩ π ′) = j (�) ∩ π ′,
one has δ� = −2(

∑
γ∈� *γ −

∑
γ∈�∩π ′ * ′

γ ).

Assume first that n = s. Then the Levi factor of p is simple of type An−1 and one
may check that for all 1 ≤ t ≤ n− 1, *t −* ′

t = 2(t/n)*n. Then for all 1 ≤ t ≤
n/2− 1, δ�t = −2(*t −* ′

t +*n−t −* ′
n−t ) = −4*n and δ�n = δ�n/2 = −2*n.

Hence equality (∗) holds for n = s.
Assume now that n > s. Then the Levi factor of p is the product of a simple Lie

algebra of type As−1 and a simple Lie algebra of type Bn−s (of type A1 if s = n−1).
For all 1 ≤ t ≤ s − 1, one checks that *t − * ′

t = (t/s)*s . Then, for all
1 ≤ t ≤ s/2 − 1, one has δ�t = −2*s and δ�s/2 = −*s . On the other hand, for
all s + 1 ≤ t ≤ n − 1, one has that *t − * ′

t = *s , hence δ�t = −2*s . Finally
*n −* ′

n = (1/2)*s and δ�n = −*s , whereas δ�s = −2*s , since �s ∩ π ′ = ∅.
We conclude that equality (∗∗) holds for n > s. ��

It remains to compute the improved upper bound B ′ given by equality in (6) of
Sect. 2 and to prove that this bound is equal to (∗) when n = s or to (∗∗) when
n > s. We verify it by a direct computation. Thus by Lemma 5 and Theorem 6 we
obtain the following theorem.

Theorem 22 Let p be any maximal parabolic subalgebra of a simple Lie algebra
g of type Bn, n ≥ 2 corresponding to the set of simple roots π ′ = π \ {αs} with
s even. Then Sy(p) is a polynomial algebra over C and there exists a Weierstrass
section for Sy(p) (given by an adapted pair (h, y) for the canonical truncation p')
which is also an affine slice to the coadjoint action of p'. Moreover the degrees of
homogeneous generators of Sy(p) are the eigenvalues plus one of adh on gT , where
gT is an h-stable complement in p∗' of (ad p')(y).

Remark 23 Assume that p is a maximal parabolic subalgebra of a simple Lie
algebra of type Dn for which the bounds of Theorem 1 do not coincide. Then we can
also prove that the Poisson semicentre Sy(p) is a polynomial algebra over C, thanks
to the computation of an adapted pair for the canonical truncation of p. This adapted
pair is obtained in a similar way as in type Bn, at least when n ≥ s + 2, s even.
For the extremal case, namely when n even and n = s or n − 1 = s, we can also
construct an adapted pair for the canonical truncation but the construction is more
complicated than in type Bn. Finally we also prove in any case that the improved
upper bound B ′ is attained, hence that Sy(p) is a polynomial algebra over C.
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9 The Eigenvalues of ad h

Here we give the eigenvalues of adh on gT . Indeed by Theorem 22 these eigenvalues
plus one are the degrees of a set of algebraically independent homogeneous
generators of the Poisson semicentre Sy(p).

Lemma 24 The eigenvalues of ad h on gT are :

s + 4i − 1 = h(ε2i−1 − ε2i ) for all i ∈ N, 1 ≤ i ≤ [s/4].
3s − 4i + 1 = h(ε2i−1 − ε2i ) for all i ∈ N, [s/4] + 1 ≤ i ≤ s/2− 1.
s/2+ 1 = h(εs−1 − εs).
s/2− 1 = h(εs−1 + εs).
s + 1 = h(εs−1 − εs+1).
s + 4j − 1 = h(−εs+2j−1 + εs+2j ), for all j ∈ N, 1 ≤ j ≤ [(n− s − 1)/2].
s + 4j + 1 = h(εs+2j − εs+2j+1), for all j ∈ N, 1 ≤ j ≤ [(n− s − 2)/2].
2n− s − 1 =

{
h(−εn−1 + εn) if n even

h(εn−1 − εn) if n odd

In particular we have that s+2k−1 is an eigenvalue of ad h on gT , for all k ∈ N,
1 ≤ k ≤ n− s.
Proof Follows directly from the expansion of h given in the proof of Theorem 20.

��
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1 Introduction

In this paper we study Dynkin gradings on simple Lie algebras arising from
nilpotent elements. Specifically, we investigate Abelian subalgebras which are
degree 1 homogeneous with respect to these gradings.

The study of gradings associated to nilpotent elements of simple Lie algebras is
important since the finite and affine classical and quantum W-algebras are defined
using these gradings. In order to study integrable systems associated to these W-
algebras, it is useful to have their free field realizations. One of the ways to construct
them is to use the generalized Miura map [2, 4]. This construction can be further
improved by choosing an Abelian subalgebra in the term g1 of the grading. That
is why the description of such subalgebras, especially those having the maximal
possible dimension 1

2 dim g1, is important.
We show that for each odd nilpotent orbit there always exists a canonically

associated “strictly odd” nilpotent orbit, which allows us to reduce our investigations
to the latter case. (Strictly odd means that all Dynkin labels are either 0 or 1.) The
rest of the paper is devoted to the investigation of maximal Abelian subalgebras in
g1 for strictly odd nilpotent orbits in simple Lie algebras. For algebras of exceptional
type we provide tables with largest possible dimensions of such subalgebras in each
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case. For algebras of classical type, we find expressions for all possible maximal
dimensions of Abelian subalgebras in g1, and, based on that, characterize those
nilpotent orbits for which there exists such subalgebra of half the dimension of g1.

2 Recollections

Let us recall the nomenclature for nilpotent elements in a semisimple Lie algebra g.
Given a nilpotent element e, one chooses an sl2-triple (e, h, f ) for it, that is,

another nilpotent element f such that [e, f ] = h is semisimple and the identities
[h, e] = 2e, [h, f ] = −2f hold (Jacobson-Morozov theorem; see, e.g., [1]). The
Dynkin grading is the eigenspace decomposition for adh:

g =
⊕

j∈Z
gj .

Thus, a choice of a nilpotent element e defines a combinatorial object which
uniquely describes the orbit of e. It is the weighted Dynkin diagram corresponding
to e, which is the Dynkin diagram of g with numbers assigned to each node. These
numbers are the degrees αi(h) of simple root vectors ei with respect to the choice of
a Cartan and a Borel subalgebra in such a way that h (resp. e) becomes an element of
the corresponding Cartan (resp. Borel) subalgebra. The weighted Dynkin diagrams
satisfy certain restrictions—for example, the weights can only be equal to 0, 1 or 2;
moreover, if g is simple of type A, then the weights are symmetric with respect to
the center of the diagram, while for types B, C, or D there is no weight 1 occurring
to the left of 2.

A nilpotent element is called even if there are no 1’s in its weighted Dynkin
diagram, odd if it is not even, and strictly odd if there are no 2’s.

It is clear that for even nilpotent elements the question about Abelian subspaces
in g1 is trivial since g1 is zero.

We will also need the following fact from [3]:

Proposition 2.1 The degree 1 part g1 of g with respect to the grading induced by a
nilpotent element e ∈ g is generated as a g0-module by those simple root vectors of
g which have weight 1 in the weighted Dynkin diagram corresponding to e. ��

If g is a simple Lie algebra of classical type, one can assign to e another
combinatorial object—a partition λn � λn−1 � . . . which records dimensions
of irreducible representations of sl2 into which the standard representation of g
decomposes as a module over its subalgebra (e, h, f ). Alternatively, the partition
consists of sizes of Jordan blocks in the Jordan decomposition of e as an operator
acting on the standard representation of g. The partitions are restricted in a certain
way, according to the type of g. For type A one may have arbitrary partitions. For
types B and D, all even parts must have even multiplicity, while for type C all
odd parts must have even multiplicity. These conditions are sufficient as well as
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necessary, that is, any partition satisfying these conditions corresponds to a nilpotent
orbit in a simple Lie algebra of the respective classical type.

Let us recall how one calculates the weighted Dynkin diagram of a nilpotent
element defined by a partition λ = (λn � λn−1 � . . .) (cf. [6]).

Each element λk of the partition λ represents a copy of the λk-dimensional
irreducible representation of sl2, with eigenvalues of h equal to

1− λk, 3− λk, . . . , λk − 3, λk − 1.

To obtain the weighted Dynkin diagram one collects those eigenvalues for each λk ,
arranges them in decreasing order, and takes consecutive differences.

For example, take the partition 8, 6, 3, 3, 2, 1, 1. This gives the following eigen-
values of h:

−7 −5 −3 −1 1 3 5 7
−5 −3 −1 1 3 5

−2 0 2
−2 0 2

−1 1
0
0

Arranging all numbers from this table in the decreasing order gives

7 5 5 3 3 2 2 1 1 1 0 0 0 0 −1 −1 −1 −2 −2 −3 −3 −5 −5 −7.

Taking the consecutive differences then gives

2 0 2 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 2 0 2

which is already the weighted Dynkin diagram of the nilpotent in case of type A.
For the types B, C, D one has to leave only the left half of the obtained sequence

(which obviously is centrally symmetric); more precisely, for an algebra of rank
r , the first r − 1 nodes of the weighted Dynkin diagram are as stated, while the
rightmost node is defined in a specific way, depending on the type. We skip this
part, as it will not play any rôle for us; details can be found in, e.g., [1, Section 5.3].

For example, the same partition 8, 6, 3, 3, 2, 1, 1 also encodes a nilpotent orbit
in a simple Lie algebra of type C, since all of its odd parts come with even
multiplicities. Then, the weighted Dynkin diagram of this nilpotent is

2 0 2 0 1 0 1 0 0 1 0 0.

It is easy to see from the above procedure that the resulting weighted Dynkin
diagram begins with certain sequence of 0’s and 2’s; if the largest part of the partition
is λn with multiplicity mn, and the parts of the same parity following it are λn−1
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with multiplicitymn−1, λn−2 with multiplicitymn−2, . . . , λn−k+1 with multiplicity
mn−k+1, while the next part λn−k has the opposite parity, then the first 1 appears at
the (kmn + (k − 1)mn−1 + . . .+ 2mn−k+2 +mn−k+1)-st place. For the type A the
picture is symmetric, so one has the weights 2 and 0 at both ends of the diagram,
and the weights 1 and 0 in the middle, while for the types B, C, or D the sequence
of weights starts with 0 and 2 followed by a sequence of weights 0 and 1, without
any further 2’s.

According to the above procedure for assigning to a partition a weighted Dynkin
diagram, it is easy to see the following

Proposition 2.2 A nilpotent element in a simple Lie algebra of classical type is
even iff all the parts of the corresponding partition are of the same parity; it is odd
iff there are some parts with different parities, and strictly odd iff the largest part
and the next largest part differ by 1. ��

3 Important Reduction

Let V and U be finite-dimensional modules over a reductive Lie algebra g and let
V ⊗ V → U be a g-module homomorphism. We see this homomorphism as a
g-equivariant algebra structure on V with values in U .

Proposition 3.1 Suppose that there exists an Abelian subalgebra of dimension d
of the algebra V . Then there exists an Abelian subalgebra of the algebra V of
dimension d, spanned by weight vectors of V .

Proof (Proposed by the Referee) It follows from Borel’s fixed point theorem.
Indeed, the Cartan subgroup acts on the complete variety of d-dimensional Abelian
subalgebras of V , hence has a fixed point. ��

Using this, in what follows we will assume throughout that for a simple Lie
algebra of classical type we are given a basis in the standard representation
consisting of weight vectors corresponding to the weights ±εi , i = 1, . . . , n
and moreover, for the type B, to the zero weight. In the adjoint representation,
accordingly, we will have a basis corresponding to ± εi ± εj , i �= j (accounting
for tensor products of basis vectors of the standard representation corresponding
to ±εi and to ±εj ) and moreover, for the type B only, those corresponding to
±εi (accounting for tensor product of a basis vector corresponding to ±εi and
that corresponding to the zero weight) and, for C only, corresponding to ±2εi
(accounting for the tensor product of a basis vector of the standard representation
corresponding to ±εi with itself), i = 1, . . . , n.

Proposition 3.2 For any weighted Dynkin diagram corresponding to a nilpotent
element e in a simple Lie algebra g, consider a subdiagram obtained as a result of
erasing all nodes with weight 2. Consider the resulting subdiagram together with
the remaining weights. Then all connected components of this subdiagram, except
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possibly one of them, have all weights equal to zero. Moreover, this one component
(if it exists) is a weighted Dynkin diagram of some strictly odd nilpotent orbit in the
diagram subalgebra g̃ ⊆ g of the type determined by the shape of the component.

Proof For algebras of classical type, this is proved in Lemma 4.6 below. For an
algebra of type G2 this is clear as all nilpotent elements in it are either even or strictly
odd. As for the exceptional Lie algebras of types E or F, the assertion can be seen
to be true directly from looking at the Tables F4o, E6o, E7o, E8o given in the last
section. ��
Corollary 3.3 For any odd nilpotent element e in a simple Lie algebra g there exists
a simple diagram subalgebra g̃ ⊆ g and a strictly odd nilpotent element ẽ ∈ g̃ such
that

g1(e) = g̃1(ẽ),

i.e., the degree 1 homogeneous parts for the grading on g induced by e and for the
grading on g̃ induced by ẽ coincide. In particular, these degree 1 homogeneous parts
have the same Abelian subspaces.

Proof Let g̃ be the subalgebra corresponding to the connected component of the
weighted Dynkin diagram of e as described in Proposition 3.2 above. Moreover, let
ẽ be a representative of the orbit corresponding to the weights on this connected
component—it exists by Proposition 3.2.

By construction, this subalgebra contains all simple root vectors of degree 1, and,
moreover, they will be precisely the root vectors of those simple roots of g̃ which
contribute to the degree 1 part for the grading induced by ẽ. From Proposition 2.1
we know that g1(e) is the g0(e)-module generated by these root vectors, while g̃1(ẽ)

is the g̃0(ẽ)-module generated by them.
Now observe that the only removed nodes which connect with an edge to some

node in the remaining connected component have weight 2, so that all simple root
vectors corresponding to removed nodes with weight 0 commute with every simple
root vector in this component.

It follows that the g0(e)-module generated by the root vectors corresponding to
weight 1 nodes is no larger than the g̃0(ẽ)-module generated by them, i. e. g1(e)

coincides with g̃1(ẽ). ��
Definition 3.4 For the orbit of an odd nilpotent element in a simple Lie algebra g,
call its strictly odd reduction the nilpotent orbit in the simple Lie algebra g̃ obtained
as in Corollary 3.3.

Given a nilpotent element e ∈ g as in Proposition 3.2, one can explicitly construct
a nilpotent element ẽ ∈ g̃ from the orbit corresponding to its strictly odd reduction
in the sense of Definition 3.4 as follows. The nilpotent element e clearly lies in the
degree 2 subspace g2 for the corresponding grading. This subspace is a g0-module
and it decomposes canonically into the direct sum of its submodule [g1, g1] and the
submodule g2(2) generated by the root vectors of g corresponding to the simple
roots of weight 2.
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Proposition 3.5 Given a nilpotent element e, represent it (in a unique way) as a
sum e1+e2 with e1 ∈ [g1, g1] and e2 ∈ g2(2). Then the weighted Dynkin diagram of
e1 in the subalgebra corresponding to the subdiagram described in Proposition 3.2
is given by the weights on that subdiagram.

Proof We have a reductive groupG0 corresponding to g0 acting on g2 = [g1, g1]+
g2(2), with the element e = e1 + e2 having an open orbit in g2. This means that
[g0, e1 + e2] = g2. But this implies that [g0, e1] = [g1, g1] (and similarly for e2).
Hence G0e1 is an open orbit in [g1, g1].

Let us consider an intermediate subalgebra g̃ ⊆ g′ ⊆ g corresponding to
the diagram, obtained by erasing the nodes with weight 2, but leaving all other
nodes together with their weights intact (this diagram can be disconnected).
Proposition 3.2 easily implies that g′ is a direct sum of g̃ and of some simple algebras
of type A. Hence e1, viewed as an element of this direct sum, obviously has zero
summands in all these components of type A.

On the other hand, Proposition 3.2 implies that there exists a (strictly odd)
nilpotent element ẽ in [g1, g1], which has the needed Dynkin diagram. Then,
similarly to e1, the element ẽ can also be seen as a nilpotent element in g′,
having zero components in all remaining type A components of g′. It is then clear
that this nilpotent element will have the weighted Dynkin diagram obtained as
in Proposition 3.2. Moreover, it will have an open G0-orbit in [g1, g1], hence it
coincides with the G0-orbit of e1, so ẽ and e1 have the same weighted Dynkin
diagram when viewed as nilpotent elements in g′. This implies that these elements
have the same weighted Dynkin diagram with respect to g̃, since the latter is
obtained just by throwing out type A components with zero weights only. ��
Remark 3.6 It would be convenient to supplement Corollary 3.3 with an explicit
construction, assigning to an sl2-triple (e, f, h) corresponding to a given nilpotent
orbit in g, an sl2-triple (ẽ, f̃ , h̃) for its strictly odd reduction as in Definition 3.4.
Since g̃ comes with a grading (determined by the weights on the corresponding
subdiagram), the semisimple element h̃ of g̃ is determined by this grading, while
f̃ , which we know to exist by Corollary 3.3, is uniquely determined by ẽ and h̃.
Thus having an explicit construction of f̃ would provide an alternative proof of
Corollary 3.3 that would not require case-by-case analysis of the exceptional types.
One possibility that comes to mind is to produce f̃ from f in the same way as
we produced ẽ from e in Proposition 3.5—that is, take f̃ = f1 where f = f1 +
f2 is the unique decomposition of f ∈ g−2 into a sum of f1 ∈ [g−1, g−1] and
f2 ∈ g−2(2), the latter being the g0-submodule of g−2 generated by the root vectors
corresponding to negatives of the simple roots with weights 2 on the initial weighted
Dynkin diagram. However, as the following example shows, this does not give the
correct value of f̃ in general.

Example 3.7 For g of type D6, consider the nilpotent orbit corresponding to the

weighted Dynkin diagram 20101
1 (and to the partition 5, 3, 2, 2). The following

sum of positive root vectors
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e := e11000
0
+ e01111

0
+ e00111

0
+ e00110

1
+ e00011

1

where the subscripts denote the linear combinations of simple roots that give the
corresponding positive roots, yields a representative of this orbit. The corresponding
f in the sl2-triple for e is the following combination of negative root vectors:

f := 2f10000
0
+ 4f11000

0
+ 2f01111

0
− 2f01110

1
+ 2f00111

0
+ 4f00110

1
+ f00011

1
,

where the subscripts are linear combinations of negative simple roots. Thus h =
[e, f ] determines the grading corresponding to the above weighted Dynkin diagram.
It is straightforward to check that in the degree 2 subspace g2, root vectors
corresponding to the combinations 10000

0 and 11000
0 of simple roots span the g0-

submodule g2(2) ⊆ g2 generated by the root vector of 10000
0, i. e. of the simple root

with weight 2, while the remaining positive root vectors from g2 lie in [g1, g1]. Thus,
according to Proposition 3.5, a strictly odd nilpotent element ẽ = e1 in the diagram
subalgebra g̃ of type D5 corresponding to the subdiagram obtained by omitting the
node with weight 2 is obtained by omitting in the sum for e the leftmost summand
(the one that lies in g2(2)). Thus,

ẽ = e01111
0
+ e00111

0
+ e00110

1
+ e00011

1
.

Now, if we try to choose for the companion of ẽ in the sl2-triple the element f1
obtained in the same way from f , i. e. by omitting in the sum for f the summands
that lie in g−2(2), we obtain

f1 = 2f01111
0
− 2f01110

1
+ 2f00111

0
+ 4f00110

1
+ f00011

1
.

However, it turns out that [e1, f1] is not the semisimple element determining the
grading of g̃. As a matter of fact, this element is not semisimple, rather it has form

[e1, f1] = h′ − e01000
0

with h′ in the Cartan subalgebra of g̃. A correct f̃ (the one with [ẽ, f̃ ] = h̃ an
element in the Cartan subalgebra of g̃ which gives the correct grading of g̃) is

f̃ = 2f 01111
0− 2f 01110

1+ 2f 00110
1+ f 00011

1

and it is thus not obtained from f by projecting it to [g−1, g−1] or in any other
obvious way.

Let us add that there are also many examples (even for the algebras of type A)
when the bracket of the projections [e1, f1] of e and f is semisimple but does not
induce the required grading on g̃.
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4 Maximizing Abelian Subspaces

We are interested in Abelian subspaces of g1. First of all, one has the following
well-known fact.

Proposition 4.1 Dimension of g1 is even, and the largest possible dimension of an
Abelian subspace in g1 is at most 1

2 dim g1.

Proof Let e be an element of the orbit, and choose an sl2-triple (e, h, f )with e ∈ g2,
and h inducing the grading. Then one may define a bilinear form on g1 via

(x, y)f := 〈f, [x, y]〉,

where 〈−,−〉 is the Killing form. It is well known that the skew-symmetric form
(−,−)f is nondegenerate (since ad f : g1 → g−1 is an isomorphism), so that
dimension of g1 is indeed even. Moreover any commuting elements of g1 are
orthogonal with respect to this form. Since such a form does not possess isotropic
subspaces of more than half dimension of the space, we obtain that there are no
Abelian subspaces of more than half dimension of g1. ��
Remark 4.2 It is known, more generally, that any homogeneous part g2i−1 of odd
degree possesses a nondegenerate skew-symmetric form—see [5, Proposition 1.2].
Thus, each dim g2i−1 is even, too.

We now consider the Abelian subalgebras in g1, separately for the simple
algebras of classical types (right now) and for the algebras of exceptional types
(in Sect. 5).

We now consider the simple algebras of classical types. For the type A, it has
been proved in [7] that a half-dimensional Abelian subspace in g1 exists for any
nilpotent orbit.

The central result of this section is the following characterization, in terms of
the associated partitions, of those strictly odd nilpotent orbits in types B, C or D
admitting an Abelian subspace of half the dimension in g1. We will then deduce
the general (not necessarily strictly odd) case, using strictly odd reduction as in
Definition 3.4.

Theorem 4.3 Given a strictly odd nilpotent element in a simple Lie algebra g of
type B, C, or D, there is an Abelian subspace of half dimension in g1 if and only
if the partition corresponding to the nilpotent element satisfies one of the following
conditions:

• the largest part μ of the partition is even and there are no other even parts;
moreover if g is of type B then μ has multiplicity 2.

• the largest part μ of the partition is odd, and either there are no other odd parts,
or g is not of type C, and the only other parts are μ− 1 with multiplicity 2 and 1
(with any multiplicity).
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In other words, Abelian subspaces of half dimension in g1 occur precisely for those
strictly odd nilpotent elements corresponding to the partitions of the following kind:

type C : [12ν1 32ν3 · · · (2k − 1)2ν2k−1 (2k)ν
]
(ν2k−1ν �= 0),

[
2ν2 4ν4 · · · (2k)ν2k (2k + 1)2ν

]
(ν2kν �= 0);

type B or D : [22ν2 42ν4 · · · (2k)2ν2k (2k + 1)ν
]

(ν2kν �= 0),
[
1ν1 (2k)2(2k + 1)ν

]
(ν2kν �= 0);

type B : [1ν1 3ν3 · · · (2k − 1)ν2k−1 (2k)2
]

(ν2k−1 �= 0),

type D : [1ν1 3ν3 · · · (2k − 1)ν2k−1 (2k)2ν
]

(ν2k−1ν �= 0).

Proof It will be convenient to introduce the following notations: for a partition as
above, let mk be the multiplicity of the number k in it. Moreover let Sk be the h-
eigensubspace with eigenvalue k in the standard representation, and let sk denote
dimension of this subspace, i.e. multiplicity of the eigenvalue k for h.

As recalled in Sect. 1 above, the adjoint representation can be identified with the
symmetric square of the standard one for type C, and with its exterior square for
types B and D.

Because of this, clearly the degree 1 part of the adjoint representation is the direct
sum of spaces of the form S∗k ⊗ Sl with l − k = 1, k � 0, and

dim g1 = s0s1 + s1s2 + . . .

Now, from the correspondence described in Sect. 2, one has

s0 = m1 +m3 +m5 + . . .
s1 = m2 +m4 +m6 + . . .
s2 = m3 +m5 +m7 + . . .
s3 = m4 +m6 +m8 + . . .
. . .

sμ−4 = mμ−3 +mμ−1

sμ−3 = mμ−2 +mμ
sμ−2 = mμ−1

sμ−1 = mμ

(1)

Dimension of the subspace g1 of grading 1 with respect to the corresponding
sl2-triple is thus given by

s0s1 + s1s2 + s2s3 + s3s4 + . . . =
∑

i,j>0

imimi+2j−1

= m1m2 + 2m2m3 +m1m4 + 3m3m4 + 2m2m5 + . . .
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Given an Abelian subspace in g1, we may assume, using Proposition 3.1, that it
has a basis consisting of root vectors. In particular, each of our basis vectors belongs
to one of the direct summands S∗k ⊗ Sk+1.

Note that the elements of S∗k−1 ⊗ Sk commute with the elements of S∗l ⊗ Sl+1
for l > k; whereas, when l = k, we obtain a non-commuting pair as soon as our
basis contains an element of the form x ⊗ y ∈ S∗k−1 ⊗ Sk and y′ ⊗ z ∈ S∗k ⊗ Sk+1
with y and y′ mutually dual basis elements. We are thus forced to choose non-
intersecting subsets Xk , Yk in the weight vector bases of Sk and include in the basis
of the Abelian subspace only those x ⊗ y which satisfy x ∈ Xk−1 and y ∈ Yk . This
does not concern k = μ − 1, where μ − 1 is the maximal occurring eigenvalue of
h (μ, as above, is the largest part of the corresponding partition): in Sμ−1 we may
choose arbitrary subset of the basis without affecting Abelianness; and since we are
interested in maximal Abelian subspaces, we choose the whole basis of Sμ−1.

Moreover, any such choice of non-intersecting subsetsXk , Yk of bases of Sk gives
indeed an Abelian subspace, and we may further assume that Xk ∪ Yk is the whole
basis, since otherwise our Abelian subspace would not be maximal.

The case k = 0 is special, and depends on the type considered.
Namely, it may happen that two basis vectors, both from S∗0 ⊗ S1, do not

commute. Two basis elements of this subspace, being the tensor products of basis
vectors corresponding to±ε(0)i +ε(1)j and±ε(0)k +ε(1)l respectively, will commute if

and only if the sum±ε(0)i + ε(1)j ± ε(0)k + ε(1)l is not a root. This implies that the root
vector basis of an Abelian subspace in g1 cannot contain root vectors corresponding
to both ±ε(0)i + ε(1)j and ∓ε(0)i + ε(1)k for j �= k (since the sum of these is the root

ε
(1)
j + ε(1)k ).

This is the only restriction on S∗0⊗S1 for type D. For type C, there is an additional
restriction that an Abelian subspace of g1 cannot contain root vectors corresponding
to both ±ε(0)i + ε(1)j and ∓ε(0)i + ε(1)j (since the sum of these is the root 2ε(1)j ). For
type B, an additional restriction is that an Abelian subspace of g1 cannot contain
root vectors corresponding to both (0+)ε(1)j and (0+)ε(1)k for j �= k (since the sum

of these is the root ε(1)j + ε(1)k ).
It follows that to obtain a maximal Abelian subspace of g1, in addition to splitting

the weight vector basis of S1 into nonintersecting subsets (X1 and its complement
Y1), for any weights ε(1)j and ε(1)k corresponding to a weight basis vector in X1 we

have to pick in S∗0⊗S1 the root basis elements corresponding either only to ε(0)i +ε(1)j
and ε(0)i + ε(1)k or only to −ε(0)i + ε(1)j and −ε(0)i + ε(1)k for all possible i, but not
both. Thus the maximal possible number of basis vectors from S∗0 ⊗ S1 which we
may include in an Abelian subspace of g1 is either

[
s0
2

]
x1 (if we choose either only

ε
(0)
i + ε(1)j or only −ε(0)i + ε(1)j for all possible i and j ) or s0, provided we are not in

type C and moreover X1 consists of a single element (corresponding to some ε(1)j ,

and we choose root basis vectors corresponding to ±ε(0)i + ε(1)j for all possible i).
In addition, if we are in type B, we may add one more root basis vector v0⊗v1 with
v0 a weight basis vector with zero weight and v1 some weight basis vector from X1.
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Thus, we have the following possibilities for the maximal dimension of the piece
of an Abelian subspace corresponding to S∗0 ⊗ S1:

B C D

x1 = 0 0 0 0

x1 = 1 s0
s0
2 s0

x1 > 1 s0−1
2 x1 + 1 s0

2 x1
s0
2 x1

This results in the following possibilities for the maximal dimension of an
Abelian subspace in g1:

s0−1
2 x1 + 1+ (s1 − x1)x2 + (s2 − x2)x3 + . . .+ (sμ−3 − xμ−3)xμ−2 + (sμ−2 − xμ−2)sμ−1

(for type B);
s0
2 x1 + (s1 − x1)x2 + (s2 − x2)x3 + . . .+ (sμ−3 − xμ−3)xμ−2 + (sμ−2 − xμ−2)sμ−1

(for type C or D);

s0 + (s1 − 1)x2 + (s2 − x2)x3 + . . .+ (sμ−3 − xμ−3)xμ−2 + (sμ−2 − xμ−2)sμ−1

(for type B or D).

(2)

where μ is the largest part of the partition.
We thus want to maximize each of these quantities for 0 � xk � sk , k =

1, . . . , μ − 2. Note that each of them is linear in all of the xk separately, hence
any possible maxima are attained when every xk is either 0 or sk . In fact, more is
true:

Lemma 4.4 An Abelian subspace of maximal possible dimension in g1 can be
obtained either with x2j−1 = 0, x2j = s2j or with x2j−1 = s2j−1, x2j = 0 for
all j .

Proof Looking at the subsum

. . .+ (sk−2 − xk−2)xk−1 + (sk−1 − xk−1)xk + (sk − xk)xk+1 + . . .

determining dimension of the Abelian subspace, it is easy to see that each of the
following changes:

xk−1 = 0, xk = 0 	→ xk−1 = 0, xk = sk,
xk−1 = sk−1, xk = sk 	→ xk−1 = sk−1, xk = 0

does not decrease the dimension of the Abelian subspace.
Indeed, these changes do not affect any other summands except those in the above

subsum. The first change transforms

. . .+ (sk−2 − xk−2)0+ (sk−1 − 0)0+ (sk − 0)xk+1 + . . .
	→ . . .+ (sk−2 − xk−2)0+ (sk−1 − 0)sk + 0xk+1 + . . . ,



122 A. Elashvili et al.

i.e., changes the sum by the amount equal to the change from skxk+1 to sk−1sk . But
xk+1 � sk+1, and sk+1 � sk−1 by (1), so that indeed the sum does not decrease.

Similarly, the second change transforms

. . .+ (sk−2 − xk−2)sk−1 + (sk−1 − sk−1)sk + (sk − sk)xk+1 + . . .
	→ . . .+ (sk−2 − xk−2)sk−1 + (sk−1 − sk−1)0+ (sk − 0)xk+1 + . . . ,

i.e., changes the sum by the amount equal to the change from 0 to skxk+1, which is
obviously a nondecreasing change.

Now using the above changes we may arrive at one of the needed choices. For
simplicity, let us encode a given choice of x’s by a sequence of zeroes and ones (at
the kth place of the sequence stands zero if xk = 0 and one if xk = sk). We are
allowed to perform “local transformations” of the kind · · · 00 · · · 	→ · · · 01 · · · and
· · · 11 · · · 	→ · · · 10 · · · . Using one of these transformations, we can always shift the
place of the leftmost occurrence of two consecutive identical symbols to the right:
say, if this leftmost occurrence is · · · 11 · · · we change it to · · · 10 · · · and if it is
· · · 00 · · · , we change it to · · · 01 · · · , and in the worst case the place of the leftmost
occurrence of consecutive identical symbols still shifts to the right by at least one
position. Thus, if we keep applying the appropriate transformations to the leftmost
occurrence of consecutive identical symbols, we inevitably arrive either at 10101 . . .
or at 01010 . . . . ��

Applying this in (2), we obtain that the maximal possible dimension of an
Abelian subspace in g1 can only be equal to one of the following six expressions:

s0−1
2 s1 + 1+ s2s3 + s4s5 + . . . s1s2 + s3s4 + s5s6 + . . . (for type B)

s0
2 s1 + s2s3 + s4s5 + . . . s1s2 + s3s4 + s5s6 + . . . (for types C, D)
s0 + s2s3 + s4s5 + . . . s0 + (s1 − 1)s2 + s3s4 + s5s6 + . . . (for types B, D)

To find out whether there is an Abelian subspace of half the dimension in g1 is thus
equivalent to finding out whether subtracting from the dimension of g1, i. e. from
s0s1 + s1s2 + . . ., one of these sums doubled gives zero, i. e. whether one of the
sums

s0s1 + s1s2 + . . . −2( s0−1
2 s1 + 1+ s2s3 + s4s5 + . . .) s0s1 + s1s2 + . . . −2(s1s2 + s3s4 + s5s6 + . . .) (B)

s0s1 + s1s2 + . . . −2( s02 s1 + s2s3 + s4s5 + . . .) s0s1 + s1s2 + . . . −2(s1s2 + s3s4 + s5s6 + . . .) (C, D)

s0s1 + s1s2 + . . . −2(s0 + s2s3 + s4s5 + . . .) s0s1 + s1s2 + . . . −2(s0 + (s1 − 1)s2 + s3s4 + s5s6 + . . .) (B, D)

is zero.
Simplifying, we obtain respectively

s1 − 2+ s1s2 − s2s3 + s3s4 − s4s5 + s5s6 − . . . s0s1 − s1s2 + s2s3 − s3s4 + s4s5 − . . . (B)

s1s2 − s2s3 + s3s4 − s4s5 + . . . s0s1 − s1s2 + s2s3 − s3s4 + . . . (C, D)

−2s0 + s0s1+ s1s2 − s2s3 + s3s4 − . . . −2s0 + 2s2+ s0s1 − s1s2 + s2s3 − s3s4 + . . . (B, D)
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Rewriting this further as

s1 − 2+ (s1 − s3)s2 + (s3 − s5)s4 + (s5 − s7)s6 + . . . (s0 − s2)s1+ (s2 − s4)s3 + (s4 − s6)s5 + . . . (B)

(s1 − s3)s2 + (s3 − s5)s4 + (s5 − s7)s6 + . . . (s0 − s2)s1+ (s2 − s4)s3 + (s4 − s6)s5 + . . . (C, D)

s0(s1 − 2)+ (s1 − s3)s2 + (s3 − s5)s4 + . . . (s0 − s2)(s1 − 2)+ (s2 − s4)s3 + (s4 − s6)s5 + . . . (B, D)

and taking (1) into account this can be rewritten as

s1 − 2+m2s2 +m4s4 +m6s6 + . . . m1s1+m3s3 +m5s5 + . . . (B)
m2s2 +m4s4 +m6s6 + . . . m1s1+m3s3 +m5s5 + . . . (C, D)

s0(s1 − 2)+m2s2 +m4s4 + . . . m1(s1 − 2)+m3s3 +m5s5 + . . . (B, D)

Let us now assume that our nilpotent element is strictly odd, which, in terms
of the corresponding partition, means that mμ−1 > 0 (here, as before, μ is the
largest nonzero part of the partition). This then implies that all multiplicities si are
nonzero. Thus, to obtain an Abelian subspace of half the dimension of g1, we have
the following possibilities:

s1 = 2 and m2k = 0 for 2k < μ m2k−1 = 0 for 2k − 1 < μ (B)

m2k = 0 for 2k < μ m2k−1 = 0 for 2k − 1 < μ (C, D)

s1 = 2 and m2k = 0 for 2k < μ m1 = 0 or s1 = 2, and m2k−1 = 0 for 1 < 2k − 1 < μ (B, D)

We now make the following observations, according to the parity of μ:

• if μ is odd, then the cases in the first column are not realizable, since they require
that the partition has no even parts, while, by strict oddity, both mμ−1 and mμ
must be nonzero;

• if μ is even, the cases in the second column are not realizable by exactly the same
reason.

Taking this into account, we are left with the following cases: for μ even,

m2 = m4 = . . . = mμ−2 = 0, mμ−1 > 0, mμ = 2 — (B)
m2 = m4 = . . . = mμ−2 = 0, mμ−1 > 0, mμ > 0 — (C, D)
m2 = m4 = . . . = mμ−2 = 0, mμ−1 > 0, mμ = 2 — (B, D)

and for μ odd,

— m1 = m3 = . . . = mμ−2 = 0, mμ−1 > 0, mμ > 0 (B)
— m1 = m3 = . . . = mμ−2 = 0, mμ−1 > 0, mμ > 0 (C, D)
— m3 = m5 = . . . = mμ−2 = 0, mμ > 0 and either m1 = 0 (B, D)

or m2 = m4 = . . . = mμ−3 = 0 and mμ−1 = 2
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Let us also observe the following:

• for μ even, the first case is subsumed by the third one;
• for μ even, the third case is subsumed by the second one for type D;
• for μ odd, the subcase m1 = 0 of the third case is subsumed by the first one for

type B, and by the second one for type D.

Taking all of the above into account gives the partitions as described. ��
Remark 4.5 Another way to formulate the theorem is the following. In case of type
C, there is exactly one parity change along the partition, while in cases B or D there
might be either one or two parity changes; but if there are two parity changes, then
there must be only parts equal to 1, μ − 1, μ and, moreover, μ − 1 must have
multiplicity 2. Moreover, for the type B there is one more restriction in case there
is only one parity change: namely, if the largest part is even, its multiplicity must
be 2.

We now turn to the not necessarily strictly odd nilpotent orbits, using strictly
odd reduction from Definition 3.4. For classical types, its reformulation in terms of
partitions is as follows.

Lemma 4.6 Let g be a simple Lie algebra of classical type, and let e be a nilpotent
element of g corresponding to the partition [. . . kmk�m� . . . nmn ], with . . . < k <

� < . . . < n such that k and � are of opposite parity while all the larger parts j
(those with � � j � n) are of the same parity.

Then the partition [. . . kmk (k + 1)m�+...+mn ] defines a strictly odd nilpotent
element in a Lie algebra of the same type, and corresponds to the strictly odd
reduction of e, as defined in Definition 3.4.

Proof Let us begin by noting that the modified partition is indeed suitable for the
same type: if this requires that all parts of the same parity as k have even multiplicity,
then we have not touched them; while if this requires that all parts of the same parity
as k + 1 are even, then � and all larger parts are of the same parity as k + 1, so each
of the multiplicities m�, . . . , mn was even, hence their sum is even too, and we
indeed stay with the same type. Moreover, the corresponding nilpotent element is
strictly odd since its largest parts are k and k + 1.

Let us now reformulate the passage from the original partition to the modified
partition in terms of weighted Dynkin diagrams. We get the following procedure:
one removes all nodes (and weights) from left to right until no more 2’s are left; for
the types B, C, D that’s all that has to be done; for the type A one has to similarly
remove all 2’s on the right.

This procedure precisely means leaving the connected component of the
weighted Dynkin diagram that contains nonzero weights, as described in Propo-
sition 3.2 above, so that we indeed obtain the strictly odd reduction of e. ��
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Corollary 4.7 Given a nilpotent element in a simple Lie algebra g of classical
type B, C, or D, there is an Abelian subspace of half dimension in g1 if and
only if the partition corresponding to the nilpotent element satisfies the following
conditions:

type C: there is no more than one parity change along the partition;
types B and D: there are no more than two parity changes
and, if there is at least one parity change, then

• if the largest part of the partition is even, then there is only one parity change, and
in the B case moreover it must be the unique even part and must have multiplicity
2;

• if there are two parity changes, then the largest part of the partition is odd, there
is a unique even part, it has multiplicity 2, and all smaller parts are equal to 1.

Thus, Abelian subspaces of half dimension in g1 occur precisely for nilpotent
elements corresponding to partitions of one of the following kind (with k � �):

any type : [· · · (2k − 2)ν2k−2(2k)ν2k (2�+ 1)ν2�+1(2�+ 3)ν2�+3 · · · ] ;
type C or D : [· · · (2k − 3)ν2k−3(2k − 1)ν2k−1(2�)ν2� (2�+ 2)ν2�+2 · · · ] ;
type B or D : [1ν1(2k)2(2�+ 1)ν2�+1(2�+ 3)ν2�+3 · · · ] ;
type B : [· · · (2k − 3)ν2k−3(2k − 1)ν2k−1(2�)2

]
,

Proof This follows from Lemma 4.6. Indeed the latter shows that g1(e) for a
nilpotent element e corresponding to some partition has an Abelian subspace of half
dimension if and only if g̃1(ẽ), as described in Corollary 3.3, has such a subspace;
and this happens if and only if the partition modified as in Lemma 4.6 satisfies
conditions of Theorem 4.3.

It remains to note that a partition is of the indicated kind if and only if the partition
obtained from it as in Lemma 4.6 satisfies conditions of Theorem 4.3. ��

5 Computations

It remains to find out which of the strictly odd nilpotent orbits in simple Lie algebras
of exceptional type have an Abelian subspace of half dimension in degree 1.

For that, we used the computer algebra system GAP. In the package SLA by
Willem A. de Graaf included in this system one can compute with nilpotent orbits
of arbitrary semisimple Lie algebras. In particular, one obtains canonical bases
consisting of root vectors for the homogeneous subspaces of all degrees in the
grading of the Lie algebra induced by a nilpotent element.
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Using Proposition 3.1, we can determine Abelian subspaces in g1 as follows. Let
B be the basis of g1 consisting of positive root vectors. Let us construct a graph
with the set of vertices B, where two vertices eα and eβ are connected with an edge
if and only if they do not commute, that is, if and only if α + β is a root. Then,
by Proposition 3.1, g1 has an Abelian subspace of dimension d if and only if the
basis consisting of root vectors has a subset of cardinality d consisting of pairwise
commuting root vectors.

Clearly, this is equivalent to the corresponding graph having an independent set
of cardinality d—that is, a subset consisting of d vertices such that no two of these
vertices are connected by an edge. Hence, describing all possible dimensions of
Abelian subspaces in g1 reduces to listing all possible cardinalities of independent
subsets in the corresponding graph.

There is another package, GRAPE by Leonard H. Soicher in GAP, which can be
used to list all independent sets in a finite graph. Using this package, we determine
independent sets of maximal possible cardinality in the graph corresponding to a
nilpotent orbit.

The results are given in the tables below. A GAP code for computing maximal
dimensions of Abelian subspaces in g1 for arbitrary semisimple Lie algebras is
available at [8]. In fact, the program can list all subsets of any given cardinality
of pairwise commuting elements in the root vector basis.

As an illustration, we present below two cases for E6.

Examples 5.1 The nilpotent orbit with the weighted Dynkin diagram
1

1100000011 has
g1 of dimension 14. The corresponding graph with 14 vertices and edges connecting
vertices corresponding to non-commuting root vectors in g1 looks as follows:

This graph has independent sets with 6 vertices, e. g. {2, 5, 8, 9, 12, 14}, but any
subset on more than 6 vertices contains a pair of vertices connected with an edge,
thus for this nilpotent orbit maximal dimension of an Abelian subspace is equal to 6.
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Another orbit in E6, with the diagram , has g1 of dimension 10
corresponding to the graph

with 10 vertices. It is easy to find in this graph an independent subset with five
elements – e. g. {1, 2, 3, 4, 8}.

Thus, the orbit of the first example has no Abelian subspace of half dimension in
g1, while that of the second example has.

Tables

Table G2s Strictly odd
nilpotent orbits in G2, all with
half-Abelian g1

Name Diagram dim 1

A1 01 4
A1 10 2

Table F4s Strictly odd nilpotent orbits in F4

With half-Abelian 1 Without half-Abelian 1

Name Diagram dim 1 Name Diagram

dim 1 (largest
dimension of an
Abelian subspace)

A1 01 00 14 A1 10 00 8 (2)
A1 + A1 00 01 12 A2 + A1 00 10 6 (2)
C3(a1) 01 10 6 A2 + A1 10 01 8 (3)
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Table E6s Strictly odd nilpotent orbits in E6

With half-Abelian 1 Without half-Abelian 1

Name Diagram dim 1 Name Diagram

dim 1 (largest
dimension of an
Abelian subspace)

A1

1

00000 20 A2 + A1

1

10001 14 (6)

2A1

0

10001 16 2A2 + A1

0

10101 12 (5)

3A1

0

00100 18

A2 + 2A1

0

01010 12

A3 + A1

1

01010 10

A4 + A1

1

11011 8

Table E7s Strictly odd nilpotent orbits in E7

With half-Abelian 1 Without half-Abelian 1

Name Diagram dim 1 Name Diagram

dim 1 (largest
dimension of an
Abelian subspace)

A1

0

100000 32 4A1

1

000001 26 (11)

2A1

0

000010 32 A2 + A1

0

100010 24 (9)

3A1

0

010000 30 2A2 + A1

0

010010 20 (8)

A2 + 2A1

0

001000 24 A3 + 2A1

0

100101 18 (7)

(A3 + A1)
0

101000 18 A4 + A1

0

101010 14 (6)

D4(a1) + A1

1

010001 16

A3 + A2

0

001010 16
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Table E8s Strictly odd nilpotent orbits in E8

With half-Abelian 1 Without half-Abelian 1

Name Diagram dim 1 Name Diagram

dim 1 (largest
dimension of an
Abelian subspace)

A1

0

0000001 56 2A1

0

1000000 64 (22)

3A1

0

0000010 54 4A1

1

0000000 56 (21)

A2 + 3A1

0

0100000 42 A2 + 2A1

0

0000100 48 (16)

A3 + A1

0

0000101 34 A2 + A1

0

1000001 44 (17)

A3 + A2 + A1

0

0010000 30 2A2 + 2A1

0

0001000 40 (16)

A4 + A2 + A1

0

0100100 24 2A2 + A1

0

1000010 36 (16)

E7(a5)

0

0010100 18 A3 + 2A1

0

0100001 36 (15)

A6 + A1

0

1010100 16 A3 + A2

0

1000100 32 (13)

A7

0

1010110 14 D4(a1) + A1

1

0000010 32 (12)

2A3

0

1001000 28 (13)

A4 + 2A1

0

0010001 28 (12)

A4 + A1

0

1000101 26 (10)

A4 + A3

0

0010010 24 (10)

A5 + A1

0

1010001 22 (9)

D5(a1) + A2

0

0100101 22 (8)

D6(a2)

1

0100010 20 (9)

E6(a3) + A1

0

1001010 20 (8)

D7(a2)

0

1010101 16 (7)

Table F4o (Non-strictly)
odd nilpotent orbits in F4, all
with half-Abelian g1

Name Diagram Strictly odd piece
B2 12 00 C3 (2, 14)

C3 21 10 B3 (3, 22)



130 A. Elashvili et al.

Table E6o (Non-strictly)
odd nilpotent orbits in E6, all
with half-Abelian g1

Name Diagram Strictly odd piece

A3

2

10001 A5

A5

1

21012 D4 (3, 22, 1)

D5(a1)

2

11011 A5

Table E7o (Non-strictly) odd nilpotent orbits in E7

With half-Abelian 1 Without half-Abelian 1

Name Diagram Strictly odd piece Name Diagram Strictly odd piece

A3

0

200010 D6 (22, 18) D4 + A1

1

210001 D6 (3, 24, 1)

D5(a1)

0

201010 D6 (32, 22, 12) A5 + A1

0

101012 E6 (2A2 + A1)

A5

0

101020 D5 (3, 22, 13)

D6(a2)

1

010102 E6 (A3 + A1)

D5 + A1

1

210110 D6 (42, 3, 1)

D6(a1)

1

210102 D5 (32, 22)

D6

1

210122 D4 (3, 22, 1)

Table E8o (Non-strictly) odd nilpotent orbits in E8

With half-Abelian 1 Without half-Abelian 1
Name Diagram Strictly odd piece Name Diagram Strictly odd piece

A3

0

11000002 E7 (A1) D4 + A1

1

0000012 E7 (4A1)

D5(a1) + A1

0

0010002 E7 (A2 + 2A1) D5(a1)

0

1000102 E7 (A2 + A1)

A5

0

2000101 D7 (3, 22, 17) D5 + A1

0

1001012 E7 (A3 + 2A1)

D6(a1)

1

0100012 E7 (D4(a1) + A1) E6(a1) + A1

0

1010102 E7 (A4 + A1)

E7(a4)

0

0010102 E7 (A3 + A2) D6

1

2100012 D6 (3, 24, 1)

E7(a3)

0

2010102 D6 (32, 22, 12) E6 + A1

0

1010122 E6 (2A2 + A1)

D7

1

2101101 D7 (5, 42, 1)

E7(a2)

1

0101022 E6 (A3 + A1)

E7(a1)

1

2101022 D5 (32, 22)

E7

1

2101222 D4 (3, 22, 1)
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Abstract We introduce the shifted quantum affine algebras. They map homomor-
phically into the quantized K-theoretic Coulomb branches of 3d N = 4 SUSY
quiver gauge theories. In typeA, they are endowed with a coproduct, and they act on
the equivariant K-theory of parabolic Laumon spaces. In type A1, they are closely
related to the type A open relativistic quantum Toda system.
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1 Introduction

1.1 Summary

The goal of this paper is to initiate the study of shifted quantum affine algebras1

and shifted v-Yangians. They arise as a tool to write down via generators and

1They were introduced by B. Feigin in 2010.
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relations the quantized K-theoretic Coulomb branches of 3d N = 4 SUSY quiver
gauge theories (see [10, Remark 3.9(2)]), similarly to the appearance of shifted
Yangians in the study of the quantized Coulomb branches of 3d N = 4 SUSY
quiver gauge theories [10].2 Similarly to [24], the shifted quantum affine algebras
carry a coproduct, see Sect. 10 for partial results in this direction. The multiplicative
analogue of the construction [4] equips the equivariant K-theory of parabolic
Laumon spaces with an action of the quantized K-theoretic Coulomb branch for
a type A quiver, and hence with an action of a shifted quantum affine algebra of
type A. Similarly to [24], the unframed case of type A1 quiver is closely related to
the open relativistic quantum Toda system of type A.

1.2 Outline of the Paper

• In Sect. 2, we give a construction of the completed phase space of the (quasiclas-
sical) relativistic open Toda system for arbitrary simply-connected semisimple
algebraic groupG via quasihamiltonian and Poisson reductions. It is a direct mul-
tiplicative analogue of the Kazhdan–Kostant construction of the (nonrelativistic)
open Toda integrable system. We want to stress right away that it depends on a
choice of a pair of Coxeter elements in the Weyl group W of G, via a choice of
Steinberg’s cross-section.3 In the case when the two Coxeter elements coincide,
the resulting completed phase space is isomorphic to the universal centralizer ZGG,
see Sect. 2.3. In the case G = SL(n), the universal centralizer is isomorphic to a
natural n-fold cover of the moduli space of centered periodic SU(2)-monopoles
of charge n, see Corollary 2.6.

• The conjectural quantization of the above construction of the completed phase
space of the relativistic open Toda is described in Sect. 3.12. We conjecture
that it is isomorphic to the corresponding spherical symmetric nil-DAHA which
is realized as an equivariant K-theory of a twisted affine Grassmannian, i.e.
as a sort of twisted quantized Coulomb branch (the twist is necessary in the
case of non-simply-laced G). The bulk of Sect. 3 is occupied by the review of
Cherednik’s definition of symmetric nil-DAHA, its residue construction, and its
realization as the equivariant K-theory of a twisted affine flag variety. In the
simply-laced case no twist is required, and the spherical nil-DAHA in question
is isomorphic to the convolution algebra KG(O)�C

×
(GrG) up to some finite

extension. This convolution algebra is defined for arbitrary reductive G. In
case G = GL(n), this convolution algebra is likely to have a presentation
via generators and relations (as a truncated shifted quantum affine algebra of
type A1), see Sect. 9. From this presentation and Proposition 11.21 we obtain a
homomorphism KG(O)�C

×
(GrG) → KL(O)�C

×
(GrL) for any Levi subgroup

2We must admit right away that we were not able to prove the desired presentation of the quantized
Coulomb branch for a single quiver.
3The appearance of Coxeter elements in the construction of relativistic Toda lattice goes back at
least to [60].
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L ⊂ G = GL(n). We conjecture an existence of such a homomorphism
for arbitrary Levi subgroup L in arbitrary reductive group G, but we have
no clue as to a geometric construction of such a homomorphism. It would be
important for a study of equivariant quantum K-theory of the flag variety B of
G. Its analogue for the equivariant Borel-Moore homology convolution algebra
HG(O)�C

×
• (GrG) → HL(O)�C

×
• (GrL) is constructed in [24]. However, the

construction is not geometric; it uses an isomorphism with the quantum open
(nonrelativistic) Toda lattice.

• Recall that for an arbitrary 3d N = 4 SUSY quiver gauge theory of type
ADE, the non-quantized K-theoretic Coulomb branch is identified with a
multiplicative generalized slice in the corresponding affine Grassmannian [10,
Remarks 3.9(2), 3.17]. These multiplicative slices are studied in detail in Sect. 4
(in the unframed case, they were studied in detail in [25]). In particular, they
embed into the loop group G(z), and it is likely that the image coincides
with the space of scattering matrices of singular periodic monopoles [14]. The
multiplication in the loop group gives rise to the multiplication of slices, which
is conjecturally quantized by the coproduct of the corresponding shifted quantum
affine algebras.

• In Sect. 5, we introduce the shifted quantum affine algebras Usc
μ+,μ− and Uad

μ+,μ−
(simply-connected and adjoint versions, respectively) for any simple Lie algebra
g and its two coweights μ+, μ− (these algebras depend only on μ = μ+ + μ−
up to an isomorphism). For μ+ = μ− = 0, they are central extensions of the
standard quantum loop algebra Uv(Lg) and its adjoint version U ad

v (Lg). These
algebras can be viewed as trigonometric versions of the shifted Yangians Yμ,
see [10, 24, 45].

An alternative (but equivalent) definition of Usc
μ+,μ− was suggested to us

by B. Feigin in Spring 2010 in an attempt to generalize the results of [7]
to the K-theoretic setting (which is the subject of Sect. 12 of the present
paper). In this approach, we consider an algebra with the same generators
and defining relations as Uv(Lg) in the new Drinfeld realization with just

one modification: the relation [ei(z), fj (w)] = δij δ(z/w)

vi−v−1
i

(
ψ+i (z)− ψ−i (z)

)
is

replaced by pi(z)[ei(z), fj (w)] = δij δ(z/w)

vi−v−1
i

(
ψ+i (z)− ψ−i (z)

)
for any collection

of rational functions {pi(z)}i∈I (here I parametrizes the set of vertices of the
Dynkin diagram of g). For g = sl2 and μ+ = μ− ∈ −N, the algebra Usc

μ+,μ−
appeared in [18, § 5.2].

We also provide an alternative presentation of the antidominantly shifted
quantum affine algebras with a finite number of generators and defining relations,
see Theorem 5.5 and Appendix A for its proof. We note that this result (and its
proof) also holds for any affine Lie algebra, except for type A(1)1 . In the unshifted
case, more precisely for Uv(Lg), it can be viewed as a v-version of the famous
Levendorskii presentation of the Yangian Y (g), see [47]. Motivated by Guay et al.
[33], we also provide a slight modification of this presentation in Theorem A.3.

• In Sect. 6, we introduce other generators of Uad
μ+,μ− , which can be encoded by the

generating series {A±i (z), B±i (z), C±i (z),D±i (z)}i∈I . We provide a complete list
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of the defining relations between these generators for antidominant μ+, μ− ∈
'− (we use '− to denote the submonoid of the coweight lattice ' spanned by
antidominant coweights), see Theorem 6.6 and Appendix B for its proof. This
should be viewed as a shifted v-version of the corresponding construction for
Yangians of [30]. We note that while some of the relations were established
(without a proof) in loc. cit., the authors did not aim at providing a complete list
of the defining relations. However, a rational analogue of Theorem 6.6 provides
such a list.

We would like to point out that this is one of the few places where it is essential
to work with the adjoint version. In the simplest case, that is of U ad

v (Lsl2), these
generating series coincide with the entries of the matrices T ±(z) from the RTT
realization of U ad

v (Lsl2), see [17] and our discussion in Sect. 11.4.
• In Sect. 7, we construct homomorphisms

�̃
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] −→ Ãv
frac[z±1

1 , . . . , z±1
N ]

from the adjoint version of shifted quantum affine algebras to the
C(v)[z±1

1 , . . . , z±1
N ]-algebras Ãv

frac[z±1
1 , . . . , z±1

N ] of difference operators on
multidimensional tori, see Theorem 7.1 and Appendix C for its proof. Here
λ = (ωi1, . . . , ωiN ) is a sequence of fundamental coweights, such that λ − μ
is a sum of simple coroots with coefficients in N, where λ := ∑N

s=1 ωis . This
result can be viewed as a v-version of the corresponding construction for shifted
Yangians of [10, Theorem B.15], while the unshifted case of it, more precisely
the case of Uv(Lg), appeared (without a proof) in [31]. For g = sl2, N = 0 and
antidominant shift, the above homomorphism made its first appearance in [18,
Section 6].

• In Sect. 8, we consider the quantized K-theoretic Coulomb branch Av in
the particular case of quiver gauge theories of ADE type (a straightforward
generalization of the constructions of [9, 10], with the equivariant Borel-
Moore homology replaced by the equivariant K-theory). There is a natural
embedding z∗(ι∗)−1 : Av ↪→ Ãv[z±1

1 , . . . , z±1
N ]. In Theorem 8.1, we show that

our homomorphism �̃
λ
μ of Sect. 7 factors through the above embedding (with

C[v±1] extended to C(v)), giving rise to a homomorphism

�
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] −→ Av
frac.

This is a v-version of the corresponding result for shifted Yangians of [10,
Theorem B.18].

In Sect. 8.3, we add certain truncation relations to the relations defining
Uad

0,μ[z±1
1 , . . . , z±1

N ] to obtain the truncated shifted quantum affine algebras U
λ
μ

such that the homomorphism �
λ
μ factors through the projection and the same

named homomorphism Uad
0,μ[z±1

1 , . . . , z±1
N ] � U

λ
μ

�
λ
μ−→ Av

frac. We expect that

�
λ
μ : Uλμ→ Av

frac is an isomorphism, see Conjecture 8.9.



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 137

In Sect. 8.4, we define the shifted v-Yangians iY
v
μ[z±1

1 , . . . , z±1
N ] ⊂

Uad
0,μ[z±1

1 , . . . , z±1
N ] and their truncated quotients iY

λ
μ ⊂ U

λ
μ. We conjecture that

�
λ
μ : iY

λ
μ→ Av

frac is an isomorphism, see Conjecture 8.13.

One of our biggest failures is the failure to define the integral forms iY
λ
μ ⊂ iY

λ
μ

and U
λ
μ ⊂ U

λ
μ over C[v±1] ⊂ C(v) that would (at least conjecturally) map

isomorphically onto Av ⊂ Av
frac. Only in the case of g = sl2, making use of

the ABCD-generators of Sect. 6, we are able to introduce the desired integral
form in Sect. 9.1 (see also [29] for the integral forms for g = sln). It is worth
noting that for arbitrary simply-laced g and any i ∈ I , the images under �λμ of
the generators B+i,r and ei,r (resp. C+i,r and fi,r ) are the classes of dual exceptional
collections of vector bundles on the corresponding minuscule Schubert varieties
in the affine Grassmannian, see Remark 8.4.

The desired integral forms iY
λ
μ and U

λ
μ are expected to be quantizations of a

certain cover †Ŵ
λ∗
μ∗ of a multiplicative slice introduced in Sect. 4.6, see Conjec-

ture 8.14. Here ∗ stands for the involution μ 	→ −w0μ of the coweight lattice'.

• In Sect. 9, we prove the surjectivity of the homomorphism �
0
−nα in the simplest

case of g = sl2 and antidominant shifts, see Theorem 9.2. This identifies
the slightly localized and extended quantized K-theoretic Coulomb branch

K
G̃L(n,O)�C̃

×
loc (GrGL(n)) with a quotient of the localized version of the trun-

cated shifted quantum affine algebra U0
−nα,loc (where G̃L(n) and C̃

× stand
for the two-fold covers of GL(n),C×; while the localization is obtained by
inverting 1 − v2m, 1 ≤ m ≤ n). We reduce the proof of the isomorphism

U0
−nα,loc

∼−→K
G̃L(n,O)�C̃

×
loc (GrGL(n)) to a verification of an identity with quan-

tum resultants in U0−nα , see Remarks 9.6, and 9.12. It would be interesting to
describe explicitly a basis of U0

−nα,loc projecting to the “canonical” basis of

K
G̃L(n,O)�C̃

×
loc (GrGL(n)) formed by the classes of irreducible equivariant perverse

coherent sheaves [8].
• In Sect. 10, we discuss generalizations of the classical coproducts on Uv(Lg) to

the shifted setting. We start by considering the simplest case g = sl2. We will
denote Usc

0,bα/2 simply by Usc
0,b (here b ∈ Z and α is the simple positive coroot).

We construct homomorphisms

�b1,b2 : Usc
0,b −→ Usc

0,b1
⊗ Usc

0,b2

for any b1, b2 ∈ Z, which recover the classical Drinfeld-Jimbo coproduct for
b1 = b2 = 0. Our construction is parallel to the one for shifted Yangians
of [24] and proceeds in two steps. First, we define such homomorphisms in the
antidominant case b1, b2 ∈ Z≤0, see Theorem 10.5 and Appendix D for its proof.
The proof is crucially based on the aforementioned alternative presentation of the
antidominantly shifted quantum affine algebras with a finite number of generators
and defining relations of Theorem 5.5. Second, we use the algebra embeddings
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ιn,m1,m2 : Usc
0,n ↪→ Usc

0,n+m1+m2
(here m1,m2 ≤ 0) to reduce the general case to

the antidominant one, see Theorem 10.10 and Appendix F for its proof. We note
that our proof of injectivity of the shift homomorphisms ιn,m1,m2 is based on the
PBW property of the shifted quantum affine algebras of sl2, see Lemma 10.9 and
Theorem E.2 of Appendix E.

In Sects. 10.6 and 10.7, we generalize the aforementioned case of sl2 to the
case of sln (n ≥ 2). The idea is again to treat first the case of antidominant
shifts and then deduce the general case. To achieve the former goal, it is essential
to have explicit formulas for the action of the Drinfeld-Jimbo coproduct on the
generators {ei,−1, fi,1, hi,±1}i∈I of Uv(Lsln). This is the key technical result,
stated in Theorem 10.13 and proved in Appendix G. Once this is established,
it is easy to guess the formulas for the homomorphism �μ1,μ2 : Usc

0,μ1+μ2
→

Usc
0,μ1

⊗ Usc
0,μ2

in the case μ1, μ2 ∈ '− (antidominant), see Theorem 10.16 and
its proof in Appendix H. In Theorem 10.20 we derive the construction of �μ1,μ2

for general μ1, μ2 ∈ ' by utilizing the algebra embeddings ιμ,ν1,ν2 : Usc
0,μ ↪→

Usc
0,μ+ν1+ν2

for μ ∈ ', ν1, ν2 ∈ '−, see Theorem 10.19 and its proof in
Appendix I (the latter is based on the shuffle realization of Uv(Lsln) of [53, 63]).

Motivated by Finkelberg et al. [24], we expect that our construction of
homomorphisms �μ1,μ2 can be generalized to any simply-laced g and its
two coweights μ1, μ2 ∈ '. However, we failed to achieve this due to a
lack of explicit formulas for the Drinfeld-Jimbo coproduct of the generators
{ei,−1, fi,1, hi,±1}i∈I of Uv(Lg) (even for g = sln, the formulas of Theo-
rem 10.13 seem to be new, to our surprise).

Moreover, we expect that this coproduct extends to

�ad
μ1,μ2

: Uad
0,μ+μ2

[z±1
1 , . . . , z±1

N1+N2
] −→ Uad

0,μ1
[z±1

1 , . . . , z±1
N1
] ⊗ Uad

0,μ2
[z±1
N1+1, . . . , z

±1
N1+N2

],

which descends to the same named homomorphism �ad
μ1,μ2

: Uλμ1+μ2
→ U

λ(1)

μ1 ⊗
U
λ(2)

μ2 between truncated algebras, see Conjecture 11.22. We check a particular
case of this conjecture for g = sl2 in Proposition 11.21, using the RTT realization
of Uad

0,2b of Theorem 11.11.
• In Sect. 11, we discuss relativistic/trigonometric Lax matrices, the shifted RTT

algebras of sl2 and their relation to the shifted quantum affine algebras of sl2.
This yields a link between two seemingly different appearances of the RTT
relations (both trigonometric and rational).

In Sect. 11.2, we recall the Kuznetsov-Tsyganov [43] local relativistic Lax
matrix Lv,0

i (z) satisfying the trigonometric RTT-relation. The complete mon-

odromy matrix T v,0
n (z) = Lv,0

n (z) · · ·Lv,0
1 (z) also satisfies the same relation, and

its matrix coefficient T v,0
n (z)11 encodes all the hamiltonians of the q-difference

quantum open Toda lattice for GL(n) [19, 56].
We introduce two more local Lax matrices Lv,±1

i (z) satisfying the same
trigonometric RTT-relation. They give rise to the plethora of 3n complete
monodromy matrices T v

,k (z),
,k ∈ {−1, 0, 1}n, given by the length n products of
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the three local Lax matrices in arbitrary order. The matrix coefficient T v
,k (z)11

encodes the hamiltonians of the corresponding modified quantum difference
Toda lattice; the quadratic hamiltonians are given by the formula (11.8). At
the quasiclassical level, these integrable systems go back to [21]. We show that
among these 3n integrable systems there are no more than 3n−2 nonequivalent,
see Lemma 11.6. It is shown in [35] that they are all obtained by the construction
of [56] using arbitrary pairs of orientations of the An−1 Dynkin diagram,
see Remark 11.7.

In Sect. 11.4, we introduce the shifted RTT algebras of sl2, denoted by Urtt
0,−2n,

and construct isomorphisms ϒ0,−2n : Uad
0,−2n

∼−→Urtt
0,−2n for any n ∈ N, see

Theorem 11.8 and Theorem 11.11. For n = 0, this recovers the isomorphism
of the new Drinfeld and the RTT realizations of the quantum loop algebra
U ad

v (Lsl2), due to [17]. We also identify the ABCD generators of Uad
0,−2n

of Sect. 6 with the generators of Urtt
0,−2n, see Corollary 11.10.

Viewing the Lax matrix L
v,−1
1 (z) as a homomorphism from Urtt

0,−2 to
the algebra of difference operators on C

× and composing it with ϒ0,−2,
we recover the homomorphism �̃0

−2 of Sect. 7. More generally, among all
pairwise isomorphic shifted algebras {Uad

b,−2−b|b ∈ Z} only those with
b,−2 − b ≤ 0 admit an RTT realization, i.e., there are analogous iso-
morphisms ϒb,−2−b : Uad

b,−2−b
∼−→Urtt

b,−2−b. Moreover, recasting the homomor-

phisms �̃b,−2−b (generalizations of �̃0
−2 for b = 0) as the homomorphisms

Urtt
b,−2−b → Âv

1, we recover the other two Lax matrices Lv,0
1 (z) (for b = −1)

and Lv,1
1 (z) (for b = −2).

Finally, we use the RTT presentation of U ad
v (Lsl2) to derive explicit formulas

for the action of the Drinfeld-Jimbo coproduct on the Drinfeld half-currents,
see Proposition 11.18 and Appendix J for its proof. We also show that the
same formulas hold in the antidominantly shifted setting for the homomorphisms
�b1,b2 , see Proposition 11.19. As a consequence of the latter, the homomorphism
�ad

2b1,2b2
is intertwined with the RTT coproduct �rtt

2b1,2b2
, see Corollary 11.20,

which is used to prove the aforementioned Proposition 11.21 on the descent of
�ad

2b1,2b2
to the truncated versions.

• In Sect. 12, we provide yet another geometric realization of the shifted quantum
affine algebras (resp. shifted Yangians) of sln via the parabolic Laumon spaces.

Roughly speaking, this arises by combining our homomorphism �
λ

μ of Sect. 8

(resp. �
λ

μ of [10, Theorem B.18]) with an action of the quantized K-theoretic
(resp. cohomological) Coulomb branch Av

frac on the localized equivariant K-
theory (resp. cohomology) of parabolic Laumon spaces, constructed in [4], see
Remark 12.3(c).

For any π = (p1, . . . , pn) ∈ Z
n
>0, we construct an action of Usc

0,μ,
the simply-connected shifted quantum affine algebra of sln with the shift
μ = ∑n−1

j=1(pj+1 − pj )ωj , on M(π): the direct sum of localized equivariant
K-theory of Qd , see Theorem 12.2. Here Qd is the type π Laumon based
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parabolic quasiflags’ space, which we recall in Sect. 12.1. In Theorem 12.6,
we slightly generalize this by constructing an action of the shifted quantum
affine algebra of gln (defined in Sect. 12.7) on M(π). In Theorem 12.4, we
establish an isomorphism M(π ′) ⊗ M(π ′′) ∼−→M(π) (here π = π ′ + π ′′) of
Usc

0,μ-modules, where the action on the source arises from the formal coproduct

�̃ : Usc
0,μ→ Usc

0,μ′ ⊗̂Usc
0,μ′′ , constructed in Sect. 10.1 (an analogue of the Drinfeld

formal coproduct on Uv(Lg)).
The rational counterpart of these results is established in Theorem 12.7, where

we construct an action of Yh̄μ (the shifted Yangian of sln with scalars extended
to C(h̄)) on V (π): the sum of localized equivariant cohomology of Qd . The
dominant case (p1 ≤ . . . ≤ pn) of this result was treated in [7], where the
proof was deduced from the Gelfand-Tsetlin formulas of [27]. In contrast, our
straightforward proof is valid for any π and, thus, gives an alternative proof of the
above Gelfand-Tsetlin formulas. We also propose a v-analogue of the Gelfand-
Tsetlin formulas of [27], see Proposition 12.8.

Our construction can be also naturally generalized to provide the actions of
the shifted quantum toroidal (resp. affine Yangian) algebras of sln on the sum
of localized equivariant K-theory (resp. cohomology) of the parabolic affine
Laumon spaces, see Sect. 12.9.

In Sect. 12.10, we introduce the Whittaker vectors in the completions ofM(π)
and V (π):

m :=
∑

d

[OQd
] ∈ M(π)∧ and v :=

∑

d

[Qd ] ∈ V (π)∧.

This name is motivated by their eigenvector properties of Proposition 12.11,
Remark 12.12(c).

Motivated by the work of Brundan-Kleshchev, see [12], we expect that the
truncated shifted quantum affine algebras U

Nωn−1
μ of sln should be v-analogues

of the finite W-algebras W(slN, eπ ), see [57], where N := ∑pi and eπ ∈ slN
is a nilpotent element of Jordan type π .

2 Relativistic Open Toda Lattice

2.1 Quasihamiltonian Reduction

Let G ⊃ B ⊃ T be a reductive group with a Borel and Cartan subgroups. Let
T ⊂ B− ⊂ G be the opposite Borel subgroup; let U (resp. U−) be the unipotent
radical of B (resp. B−). We consider the doubleD(G) = G×G (see, e.g., [2, § 3.2])
equipped with an action of G×G : (u1, u2) · (g1, g2) = (u1g1u

−1
2 , u2g2u

−1
2 ), and

with a moment map μ = (μ1, μ2) : D(G)→ G×G, μ(g1, g2) = (g1g2g
−1
1 , g−1

2 )

(see [2, Remark 3.2]). The double D(G) carries a (non-closed) 2-form ωD =
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1
2 (Adg2 g

∗
1θ, g

∗
1θ) + 1

2 (g
∗
1θ, g

∗
2θ + g∗2θ) where (·, ·) is a nondegenerate invariant

symmetric bilinear form on g, and θ (resp. θ ) is the left- (resp. right-) invariant
Maurer–Cartan form on G.

We choose a pair of Coxeter elements c, c′ ∈ W = NG(T )/T , and their
representatives ċ, ċ′ ∈ NG(T ). Steinberg’s cross-section �ċG ⊂ G is defined as
Z0(G) · (U−ċ ∩ ċU). If G is semisimple simply-connected, then the composed
morphism �ċG ↪→ G → G//AdG = T/W is an isomorphism [58, Theorem 1.4].
For arbitrary G, the composed morphism 0 : �ċG → T/W is a ramified Galois
cover with Galois group π1(G/Z

0(G)). Furthermore, we consider 1ċG := Z0(G) ·
U−ċU− ⊃ �ċG. According to [58, § 8.9] (for a proof, see, e.g., [39]), �ċG meets any
U−-orbit (with respect to the conjugation action) on 1ċG in exactly one point, and
the conjugation action of U− on 1ċG is free, so that 1ċG/AdU− ) �ċG.

For example, according to [58, Example 7.4b)], for an appropriate choice of
ċ, the Steinberg cross-section �ċSL(n) consists of the matrices with 1’s just above

the main diagonal, (−1)n−1 in the bottom left corner, arbitrary entries elsewhere
in the first column, and zeros everywhere else (in our conventions, B (resp. B−)
is the subgroup of upper triangular (resp. lower triangular) matrices in SL(n)).
Hence 1ċSL(n) consists of matrices with 1’s just above the main diagonal, and zeros
everywhere above that.

Following [26], we define the phase space of the open relativistic Toda lattice as
the quasihamiltonian reduction †Zc

′,c(G) := μ−1(1ċ
′
G× inv(1ċG))/U− ×U− where

inv : G→ G is the inversion g 	→ g−1. The composed projection

μ−1(1ċ
′
G × inv(1ċG))→ inv(1ċG) ↪→ G� G//AdG = T/W

gives rise to an integrable system * : †Zc
′,c(G) → T/W which factors through

†Zc
′,c(G)

*̃−→ �ċG
0−→ T/W .

Lemma 2.1 IfG is semisimple simply-connected, then †Zc
′,c(G) is smooth, and ωD

gives rise to a symplectic form on †Zc
′,c(G).

Proof The morphism 1ċG → �ċG = T/W is smooth by [58, Theorem 1.5], so the

fibered product 1ċ
′
G ×T/W 1ċG ⊂ 1ċ

′
G ×1ċG is smooth. But

μ : D(G) ⊃ μ−1(1ċ
′
G × inv(1ċG))→ 1ċ

′
G × inv(1ċG) ) 1ċ

′
G ×1ċG

is a submersion onto 1ċ
′
G ×T/W 1ċG, hence M := μ−1(1ċ

′
G × inv(1ċG)) is smooth,

and its quotient modulo the free action of U− × U− is smooth as well.
The restriction of ωD toM is U−×U−-invariant, so it descends to a 2-form ω on

†Zc
′,c(G). This 2-form is closed since the differential dωD = −μ∗(χ1+χ2) (see [2,

Definition 2.2(B1)]) where χ = 1
12 (θ, [θ, θ ]) is the canonical closed biinvariant 3-

form onG, and χ1 (resp. χ2) is its pull-back from the first (resp. second) copy ofG.
But the restriction χ |1ċG vanishes identically since (b−, [b−, b−]) = 0.
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It remains to check the nondegeneracy of ω, that is given (g1, g2) ∈ M to check
that KerωD|M(g1, g2) is contained in the span v(n− ⊕ n−) of tangent vectors at
(g1, g2) arising from the action of U− × U−. The argument in the proof of [2,
Theorem 5.1] shows that KerωD|M(g1, g2) ⊂ v(g ⊕ g). However, it is clear that
T(g1,g2)M ∩ v(g⊕ g) = v(n− ⊕ n−).

The lemma is proved. ��

2.2 Poisson Reduction

Note that T · 1ċG = 1ċG · T = AdT (1ċG) = B− · ċ · B− =: Cc (a Coxeter Bruhat
cell). One can check that the natural morphism

†Zc
′,c(G) = μ−1(1ċ

′
G × inv(1ċG))/U− × U− → μ−1(Cc′ × inv(Cc))/B− × B−

is an isomorphism. Moreover, the action of B−×B− on μ−1(Cc′ × inv(Cc)) factors
through the free action of (B−×B−)/�Z(G): the quotient modulo the diagonal copy
of the center of G.

The double D(G) = G × G carries the Semenov-Tian-Shansky Poisson
structure [59, Section 2]. Following loc. cit., G × G with this Poisson structure
is denoted by (D+(G), {,}+), the Heisenberg double. Another Poisson structure
on G × G denoted {,}− in loc. cit. is the Drinfeld double D−(G). The diagonal
embedding G ↪→ D−(G) is Poisson with respect to the standard Poisson structure
onG denoted πG in [20, § 2.1]. The dual (Semenov-Tian-Shansky) Poisson structure
on G is denoted π in [20, § 2.2].

The Heisenberg double D+(G) is equipped with two commuting (left and
right) dressing Poisson actions of the Drinfeld double D−(G). Restricting to the
diagonal G ↪→ D−(G) we obtain two commuting Poisson actions of (G, πG) on
D+(G). The multiplicative moment map of this action is nothing but μ : D+(G)→
(G, π) × (G, π) of Sect. 2.1 (a Poisson morphism). Now Cc ⊂ G is a coisotropic
subvariety [20, § 6.2] of (G, π), and μ−1(Cc′ × inv(Cc)) ↪→ D(G) is a coisotropic
subvariety of (D+(G), {, }+). The action of G × G on (D+(G), {,}+) is Poisson
if G×G is equipped with the direct product of the standard Poisson-Lie structures
denoted πG in [20, § 2.1]. Note that B− ×B− ⊂ G×G is a Poisson-Lie subgroup;
its Poisson structure will be denoted πB− × πB− .

The characteristic distribution [20, § 6.2] of the coisotropic subvariety μ−1(Cc′ ×
inv(Cc)) ⊂ (D+(G), {,}+) coincides with the distribution defined by the tangent
spaces to the B− × B−-orbits in μ−1(Cc′ × inv(Cc)). By [20, Proposition 6.7] we
obtain a Poisson structure on μ−1(Cc′ × inv(Cc))/(B− × B−) ) †Zc

′,c(G). This
Poisson structure coincides with the one arising from the symplectic form ω on
†Zc

′,c(G).
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2.3 The Universal Centralizer

Recall that the universal centralizer [49, Section 8] ZGG ⊂ G × �ċG is defined as
ZGG = {(g, x) : gxg−1 = x}. In case c = c′ and ċ = ċ′, we have an evident
embedding ZGG ↪→ μ−1(1ċG × inv(1ċG)), and the composed morphism η : ZGG ↪→
μ−1(1ċG × inv(1ċG))� †Zc,c(G). Clearly, the following diagram commutes:

Proposition 2.2 For semisimple simply-connected G, the morphism η : ZGG →
†Zc,c(G) is an isomorphism.

Proof First we prove the surjectivity of η. We use the equality U− × U− =
(U− × {e}) × �U− . Given (g1, g2) ∈ μ−1(1ċG × inv(1ċG)) we first act by
(u2, u2) ∈ �U− : (g1, g2) 	→ (u2g1u

−1
2 , u2g2u

−1
2 ). We can find a unique u2 such

that u2g2u
−1
2 ∈ �ċG. Let us denote the resulting (u2g1u

−1
2 , u2g2u

−1
2 ) by (h1, h2)

for brevity. Now we act by the left shift h1 	→ u1h1 which takes h1h2h
−1
1 to

u1h1h2h
−1
1 u−1

1 . We can find a unique u1 such that u1h1h2h
−1
1 u−1

1 ∈ �ċG. Now both
h2 = u2g2u

−1
2 and u1h1h2h

−1
1 u−1

1 are in �ċG. Being conjugate they must coincide,
hence (u1h1, h2) ∈ ZGG.

Now if η(g, x) = η(g′, x′), then there is u2 ∈ U− such that u2xu
−1
2 = x′, hence

x = x′ and u2 = e. Then g′ = u1g for some u1 ∈ U−, and both g and g′ commute
with x, hence u1xu

−1
1 = x, hence u1 = e, so that g = g′.

So η is bijective at the level of C-points. But †Zc,c(G) is smooth, hence η is an
isomorphism. ��
Remark 2.3 For arbitrary reductive G the morphism η is an affine embedding, but
it fails to be surjective already for G = PGL(2) where the class of (g1, g2) such

that g2 =
(
a −1
1 0

)
and g1g2g

−1
1 =

(−a −1
1 0

)
does not lie in the image of η when

a �= 0. Similarly, forG = GL(2), the class of (g1, g2) such that g2 =
(
a −1
1 0

)
and

g1g2g
−1
1 =

(
a 1
−1 0

)
does not lie in the image of η. It also follows that the natural

projection †Zc,c(SL(2))→ †Zc,c(PGL(2)) is not surjective.

Remark 2.4 For G semisimple simply-connected, the reduction

(D(G), ωD(G))//diag(G)

[2, Example 6.1, Remark 6.2] inherits a symplectic structure on its nonsingular
locus. We have a natural morphism ZGG → (D(G), ωD(G))//diag(G) which is a
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birational isomorphism (but not an isomorphism: e.g., it contracts the centralizer
of a regular unipotent element). Thus an open subvariety of ZGG is equipped with a
symplectic form pulled back from (D(G), ωD(G))//diag(G). This form extends to a

symplectic form on the entire ZGG [8, § 2.4]. The isomorphism η : ZGG ∼−→ †Zc,c(G)
is a symplectomorphism.

2.4 Comparison with the Coxeter–Toda Lattice

We compare †Zc
′,c(G) with the construction of [38]. Throughout this section we

assume G to be semisimple simply-connected. The left action of the center Z(G)
on D(G), ξ · (g1, g2) = (ξg1, g2) gives rise to the action of Z(G) on †Zc

′,c(G) =
M/U− × U− where M = μ−1(1ċ

′
G × inv(1ċG)) ⊂ D(G) = G × G. We consider

an open subset M ⊃ •
M := (U− · T · ẇ0 · U− × G) ∩M given by the condition

that g1 lies in the big Bruhat cell Cw0 ⊂ G. Clearly,
•
M ⊂ M is U− ×U−-invariant,

and we define †•Zc′,c(G) := •
M/U− × U−, an open subvariety of †Zc

′,c(G). Let
S ⊂ •

M be given by the condition g1 ∈ T · ẇ0. Then the composed projection
S ↪→ •

M � †•Zc′,c(G) is an isomorphism. Moreover, the projection pr2 : S → G is
a Z(G)-torsor over its image 1ċG ∩ AdT (ẇ01

ċ′
Gẇ

−1
0 ) = 1ċG ∩ AdT (Uẇ0ċ

′ẇ−1
0 U).

Finally, note that the composed projection

1ċG ∩ AdT (Uẇ0ċ
′ẇ−1

0 U) ↪→ T · U− · ċ · U− · T ∩ T · U · ẇ0ċ
′ẇ−1

0 · U · T �

� (T · U− · ċ · U− · T ∩ T · U · ẇ0ċ
′ẇ−1

0 · U · T )/AdT =: Gċ,ẇ0ċ
′ẇ−1

0 /AdT

is an isomorphism. But according to [38] (see also [34]), Gċ,ẇ0ċ
′ẇ−1

0 /AdT is the
phase space of the Coxeter–Toda lattice. All in all, we obtain an isomorphism

(respecting the symplectic structures) Z(G)\†•Zc′,c ∼−→Gċ,ẇ0ċ
′ẇ−1

0 /AdT .
For example, for an appropriate choice of ċ, ċ′ ∈ SL(n), the slice S is formed by

all the tridiagonal matrices of determinant 1 with 1’s just above the main diagonal,
and with the invertible entries just below the main diagonal (see [34, Introduction]).

We also define an open subset S ⊃ ◦
S := {(g1, g2) ∈ M : g1 ∈ T · ẇ0, g2 ∈

U−·T ·U}. It is equipped with a projection pr1 :
◦
S → T ·ẇ0

∼−→ T , and with another

projection pr2 :
◦
S → U− · T ·U � T . One can check that (pr1, pr2) :

◦
S ∼−→ T × T .

We define an open subvariety †Zc
′,c(G) ⊃ †•Zc′,c(G) ⊃ †◦Zc′,c(G) as the isomorphic

image of
◦
S. Thus †◦Zc′,c(G) ) T × T .

2.5 Trigonometric Zastava for SL(2)

Recall the degree n trigonometric open zastava †◦Zn for the group SL(2) (see [25]).
This is the moduli space of pairs of relatively prime polynomials (Q = zn +
q1z

n−1 + . . .+ qn, R = r1zn−1 + r2zn−2 + . . .+ rn) such that qn �= 0. We have a
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morphism ζ : ZGL(n)GL(n)→ †◦Zn taking a pair (g, x) ∈ Z
GL(n)
GL(n) to (Q,R) whereQ is the

characteristic polynomial of x, and R is a unique polynomial of degree less than n
such that R(x) = g. We denote by pr : †◦Zn→ (C×)(n) the morphism taking (Q,R)
to the set of roots ofQ.

Recall that �ċGL(n) = Z0(GL(n)) · �ċSL(n) ) Z(GL(n)) × �ċSL(n) = C
× ×

�ċSL(n). We denote by p : ZGL(n)GL(n) → C
× the composed projection Z

GL(n)
GL(n) →

�ċGL(n)→ C
×.

Proposition 2.5 The following square is Cartesian:

Thus ZGL(n)GL(n) is an unramified Z/nZ-cover of †◦Zn.

Proof Clear from the above discussion. ��
Following [1, end of chapter 2], we consider the subvariety †Z̃n1 ↪→ †◦Zn formed

by the pairs (Q,R) such that qn = 1 and the resultant of Q and R, denoted
Result(Q,R), equals 1. Note that we have an evident embedding Z

SL(n)
SL(n) ↪→ Z

GL(n)
GL(n).

Corollary 2.6 The restriction of the morphism ζ to Z
SL(n)
SL(n) ⊂ Z

GL(n)
GL(n) gives rise to

an isomorphism ζ : ZSL(n)SL(n)
∼−→ †Z̃n1 .

Proof For (g, x) ∈ Z
GL(n)
GL(n), the inclusion x ∈ SL(n) is equivalent to qn = 1, while

we claim that the inclusion g ∈ SL(n) is equivalent to Result(Q,R) = 1. The latter
follows by combining the equalities gx = xg and g = R(x) with the standard
equality Result(Q,R) = ∏n

i=1 R(ξi), where {ξi}ni=1 are the roots of Q. Since
{ξi}ni=1 are the generalized eigenvalues (taken with corresponding multiplicities)
of x, it is easy to see that {R(ξi)}ni=1 are the generalized eigenvalues of g, hence,
det(g) =∏n

i=1 R(ξi). ��
For a future use we define an unramified Z/2Z-cover †Ẑn → †◦Zn where †Ẑn is

the moduli space of pairs of relatively prime polynomials (Q = q0z
n + q1z

n−1 +
. . .+qn, R = r1zn−1+r2zn−2+ . . .+rn) such that qn ·q0 = (−1)n. The projection
†Ẑn→ †◦Zn takes (Q,R) to (q−1

0 Q,R).

Finally, there are important embeddings 2 : †◦Zn, †Ẑn ↪→ SL(2,C[z]) taking

(Q,R) to a unique matrix

(
Q R̃

R Q̃

)
such that deg R̃ ≤ n > deg Q̃, and R̃(0)= 0,

that is R̃ = r̃0z
n + r̃1zn−1 + . . . + r̃n−1z. Identifying †Ẑn and †◦Zn with their

images inside SL(2,C[z]), the matrix multiplication gives rise to the multiplication
morphisms †Ẑk × †Ẑl → †Ẑk+l , †◦Zk × †◦Zl → †◦Zk+l .
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3 Quantum Relativistic Open Toda and Nil-DAHA

Throughout this section (with the exception of Sect. 3.11 dealing withG = GL(n))
G is an almost simple simply-connected complex algebraic group.

3.1 Root Systems and Foldings

Let G∨ be the Langlands dual (adjoint) group with a Cartan torus T ∨. We choose a
Borel subgroup B∨ ⊃ T ∨. It defines the set of simple positive roots {αi, i ∈ I }. Let
g∨ be the Lie algebra ofG∨. We realize g∨ as a folding of a simple simply-laced Lie
algebra g′∨, i.e. as invariants of an outer automorphism σ of g′∨ preserving a Cartan
subalgebra t′∨ ⊂ g′∨ and acting on the root system of (g′∨, t′∨). In particular, σ
gives rise to the same named automorphism of the Langlands dual Lie algebras
g′ ⊃ t′ (note that say, if g is of type Bn, then g′ is of type A2n−1, while if g is of
type Cn, then g′ is of type Dn+1; in particular, g �⊂ g′). We choose a σ -invariant
Borel subalgebra t′ ⊂ b′ ⊂ g′ such that b = (b′)σ . The corresponding set of
simple roots is denoted by I ′. We denote by 1 the finite cyclic group generated
by σ , and d := |1|. Let G′ ⊃ T ′ denote the corresponding simply-connected Lie
group and its Cartan torus. The coinvariants X∗(T ′)σ of σ on the coroot lattice
X∗(T ′) of (g′, t′) coincide with the root lattice of g∨. We have an injective map
a : X∗(T ′)σ → X∗(T ′)σ from coinvariants to invariants defined as follows: given
a coinvariant α with a representative α̃ ∈ X∗(T ′) we set a(α) :=∑ξ∈1 ξ(α̃).

To compare with the notations of [36, § 4.4, Remark 4.5], we are in the symmetric
case with Q′0 = Y := X∗(T ∨) = X∗(T ) = X∗(T ′)σ , and Q0 ⊂ X := X∗(T ′)σ
generated by the classes of simple roots of T ′ ⊂ B ′ ⊂ G′. Note that Q′0 is
generated by the classes of simple coroots of T ′ ⊂ B ′ ⊂ G′, and we have a
canonical identification Q0 = Q′0 sending a coroot α̃ to the corresponding root
α̃∨. The Weyl group W of G ⊃ T coincides with the invariants (W ′)σ of σ
on the Weyl group W ′ of G′ ⊃ T ′ (our W is denoted W0 in [36]). The W -
invariant pairing X × Y → Q defined in [36, § 4.4] is actually integer valued:
X × Y → Z, so that m = 1 (notations of loc. cit.). To compare with notations
of [13, Section 1], P := X, Q := Q0, and the natural pairing P × P → Q

gives rise to the embedding Q = Y ↪→ P . We will also need an extended lattice
Yad := X∗(Tad) = X∗(T ′ad)σ ⊃ Y . Note that 3 := Yad/Y = (X∗(T ′ad)/X∗(T ′))σ .
Also note that the above W -invariant identification Q0 = Q′0 extends to the W -
invariant identificationQ0 ⊂ X = Yad ⊃ Q′0. The extended pairingX×Yad → Q is
no more integer valued in general, and we denote by mad the maximal denominator
appearing in the values of this pairing. Finally, R ⊂ X stands for the set of roots.
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3.2 Affine Flags

We fix a primitive root of unity ζ of order d = ord(σ ). We set K = C((t)) ⊃
O = C[[t]]. The group ind-scheme G′(K) is equipped with an automorphism ς

defined as the composition of two automorphisms: a) σ on G′; b) t 	→ ζ t. This
automorphism preserves the Iwahori subgroup I′ ⊂ G′(K). We denote by F� the
twisted affine flag spaceG′(K)ς/(I′)ς : an ind-proper ind-scheme of ind-finite type,
see [55]. We denote by u ⊂ Lie(I′)ς its pronilpotent radical. The trivial (Tate)
bundle g′(K)ς with the fiber g′(K)ς over F� has a structure of an ind-scheme. It
contains a profinite dimensional vector subbundle u whose fiber over a point b ∈ F�

represented by a compact subalgebra in g′(K)ς is the pronilpotent radical of this
subalgebra. The trivial vector bundle g′(K)ς also contains a trivial vector subbundle
u× F�. We will call u the cotangent bundle of F�, and we will call the intersection
� := u ∩ (u× F�) the affine Steinberg variety.

To simplify the notations we will write I for (I′)ς , and K forG′(O)ς . The convo-
lution product on the complexified equivariant coherent K-theory KC

××I�C
×
(�)

is defined as in [9, Remark 3.9(3)] (cf. [8, § 7.1] and [64, § 2.2, 2.3]). Here the
first copy of C× acts by dilations in fibers of u, while the second one acts by loop
rotations, and KC××C×(pt) = C[t±1, q±1].

3.3 DAHA, Symmetric Case

Following [36, § 4.6], we set X̃ := X ⊕ Zδ = X∗(T ′)σ ⊕ Zδ. This is the group of
characters of I �C

×. Note that the Picard group Pic(F�) is canonically isomorphic
to X ⊕ Zω0. The I-orbits on F� are parametrized by the affine Weyl group Wa )
Y � W = X∗(T ′)σ � W . We denote by �e ) u the closed subscheme of �: the
preimage of the one-point I-orbit F�e ⊂ F�. For λ̃ = (λ̌, k) ∈ X̃ we denote by
O�e 〈λ̃〉 ∈ KC

××I�C
×
(�) the (class of the) direct image of the structure sheaf of

�e twisted by the character λ̃ of I �C
×. Let Ĩ ⊂ Wa be the set of one-dimensional

I-orbits on F�. For i ∈ Ĩ we denote by F�i the corresponding orbit, and by F�i its
closure, isomorphic to a projective line. We denote by �i ⊂ � the closed subscheme
of �: the closure of the preimage of F�i . We denote by ω�i the (class of the) direct
image (wrt the closed embedding �i ↪→ �) of the inverse image (wrt the smooth
projection �i → F�i) of the canonical line bundle on F�i ) P

1 equipped with
the natural C× × I � C

×-equivariant structure. Finally, we set Ti := −1− tω�i ∈
KC

××I�C
×
(�).

Definition 3.1 (Cf. [36, Definition 5.6]) The double affine Hecke algebra (DAHA)
H(Wa, X̃) is the C[q±1, t±1]-algebra generated by {Xλ̃, Tw|λ̃ ∈ X̃, w ∈ Wa} with
the following defining relations:

(a) Tw’s satisfy the braid relations ofWa ;
(b) Xλ̃Xμ̃ = Xλ̃+μ̃, and Xδ = q;
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(c) (Ti − t)(Ti + 1) = 0 for i ∈ Ĩ , where we set Ti = Tsi ;
(d) Xλ̃Ti − TiXλ̃−rα̌i = (t − 1)Xλ̃(1+X−α̌i + . . .+Xr−1

−α̌i ) where 〈λ̃, αi〉 = r ≥ 0.

Theorem 3.2 There is a unique isomorphism � : H(Wa, X̃) ∼−→KC
××I�C

×
(�)

such that �(Xλ̃) = O�e 〈λ̃〉, and �(Ti) = Ti , for any i ∈ Ĩ .

Proof Same as the one of [64, Theorem 2.5.6]. ��

3.4 Nil-DAHA, Symmetric Case

The complexified equivariant K-theory KI�C
×
(F�) forms a C[q±1]-algebra with

respect to the convolution. We denote by OF�e 〈λ̃〉 the (class of the) structure sheaf
of the point orbit F�e ∈ F� twisted by a character λ̃ ∈ X̃. We denote by ωF�i the

(class of the) direct image (wrt the closed embedding F�i ↪→ F�) of the canonical
line bundle on F�i equipped with the natural I � C

×-equivariant structure. We set
Ti := −1− ωF�i ∈ KI�C

×
(F�).

Definition 3.3 (Cf. [13, § 1.1]) The nil-DAHA HH(Wa, X̃) is the C[q±1]-algebra
generated by {Xλ̃,Tw|λ̃ ∈ X̃, w ∈ Wa} with the following defining relations:

(a) Tw’s satisfy the braid relations ofWa ;
(b) Xλ̃Xμ̃ = Xλ̃+μ̃, and Xδ = q;

(c) Ti (Ti + 1) = 0 for i ∈ Ĩ , where we set Ti = Tsi ;
(d) Xλ̃Ti − TiXλ̃−rα̌i = −Xλ̃(1+ X−α̌i + . . .+ Xr−1

−α̌i ) where 〈λ̃, αi〉 = r ≥ 0.

Theorem 3.4 There is a unique isomorphism � : HH(Wa, X̃) ∼−→KI�C
×
(F�)

such that �(Xλ̃) = OF�e 〈λ̃〉, and �(Ti ) = Ti , for any i ∈ Ĩ .

Proof Same as the one of [64, Theorem 2.5.6]. ��

3.5 Extended Nil-DAHA

We consider the 2mad-fold cover C̃
× → C

× of the loop rotation group (see the
end of Sect. 3.1), and set Î := I � C̃

×. The group of characters of T × C̃
×

is X̂ := X ⊕ Z
1

2mad
δ. The extended affine Weyl group is We = Yad � W =

Wa �3. The extended nil-DAHA HH(We, X̂) is the (extended) semidirect product

(HH(Wa, X̂) � 3) ⊗C[q±1] C[q
±1

2mad ]. That is, it has generators X
λ̂
, λ̂ ∈ X̂,

and Ti , i ∈ Ĩ , and π ∈ 3; with additional relations πTiπ−1 = Tπ(i), and
πX

λ̂
π−1 = X

π(λ̂)
.

Remark 3.5 The definition of [13, § 1.1] is equivalent to our Sect. 3.5: the genera-
tors Ti of loc. cit. correspond to −Ti − 1; geometrically, Ti = [ωF�i ].
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3.6 Residue Construction

Let A := C[q ±1
2mad ], and Q := C(q

1
2mad ). Let Oq(T ×T ) be an A-algebra with gener-

ators [λ,μ], λ, μ ∈ X, and relations [λ,μ] · [λ′, μ′] = q (μ,λ
′)−(μ′,λ)

2 [λ+λ′, μ+μ′].
This is the subalgebra of endomorphisms of A[T ] generated by multiplications by
Xλ, λ ∈ X, and q-shift operators Dμq f (t) := f (qμt) where we view qμ as a
homomorphism C̃

× → T . In other words, Dμq Xλ = q(μ,λ)Xλ. We may and will
view Oq(T ×T ) as a subalgebra of endomorphisms of the field of rational functions
Q(T ) as well. It embeds into the subalgebra Cq(T × T ) ⊂ End(Q(T )) generated
by Dμq , μ ∈ X, and multiplications by f ∈ Q(T ). We consider the semidirect
product Cq(T × T ) � C[W ] with respect to the diagonal action of W on T × T .
Inside we consider the linear subspace HHres(We, X̂) formed by the finite sums∑μ∈X
w∈W hw,μD

μ
q · [w], hw,μ ∈ Q(T ), satisfying the following conditions:

(a) hw,μ is regular except at the divisors Tα,qk := {t : α(t) = qk}, α ∈ R, k ∈ Z,
where they are allowed to have only first order poles.

(b) ResT
α,q−k (hw,μ)+ ResT

α,q−k (hsαw,kα+sαμ) = 0 for any α ∈ R.

The algebra of regular functions C[T × C̃
×] is embedded into HHres(We, X̂) via

the assignment f 	→ f · [1]. Furthermore, for i ∈ I ⊂ Ĩ , we consider the Demazure
operator [13, § 1.3] τi := 1

1−Xαi
· ([si] − [1]) ∈ HHres(We, X̂), and for i0 ∈ Ĩ \ I

we consider the Demazure operator [13, § 1.3] τi0 := 1
1−qX−1

θ

· ([sθ ] ·Dθq − [1]) ∈
HHres(We, X̂), where θ ∈ R is the dominant short root, (θ, θ) = 2.

Theorem 3.6

(a) HHres(We, X̂) is a subalgebra of Cq(T × T )�C[W ].
(b) The assignment f 	→ f · [1]; Ti 	→ τi, i ∈ Ĩ ; 3 . π 	→ the

corresponding automorphism of Q(T ) = Q(X̂ ⊗ C
×) (arising from the

automorphism of the extended Dynkin diagram), defines an isomorphism
ϕ : HH(We, X̂) ∼−→HHres(We, X̂).

Proof Same as the one of [5, Theorem 7.2]. ��
Remark 3.7 Nil-DAHA HH(We, X̂) is not isomorphic to the degeneration Ḧ|v=0
of [5, Section 6].

3.7 K-theory of Disconnected Flags

We define Iad as the image of I in G′ad(K)
ς , and we consider the adjoint version of

the affine flags F�ad := G′ad(K)
ς/Iad. This is an ind-scheme having |3| connected

components, each one isomorphic to F�. The isomorphism of Theorem 3.4 extends
to the same named isomorphism HH(We, X̂)

∼−→K Î(F�ad). Let us explain why the
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RHS forms an algebra. We consider an algebra K(̂I\G′ad(K)
ς /̂I) = K Î(F�ad/3).

Here we view3 = Z(G′σ ) as the center of the simply-connected group G′σ acting
trivially on F�ad. Now K Î(F�ad/3) contains a subalgebra K Î(F�ad/3)diag formed
by the classes of bi-equivariant sheaves on F�ad such that the 3-equivariance coin-
cides with the Z(G′σ )-equivariance obtained by the restriction of Î-equivariance.
Finally, K Î(F�ad/3)diag ) K Î(F�ad).

3.8 Spherical Nil-DAHA

We define the new generators T̂i := −Ti − 1, i ∈ Ĩ (they correspond to the
generators Ti of [13, Definition 1.1]). Geometrically, T̂i = [ωF�i ]. They still satisfy
the braid relations of Wa . So for any w ∈ Wa we have a well-defined element
(product of the generators) T̂w. We also define T̂′i := T̂i + 1 = −Ti , i ∈ Ĩ .

Geometrically, for i ∈ I ⊂ Ĩ , we have T̂′i = Xρ∨[OF�i
]X−1
ρ∨ . These generators also

satisfy the braid relations ofWa , so for any w ∈ Wa we have a well-defined element
(product of the generators) T̂′w.

Given a reduced decomposition w = si1 · · · sil we have for the class of the
structure sheaf of the Schubert variety [OF�w

] = [OF�i1
] · · · [OF�il

] since F�w has

rational singularities. Hence, for w ∈ W ⊂ Wa , we have [OF�w
] = X−1

ρ∨ T̂
′
wXρ∨ . In

particular, for the longest element w0 ∈ W we set e := [OF�w0
] = X−1

ρ∨ T̂
′
w0

Xρ∨ , an

idempotent in HH(We, X̂). Indeed, calculating [OF�w0
][OF�w0

] as the pushforward

of the structure sheaf from the convolution diagram F�w0×̃F�w0 → F�w0 we get
OF�w0

since R�(F�w0 ,OF�w0
) = C.

We define the spherical nil-DAHA HHsph(Wa, X̃) := eHH(Wa, X̃)e, and the
spherical extended nil-DAHA HHsph(We, X̂) := eHH(We, X̂)e.

3.9 Equivariant K-theory of the Affine Grassmannian

We denote by Grad the twisted affine Grassmannian G′ad(K)
ς/G′ad(O)

ς : an ind-
proper ind-scheme of ind-finite type, see [55]. The complexified equivariant

coherentK-theoryKK�C̃
×
(Grad) = KG′(O)ς�C̃

×
(Grad) forms a C[q± 1

2mad ]-algebra
with respect to the convolution (see Sect. 3.7). We have the smooth projection

p : F�ad → Grad, and the natural embedding KK�C̃
×
(Grad) ↪→ KI�C̃

×
(Grad)

p∗
↪→

KI�C̃
×
(F�ad).
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Corollary 3.8 The isomorphism � of Sect. 3.7 takes the spherical subalgebra
HHsph(We, X̂) ⊂ HH(We, X̂) isomorphically onto KK�C̃

×
(Grad) ⊂

KI�C̃
×
(F�ad). The right ideal eHH(We, X̂) corresponds to KK�C

×
(F�ad) =

(KI�C̃
×
(F�ad))

W ⊂ KI�C̃
×
(F�ad). ��

3.10 Classical Limit

The following theorem is proved similarly to [8, Theorem 2.15]:

Theorem 3.9

(a) The algebra KK(Grad) is commutative.
(b) Its spectrum together with the projection onto T/W is naturally isomorphic to

ZGG
pr−→ T/W .

(c) The Poisson structure onKK(Grad) arising from the deformationKK�C
×
(Grad)

corresponds under the above identification to the Poisson (symplectic) structure
of Remark 2.4 on ZGG. ��

Corollary 3.10

(a) The algebra HHsph(We, X̂)|q=1 is commutative.
(b) This algebra with the subalgebra C[X]W is naturally isomorphic to C[ZGG] ⊃

C[T/W ].
(c) The Poisson structure on HHsph(We, X̂)|q=1 arising from the deformation

HHsph(We, X̂) corresponds under the above identification to the Poisson
(symplectic) structure of Remark 2.4 on ZGG. ��

3.11 Nil-DAHA, General Linear Group

In caseG = GL(n) ) G∨, the general definition of HH(We, X̂) takes a particularly
explicit form.

Definition 3.11 The nil-DAHA HH(GL(n)) is the C[q±1]-algebra with generators
T0, . . . ,Tn−1, X±1

1 , . . . ,X±1
n , π

±1, and the following relations:

(a) Ti’s for i ∈ Z/nZ satisfy the braid relations of the affine braid group of type
Ãn−1;

(b) X±1
i , i = 1, . . . , n, all commute;

(c) Ti (Ti + 1) = 0 for i ∈ Z/nZ;
(d) πXiπ−1 = Xi+1 for i = 1, . . . , n− 1, and πXnπ−1 = qX1;
(e) πTiπ−1 = Ti+1 for i ∈ Z/nZ;
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(f) Xi+1Ti − TiXi = Xi , and X−1
i Ti − TiX

−1
i+1 = X−1

i+1 for i = 1, . . . , n− 1;

(h) qX1T0 − T0Xn = Xn, and qX−1
n T0 − T0X−1

1 = X−1
1 ;

(fh) X±1
i and Tj commute for all the pairs i, j not listed in (f,h) above.

Note that X := X1 · · ·Xn commutes with all the Ti’s, while πXπ−1 = qX. For a
future use we give the following

Definition 3.12 The extended nil-DAHA HHe(GL(n)) is the C[v±1]-algebra,

q = v2, with generators T0, . . . ,Tn−1, X±1
1 , . . . ,X±1

n , π
±1,

√
X
±1

, and relations
(a–fh) of Definition 3.11 plus

(i) (
√

X±1)2 = X±1 := X±1
1 · · ·X±1

n ;
(j)
√

X±1 commutes with all the X±1
i and all the Ti ;

(k) π
√

Xπ−1 = v
√

X.

We interpret Xi , i = 1, . . . , n, as the i-th diagonal matrix entry character of the
diagonal torus T ⊂ GL(n). It gives rise to the same named character of the Iwahori
subgroup I ⊂ GL(n,K). We denote by OF�e 〈Xi〉 the (class of the) structure sheaf
of the point orbit F�e ⊂ F� = F�GL(n) (the affine flag variety of GL(n)) twisted
by the character Xi . We denote by ωF�i , i = 0, . . . , n − 1, the (class of the) direct

image (wrt the closed embedding F�i ↪→ F�SL(n) ↪→ F�GL(n)) of the canonical
line bundle on F�i equipped with the natural I � C

×-equivariant structure. We set
Ti := −1 − ωF�i ∈ KI�C

×
(F�) as in Sect. 3.4. Finally, note that the fixed point

set F�T is naturally identified with the extended affine Weyl group of GL(n), that
is the group of n-periodic permutations of Z : σ(k + n) = σ(k) + n, and the fixed
point* corresponding to the shift permutation σ(k) = k+1 is a point I�C

×-orbit
F�* . We denote by * ∈ KI�C

×
(F�) the class of the structure sheaf OF�* .

Theorem 3.13 There is a unique isomorphism � : HH(GL(n)) ∼−→KI�C
×
(F�)

such that �(Xi ) = OF�e 〈Xi〉, i = 1, . . . , n, and �(Ti ) = Ti , i = 0, . . . , n − 1,
and �(π) = * .

Proof Same as the one of [64, Theorem 2.5.6]. ��
As in Sect. 3.8, we have an idempotent e = [OF�w0

] ∈ KI�C
×
(F�SL(n)) ⊂

KI�C
×
(F�) ) HH(GL(n)), and we define the spherical subalgebras

HHsph(GL(n)) := eHH(GL(n))e, and HH
sph
e (GL(n)) := eHHe(GL(n))e. We

also define a two-fold cover G̃ := {(g ∈ GL(n), y ∈ C
×) : det(g) = y2} �

G, K := GL(n,O), K̃ := G̃(O), and finally C̃
× as the two-fold cover (with

coordinate v) of C× (with coordinate q).

Corollary 3.14 The isomorphism � of Theorem 3.13 takes the spherical subal-
gebra HHsph(GL(n)) ⊂ HH(GL(n)) isomorphically onto KK�C

×
(GrGL(n)) ⊂

KI�C
×
(F�GL(n)). This isomorphism extends uniquely to HH

sph
e (GL(n)) ∼−→

KK̃�C̃
×
(GrGL(n)) where the right-hand side is equipped with the algebra structure

as in Sect. 3.7. ��
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The following theorem is proved similarly to [10, Theorem 3.1, Proposi-
tion 3.18]:

Theorem 3.15

(a) The algebras KK(GrGL(n)), KK̃(GrGL(n)) are commutative.
(b) The spectrum of KK(GrGL(n)) together with the projection onto (C×)(n) =

Spec(KGL(n)(pt)) is naturally isomorphic to †◦Zn pr−→ (C×)(n) (see Sect. 2.5).

(c) The spectrum of KK̃(GrGL(n)) together with the projection onto

Spec(KK(GrGL(n))) is naturally isomorphic to †Ẑn→ †◦Zn (see Sect. 2.5).
(d) The Poisson structure on KK(GrGL(n)) arising from the deformation

KK�C
×
(GrGL(n)) corresponds under the above identification to the negative of

the Poisson (symplectic) structure of [25, 34] on †◦Zn. The Poisson (symplectic)

structure on KK̃(GrGL(n)) arising from the deformation KK̃�C̃
×
(GrGL(n)) is

the negative of the pull-back of the symplectic structure on †◦Zn. ��
Corollary 3.16

(a) The algebras HHsph(GL(n))|q=1, HH
sph
e (GL(n))|v=1 are commutative.

(b) The algebra HHsph(GL(n))|q=1 with the subalgebra C[X±1
1 , . . . ,X±1

n ]Sn is

naturally isomorphic to C[†◦Zn] ⊃ C[(C×)(n)].
(c) The Poisson structures on HHsph(GL(n))|q=1, HH

sph
e (GL(n))|v=1 arising

from the deformations HHsph(GL(n)), HH
sph
e (GL(n)) correspond under the

above identification to the negative of the Poisson (symplectic) structures
of [25, 34] on †◦Zn, †Ẑn. ��

3.12 Quantum Poisson Reduction

Now again G is an almost simple simply-connected algebraic group. We consider
Lusztig’s integral form Uq(g) of the quantized universal enveloping algebra over
C[q±1] with Cartan elementsKλ, λ ∈ X. It is denoted U̇A in [65, § 2.2]. We extend

the scalars to C[q ±1
2mad ] and consider the integrable representations of Uq(g) with

weights in X. We consider the reflection equation algebra Oq(G) spanned by the
matrix coefficients of integrable Uq(g)-modules (with weights in X); it is denoted
FA in [65, § 2.2]. The corresponding integral form Dq(G) of the Heisenberg
double [59, Section 3] (quantum differential operators) is denoted DA in [65,
§ 2.2]. The quasiclassical limit of Dq(G) is D+(G) with the Poisson structure {,}+
considered in Sect. 2.2. The moment map μ : (D+(G), {,}+) → (G, π) × (G, π)
is the quasiclassical limit of μq : Uq(g) ⊗ Uq(g) → Dq(G) (see, e.g., [48]). The
Poisson action of (G, πG) × (G, πG) on D+(G) is the quasiclassical limit of the
comodule structure of Dq(G) over Oq(G)⊗ Oq(G).
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Recall the subalgebra Ucq (n) ⊂ Uq(g) [56, § 2.2] associated to a Coxeter
element c (we shall omit its dependence on {nij }i,j∈I satisfying [56, § 2.2.2]). The
Uq(g)-module Uq(g)/(Uq(g)·[Ucq (n), Ucq (n)]) is the quantization of the coisotropic
subvariety Cc ⊂ (G, π) of Sect. 2.2. Given a pair of Coxeter elements c, c′,
we consider the left ideal Ic′,c of Dq(G) generated by μq([Uc′q (n), Uc′q (n)] ⊗
S[Ucq (n), Ucq (n)]) where S stands for the antipode. The invariants of Dq(G)/Ic′,c
with respect to the coaction of Oq(B−) ⊗ Oq(B−) form an algebra denoted
Oq(

†Zc
′,c(G)).

Conjecture 3.17 There is an isomorphism HHsph(We, X̂)
∼−→Oq(

†Zc,c(G)) equal
to id†Zc,c(G) at q = 1.

4 Multiplicative Slices

4.1 Asymmetric Definition

We closely follow the exposition in [10, Section 2]. Let G be an adjoint simple
complex algebraic group. We fix a Borel and a Cartan subgroup G ⊃ B ⊃ T .
Let ' be the coweight lattice, and let '+ ⊂ ' be the submonoid spanned by
the simple coroots αi, i ∈ I . The involution α 	→ −w0α of ' restricts to an
involution of '+ and induces an involution αi 	→ αi∗ of the set of simple coroots.
We will sometimes write α∗ := −w0α for short. Let λ be a dominant coweight
of G, and μ ≤ λ an arbitrary coweight of G, not necessarily dominant, such that
α := λ−μ =∑i∈I aiαi, ai ∈ N. We will define the multiplicative (trigonometric)
analogues †Wλ

μ of the generalized slices Wλ
μ of [10, 2(ii)].

Namely, †Wλ
μ is the moduli space of the following data:

(a) a G-bundle P on P
1;

(b) a trivialization σ : Ptriv|P1\{1} ∼−→P|P1\{1} having a pole of degree ≤ λ at

1 ∈ P
1. This means that for an irreducible G-module V λ

∨
and the associated

vector bundle Vλ
∨
P on P

1 we have V λ
∨ ⊗ OP1(−〈λ, λ∨〉 · 1) ⊂ Vλ

∨
P ⊂ V λ

∨ ⊗
OP1(−〈w0λ, λ

∨〉 · 1);
(c) a reduction φ of P to a B-bundle (B-structure φ on P) such that the induced

T -bundle φT has degree w0μ, and the fiber of φ at ∞ ∈ P
1 is B− ⊂ G

(with respect to the trivialization σ of P at ∞ ∈ P
1). This means in particular

that for an irreducible G-module V λ
∨

and the associated vector bundle Vλ
∨
P

on P
1 we are given an invertible subsheaf Lλ∨ ⊂ Vλ

∨
P of degree −〈w0μ, λ

∨〉.
We require φ to be transversal at 0 ∈ P

1 to the trivial B-structure B in Ptriv.
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4.2 Multiplicative BD Slices

Let λ = (ωi1 , . . . , ωiN ) be a sequence of fundamental coweights of G such that∑N
s=1 ωis = λ. We define †W

λ
μ as the moduli space of the following data:

(a) a collection of points (z1, . . . , zN) ∈ (C×)N ;
(b) a G-bundle P on P

1;
(c) a trivialization (a section) σ of P on P

1 \ {z1, . . . , zN } with a pole of degree
≤∑N

s=1 ωis · zs on the complement;
(d) a reduction φ of P to a B-bundle (B-structure φ on P) such that the induced

T -bundle φT has degree w0μ, and the fiber of φ at ∞ ∈ P
1 is B− ⊂ G and

transversal to B at 0 ∈ P
1 (with respect to the trivialization σ ).

Remark 4.1 The definition of multiplicative BD slices differs from the definition of
BD slices in [10, § 2(x)] only by the open condition of transversality at 0 ∈ P

1. Thus
†W

λ
μ is an open subvariety in W

λ
μ (and similarly, †Wλ

μ is an open subvariety in Wλ
μ).

Hence, the favorable properties of the slices of [10] (e.g., the Cohen–Macaulay
property) are inherited by the multiplicative slices.

4.3 A Symmetric Definition

Given arbitrary coweights μ−, μ+ such that μ−+μ+ = μ, we consider the moduli
space †W

λ
μ−,μ+ of the following data:

(a) a collection of points (z1, . . . , zN) ∈ (C×)N ;
(b) G-bundles P−,P+ on P

1;
(c) an isomorphism σ : P−|P1\{z1,...,zN }

∼−→P+|P1\{z1,...,zN } with a pole of degree

≤∑N
s=1 ωis · zs on the complement;

(d) a trivialization of P− = P+ at∞ ∈ P
1;

(e) a reduction φ− of P− to a B−-bundle (a B−-structure on P−) such that the
induced T -bundle φT− has degree −w0μ−, and the fiber of φ− at ∞ ∈ P

1 is
B ⊂ G;

(f) a reduction φ+ of P+ to a B-bundle (a B-structure on P+) such that the induced
T -bundle φT+ has degree w0μ+, and the fiber of φ+ at ∞ ∈ P

1 is B− ⊂ G.
We require φ− and φ+ to be transversal at 0 ∈ P

1 (with respect to the
isomorphism σ ).

Note that the trivial G-bundle on P
1 has a unique B−-reduction of degree 0

with fiber B at ∞. Conversely, a G-bundle P− with a B−-structure of degree 0
is necessarily trivial, and its trivialization at∞ uniquely extends to the whole of P1.
Hence †W

λ

0,μ = †W
λ
μ.

For arbitrary †W
λ
μ−,μ+ , the G-bundles P−,P+ are identified via σ on

P
1 \ {z1, . . . , zN }, so they are both equipped with B and B−-structures transversal
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around 0,∞ ∈ P
1, that is they are both equipped with a reduction to a T -bundle

around 0,∞ ∈ P
1. So P± = PT±×T G for certain T -bundles PT± around 0,∞ ∈ P

1,
trivialized at ∞ ∈ P

1. The modified T -bundles ′PT± := PT±(w0μ− · ∞) are
canonically isomorphic to PT± off ∞ ∈ P

1 and trivialized at ∞ ∈ P
1. We define

′P± as the result of gluing P± and ′PT± ×T G in the punctured neighborhood of

∞ ∈ P
1. Then the isomorphism σ : ′P−|P1\{∞,z1,...,zN }

∼−→ ′P+|P1\{∞,z1,...,zN }
extends to P

1 \ {z1, . . . , zN }, and φ± also extends from P
1 \ {∞} to a B-structure

′φ+ in ′P+ of degree w0μ (resp. a B−-structure ′φ− on ′P− of degree 0).
This defines an isomorphism †W

λ
μ−,μ+ ) †W

λ
μ. Similarly, for the nondeformed

slices we have an isomorphism †Wλ
μ−,μ+ ) †Wλ

μ.

4.4 Multiplication of Slices

Given λ1 ≥ μ1 and λ2 ≥ μ2 with λ1, λ2 dominant, we think of †W
λ1
μ1 (resp.

†W
λ2
μ2 ) in the incarnation †W

λ1
μ1,0

(resp. †W
λ2
0,μ2

). Note that P2− is canonically

trivialized as in Sect. 4.3, and P1+ is canonically trivialized for the same reason.

Given (P1±, σ1, φ
1±) ∈ †W

λ1
μ1,0

, we change the trivialization of P1+ by a (uniquely

determined) element of U− (the unipotent radical of B−) so that the value φ1−(0)
becomes B (while φ1+(0) remains equal to B−). Now the value φ1−(∞) is not B
anymore; it is only transversal to B−. In order to distinguish the data obtained by the
composition with the above trivialization change, we denote them by (′P1±, ′σ1,

′φ1±).
Given (P2±, σ2, φ

2±) ∈ †W
λ2
0,μ2

, we consider (′P1−,P2+, σ2 ◦ ′σ1,
′φ1−, φ2+) (recall that

′P1+ = Ptriv = P2−). These data do not lie in †W
λ1+λ2
μ1,μ2 since the value ′φ1−(∞) is

not necessarily equal to B, it is only transversal to B−. However, we change the
trivialization of ′P1−(∞) = P2+(∞) by a (uniquely determined) element of U−, so

that the value of ′φ1−(∞) becomes B, and we end up in †W
λ1+λ2
μ1,μ2 = †W

λ1+λ2
μ1+μ2

.

This defines a multiplication morphism †W
λ1
μ1 × †W

λ2
μ2 → †W

λ1+λ2
μ1+μ2

.

In particular, taking μ2 = λ2 so that †W
λ2
λ2

is a point and †W
λ1
μ1 × †W

λ2
λ2
= †W

λ1
μ1 ,

we get a stabilization morphism †W
λ1
μ1 → †W

λ1+λ2
μ1+λ2

.

Remark 4.2 The multiplication of slices in [10, § 2(vi)] does not preserve the
multiplicative slices viewed as open subvarieties according to Remark 4.1 (in
particular, it does not induce the above multiplication on multiplicative slices).

4.5 Scattering Matrix

Given a collection (z1, . . . , zN) ∈ (C×)N , we define Pz(z) := ∏N
s=1(z − zs) ∈

C[z]. We also define a closed subvariety †W
λ,z
μ ⊂ †W

λ
μ as the fiber of the latter
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over z = (z1, . . . , zN). We construct a locally closed embedding 2 : †W
λ,z
μ ↪→

G[z, P−1] into an ind-affine scheme as follows. According to Sect. 4.3, we have
an isomorphism ζ : †W

λ,z
μ = †W

λ,z
0,μ

∼−→ †W
λ,z
μ,0. We denote ζ(P±, σ, φ±) by

(P′±, σ ′, φ′±). Note that P− and P′+ are trivialized, and P′+ is obtained from P+
by an application of a certain Hecke transformation at ∞ ∈ P

1. In particular,
we obtain an isomorphism P+|A1

∼−→P′+|A1 = Ptriv|A1 . As in Sect. 4.4, we
change the trivialization of P′+ by a uniquely defined element of U− so that the
value of φ′−(0) becomes B. Now we compose this change of trivialization with

the above isomorphism P+|A1
∼−→P′+|A1 = Ptriv|A1 and with σ : Ptriv|A1\z =

P−|A1\z ∼−→P+|A1\z to obtain an isomorphism Ptriv|A1\z ∼−→Ptriv|A1\z, i.e. an

element of G[z, P−1].
Here is an equivalent construction of the above embedding. Given (P±, σ, φ±) ∈

†W
λ,z
μ−,μ+ = †W

λ,z
μ , we choose a trivialization of the B-bundle φ+|A1 (resp. of the

B−-bundle φ−|A1 ). This trivialization gives rise to a trivialization of the G-bundle
P+|A1 (resp. of P−|A1 ), so that σ becomes an element of G(z) regular at 0 ∈ P

1;
moreover, the value of σ(0) lies in the big Bruhat cell B · B− ⊂ G. We require that
σ(0) ∈ B ⊂ G. Then σ is well-defined up to the left multiplication by an element of
B[z] and the right multiplication by an element of B−,1[z] (the kernel of evaluation
at 0 ∈ P

1 : B−[z] → B−), i.e. σ is a well-defined element of B[z]\G(z)/B−,1[z].
Clearly, this element of G(z) lies in the closure of the double coset G[z]zλ,zG[z]
where zλ,z :=∏N

s=1(z− zs)ωis . Moreover, it lies in G[z]zλ,zG[z] ∩ ev−1
0 (B). Thus

we have constructed an embedding

2 ′ : †W
λ,z
μ ↪→ B[z]\(G[z]zλ,zG[z] ∩ ev−1

0 (B))/B−,1[z]

If we compose with an embedding G(z) ↪→ G((z−1)), then the image of 2 ′ lies in
B[z]\U1[[z−1]]T1[[z−1]]zμU−[[z−1]]/U−,1[z] where U1[[z−1]] ⊂ U [[z−1]] (resp.
T1[[z−1]] ⊂ T [[z−1]]) stands for the kernel of evaluation at ∞ ∈ P

1. However, the
projection

U1[[z−1]]T1[[z−1]]zμU−[[z−1]] → B[z]\U1[[z−1]]T1[[z−1]]zμU−[[z−1]]/U−,1[z]

is clearly one-to-one. Summing up, we obtain an embedding

2 : †W
λ,z
μ → U1[[z−1]]T1[[z−1]]zμU−[[z−1]] ∩G[z]zλ,zG[z] ∩ ev−1

0 (B).

We claim that 2 is an isomorphism. To see it, we construct the inverse map to
†W

λ,z
0,μ: given g(z) ∈ U1[[z−1]]T1[[z−1]]zμU−[[z−1]] ∩ G[z]zλ,zG[z] ∩ ev−1

0 (B)

we use it to glue P+ together with a rational isomorphism σ : Ptriv = P− → P+,
and define φ+ as the image of the standard trivial B-structure in Ptriv under σ .
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Remark 4.3 The embedding W
λ,z
μ ↪→ G(z) of [10, § 2(xi)] restricted to the open

subvariety †W
λ,z
μ ⊂W

λ,z
μ does not give the above embedding †W

λ,z
μ ↪→ G(z).

4.6 A Cover of a Slice

We define a T -torsor †W̃
λ
μ→ †W

λ
μ as the moduli space of data (a–d) as in Sect. 4.2

plus

(e) a collection of nowhere vanishing sections uλ∨ ∈ �(P1 \ {∞},Lλ∨) satisfying
Plücker relations (cf. Sect. 4.1(c)).

The construction of Sect. 4.5 defines an isomorphism

2̃ : †W̃
λ,z
μ

∼−→U1[[z−1]]T [[z−1]]zμU−[[z−1]] ∩G[z]zλ,zG[z] ∩ ev−1
0 (B).

Let T[2] ⊂ T be the subgroup of 2-torsion. For a future use we define a T[2]-
torsor †W̃

λ,z
μ ⊃ †Ŵ

λ,z
μ → †W

λ,z
μ as follows. The evaluation at 0 ∈ P

1 gives rise

to a projection pr0 : G[z]zλ,zG[z] ∩ ev−1
0 (B) → B → T . The leading coefficient

(at zμ) gives rise to a projection pr∞ : U1[[z−1]]T [[z−1]]zμU−[[z−1]] → T , and
†Ŵ

λ,z
μ is cut out by the equation pr0 · pr∞ = (−1)λ−μ ∈ T[2], where λ =∑N

s=1 ωis ,

see Sect. 4.2. As z varies, we obtain a T[2]-torsor †W̃
λ
μ ⊃ †Ŵ

λ
μ→ †W

λ
μ.

4.7 An Example

This section is parallel to [10, § 2(xii)], but our present conventions are slightly
different. Let G = GL(2) = GL(V ) with V = Ce1 ⊕ Ce2. Let B be the stabilizer
of Ce2 (the lower triangular matrices), and let B− be the stabilizer of Ce1 (the upper
triangular matrices). Let N,m ∈ N; λ be an N -tuple of fundamental coweights
(0, 1), and μ = (m,N − m), so that w0μ = (N − m,m). Let O := OP1 . We fix a
collection (z1, . . . , zN) ∈ (C×)N and define Pz(z) := ∏N

s=1(z − zs) ∈ C[z]. Then
†W

λ,z
μ is the moduli space of flags (O⊗ V ⊃ V ⊃ L), where

(a) V is a 2-dimensional locally free subsheaf in O ⊗ V coinciding with O ⊗ V
around 0,∞ ∈ P

1 and such that on A
1 ⊂ P

1 the global sections of detV
coincide with PzC[z]e1 ∧ e2 as a C[z]-submodule of �(A1, det(OA1 ⊗ V )) =
C[z]e1 ∧ e2.

(b) L is a line subbundle in V of degree −m, assuming the value Ce1 at ∞ ∈ P
1,

and such that the value of L at 0 ∈ P
1 is transversal to Ce2. In particular,

degV/L = m−N .
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On the other hand, let us introduce a closed subvariety †Ŵ
λ,z
μ in Mat2[z] formed

by all the matrices M =
(
A B

C D

)
such that A(z) = amzm + . . .+ a0, and am · a0 =

(−1)m, while degC(z) < m ≥ degB(z), and B(0) = 0; furthermore, det M =
Pz(z).

Then we have a two-fold cover � : †Ŵ
λ,z
μ → †W

λ,z
μ : given M ∈ †Ŵ

λ,z
μ we view

it as a transition matrix in a punctured neighborhood of ∞ ∈ P
1 to glue a vector

bundle V which embeds, by construction, as a locally free subsheaf into O⊗V . The
morphism MOA1e1 ↪→ OA1 ⊗ V naturally extends to∞ ∈ P

1 with a pole of degree
m, hence it extends to an embedding of O(−m · ∞) into V ⊂ O⊗ V . The image of
this embedding is the desired line subbundle L ⊂ V.

4.8 Thick Slices

We define thick multiplicative (trigonometric) slices †Wμ as the moduli space of the
following data:

(a) a G-bundle P on P
1;

(b) a trivialization σ : Ptriv |̂P1∞
∼−→P|̂

P1∞ in the formal neighborhood of∞ ∈ P
1;

(c) a reduction φ of P to a B-bundle (B-structure φ on P) such that the induced
T -bundle φT has degree w0μ, and the fiber of φ at ∞ ∈ P

1 is transversal to B
(with respect to the trivialization σ of P at∞ ∈ P

1);
(d) a collection of nowhere vanishing sections uλ∨ ∈ �(P1 \ {∞},Lλ∨) satisfying

Plücker relations (cf. Sect. 4.1(c)).

The construction of Sect. 4.6 identifies †Wμ with the infinite type scheme
(cf. [24, § 5.9])

†Wμ ) U1[[z−1]]T [[z−1]]zμU−[[z−1]] ⊂ G((z−1)). (4.1)

As the inclusion U1[[z−1]] ↪→ U((z−1)) gives rise to an isomorphism
U1[[z−1]] ) U [z]\U((z−1)), we can identify †Wμ with the quotient
U [z]\U((z−1))T [[z−1]]zμU−((z−1))/U−,1[z], and we write π for this isomor-
phism. The construction of Sect. 4.5 (resp. of Sect. 4.6) defines a closed embedding
†Wλ

μ ↪→ †Wμ (resp. †Ŵλ
μ ↪→ †Wμ). We define the multiplication morphism

mμ1,μ2 : †Wμ1 × †Wμ2 → †Wμ1+μ2 by the formula mμ1,μ2(g1, g2) = π(g1g2).
Then the multiplication morphismmλ1,λ2

μ1,μ2 : †W
λ1
μ1 × †W

λ2
μ2 → †W

λ1+λ2
μ1+μ2

of Sect. 4.4
is the restriction of mμ1,μ2 . Similarly, mμ1,μ2 restricts to a multiplication
†Ŵ

λ1
μ1 × †Ŵ

λ2
μ2 → †Ŵ

λ1+λ2
μ1+μ2

.
For ν1, ν2 antidominant, we define the shift maps ιμ,ν1,ν2 : †Wμ+ν1+ν2 → †Wμ

by g 	→ π(z−ν1gz−ν2).
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5 Shifted Quantum Affine Algebras

Let g be a simple Lie algebra, h ⊂ g be a Cartan subalgebra of g, and (·, ·) be
a non-degenerate invariant bilinear symmetric form on g (with a square length of
the shortest root equal to 2). Let {α∨i }i∈I ⊂ h∗ be the simple positive roots of g

relative to h, and cij = 2
(α∨i ,α∨j )
(α∨i ,α∨i )

–the entries of the corresponding Cartan matrix. Set

di := (α∨i ,α∨i )
2 ∈ Z>0 so that dicij = dj cji for any i, j ∈ I . Let ν : h ∼−→ h∗ be the

isomorphism determined by the symmetric form (·, ·) so that αi = hi = ν−1(α∨i )/di
are the simple coroots of g.

5.1 Algebras Usc
μ1,μ2

and Uad
μ1,μ2

Given coweights μ+, μ− ∈ ', set b± = {b±i }i∈I ∈ Z
I with b±i :=

α∨i (μ
±). Define the simply-connected version of shifted quantum affine algebra,

denoted by Usc
μ+,μ− or Usc

b+,b− , to be the associative C(v)-algebra generated by

{ei,r , fi,r , ψ±
i,±s±i

, (ψ±
i,∓b±i

)−1}r∈Z,s
±
i ≥−b±i

i∈I with the following defining relations (for

all i, j ∈ I and ε, ε′ ∈ {±}):

[ψεi (z), ψε
′
j (w)] = 0, ψ±

i,∓b±i
· (ψ±

i,∓b±i
)−1 = (ψ±

i,∓b±i
)−1 · ψ±

i,∓b±i
= 1, (U1)

(z− v
cij
i w)ei(z)ej (w) = (v

cij
i z− w)ej (w)ei(z), (U2)

(v
cij
i z− w)fi(z)fj (w) = (z− v

cij
i w)fj (w)fi(z), (U3)

(z− v
cij
i w)ψ

ε
i (z)ej (w) = (vciji z− w)ej (w)ψεi (z), (U4)

(v
cij
i z− w)ψεi (z)fj (w) = (z− v

cij
i w)fj (w)ψ

ε
i (z), (U5)

[ei(z), fj (w)] = δij

vi − v−1
i

δ
( z
w

) (
ψ+i (z)− ψ−i (z)

)
, (U6)

Sym
z1,...,z1−cij

1−cij∑

r=0

(−1)r
[

1− cij
r

]

vi

ei(z1) · · · ei(zr )ej (w)ei(zr+1) · · · ei(z1−cij ) = 0,

(U7)

Sym
z1,...,z1−cij

1−cij∑

r=0

(−1)r
[

1− cij
r

]

vi

fi(z1) · · · fi(zr )fj (w)fi(zr+1) · · · fi(z1−cij ) = 0,

(U8)
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where vi := vdi , [a, b]x := ab − x · ba, [m]v := vm−v−m
v−v−1 ,

[
a
b

]
v
:= [a−b+1]v ···[a]v[1]v ···[b]v ,

Sym
z1,...,zs

stands for the symmetrization in z1, . . . , zs , and the generating series are

defined as follows:

ei(z) :=
∑

r∈Z
ei,r z

−r , fi(z) :=
∑

r∈Z
fi,r z

−r , ψ±i (z) :=
∑

r≥−b±i
ψ±i,±r z

∓r , δ(z) :=
∑

r∈Z
zr .

Let us introduce another set of Cartan generators {hi,±r}r>0
i∈I instead of

{ψ±
i,±s±i

}s
±
i >−b±i
i∈I via

(ψ±
i,∓b±i

z±b
±
i )−1ψ±i (z) = exp

(
±(vi − v−1

i )
∑

r>0

hi,±rz∓r
)
.

Then, relations (U4, U5) are equivalent to the following:

ψ±
i,∓b±i

ej,s = v
±cij
i ej,sψ

±
i,∓b±i

, [hi,r , ej,s] = [rcij ]vi
r

· ej,s+r for r �= 0, (U4′)

ψ±
i,∓b±i

fj,s = v
∓cij
i fj,sψ

±
i,∓b±i

, [hi,r , fj,s] = −[rcij ]vi
r

· fj,s+r for r �= 0.

(U5′)

Let Usc,<
μ+,μ− , U

sc,>
μ+,μ− , and U

sc,0
μ+,μ− be the C(v)-subalgebras of Usc

μ+,μ− generated

by {fi,r}r∈Zi∈I , {ei,r }r∈Zi∈I , and {ψ±
i,±s±i

, (ψ±
i,∓b±i

)−1}s
±
i ≥−b±i
i∈I , respectively. The follow-

ing is proved completely analogously to [37, Theorem 2]:

Proposition 5.1

(a) (Triangular decomposition of Usc
μ+,μ− ) The multiplication map

m : Usc,<
μ+,μ− ⊗ U

sc,0
μ+,μ− ⊗ U

sc,>
μ+,μ− −→ Usc

μ+,μ−

is an isomorphism of C(v)-vector spaces.
(b) The algebra U

sc,0
μ+,μ− (resp. U

sc,<
μ+,μ− and U

sc,>
μ+,μ− ) is isomorphic to the

C(v)-algebra generated by {ψ±
i,±s±i

, (ψ±
i,∓b±i

)−1}s
±
i ≥−b±i
i∈I (resp. {fi,r }r∈Zi∈I and

{ei,r }r∈Zi∈I ) with the defining relations (U1) (resp. (U3, U8) and (U2, U7)). In
particular, Usc,<

μ+,μ− and U
sc,>
μ+,μ− are independent of μ±.
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Following the terminology of [50], we also define the adjoint version of shifted
quantum affine algebra, denoted by Uad

μ+,μ− or Uad
b+,b− , by adding extra generators

{(φ±i )±1}i∈I to Usc
μ+,μ− , which satisfy the following extra relations:

(ψεi,−εbεi )
±1 = (φεi )±2 ·

∏

j−i
(φεj )

±cji , (φεi )±1 · (φεi )∓1 = 1, [φεi , φε
′
j ] = 0, (U9)

φεi ψ
ε′
j (z) = ψε

′
j (z)φ

ε
i , φ

ε
i ej (z) = v

εδij
i ej (z)φ

ε
i , φ

ε
i fj (z) = v

−εδij
i fj (z)φ

ε
i ,

(U10)

for any i, j ∈ I and ε, ε′ ∈ {±}.
Both algebras Usc

μ+,μ− and Uad
μ+,μ− depend only on μ := μ+ + μ− up to an

isomorphism4. Let '± ⊂ ' be the submonoids spanned by {±ωi}i∈I , that is, '+
(resp. '−) consists of dominant (resp. antidominant) coweights of '. We will say
that the algebras Usc

μ+,μ− ,U
ad
μ+,μ− are dominantly (resp. antidominantly) shifted if

μ ∈ '+ (resp. μ ∈ '−). We note that μ ∈ '+ ⇔ b+i + b−i = α∨i (μ) ≥ 0,
μ ∈ '− ⇔ b+i + b−i = α∨i (μ) ≤ 0 for all i ∈ I .

Remark 5.2 One of the key reasons to consider Uad
μ+,μ− , not only Usc

μ+,μ− , is to

construct quantizations of the thick slices †Wμ∗ of Sect. 4.8 and the multiplicative

slice covers †Ŵ
λ∗
μ∗ of Sect. 4.6, see our Conjecture 8.14. On the technical side, we

also need an alternative set of Cartan generators, whose generating series A±i (z) are
defined via (6.1) of Sect. 6 and whose definition requires to work with Uad

μ+,μ− (see
also Remark 6.7(b)).

Remark 5.3

(a) The elements {ψ+
i,−b+i

ψ−
i,b−i
}i∈I (resp. {φ+i φ−i }i∈I ) and their inverses are central

elements of Usc
μ+,μ− (resp. Uad

μ+,μ− ).

(b) We have Usc
0,0/(ψ

+
i,0ψ

−
i,0 − 1) ) Uv(Lg), the standard quantum loop algebra of

g, while Uad
0,0/(φ

+
i φ

−
i − 1) ) U ad

v (Lg), the adjoint version of Uv(Lg).
(c) We note that defining relations (U1–U8, U10) are independent of μ+, μ−.
(d) An equivalent definition of Usc

μ1,μ2
was suggested to us by Boris Feigin

in Spring 2010. In this definition, we take the same generators as for
Uv(Lg) and just modify relation (U6) by requesting pi(z)[ei(z), fj (w)] =
δij δ(z/w)

vi−v−1
i

(
ψ+i (z)− ψ−i (z)

)
for any collection {pi(z)}i∈I of rational functions.

4For example, there is an isomorphism Usc
μ+,μ−

∼−→Usc
0,μ++μ− such that fi(z) 	→ fi(z), ei(z) 	→

zb
+
i ei (z), ψ

±
i (z) 	→ zb

+
i ψ±i (z).
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5.2 Levendorskii Type Presentation of Usc
0,μ

for μ ∈ �−

In Sect. 10, we will crucially need a presentation of the shifted quantum affine
algebras via a finite number of generators and defining relations. This is the purpose
of this subsection.

Fix antidominant coweights μ1, μ2 ∈ '− and set μ := μ1 + μ2. Define b1,i :=
α∨i (μ1), b2,i := α∨i (μ2), bi := b1,i + b2,i . Denote by Ûμ1,μ2 the associative C(v)-
algebra generated by

{ei,r , fi,s , (ψ+i,0)±1, (ψ−i,bi )
±1, hi,±1|i ∈ I, b2,i − 1 ≤ r ≤ 0, b1,i ≤ s ≤ 1}

and with the following defining relations:

{(ψ+i,0)±1, (ψ−i,bi )
±1, hi,±1}i∈I pairwise commute,

(ψ+i,0)
±1 · (ψ+i,0)∓1 = (ψ−i,bi )±1 · (ψ−i,bi )∓1 = 1,

(Û1)

ei,r+1ej,s − v
cij
i ei,r ej,s+1 = v

cij
i ej,sei,r+1 − ej,s+1ei,r , (Û2)

v
cij
i fi,r+1fj,s − fi,rfj,s+1 = fj,sfi,r+1 − v

cij
i fj,s+1fi,r , (Û3)

ψ+i,0ej,r = v
cij
i ej,rψ

+
i,0, ψ

−
i,bi
ej,r = v

−cij
i ej,rψ

−
i,bi
, [hi,±1, ej,r ] = [cij ]vi · ej,r±1,

(Û4)

ψ+i,0fj,s = v
−cij
i fj,sψ

+
i,0, ψ

−
i,bi
fj,s = v

cij
i fj,sψ

−
i,bi
, [hi,±1, fj,s] = −[cij ]vi ·fj,s±1,

(Û5)

[ei,r , fj,s] = 0 if i �= j and [ei,r , fi,s] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ+i,0hi,1 if r + s = 1,

ψ−i,bi hi,−1 if r + s = bi − 1,
ψ+i,0−δbi ,0ψ−i,bi

vi−v−1
i

if r + s = 0,

−ψ−i,bi+δbi ,0ψ
+
i,0

vi−v−1
i

if r + s = bi,
0 if bi < r + s < 0,

(Û6)

[ei,0, [ei,0, · · · , [ei,0, ej,0]vciji · · · ]v−cij−2

i

]
v
−cij
i

= 0 for i �= j, (Û7)

[fi,0, [fi,0, · · · , [fi,0, fj,0]vciji · · · ]v−cij−2

i

]
v
−cij
i

= 0 for i �= j, (Û8)

[hi,1, [fi,1, [hi,1, ei,0]]] = 0, [hi,−1, [ei,b2,i−1, [hi,−1, fi,b1,i ]]] = 0, (Û9)

for any i, j ∈ I and r, s such that the above relations make sense.
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Remark 5.4 One can rewrite relations (Û7, Û8) in the form similar to (U7, U8) as

1−cij∑

r=0

(−1)r
[

1− cij
r

]

vi

eri,0ej,0e
1−cij−r
i,0 = 0,

1−cij∑

r=0

(−1)r
[

1− cij
r

]

vi

f ri,0fj,0f
1−cij−r
i,0 = 0.

Define inductively

ei,r := [2]−1
vi
·
{
[hi,1, ei,r−1] if r > 0,

[hi,−1, ei,r+1] if r < b2,i − 1,

fi,r := −[2]−1
vi
·
{
[hi,1, fi,r−1] if r > 1,

[hi,−1, fi,r+1] if r < b1,i ,

ψ+i,r := (vi − v−1
i ) · [ei,r−1, fi,1] for r > 0,

ψ−i,r := (v−1
i − vi ) · [ei,r−b1,i , fi,b1,i ] for r < bi.

Theorem 5.5 There is a unique C(v)-algebra isomorphism Ûμ1,μ2
∼−→Usc

0,μ, such
that

ei,r 	→ ei,r , fi,r 	→ fi,r , ψ
±
i,±s±i

	→ ψ±
i,±s±i

for i ∈ I, r ∈ Z, s+i ≥ 0, s−i ≥ −bi .

This provides a new presentation of Usc
0,μ via a finite number of generators and

relations. The proof of this result is presented in Appendix A. Motivated by Guay
et al. [33], we also provide a slight modification of this presentation of Usc

0,μ in
Theorem A.3.

Remark 5.6 Theorem 5.5 can be viewed as a v-version of the corresponding result
for the shifted Yangians of [24, Theorem 4.3]. In the particular case μ1 = μ2 = 0,
the latter is the standard Levendorskii presentation of the Yangian, see [47].
However, we are not aware of the reference for Theorem 5.5 even in the unshifted
case μ1 = μ2 = 0.

6 ABCD Generators of Uad
μ+,μ−

In this section, we introduce an alternative set of generators of Uad
μ+,μ− , which will

be used later in the paper (they are also of independent interest), and deduce the
defining relations among them. While the definition works for any two coweights
μ+, μ− ∈ ', the relations hold only for antidominant μ+, μ− ∈ '−, which we
assume from now on.
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First, we define the Cartan generators {A±i,±r }r≥0
i∈I via

z∓b
±
i ψ±i (z) =

∏
j−i
∏−cji
p=1 A

±
j (v

−cji−2p
j z)

A±i (z)A
±
i (v

−2
i z)

with A±i,0 := (φ±i )−1, (6.1)

where we set A±i (z) =
∑
r≥0A

±
i,±r z∓r . Using non-degeneracy of the v-version of

the Cartan matrix (cij ) and arguing by induction in r > 0, one can easily see that
relations (6.1) for all i ∈ I determine uniquely all A±i,±r , see Remark B.2 (cf. [30,

Lemma 2.1]). An explicit formula for A±i (z) is given by (B.2) in Appendix B.
Next, we introduce the generating series B±i (z), C

±
i (z),D

±
i (z) via

B±i (z) := (vi − v−1
i )A

±
i (z)e

±
i (z), (6.2)

C±i (z) := (vi − v−1
i )f

±
i (z)A

±
i (z), (6.3)

D±i (z) := A±i (z)ψ±i (z)+ (vi − v−1
i )

2f±i (z)A
±
i (z)e

±
i (z), (6.4)

where the Drinfeld half-currents are defined as follows:

e+i (z) :=
∑

r≥0

ei,r z
−r , e−i (z) := −

∑

r<0

ei,r z
−r ,

f+i (z) :=
∑

r>0

fi,rz
−r , f−i (z) := −

∑

r≤0

fi,rz
−r .

(6.5)

It is clear that coefficients of the generating series {A±i (z), B±i (z), C±i (z),
D±i (z)}i∈I together with {φ±i }i∈I generate (over C(v)) the shifted quantum affine
algebra Uad

μ+,μ− . The following is the key result of this section.

Theorem 6.6 Assume μ+, μ− ∈ '− and define {b±i }i∈I via b±i := α∨i (μ
±) as

before.

(a) The generating series A±i (z), B
±
i (z), C

±
i (z),D

±
i (z) satisfy the following rela-

tions:

φεi A
ε′
j (w) = Aε

′
j (w)φ

ε
i , φ

ε
i D

ε′
j (w) = Dε

′
j (w)φ

ε
i ,

φεi B
ε′
j (w) = v

εδij
i Bε

′
j (w)φ

ε
i , φ

ε
i C

ε′
j (w) = v

−εδij
i Cε

′
j (w)φ

ε
i ,

(6.6)

[Aεi (z), Aε
′
j (w)] = 0, (6.7)

[Aεi (z), Bε
′
j (w)] = [Aεi (z), Cε

′
j (w)] = [Bεi (z), Cε

′
j (w)] = 0 for i �= j,

(6.8)



166 M. Finkelberg and A. Tsymbaliuk

[Bεi (z), Bε
′
i (w)] = [Cεi (z), Cε

′
i (w)] = [Dεi (z),Dε

′
i (w)] = 0, (6.9)

(z− w)[Bε′i (w),Aεi (z)]v−1
i
= (vi − v−1

i )
(
zAεi (z)B

ε′
i (w)− wAε

′
i (w)B

ε
i (z)

)
,

(6.10)

(z− w)[Aεi (z), Cε
′
i (w)]vi = (vi − v−1

i )
(
wCε

′
i (w)A

ε
i (z)− zCεi (z)Aε

′
i (w)

)
,

(6.11)

(z− w)[Bεi (z), Cε
′
i (w)] = (vi − v−1

i )z
(
Dε

′
i (w)A

ε
i (z)−Dεi (z)Aε

′
i (w)

)
,

(6.12)

(z− w)[Bεi (z),Dε
′
i (w)]vi = (vi − v−1

i )
(
wDε

′
i (w)B

ε
i (z)− zDεi (z)Bε

′
i (w)

)
,

(6.13)

(z−w)[Dε′i (w), Cεi (z)]v−1
i
= (vi − v−1

i )
(
zCεi (z)D

ε′
i (w)− wCε

′
i (w)D

ε
i (z)

)
,

(6.14)

(z− w)[Aεi (z),Dε
′
i (w)] = (vi − v−1

i )
(
wCε

′
i (w)B

ε
i (z)− zCεi (z)Bε

′
i (w)

)
,

(6.15)

Aεi (z)D
ε
i (v

−2
i z)− v−1

i B
ε
i (z)C

ε
i (v

−2
i z) = zεb

ε
i ·
∏

j−i

−cji∏

p=1

Aεj (v
−cji−2p
j z),

(6.16)
(z− v

cij
i w)B

ε
i (z)B

ε′
j (w)− (vciji z− w)Bε

′
j (w)B

ε
i (z) =

zAεi (z)[φ+i B+i,0, Bε
′
j (w)]vciji + wAε′j (w)[φ+j B+j,0, Bεi (z)]vciji for i �= j,

(6.17)
(v
cij
i z− w)Cεi (z)Cε

′
j (w)− (z− v

cij
i w)C

ε′
j (w)C

ε
i (z) =

− [Cεi (z), C+j,1φ+j ]vciji A
ε′
j (w)− [Cε

′
j (w), C

+
i,1φ

+
i ]vciji A

ε
i (z) for i �= j,

(6.18)

Sym
z1,...,z1−cij

{
∏

a<b

(vi za − v−1
i zb)(za − zb)·

1−cij∑

r=0

(−1)r
[

1− cij
r

]

vi

B
ε1
i (z1) · · ·Bεri (zr )Bε

′
j (w)B

εr+1
i (zr+1) · · ·B

ε1−cij
i (z1−cij )

⎫
⎬

⎭ = 0,

(6.19)

Sym
z1,...,z1−cij

{
∏

a<b

(vi zb − v−1
i za)(zb − za)·

1−cij∑

r=0

(−1)r
[

1− cij
r

]

vi

C
ε1
i (z1) · · ·Cεri (zr )Cε

′
j (w)C

εr+1
i (zr+1) · · ·C

ε1−cij
i (z1−cij )

⎫
⎬

⎭ = 0,

(6.20)
for any i, j ∈ I and ε, ε′, ε1, . . . , ε1−cij ∈ {±}.
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(b) Relations (6.6–6.20) are the defining relations. In other words, the
associative C(v)-algebra generated by {φ±i , A±i,±r , B+i,r , B−i,−r−1, C

+
i,r+1,

C−i,−r ,D
±
i,±r±b±i

}r∈Ni∈I with the defining relations (6.6–6.20) is isomorphic

to Uad
μ+,μ− .

We sketch the proof in Appendix B. In the unshifted case, more pre-
cisely for U ad

v (Lg), the above construction should be viewed as a v-version
of that of [30]. In loc.cit., the authors introduced analogous generating series
{Ai(u), Bi(u), Ci(u),Di(u)}i∈I with coefficients in the Yangian Y (g) and stated
(without a proof) the relations between them, similar to (6.7–6.16).5 Meanwhile,
we note that adding rational analogues of (6.17–6.20) to their list of relations, we
get a complete list of the defining relations among these generating series.

Remark 6.7

(a) For g = sl2, relations (6.7, 6.9–6.15) are equivalent to the RTT-relations
(with the trigonometric R-matrix of (11.3)), see our proof of Theorem 11.11
below.

(b) This construction can be adapted to the setting of Usc
μ+,μ− . First, we redefine the

generating series A±i (z) = 1+∑r>0A
±
i,±r z∓r which have to satisfy

z∓b
±
i (ψ±

i,∓b±i
)−1ψ±i (z) =

∏
j−i
∏−cji
p=1 A

±
j (v

−cji−2p
j z)

A±i (z)A
±
i (v

−2
i z)

. (6.21)

Next, we define B±i (z), C
±
i (z) via formulas (6.2, 6.3). Finally, we defineD±i (z)

via

D±i (z) := A±i (z)ψ±i (z)+ v∓1
i (vi − v−1

i )
2f±i (z)A

±
i (z)e

±
i (z). (6.22)

The coefficients of these generating series together with {(ψε
i,−εbεi )

±1}ε=±i∈I
generate Usc

μ+,μ− . For μ+, μ− ∈ '− one can write a complete list of the
defining relations among these generators, which look similar to (6.7–6.20).

7 Homomorphism to Difference Operators

In this section, we construct homomorphisms from the shifted quantum affine
algebras to the algebras of difference operators.

5We note that the relation [Di(u),Di(v)] = 0 was missing in their list.
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7.1 Homomorphism ˜� λ
μ

Let Dyn(g) be the graph obtained from the Dynkin diagram of g by replacing
all multiple edges by simple ones. We fix an orientation of Dyn(g) and we fix
a dominant coweight λ ∈ '+ and a coweight μ ∈ ', such that λ − μ =∑
i∈I aiαi with ai ∈ N. We also fix a sequence λ = (ωi1 , . . . , ωiN ) of fundamental

coweights, such that
∑N
s=1 ωis = λ.

Consider the associative C[v±1]-algebra Âv generated by {D±1
i,r ,w

±1/2
i,r }1≤r≤aii∈I

with the defining relations (for all i, j ∈ I, 1 ≤ r ≤ ai, 1 ≤ s ≤ aj ):

[Di,r ,Dj,s ] = [w1/2
i,r ,w

1/2
j,s ] = 0, D±1

i,r D
∓1
i,r = w±1/2

i,r w∓1/2
i,r = 1, Di,rw

1/2
j,s = v

δij δrs
i w1/2

j,s Di,r .

Let Ãv be the localization of Âv by the multiplicative set generated by
{wi,r − vmi wi,s}1≤r �=s≤aii∈I,m∈Z ∪ {1 − vm}m∈Z\{0} (which obviously satisfies Ore con-

ditions). We also define their C(v)-counterparts Âv
frac := Âv ⊗C[v±1] C(v) and

Ãv
frac := Ãv ⊗C[v±1] C(v).
In what follows, we will work with the larger algebra Uad

0,μ[z±1
1 , . . . , z±1

N ], which

is obtained from Usc
0,μ[z±1

1 , . . . , z±1
N ] := Usc

0,μ ⊗C(v) C(v)[z±1
1 , . . . , z±1

N ] by adding

extra generators {(φεi )±1}ε=±i∈I satisfying relations (U9, U10) with the only change:

∏

s:is=i
(−vizs)∓1 · (ψ−

i,α∨i (μ)
)±1 = (φ−i )±2 ·

∏

j−i
(φ−j )

±cji .

We will also work with the larger algebras Ãv[z±1
1 , . . . , z±1

N ] := Ãv ⊗C[v±1]
C[v±1][z±1

1 , . . . , z±1
N ] and Ãv

frac[z±1
1 , . . . , z±1

N ] := Ãv
frac⊗C(v)C(v)[z±1

1 , . . . , z±1
N ].

Define

Zi(z) :=
is=i∏

1≤s≤N

(
1− vizs

z

)
, Wi(z) :=

ai∏

r=1

(
1− wi,r

z

)
, Wi,r (z) :=

s �=r∏

1≤s≤ai

(
1− wi,s

z

)
,

Ẑi (z) :=
is=i∏

1≤s≤N

(
1− z

vizs

)
, Ŵi (z) :=

ai∏

r=1

(
1− z

wi,r

)
, Ŵi,r (z) :=

s �=r∏

1≤s≤ai

(
1− z

wi,s

)
.

The following is the key result of this section.

Theorem 7.1 There exists a unique C(v)[z±1
1 , . . . , z±1

N ]-algebra homomorphism

�̃
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] −→ Ãv
frac[z±1

1 , . . . , z±1
N ],
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such that

ei(z) 	→ −vi

1− v2
i

ai∏

t=1

wi,t
∏

j→i

aj∏

t=1

w
cji /2
j,t ·

ai∑

r=1

δ

(
wi,r
z

)
Zi(wi,r )
Wi,r (wi,r )

∏

j→i

−cji∏

p=1

Wj(v
−cji−2p
j z)D−1

i,r ,

fi (z) 	→ 1

1− v2
i

∏

j←i

aj∏

t=1

w
cji/2
j,t

·
ai∑

r=1

δ

(
v2
i
wi,r
z

)
1

Wi,r (wi,r )

∏

j←i

−cji∏

p=1

Wj (v
−cji−2p
j

z)Di,r ,

ψ±i (z) 	→
ai∏

t=1

wi,t
∏

j−i

aj∏

t=1

w
cji/2
j,t ·

⎛

⎝ Zi(z)

Wi(z)Wi(v
−2
i z)

∏

j−i

−cji∏

p=1

Wj(v
−cji−2p
j z)

⎞

⎠
±
,

(φ+i )
±1 	→

ai∏

t=1

w±1/2
i,t , (φ−i )

±1 	→ (−vi )
∓ai

ai∏

t=1

w∓1/2
i,t .

We write γ (z)± for the expansion of a rational function γ (z) in z∓1, respectively.

In the unshifted case, more precisely for Uv(Lg), this result was stated (without
a proof) in [31]. The above formulas simplify for simply-laced g, in which case this
result can be viewed as a v-version of [10, Corollary B.17]. We present the proof in
Appendix C.

7.2 Homomorphism �̃λ
μ in ABC Generators

Generalizing the construction of Sect. 6, we define new Cartan generators
{A±i,±r }r≥0

i∈I of Uad
0,μ[z±1

1 , . . . , z±1
N ] via

A±i,0 := (φ±i )−1,

ψ+i (z)
Zi(z)

=
∏
j−i
∏−cji
p=1 A

+
j (v

−cji−2p
j z)

A+i (z)A
+
i (v

−2
i z)

,

zα
∨
i (μ)ψ−i (z)∏

s:is=i (−vizs) · Ẑi(z)
=
∏
j−i
∏−cji
p=1 A

−
j (v

−cji−2p
j z)

A−i (z)A
−
i (v

−2
i z)

,

where we setA±i (z) :=
∑
r≥0A

±
i,±r z∓r .We also define the generating seriesB±i (z),

C±i (z), and D±i (z) via formulas (6.2), (6.3), and (6.4), respectively.
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Lemma 7.2 For antidominant μ ∈ '−, the generating series
A±i (z), B

±
i (z), C

±
i (z),D

±
i (z) satisfy relations (6.7–6.15).

Proof Let c be the determinant of the Cartan matrix of g. Choose unique λ+i (z) ∈
1+ z−1

C(v)[z±1
1 , . . . , z±1

N ][[z−1]], such that Zi(z) = λ+i (z)λ
+
i (v

−2
i z)

∏
j−i
∏−cji
p=1 λ

+
j (v

−cji−2p

j z)
. Also

choose λ−i (z) ∈ C(v1/c)[z±1/c
1 , . . . , z±1/c

N ][[z]], such that Ẑi(z) ·∏s:is=i (−vizs) =
λ−i (z)λ

−
i (v

−2
i z)

∏
j−i
∏−cji
p=1 λ

−
j (v

−cji−2p

j z)
.

Then, the series λ±i (z)−1X±i (z) for X = A,B,C,D are those of Sect. 6.
The result follows from Theorem 6.6(a) (compare with the proof of [44,
Proposition 5.5]). ��
Corollary 7.3 The following equalities hold in Uad

0,μ[z±1
1 , . . . , z±1

N ]:

B+i (z) = [ei,0, A+i (z)]v−1
i
, C+i (z) = [z−1A+i (z), fi,1]v−1

i
,

B−i (z) = [ei,−1, zA
−
i (z)]vi , C−i (z) = [A−i (z), fi,0]vi .

Proof The above formula for B+i (z) (resp. C+i (z)) follows by evaluating the terms
of degree 1 (resp. 0) in w in the equality (6.10) (resp. (6.11)) with ε = ε′ = +.

The formulas for B−i (z), C
−
i (z) are proved analogously. ��

The following result is straightforward.

Proposition 7.4 The homomorphism �̃λμ maps the ABC currents as follows:

A+i (z) 	→
ai∏

t=1

w−1/2
i,t ·Wi(z), A−i (z) 	→ (−vi )

ai

ai∏

t=1

w1/2
i,t · Ŵi(z),

B+
i
(z) 	→

ai∏

t=1

w1/2
i,t

∏

j→i

aj∏

t=1

w
cji/2
j,t

·
ai∑

r=1

Wi,r (z)Zi(wi,r )
Wi,r (wi,r )

∏

j→i

−cji∏

p=1

Wj (v
−cji−2p
j

wi,r )D
−1
i,r
,

B−i (z) 	→ −(−vi )
ai

ai∏

t=1

w3/2
i,t

∏

j→i

aj∏

t=1

w
cji /2
j,t ·

ai∑

r=1

zŴi,r (z)Zi(wi,r )
wi,rWi,r (wi,r )

∏

j→i

−cji∏

p=1

Wj(v
−cji−2p
j wi,r )D

−1
i,r ,

C+i (z) 	→ −
ai∏

t=1

w−1/2
i,t

∏

j←i

aj∏

t=1

w
cji /2
j,t ·

ai∑

r=1

wi,rWi,r (z)
zWi,r (wi,r )

∏

j←i

−cji∏

p=1

Wj(v
−cji−2p
j v2

iwi,r )Di,r ,

C−i (z) 	→ (−vi )
ai

ai∏

t=1

w1/2
i,t

∏

j←i

aj∏

t=1

w
cji /2
j,t ·

ai∑

r=1

Ŵi,r (z)

Wi,r (wi,r )

∏

j←i

−cji∏

p=1

Wj(v
−cji−2p
j v2

iwi,r )Di,r .

In particular, all these images belong to Ãv[z±1
1 , . . . , z±1

N ] ⊂ Ãv
frac[z±1

1 , . . . , z±1
N ].
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8 K-theoretic Coulomb Branch

8.1 Quiver Gauge Theories

We follow the notations and setup of [10, Appendix A], so that (GL(V ),N) is a
quiver gauge theory. As in Sect. 7, we fix a sequence (ωi1, . . . , ωiN ) of fundamental
coweights of G which is assumed to be simply-laced for the current discussion.
We choose a basis w1, . . . , wN in W = ⊕

i∈I Wi such that ws ∈ Wis . This
defines a maximal torus TW ⊂ ∏i GL(Wi), and KTW (pt) = C[z±1

1 , . . . , z±1
N ]. We

consider the (quantized)K-theoretic Coulomb branch with flavor deformation Aq =
K(GL(V )×TW )O�C

×
(RGL(V ),N) equipped with the convolution algebra structure as

in [9, Remark 3.9(3)]. It is a KC××TW (pt)-algebra; we denote KC×(pt) = C[q±1].
We will also need v = q1/2, the generator of the equivariant K-theory of a point
with respect to the two-fold cover C̃× → C

×. Recall that GL(V ) =∏i∈I GL(Vi).
We will need its 2I -cover G̃L(V ) = ∏

i∈I G̃L(Vi) where G̃L(Vi) := {(g ∈
GL(Vi), y ∈ C

×) : det(g) = y2}. We consider the extended Coulomb branch
Av := K(G̃L(V )×TW )O�C̃

×
(RGL(V ),N) = Aq ⊗KGL(V )×C× (pt) KG̃L(V )×C̃×(pt). It is

equipped with an algebra structure as in Sect. 3.7.
Recall from [10] that w∗i,r is the cocharacter of the Lie algebra of GL(V ) =∏
GL(Vi), which is equal to 0 except at the vertex i, and is (0, . . . , 0, 1, 0, . . . , 0)

at i. Here 1 is at the r-th entry (r = 1, . . . , ai = dimVi). We denote the
corresponding coordinates of TV and T ∨V by wi,r and Di,r (i ∈ I, 1 ≤ r ≤ ai).

The roots are wi,rw
−1
i,s (r �= s). Furthermore, K(TV×TW )O�C

×
(RTV ,0) with scalars

extended by v,w±1/2
i,r is nothing but the algebra Âv[z±1

1 , . . . , z±1
N ] := Âv ⊗C[v±1]

C[v±1][z±1
1 , . . . , z±1

N ], where Âv was defined in Sect. 7. We thus have an algebra
embedding

z∗(ι∗)−1 : Av ↪→ Ãv[z±1
1 , . . . , z±1

N ].

Let *i,n be the n-th fundamental coweight of the factor GL(Vi), i.e., w∗i,1 +
. . . + w∗i,n = (1, . . . , 1, 0, . . . , 0) where 1 appears n times (1 ≤ n ≤ ai). Then

Gr
*i,n
GL(V ) is closed and isomorphic to the Grassmannian Gr(Vi, n) of n-dimensional

quotients of Vi . Let Qi be the tautological rank n quotient bundle on Gr
*i,n
GL(V ). Its

pull-back to R*i,n is also denoted by Qi for brevity. Let 'p(Qi ) denote the class
of its p-th external power in Av . More generally, we can consider a class f (Qi )
for a symmetric function f in n variables so that 'p(Qi ) corresponds to the p-th
elementary symmetric polynomial ep.

Similarly, we consider* ∗
i,n = −w0*i,n, where the corresponding orbit Gr

* ∗i,n
GL(V )

is closed and isomorphic to the Grassmannian Gr(n, Vi) of n-dimensional subspaces

in Vi . Let Si be the tautological rank n subbundle on Gr
* ∗i,n
GL(V ). Its pull-back to R* ∗i,n
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is also denoted by Si . Now similarly to [10, (A.3), (A.5)], cf. [10, Remark A.8], we
obtain

z∗(ι∗)−1
(
f (Qi )⊗ OR*i,n

)
=

∑

J⊂{1,...,ai }
#J=n

f (wi,J )

∏

j←i
r∈J

aj∏

s=1
(j,s)�=(i,r)

(1− vwi,rw
−1
j,s )

∏

r∈J,s /∈J
(1− wi,sw

−1
i,r )

∏

r∈J
Di,r

(8.1)
(the appearance of v is due to the convention before [9, Remark 2.1]);

z∗(ι∗)−1
(
f (Si )⊗ OR*∗

i,n

)
=

∑

J⊂{1,...,ai }
#J=n

f (v−2wi,J )
∏

r∈J
t :it=i

(1− vztw
−1
i,r )

∏

j→i
r∈J

aj∏

s=1
(j,s) �=(i,r)

(1− vwj,sw
−1
i,r )

∏

r∈J,s /∈J
(1− wi,rw

−1
i,s )

∏

r∈J
D−1
i,r ,

(8.2)

where f (v−2wi,J ) means that we substitute {v−2wi,r }r∈J to f .

Also, for the vector bundles �p*i,1,�
p

* ∗i,1
of p-forms on Gr

*i,1
GL(V ),Gr

* ∗i,1
GL(V ) we

obtain

z∗(ι∗)−1
(
�p*i,1 ⊗ Q

⊗p′
i ⊗ OR*i,1

)
=

∑

1≤r≤ai
wp

′−p
i,r

⎛

⎜⎜⎝
∑

J⊂{1,...,ai }\{r}
#J=p

∏

s∈J
wi,s

⎞

⎟⎟⎠

∏

j←i

aj∏

s=1
(j,s) �=(i,r)

(1− vwi,rw
−1
j,s )

∏

s �=r
(1− wi,sw

−1
i,r )

Di,r ,

(8.3)

z∗(ι∗)−1
(
�
p

* ∗i,1
⊗ S

⊗p′
i ⊗ OR*∗

i,1

)
=

∑

1≤r≤ai
v−2p′wp

′+p
i,r

∏

t :it=i
(1− vztw

−1
i,r )

⎛

⎜⎜⎝
∑

J⊂{1,...,ai }\{r}
#J=p

∏

s∈J
w−1
i,s

⎞

⎟⎟⎠

∏

j→i

aj∏

s=1
(j,s)�=(i,r)

(1− vwj,sw
−1
i,r )

∏

s �=r
(1− wi,rw

−1
i,s )

D−1
i,r .

(8.4)
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8.2 Homomorphism � λ
μ

We set Av
frac := Av ⊗C[v±1] C(v). The key result of this section asserts that

the homomorphism �̃
λ
μ of Theorem 7.1 factors through the above embedding

z∗(ι∗)−1 : Av
frac ↪→ Ãv

frac[z±1
1 , . . . , z±1

N ], similarly to [10, Theorem B.18].

Theorem 8.1 There exists a unique C(v)[z±1
1 , . . . , z±1

N ]-algebra homomorphism

�
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] −→ Av
frac,

such that the following diagram commutes:

Explicitly, �λμ maps the generators as follows:

ei,r 	→ (−1)aiv

1− v2

∏

j→i

aj∏

t=1

w−1/2
j,t · (v2Si )

⊗(r+ai ) ⊗ OR*∗
i,1
,

fi,r 	→ (−v)−
∑
j←i aj

1− v2

∏

j←i

aj∏

t=1

w1/2
j,t · Q

⊗(−∑j←i aj )
i ⊗ (v2Qi )

⊗r ⊗ OR*i,1
,

A+i,r 	→ (−1)r
ai∏

t=1

w−1/2
i,t · er({wi,t }ait=1),

A−i,−r 	→ (−1)r (−v)ai
ai∏

t=1

w1/2
i,t · er({w−1

i,t }ait=1),

φ+i 	→
ai∏

t=1

w1/2
i,t , φ

−
i 	→ (−v)−ai

ai∏

t=1

w−1/2
i,t .

Proof For X ∈ {ei,r , fi,r , A±i,±s , φ±i |i ∈ I, r ∈ Z, s ∈ N} con-

sider the assignment X 	→ �
λ
μ(X) with the right-hand side defined

as above. Since z∗(ι∗)−1 : Av
frac ↪→ Ãv

frac[z±1
1 , . . . , z±1

N ] is injective and

�̃
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] → Ãv
frac[z±1

1 , . . . , z±1
N ] is an algebra homomorphism,
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it suffices to check that z∗(ι∗)−1
(
�
λ
μ(X)

)
= �̃

λ
μ(X) for X as above. This is a

straightforward verification based on formulas (8.1) and (8.2). ��
Combining Proposition 7.4 with formulas (8.3) and (8.4), we immediately find

the images of the generators {B+i,r , C+i,r+1}r≥0
i∈I under �λμ.

Corollary 8.2 For r ∈ N, we have

�
λ
μ(B

+
i,r ) = (−1)r+ai+1v2r

ai∏

t=1

w1/2
i,t

∏

j→i

aj∏

t=1

w−1/2
j,t ·

(
�
ai−1−r
* ∗i,1

⊗ S⊗ri ⊗ OR*∗
i,1

)
,

�
λ
μ(C

+
i,r+1) = (−1)r+1(−v)−

∑
j←i aj

ai∏

t=1

w−1/2
i,t

∏

j←i

aj∏

t=1

w1/2
j,t

·
(
�r*i,1 ⊗ Q

⊗(r+1−∑j←i aj )
i ⊗ OR*i,1

)
.

In particular, the images of {A+i,r , B+i,r , C+i,r+1, φ
+
i }r∈Ni∈I under �λμ belong to Av ⊂

Av
frac. In fact, the images of {A−i,−r , B−i,−r−1, C

−
i,−r , φ

−
i }r∈Ni∈I under �λμ also belong

to Av .

Remark 8.3 (A. Weekes) In the case of shifted Yangians, the images of the generat-
ing series Bi(z), Ci(z) [44, Section 5.3] in the quantized (cohomological) Coulomb
branch Ah̄ under the homomorphism �

λ
μ of [10, Theorem B.18] are equal to

�
λ
μ(Bi(z)) = (−1)ai z−1 · c(Q̃i ,−z−1) ∩ [R* ∗i,1],

�
λ
μ(Ci(z)) = (−1)

∑
j←i aj z−1 · c(Si ,−z−1) ∩ [R*i,1],

where c(F, z) denotes the Chern polynomial of a vector bundle F. Here we view
Qi , Si as rank n − 1 vector bundles on R* ∗i,1,R*i,1 , respectively, while Q̃i denotes
the vector bundle Qi with the equivariance structure twisted by h̄.

Remark 8.4 Note that Gr
*i,1
GL(V ) ) P

ai−1 ) Gr
* ∗i,1
GL(V ), and if we forget the

equivariance, then up to sign, �λμ(fi,r ), 1 ≤ r ≤ ai , is the collection of classes of
pull-backs of the line bundles O

P
ai−1(1 −∑j←i aj ), . . . ,OP

ai−1(ai −∑j←i aj ),
while �λμ(C

+
i,r ), 1 ≤ r ≤ ai , is the collection of classes of pull-backs of the

vector bundles�r−1
P
ai−1(r−

∑
j←i aj ). These two collections are the dual exceptional

collections of vector bundles on P
ai−1 (more precisely, the former collection is left
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dual to the latter one). In fact, this is the historically first example of dual exceptional
collections, [3]. Similarly, up to sign and forgetting equivariance, �λμ(ei,r ), 0 ≤
r < ai , are the classes of the exceptional collection of line bundles right dual to the
exceptional collection of vector bundles whose classes are �λμ(B

+
i,r ), 0 ≤ r < ai .

Remark 8.5 An action of the quantized K-theoretic Coulomb branch Av
frac of the

type A quiver gauge theory on the localized equivariant K-theory of parabolic Lau-
mon spaces was constructed in [4]. Combining this construction with Theorem 8.1,
we see that there should be a natural action of Uad

0,μ[z±1
1 , . . . , z±1

N ] (with g = sln) on
the aforementionedK-theory. We construct explicitly such an action of Usc

0,μ in The-
orem 12.2 by adapting the arguments of [61] to the current setting (the adjoint ver-
sion is achieved by considering equivariant K-theory with respect to a larger torus).

8.3 Truncated Shifted Quantum Affine Algebras

We consider a 2-sided ideal I
λ
μ of Uad

0,μ[z±1
1 , . . . , z±1

N ] generated over

C(v)[z±1
1 , . . . , z±1

N ] by the following elements:

A±i,±s (s > ai), A
+
i,0A

+
i,ai
− (−1)ai , A−i,0A

−
i,−ai − (−1)aiv2ai

i , (8.5)

A−i,−r − v
ai
i A

+
i,ai−r (0 ≤ r ≤ ai). (8.6)

Definition 8.6 U
λ
μ := Uad

0,μ[z±1
1 , . . . , z±1

N ]/Iλμ is called the truncated shifted
quantum affine algebra.

Note that the homomorphism �̃
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] → Ãv
frac[z±1

1 , . . . , z±1
N ]

factors through the same named homomorphism �̃
λ
μ : Uλμ → Ãv

frac[z±1
1 , . . . , z±1

N ],
due to Proposition 7.4. Similarly to [10, Remark B.21], we expect this homomor-
phism to be injective:

Conjecture 8.7 �̃
λ
μ : Uλμ ↪→ Ãv

frac[z±1
1 , . . . , z±1

N ].
Remark 8.8 As a first indication of the validity of this conjecture, we note that
the elements {B+i,r , C+i,r+1, B

−
i,−r−1, C

−
i,−r }r≥aii∈I which belong to Ker(�̃λμ) (due to

Proposition 7.4) also belong to I
λ
μ, due to Corollary 7.3 and relation (U10).

Moreover, we expect the following result:

Conjecture 8.9 �
λ
μ : Uλμ ∼−→Av

frac.
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8.4 Truncated Shifted v-Yangians

Recall that g is assumed to be simply-laced. Recall an explicit identification of
the Drinfeld-Jimbo and the new Drinfeld realizations of the standard quantum
loop algebra Uv(Lg). To this end, choose a decomposition of the highest root θ
of g into a sum of simple roots θ = α∨i1 + α∨i2 + . . . + α∨ih−1

such that εk :=
〈αik+1 , α

∨
i1
+. . .+α∨ik 〉 ∈ Z<0 for any 1 ≤ k ≤ h−2 (here h is the Coxeter number of

g). We encode a choice of such a decomposition by a sequence i = (i1, . . . , ih−1).
Let UDJ

v (Lg) denote the Drinfeld-Jimbo quantum group of ĝ (affinization of g) with
a trivial central charge, generated by {Ei, Fi,K±1

i }i∈Ĩ (here Ĩ = I ∪ {i0} is the
vertex set of the extended Dynkin diagram), see [50]. The following result is due
to [16] (proved in [41]).

Theorem 8.10 There is a C(v)-algebra isomorphism UDJ
v (Lg)

∼−→Uv(Lg), such
that

Ei 	→ ei,0, Fi 	→ fi,0, K
±1
i 	→ ψ±i,0 for i ∈ I,

Ei0 	→ [fih−1,0, [fih−2,0, · · · , [fi2,0, fi1,1]vε1 · · · ]vεh−3 ]vεh−2 · ψ−θ ,

Fi0 	→ (−v)−εψ+θ · [eih−1,0, [eih−2,0, · · · , [ei2,0, ei1,−1]vε1 · · · ]vεh−3 ]vεh−2 ,

K±i0 	→ ψ∓θ ,

where ψ±θ := ψ±i1,0 · · ·ψ±ih−1,0
, ε := ε1 + . . .+ εh−2.

In particular, the image of the negative Drinfeld-Jimbo Borel subalgebra
of UDJ

v (Lg) generated by {Fi,K±1
i }i∈Ĩ under the above isomorphism is the

subalgebra U−v of Uv(Lg), generated by {fi,0, (ψ−i,0)±1, F }i∈I with F :=
[eih−1,0, [eih−2,0, · · · , [ei2,0, ei1,−1]vε1 · · · ]vεh−3 ]vεh−2 . Motivated by this observa-
tion, we introduce the following definition.

Definition 8.11

(a) Fix i = (i1, . . . , ih−1) as above. The shifted v-Yangian iY
v
μ[z±1

1 , . . . , z±1
N ]

is the C(v)[z±1
1 , . . . , z±1

N ]-subalgebra of Uad
0,μ[z±1

1 , . . . , z±1
N ] generated by

{fi,0, (ψ−i,bi )±1, F̂ }i∈I , where

F̂ := [eih−1,bih−1
, [eih−2,bih−2

, · · · , [ei2,bi2 , ei1,bi1−1]vε1 · · · ]vεh−3 ]vεh−2

and bi := α∨i (μ).
(b) The truncated shifted v-Yangian iY

λ
μ is the quotient of iY

v
μ[z±1

1 , . . . , z±1
N ] by the

2-sided ideal iI
λ,+
μ := I

λ
μ ∩ iY

v
μ[z±1

1 , . . . , z±1
N ].
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Remark 8.12 For g = gln and μ = 0, our definition of the v-Yangian is consistent
with that of the quantum Yangian Yq(gln) of [54] (in particular, independent of the
choice of i). The latter is defined via the RTT presentation, see our discussion in
Appendix G, and corresponds to the subalgebra generated by the coefficients of the
matrix T −(z).

Conjecture 8.13 �
λ
μ : iY

λ
μ

∼−→Av
frac.

8.5 Integral Forms

If we believe Conjectures 8.9 and 8.13, we can transfer the integral forms Av ⊂
Av

frac to the truncated shifted quantum affine algebras and the truncated shifted v-

Yangians to obtain the C[v±1]-subalgebras ′Uλμ ⊂ U
λ
μ and ′

iY
λ
μ ⊂ iY

λ
μ. Finally,

we define the integral form ′Uad
0,μ ⊂ Uad

0,μ as an intersection of all the preimages

of ′Uλμ|z1=...=zN=1 under projections Uad
0,μ[z±1

1 , . . . , z±1
N ] � U

λ
μ as λ varies, and

′
iY

v
μ := ′Uad

0,μ ∩ iY
v
μ[z±1

1 , . . . , z±1
N ]|z1=...=zN=1. Unfortunately, we cannot define

these integral forms by generators and relations in general. In the case of sl2
see Sect. 9.1.

Recall that ∗ stands for the involution μ 	→ −w0μ of the coweight lattice '.
Similarly to [10, Remark 3.17], one can construct an isomorphism from the non-
quantized extended K-theoretic Coulomb branch SpecK(G̃L(V )×TW )O(RGL(V ),N)
of Sect. 8.1 to the multiplicative slice cover †Ŵ

λ∗
μ∗ of Sect. 4.6. Its quantization is the

subject of the following

Conjecture 8.14

(a) The shifted v-Yangian ′
iY

v
μ is a quantization of the thick multiplicative slice

†Wμ∗ of Sect. 4.8, that is ′iYv
μ|v=1 ) C[†Wμ∗ ].

(b) The truncated shifted v-Yangian ′iY
λ
μ and the truncated shifted quantum affine

algebra ′Uλμ are quantizations of the multiplicative slice cover †Ŵ
λ∗
μ∗ of Sect. 4.6,

that is ′iY
λ
μ|v=1 ) ′Uλμ|v=1 ) C[†Ŵλ∗

μ∗ ].

8.6 An Example

Let g = sln, μ = 0, λ = (ω1, . . . , ω1) (the first fundamental coweight taken
n times). Note that the symmetric group Sn acts naturally on ′Uλμ, permuting the

parameters z1, . . . , zn. This action induces the one on the quotient algebra ′Uλμ
by the relation z1 · · · zn = 1. Then we expect that the evaluation homomorphism
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Uv(Lsln) � Uv(sln) [40] gives rise to an isomorphism (′Uλμ)Sn ∼−→AOloc, where
AO is the integral form of the quantum coordinate algebra of SL(N) introduced
in [50, 29.5.2], and AOloc stands for its localization by inverting the quantum minors
{cν}ν∈'+ , see [42, 9.1.10].

9 Shifted Quantum Affine sl2 and Nil-DAHA for GL(n)

9.1 Integral Form

In this section g = sl2, whence we denote A±i,r , B
±
i,r , C

±
i,r , φ

±
i simply by

A±r , B±r , C±r , φ±. The shift μ ∈ ' = Z is an integer. Furthermore, λ =
(ω1, . . . , ω1) (a collection of N copies of the fundamental coweight). The
corresponding shifted quantum affine algebra is Uad

0,μ[z±1
1 , . . . , z±1

N ]. We define

a C[v±1]-subalgebra Uad
0,μ[z±1

1 , . . . , z±1
N ] ⊂ Uad

0,μ[z±1
1 , . . . , z±1

N ] generated by

{A±±r , B+r , B−−r−1, C
+
r+1, C

−−r , φ±}r∈N and its quotient algebra (an integral version
of the truncated shifted quantum affine algebra)

U
λ
μ := Uad

0,μ[z±1
1 , . . . , z±1

N ]/(Iλμ ∩ Uad
0,μ[z±1

1 , . . . , z±1
N ]).

Let V = C
n, W = C

N . According to Corollary 8.2, the homomorphism

�NN−2n : Uad
0,N−2n[z±1

1 , . . . , z±1
N ] −→ Av

frac = K(G̃L(V )×TW )O�C̃
×
(RGL(V ),Hom(W,V ))⊗C[v±1] C(v)

takes Uad
0,N−2n[z±1

1 , . . . , z±1
N ] ⊂ Uad

0,N−2n[z±1
1 , . . . , z±1

N ] to Av ⊂ Av
frac.

In particular, we have Uad
0,N−2n[z±1

1 , . . . , z±1
N ] ⊂ ′Uad

0,N−2n[z±1
1 , . . . , z±1

N ]
(cf. Sect. 8.5). We also define a C[v±1]-subalgebra Yv

N−2n[z±1
1 , . . . , z±1

N ] ⊂
Yv
N−2n[z±1

1 , . . . , z±1
N ] generated by {A−−r , B−−r−1, C

−−r , φ−}r∈N. Furthermore,

we define the shifted Borel v-Yangian Yv
N−2n,−[z±1

1 , . . . , z±1
N ] as the C[v±1]-

subalgebra of Yv
N−2n[z±1

1 , . . . , z±1
N ] generated by {A−−r , C−−r , φ−}r∈N. Finally, we

have their truncated quotients YλN−2n, Y
λ

N−2n,−. We expect that

Uad
0,N−2n[z±1

1 , . . . , z±1
N ] = ′Uad

0,N−2n[z±1
1 , . . . , z±1

N ],
Yv
N−2n[z±1

1 , . . . , z±1
N ] = ′Yv

N−2n[z±1
1 , . . . , z±1

N ],
U
λ

N−2n = ′UλN−2n, Y
λ

N−2n = ′YλN−2n.

Conjecture 9.1 The natural homomorphisms induce isomorphisms

Y
λ

N−2n
∼−→U

λ

N−2n
∼−→Av.
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From now on, we specialize to the case N = 0, μ = −2n. According to Corol-
lary 3.14, the corresponding Coulomb branch Av = KG̃L(n,O)�C̃

×
(GrGL(n)) is

nothing but the spherical extended nil-DAHA HH
sph
e (GL(n)). We define C[v±1]loc

inverting (1− v2m), m = 1, 2, . . . , n. We extend the scalars to C[v±1]loc to obtain

�0
−2n,loc : Uad

0,−2n,loc −→ K
G̃L(n,O)�C̃

×
loc (GrGL(n)).

The following theorem and Proposition 9.8 is a supportive evidence in favor of
Conjecture 9.1.

Theorem 9.2 �0
−2n,loc : Uad

0,−2n,loc → K
G̃L(n,O)�C̃

×
loc (GrGL(n)) is surjective.6

Proof We must prove that KGL(n,O)�C
×

loc (GrGL(n)) is generated by KGL(n)(pt) =
R(GL(n)), and O(a)*1 ,O(a)* ∗1 , a ∈ Z. Here *1 = (1, 0, . . . , 0) denotes the first

fundamental coweight ofGL(n), and Gr*1 ) P
n−1 is the corresponding minuscule

orbit, so that Gr*
∗
1 ) P̌

n−1. Finally, Q is the tautological quotient bundle on Gr*1 ,
isomorphic to the ample line bundle O(1) on P

n−1, and O(a)*1 stands for Q⊗a .
Similarly, S is the tautological line subbundle on Gr*

∗
1 isomorphic to O(−1) on

P̌
n−1, and O(a)* ∗1 stands for S⊗−a . Note that O(1)*1 ,O(1)* ∗1 are isomorphic to

the restrictions of the determinant line bundle on GrGL(n).
Given an arbitrary sequence ν1, . . . , νN with νi ∈ {*1, . . . ,*n,*

∗
1 , . . . ,*

∗
n },

the equivariant K-theory of the iterated convolution diagram

KGL(n,O)�C
×
(Grν1×̃ . . . ×̃GrνN )

is isomorphic to

KGL(n,O)�C
×
(Grν1)⊗KGL(n,O)�C× (pt) · · · ⊗KGL(n,O)�C× (pt) K

GL(n,O)�C
×
(GrνN ).

By the projection formula and rationality of singularities of Grν1+...+νN , the
convolution pushforward morphism

m∗ : KGL(n,O)�C
×
(Grν1×̃ . . . ×̃GrνN ) −→ KGL(n,O)�C

×
(Grν1+...+νN )

is surjective. Hence in order to prove the surjectivity statement of the theorem, it

suffices to express KGL(n,O)�C
×

loc (Grν), ν ∈ {*1, . . . ,*n,*
∗
1 , . . . ,*

∗
n }, in terms

of O(a)*1 ,O(a)* ∗1 , a ∈ Z, and KGL(n)(pt). We will consider ν = *m, 1 ≤ m ≤
n, the case of * ∗

m being similar. Note that O*n is the structure sheaf of a point
GL(n,O)-orbit corresponding to the coweight (1, . . . , 1). We argue by induction
in m.

6A stronger version of the theorem (over Z[v±1] as opposed to over C[v±1]loc) is proved
independently in [15, Corollary 2.21, Remark 2.22].



180 M. Finkelberg and A. Tsymbaliuk

For ν as above, the Picard group of Grν is Z, and we denote the ample generator
by O(1)ν . It is isomorphic to the restriction of the determinant line bundle on
GrGL(n). We start with an explicit expression for O*m := OGr*m , 1 ≤ m ≤ n,

in terms of O(a)*1 , a ∈ Z. Recall that �0
−2n(fr) = v2r

1−v2 O(r)*1 and �0
−2n(er ) =

(−1)nv2r+2n+1

1−v2 O(−r − n)* ∗1 . We denote advr

x y := [x, y]vr = xy − vryx.

Proposition 9.3 For any 1 ≤ m ≤ n, we have

O*m = (−1)
m(m−1)

2 (1− v2)�0
−2n(adv2m

f1−m adv2(m−1)

f3−m · · · adv4

fm−3
fm−1), (9.1)

O* ∗m = (−1)nm+
m(m+1)

2 +1vm
2−2(1− v2)×

�0
−2n(adv−2m

e−n+1−m adv−2(m−1)

e−n+3−m · · · adv−4

e−n+m−3
e−n+m−1). (9.2)

Proof We prove (9.1); the proof of (9.2) is similar. We will compare the images of
the LHS and the RHS in Ãv

frac. According to (8.1), the image of the LHS equals

∑

#J=m

s �∈J∏

r∈J
(1− wsw−1

r )
−1
∏

r∈J
Dr . (9.3)

Here J ⊂ {1, . . . , n} is a subset of cardinality m. Let us denote the iterated
v-commutator adv2m

f1−m adv2(m−1)

f3−m · · · adv4

fm−3
fm−1 by Fm. We want to prove

�̃0
−2n(Fm) = (−1)

m(m−1)
2 (1− v2)−1 ·

∑

#J=m

s �∈J∏

r∈J
(1− wsw−1

r )
−1
∏

r∈J
Dr . (9.4)

The proof proceeds by induction in m. So we assume (9.4) known for an integer
k < n, and want to deduce (9.4) for m = k + 1. We introduce a “shifted”
v-commutator F ′k := adv2k

f2−k adv2(k−1)

f4−k · · · adv4

fk−2
fk . Then

�̃0
−2n(F

′
k) = (−1)

k(k−1)
2 (1− v2)−1v2k ·

∑

#J=k

∏

r∈J
wr

s �∈J∏

r∈J

(
1− ws

wr

)−1 ∏

r∈J
Dr .

Now

�̃0
−2n(Fk+1) = �̃0

−2n([f−k, F ′k]v2(k+1) ) = [�̃0
−2n(f−k), �̃

0
−2n(F

′
k)]v2(k+1) =

(−1)
k(k−1)

2 (1− v2)−2v2k ·

⎡

⎢⎢⎣
n∑

p=1

(v2wp)−k
∏
t �=p

(
1− wt

wp

)Dp,
∑

#J=k

∏

r∈J
wr

s �∈J∏

r∈J

(
1− ws

wr

)−1 ∏

r∈J
Dr

⎤

⎥⎥⎦

v2(k+1)

.
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First we check that the summands corresponding to p ∈ J vanish. Due to the
symmetry reasons, we may assume p = 1, J = {1, 2, . . . , k}. Then

⎡

⎢⎢⎣
(v2w1)

−k
∏
t>1

(
1− wt

w1

)D1,

k∏

r=1

wr
s>k∏

r≤k

(
1− ws

wr

)−1

D1 · · ·Dk

⎤

⎥⎥⎦

v2(k+1)

=

⎡

⎢⎢⎢⎣
(v2w1)

−k
∏
t>k

(
1− wt

w1

) ∏
1<r≤k

(
1− wr

w1

)D1,
w1 · · ·wk

∏
s>k

(
1− ws

w1

) s>k∏
1<r≤k

(
1− ws

wr

)D1 · · ·Dk

⎤

⎥⎥⎥⎦

v2(k+1)

=

⎛

⎜⎜⎜⎝
(v2w1)

−kv2w1 · · ·wk
∏
t>k

(
1− wt

w1

) ∏
1<r≤k

(
1− wr

w1

) ∏
s>k

(
1− v−2 ws

w1

) s>k∏
1<r≤k

(
1− ws

wr

)−

− v2(k+1)w1 · · ·wk(v2w1)
−kv−2k

∏
s>k

(
1− ws

w1

) s>k∏
1<r≤k

(
1− ws

wr

) ∏
t>k

(
1− v−2 wt

w1

) ∏
1<r≤k

(
1− wr

w1

)

⎞

⎟⎟⎟⎠D
2
1D2 · · ·Dk = 0.

Therefore,

(−1)
k(k−1)

2 (1− v2)2�̃0
−2n(Fk+1) =

p �∈J∑

#J=k

⎡

⎣ (v2wp)−k
∏
t �=p
(

1− wt
wp

)Dp, v2k
∏

r∈J
wr

s �∈J∏

r∈J

(
1− ws

wr

)−1 ∏

r∈J
Dr

⎤

⎦

v2(k+1)

.

We expand this combination of v2(k+1)-commutators as a sum

∑

#J=k+1

φJ (w1, . . . ,wn)
∏

r∈J
Dr .

For the symmetry reasons, it suffices to calculate the rational function φJ for a single
J = {1, . . . , k + 1}. We have

φJ (w1, . . . ,wn)D1 · · ·Dk+1 =

k+1∑

r=1

⎡

⎢⎢⎢⎣
(v2wr )−k
∏
t �=r

(
1− wt

wr

)Dr,
v2kw1 · · · ŵr · · ·wk+1

t>k+1∏
r �=p≤k+1

(
1− wt

wp

) ∏
r �=p≤k+1

(
1− wr

wp

)D1 · · · D̂r · · ·Dk+1

⎤

⎥⎥⎥⎦

v2(k+1)

=
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k+1∑

r=1

⎛

⎜⎜⎜⎝
w−kr w1 · · · ŵr · · ·wk+1

∏
t>k+1

(
1− wt

wr

) ∏
r �=p≤k+1

(
1− wp

wr

) t>k+1∏
r �=p≤k+1

(
1− wt

wp

) ∏
r �=p≤k+1

(
1− v2wr

wp

)−

− v2(k+1)w−kr w1 · · · ŵr · · ·wk+1

t>k+1∏
r �=p≤k+1

(
1− wt

wp

) ∏
r �=p≤k+1

(
1− wr

wp

) ∏
t>k+1

(
1− wt

wr

) ∏
r �=p≤k+1

(
1− v2wp

wr

)

⎞

⎟⎟⎟⎠D1 · · ·Dk+1 =

−v2(k+1)w1 · · ·wk+1

t>k+1∏

r≤k+1

(
1− wt

wr

)−1

×

k+1∑

r=1

⎛

⎜⎜⎝
w−k−1
r

∏
r �=p≤k+1

(
1− wr

wp

) (
1− v2wp

wr

) − v−2(k+1)w−k−1
r

∏
r �=p≤k+1

(
1− wp

wr

) (
1− v2wr

wp

)

⎞

⎟⎟⎠D1 · · ·Dk+1.

This is equal to the following expression, by Lemma 9.4 below:

− v2(k+1)w1 · · ·wk+1

t>k+1∏

r≤k+1

(
1− wt

wr

)−1
(−1)k(v2 − 1)

v2(k+1)
∏

r≤k+1
wr
D1 · · ·Dk+1 =

(−1)k(1− v2)

t>k+1∏

r≤k+1

(
1− wt

wr

)−1

D1 · · ·Dk+1.

We conclude that

�̃0
−2n(Fk+1) = (−1)

k(k+1)
2 (1− v2)−1 ·

∑

#J=k+1

s �∈J∏

r∈J
(1− wsw−1

r )
−1
∏

r∈J
Dr,

and (9.4) is proved. It remains to check

Lemma 9.4 We have

k+1∑

r=1

⎛

⎜⎝
w−k−1
r∏

s �=r
(1− wr /ws )(1− v2ws/wr )

− v−2(k+1)w−k−1
r∏

s �=r
(1− ws/wr )(1− v2wr /ws )

⎞

⎟⎠ = (−1)k(v2 − 1)

v2(k+1)
k+1∏
r=1

wr

.

Proof The LHS is a degree −k − 1 rational function of w1, . . . ,wk+1 with poles
at the hyperplanes given by equations wr − ws , wr − v2ws , wr (1 ≤ r �= s ≤
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k + 1). One can check Reswr−ws LHS = Reswr−v2ws LHS = 0, so that LHS =
f ·∏1≤r≤k+1 w−1

r for a rational function f ∈ C(v). To compute f , we specialize
w1 	→ 0 in the equality

f =
k+1∏

t=1

wt ·
k+1∑

r=1

⎛

⎜⎝

∏
s �=r

ws
∏
s �=r
(ws − wr )(wr − v2ws)

· 1

wr
−

v−2(k+1) ∏
s �=r

ws
∏
s �=r
(wr − ws)(ws − v2wr )

· 1

wr

⎞

⎟⎠ .

The only summands surviving under this specialization correspond to r = 1, and so
we get

f =
k+1∏

t=2

wt ·

⎛

⎜⎜⎜⎝

k+1∏
s=2

ws

(−v2)k ·
k+1∏
s=2

w2
s

−
v−2(k+1) ·

k+1∏
s=2

ws

(−1)k ·
k+1∏
s=2

w2
s

⎞

⎟⎟⎟⎠ = (−1)k(v−2k − v−2(k+1)).

The lemma is proved. ��
The proposition is proved. ��

Returning to the proof of Theorem 9.2, we need to prove that

K
GL(n,O)�C

×
loc (Gr*m) lies in the image �0

−2n,loc(U
ad
0,−2n,loc) for 1 ≤ m ≤ n.

We know that the class of the structure sheaf O*m ∈ K
GL(n,O)�C

×
loc (Gr*m)

lies in �0
−2n,loc(U

ad
0,−2n,loc). It is also known that KGL(n,O)�C

×
(Gr*m) as a

left KGL(n,O)�C×(pt)-module is generated by the classes �λ(Q) where Q

is the tautological quotient bundle on Gr*m ) Gr(m, n), and �λ is the
polynomial Schur functor corresponding to a Young diagram λ with ≤ m rows
(in fact, it is enough to consider λ’s with ≤ n − m columns). Given such

λ, it suffices to check that Sym

(
wλ1

1 · · ·wλmm
s>m∏
r≤m

(
1− ws

wr

)−1
D1 · · ·Dm

)
lies

in �̃0
−2n,loc(U

ad
0,−2n,loc) (here Sym stands for the symmetrization with respect

to the symmetric group Sn). More generally, for a Young diagram μ with

≤ n rows we will show that Sym

(
wμ1

1 · · ·wμnn ·
s>m∏
r≤m

(
1− ws

wr

)−1
D1 · · ·Dm

)

lies in �̃0
−2n,loc(U

ad
0,−2n,loc). To this end, we use the right multiplication by

KGL(n,O)�C×(pt). It suffices to check that the KGL(n,O)�C×(pt)loc-bimodule

generated by X1,m := Sym

(
s>m∏
r≤m

(
1− ws

wr

)−1
D1 · · ·Dm

)
contains elements

XF,m := Sym

(
F
s>m∏
r≤m

(
1− ws

wr

)−1
D1 · · ·Dm

)
for any polynomial F ∈

C[w1, . . . ,wn]. We can assume that F ∈ C[w1, . . . ,wn]Sm×Sn−m, where the
symmetric groups act by permuting {wr , 1 ≤ r ≤ m} and {ws , m + 1 ≤
s ≤ n}. Note that C[w1, . . . ,wn]Sm×Sn−m is generated by C[w1, . . . ,wm]Sm
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as a left C[w1, . . . ,wn]Sn-module. Hence, it suffices to treat the case F ∈
C[w1, . . . ,wm]Sm = C[p1, . . . , pm], where pk := ∑m

r=1 wkr . The latter case
follows from the equality

[
n∑

r=1

wkr , XF,m

]
= (1− v2k)XFpk,m

for F ∈ C[w1, . . . ,wm]Sm .
The theorem is proved. ��

Remark 9.5 The end of our proof of Theorem 9.2 is a variation of the following
argument we learned from P. Etingof. We define C[v±1]Loc inverting (1−vm), m ∈
Z. We consider a C[v±1]Loc-algebra A of finite difference operators with gen-
erators {w±1

i , D
±1
i }ni=1 and defining relations Diwj = v2δijwjDi, [Di,Dj ] =

[wi ,wj ] = 0. Then the algebra of Sn-invariants ASn is generated by its subalgebras
C[v±1]Loc[D±1

1 , . . . , D±1
n ]Sn and C[v±1]Loc[w±1

1 , . . . ,w±1
n ]Sn .

Indeed, let B be the C[v±1]Loc-algebra generated by w±1,D±1 subject toDw =
v2wD. Then A = B⊗n (tensor product over C[v±1]Loc), and ASn = SymnB
(symmetric power over C[v±1]Loc). Now SymnB is spanned by the elements
{b⊗n}b∈B, and hence SymnB is generated by the elements {b(1) + . . .+ b(n)}b∈B,
where b(r) = 1⊗· · ·⊗1⊗b⊗1⊗· · ·⊗1 (b at the r-th entry). Indeed, it suffices to
verify the generation claim for an algebra C[v±1]Loc[b] where it is nothing but the
fundamental theorem on symmetric functions.

We conclude that SymnB is generated by the elements {pm,k =∑n
r=1 wmr D

k
r }m,k∈Z. However, pm,k = (v2mk − 1)−1[∑n

r=1D
k
r ,
∑n
s=1 wms ] for

m �= 0 �= k.

Remark 9.6 Motivated by [10, Remark 3.5] we call O*n ∈ KGL(n,O)�C
×
(GrGL(n))

the quantum resultant. In fact, it is a quantization of the boundary equation for the
trigonometric zastava †◦ZnSL(2) which is nothing but the resultant of two polynomials.

Note that, up to multiplication by an element of C[v±1], the quantum resultant is
uniquely characterized by the property

O*n�
0
−2n(A

±±r ) = v±(2r−n)�0
−2n(A

±±r )O*n, O*n�0
−2n(fp) = v2p�0

−2n(fp)O*n.

(9.5)

Remark 9.7 Here is a geometric explanation of the equality

O(−k−1)*1∗O*k−v2(k+1)O*k∗O(−k−1)*1 = (−1)k(1−v2)v−2(k+1)O(−1)*k+1 ,

(9.6)
established as an induction step during our proof of Proposition 9.3. We have the
convolution morphisms

Gr*1×̃Gr*k
m−→ Gr*1+*k m′←− Gr*k ×̃Gr*1 ,
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and Gr*1+*k = Gr*1+*k �Gr*k+1 . Let us consider the transversal slice W*1+*k
*k+1 ⊂

Gr*1+*k through the point *k+1 = (1, . . . , 1, 0, . . . , 0) (k + 1 1’s). It suffices to
check that

m∗
(
O(−k − 1)*1�̃O*k |m−1W

*1+*k
*k+1

)
− v2(k+1)m′∗

(
O*k �̃O(−k − 1)*1 |m′−1W

*1+*k
*k+1

)
=

(−1)k(1− v2)v−2(k+1)w−1
1 · · ·w−1

k+1,

where we view v−2(k+1)w−1
1 · · ·w−1

k+1 as a character of T × C
× (T ⊂ GL(n) is

the diagonal Cartan torus). According to [52, Corollary 3.4], W*1+*k
*k+1 is naturally

isomorphic to the slice Wθ
0 ⊂ GrGL(k+1)×(C×)n−k−1 where θ = (1, 0, . . . , 0,−1)

is the highest coroot of GL(k + 1). Moreover, the preimages of W
*1+*k
*k+1 in the

two convolution diagrams are isomorphic to the cotangent bundles T ∗Pk and T ∗P̌k ,
respectively. We will keep the following notation for the convolution morphisms
restricted to the slice:

T ∗Pk m−→Wθ
0

m′←− T ∗P̌k.

Note also that Wθ
0 is isomorphic to the minimal nilpotent orbit

closure Omin ⊂ slk+1. Finally, O(−k − 1)*1�̃O*k |m−1W
*1+*k
*k+1

and

O*k �̃O(−k − 1)*1 |m′−1W
*1+*k
*k+1

are isomorphic to the pull-backs of OPk (−k − 1)

and O
P̌k
(−k − 1), respectively, but with nontrivial C×-equivariant structures.

Let us explain our choice of the line bundles. According to [8, Proposition 8.2],
the convolutions in question are GL(k + 1) × C

×-equivariant perverse coherent
sheaves on Omin ⊂ slk+1. Since dimHk(T ∗Pk,OT ∗Pk (−k − 1)) = 1, while
Hk(T ∗Pk,OT ∗Pk (k + 1)) = 0, we have an exact sequence of perverse coherent
sheaves7 on Omin ⊂ slk+1:

0 → j!∗OOmin(−k − 1)[k] → m∗OT ∗Pk (−k − 1)[k] → δ0 → 0,

where j : Omin ↪→ Omin is the open embedding, and δ0 is an irreducible skyscraper
sheaf at 0 ∈ Omin with certain C

×-equivariant structure. The same exact sequence
holds for m′∗OT ∗P̌k (−k − 1)[k], but the quotient δ0 has a different C×-equivariant
structure.

Proposition 9.8 The restriction of �̃0
−2n to Y0

−2n,− is injective.

Proof Consider an ordering A−0 ≺ A−−1 ≺ . . . ≺ A−−n+1 ≺ C−0 ≺
. . . ≺ C−−n+1. We set (A−0 )−k := ((−v2)−nA−−n)k for k > 0. For

7We are grateful to R. Bezrukavnikov for his explanations about perverse coherent sheaves.
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,r = (r1, . . . , r2n) ∈ Z × N
2n−1, we define the ordered monomial m,r :=

(A−0 )r1(A
−
−1)

r2 · · · (A−−n+1)
rn(C−0 )rn+1 · · · (C−−n+1)

r2n .

Lemma 9.9 The ordered monomials {m,r} span Y0
−2n,−.

Proof According to relations (6.7, 6.9), we have [A−t , A−s ] = [C−t , C−s ] = 0 for
s, t ≤ 0. Due to Remark 8.8, we also have C−s = 0 for s ≤ −n. It remains to prove
that all A−t can be taken to the left of all C−s . This is implied by the fact that C−s A−t
can be written as a linear combination of normally ordered monomials A−

t ′C
−
s′ . The

latter claim follows from relation (6.11) by induction in min{−t,−s}. The lemma is
proved. ��

The following result will be proved in Sect. 9.2:

Lemma 9.10

(a) The ordered monomials {m,r} form a KC×(pt)-basis of Y0
−2n,−.

(b) {�0
−2n(m,r )} form a KC×(pt)-basis of �0

−2n(Y
0
−2n,−).

The proposition is proved. ��

9.2 Positive Grassmannian

Recall the positive part of the affine Grassmannian Gr+GL(n) ⊂ GrGL(n) [10,
§ 3(ii)] parametrizing the sublattices in the standard one. Recall also that

K
GL(n,O)�C

×
loc (Gr*1) = KGL(n,O)�C

×
loc (Pn−1) is generated over KGL(n)(pt) by the

classes of O(a)*1 ,−n + 1 ≤ a ≤ 0. The proof of Theorem 9.2 shows that

�0
−2n,loc : Uad

0,−2n,loc � K
G̃L(n,O)�C̃

×
loc (GrGL(n)) restricts to a surjective homomor-

phism �0
−2n,loc : Y0

−2n,−,loc � K
G̃L(n,O)�C̃

×
loc (Gr+GL(n)).

Proposition 9.11 �0
−2n,loc : Y0

−2n,−,loc
∼−→K

G̃L(n,O)�C̃
×

loc (Gr+GL(n)).

Proof We have to check that �0
−2n,loc : Y0

−2n,−,loc → K
G̃L(n,O)�C̃

×
loc (Gr+GL(n))

is injective. To this end, note that Gr+GL(n) is a union of connected components

numbered by nonnegative integers: Gr+GL(n) =
⊔
r∈N Gr+,rGL(n), where Gr+,rGL(n)

parametrizes the sublattices of codimension r in the standard one. The direct

sum decomposition K
G̃L(n,O)�C̃

×
loc (Gr+GL(n)) = ⊕

r∈NK
G̃L(n,O)�C̃

×
loc (Gr+,rGL(n))

is a grading of the convolution algebra. For any connected component,

K
G̃L(n,O)�C̃

×
loc (Gr+,rGL(n)) is a free KG̃L(n,O)�C̃×(pt)

loc
-module of rank dr , where

dr is the number of T -fixed points in Gr+,rGL(n), that is the number of weights of
the irreducible GL(n)-module with the highest weight (r, 0, . . . , 0), isomorphic to
Symr (Cn). Note that all the weights of Symr (Cn) have multiplicity one; in other
words, dr = dim Symr (Cn).
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According to Lemma 9.9, we can introduce a grading Y0
−2n,−,loc =

⊕
r∈NY0,r

−2n,−,loc: a monomialm,r has degree r if rn+1+ . . .+r2n = r . It is immedi-
ate from the relations between A−• , C−• -generators that this grading is well-defined.

Also, it is clear that �0
−2n,loc(Y

0,r
−2n,−,loc) ⊂ K

G̃L(n,O)�C̃
×

loc (Gr+,rGL(n)). Meanwhile,

we know from Theorem 9.2 that �0
−2n,loc(Y

0,r
−2n,−,loc) = KG̃L(n,O)�C̃

×
loc (Gr+,rGL(n)).

On the other hand, we know from Lemma 9.9 that Y0,r
−2n,−,loc as a left

KG̃L(n,O)�C̃×(pt)
loc

-module has no more than d ′r generators, where d ′r is the number
of compositions of r into n (ordered) summands. Since dr = d ′r , we conclude

that �0
−2n,loc : Y0,r

−2n,−,loc → K
G̃L(n,O)�C̃

×
loc (Gr+,rGL(n)) must be an isomorphism,

and Y0,r
−2n,−,loc is a free left KG̃L(n,O)�C̃×(pt)

loc
-module of rank dr = d ′r . This

completes the proof of Proposition 9.11, Lemma 9.10 (and Proposition 9.8). ��
Remark 9.12 One can check that the natural morphism

KG̃L(n,O)�C̃
×
(Gr+GL(n))[O−1

*n
] → KG̃L(n,O)�C̃

×
(GrGL(n))

is an isomorphism. Now it follows from the proof of Proposition 9.11 and The-
orem 9.2 that in order to check Conjectures 8.7, 8.9 and 8.13 in our case:
Ker(�̃0

−2n,loc) = I0
−2n,loc, it suffices to check the following equality in Uad

0,−2n/I
0
−2n:

−vn
2−2(1−v2)2 ·(adv2n

f1−n adv2(n−1)

f3−n · · · adv4

fn−3
fn−1)(adv−2n

e1−2n
adv−2(n−1)

e3−2n
· · · adv−4

e−3
e−1) = 1.

Remark 9.13 Consider a subalgebra U<0,−2n ⊂ Uad
0,−2n generated by

{(v − v−1)fs}s∈Z. Note that it is independent of n, cf. Proposition 5.1. The image
�0
−2n(U

<
0,−2n) in KG̃L(n,O)�C̃

×
(GrGL(n)) is isomorphic to the M-system algebra

U′n−1 of [18]. In particular, the generators Mm,s ∈ U′n−1 of [18, § 2.1] correspond

to scalar multiples of the classes O(−s)*m ∈ KG̃L(n,O)�C̃
×
(GrGL(n)), cf. (9.1)

and [18, (2.23)].

10 Coproducts on Shifted Quantum Affine Algebras

Throughout this section, we work mainly with simply-connected shifted quantum
affine algebras. However, all the results can be obviously generalized to the adjoint
versions.

10.1 Drinfeld Formal Coproduct

The standard quantum loop algebra Uv(Lg) admits the Drinfeld formal coproduct

�̃ : Uv(Lg) −→ Uv(Lg)⊗̂Uv(Lg),
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defined in the new Drinfeld realization of Uv(Lg) via

�̃(ei(z)) := ei(z)⊗ 1+ ψ−i (z)⊗ ei(z),
�̃(fi(z)) := fi(z)⊗ ψ+i (z)+ 1⊗ fi(z),
�̃(ψ±i (z)) := ψ±i (z)⊗ ψ±i (z).

(10.1)

Remark 10.1 Composing �̃ with the C
×-action on the first factor, D. Hernandez

obtained a deformed coproduct �ζ : Uv(Lg) → Uv(Lg) ⊗ Uv(Lg)((ζ )), where ζ
is a formal variable, see [37, Section 6].

This can be obviously generalized to the shifted setting.

Lemma 10.2 For any coweights μ±1 , μ
±
2 ∈ ', there is a C(v)-algebra homomor-

phism

�̃ : Usc
μ+1 +μ+2 ,μ−1 +μ−2

−→ Usc
μ+1 ,μ

−
1
⊗̂Usc

μ+2 ,μ
−
2
,

defined via (10.1).

We call this homomorphism a formal coproduct for shifted quantum affine
algebras. Given two representations V1, V2 of Usc

μ+1 ,μ
−
1
,Usc

μ+2 ,μ
−
2

, respectively, we

will use V1⊗̃V2 to denote the representation of Usc
μ+1 +μ+2 ,μ−1 +μ−2

on the vector space

V1 ⊗ V2 induced by �̃, whenever the action of the infinite sums representing
�̃(ei,r ), �̃(fi,r ) are well-defined. We will discuss a particular example of this
construction in Sect. 12.6.

10.2 Drinfeld-Jimbo Coproduct

The standard quantum loop algebra Uv(Lg) also admits the Drinfeld-Jimbo coprod-
uct

� : Uv(Lg) −→ Uv(Lg)⊗ Uv(Lg),

defined in the Drinfeld-Jimbo realization of Uv(Lg) via

� : Ei 	→ Ei⊗Ki+1⊗Ei, Fi 	→ Fi⊗1+K−1
i ⊗Fi, K±1

i 	→ K±1
i ⊗K±1

i , i ∈ Ĩ .

Recall that Ĩ = I ∪ {i0} is the vertex set of the extended Dynkin diagram
and {Ei, Fi,K±1

i }i∈Ĩ are the standard Drinfeld-Jimbo generators of UDJ
v (Lg) )

Uv(Lg).
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We also denote the Drinfeld-Jimbo coproduct on U ad
v (Lg) by �ad: the natural

inclusion Uv(Lg) ↪→ U ad
v (Lg) intertwines� and�ad, while�ad(φ±i ) = φ±i ⊗φ±i .

The goal of this section is to generalize these coproducts to the shifted setting.
In other words, given g and coweights μ1, μ2 ∈ ', we would like to construct
homomorphisms

�μ1,μ2 : Usc
0,μ1+μ2

−→ Usc
0,μ1

⊗ Usc
0,μ2

,

which coincide with � in the particular case μ1 = μ2 = 0. We provide such a
construction for the simplest case g = sl2 in Sects. 10.3 (μ1, μ2 ∈ '−) and 10.4
(general μ1, μ2). Using the RTT presentation of Uv(Lsln), we generalize this to
obtain �μ1,μ2 for g = sln in Sects. 10.6 (μ1, μ2 ∈ '−) and 10.7 (general μ1, μ2).

Remark 10.3

(a) This result is nontrivial due to an absence of the Drinfeld-Jimbo type presenta-
tion of shifted quantum affine algebras.

(b) A similar coproduct for the shifted Yangians has been constructed in [24] for
arbitrary simply-laced g.

(c) Once �μ1,μ2 is constructed, one should be able to immediately extend it to the
homomorphism �ad

μ1,μ2
: Uad

0,μ1+μ2
→ Uad

0,μ1
⊗ Uad

0,μ2
by setting �ad

μ1,μ2
(φ±i ) =

φ±i ⊗ φ±i .

10.3 Homomorphisms �b1,b2 for b1, b2 ∈ Z≤0, g = sl2

We start this subsection by explicitly computing the Drinfeld-Jimbo coproduct of

the Drinfeld generators e0, e−1, f0, f1, ψ
±
0 ofUv(Lsl2) and h±1 = ±ψ

∓
0 ψ

±
±1

v−v−1 , which
generate the quantum loop algebra Uv(Lsl2).

Lemma 10.4 We have

�(e0) = e0 ⊗ ψ+0 + 1⊗ e0, �(e−1) = e−1 ⊗ ψ−0 + 1⊗ e−1,

�(f0) = f0 ⊗ 1+ ψ−0 ⊗ f0, �(f1) = f1 ⊗ 1+ ψ+0 ⊗ f1, �(ψ
±
0 ) = ψ±0 ⊗ ψ±0 ,

�(h1) = h1⊗1+1⊗h1−(v2−v−2)e0⊗f1, �(h−1) = h−1⊗1+1⊗h−1+(v2−v−2)e−1⊗f0.

Proof This is a straightforward computation based on the explicit identification
between the Drinfeld-Jimbo and the new Drinfeld realizations of the quantum loop
algebra Uv(Lsl2) of Theorem 8.10: e0 = Ei1 , f0 = Fi1, ψ

±
0 = K±1

i1
, e−1 =

K−1
i1
Fi0, f1 = Ei0Ki1 . ��
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The key result of this subsection provides analogues of � for antidominantly
shifted quantum affine algebras of sl2. For μ1, μ2 ∈ '−, we construct homomor-
phisms �b1,b2 : Usc

0,b1+b2
→ Usc

0,b1
⊗ Usc

0,b2
, where b1 := α∨(μ1), b2 := α∨(μ2) (so

that b1, b2 ∈ Z≤0).

Theorem 10.5 For any b1, b2 ∈ Z≤0, there is a unique C(v)-algebra homomor-
phism

�b1,b2 : Usc
0,b1+b2

−→ Usc
0,b1

⊗ Usc
0,b2

(we will denote � = �b1,b2 when the algebras involved are clear), such that

�(er) = 1⊗ er , �(fs) = fs ⊗ 1 for b2 ≤ r < 0, b1 < s ≤ 0,

�(e0) = e0 ⊗ ψ+0 + 1⊗ e0, �(eb2−1) = e−1 ⊗ ψ−b2
+ 1⊗ eb2−1,

�(f1) = f1 ⊗ 1+ ψ+0 ⊗ f1, �(fb1) = fb1 ⊗ 1+ ψ−b1
⊗ f0,

�((ψ+0 )
±1) = (ψ+0 )±1 ⊗ (ψ+0 )±1, �((ψ−b1+b2

)±1) = (ψ−b1
)±1 ⊗ (ψ−b2

)±1,

�(h1) = h1⊗1+1⊗h1−(v2−v−2)e0⊗f1, �(h−1) = h−1⊗1+1⊗h−1+(v2−v−2)e−1⊗f0.

These homomorphisms generalize the Drinfeld-Jimbo coproduct, since we
recover the formulas of Lemma 10.4 for b1 = b2 = 0. The proof of Theorem 10.5
is presented in Appendix D and is crucially based on Theorem 5.5 which provides a
presentation of the shifted quantum affine algebras via a finite number of generators
and relations.

Remark 10.6 The similarity between the formulas for �b1,b2 of The-
orem 10.5 and Drinfeld-Jimbo coproduct � of Lemma 10.4 can be
explained as follows. Let U−v (resp. U

sc,−
0,b1,b2

) be the subalgebra of

Uv(Lsl2) (resp. Usc
0,b1+b2

) generated by {e−1, f0, (ψ
−
0 )
±1}, or equivalently,

by {e−r−1, f−r , (ψ−0 )±1, ψ−−r−1}r∈N (resp. by {eb2−1, fb1 , (ψ
−
b1+b2

)±1}, or

equivalently, by {eb2−r−1, fb1−r , (ψ
−
b1+b2

)±1, ψ−b1+b2−r−1}r∈N). Analogously, let

U+v (resp. Usc,+
0,b1,b2

) be the subalgebra of Uv(Lsl2) (resp. Usc
0,b1+b2

) generated by

{e0, f1, (ψ
+
0 )
±1} in both cases, or equivalently, by {er , fr+1, (ψ

+
0 )
±1, ψ+r+1}r∈N.

Then, there are unique C(v)-algebra homomorphisms j±b1,b2
: U±v → U

sc,±
0,b1,b2

, such
that

j+b1,b2
: e0 	→ e0, f1 	→ f1, (ψ

+
0 )
±1 	→ (ψ+0 )

±1,

j−b1,b2
: e−1 	→ eb2−1, f0 	→ fb1 , (ψ

−
0 )
±1 	→ (ψ−b1+b2

)±1.
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Moreover, the following diagram is commutative:

Remark 10.7 The aforementioned homomorphism�b1,b2 can be naturally extended
to the homomorphism �ad

b1,b2
: Uad

0,b1+b2
→ Uad

0,b1
⊗ Uad

0,b2
by setting �ad

b1,b2
(φ±) =

φ± ⊗ φ±.

10.4 Homomorphisms �b1,b2 for Arbitrary b1, b2 ∈ Z, g = sl2

In this subsection, we generalize the construction of �b1,b2 of Theorem 10.5
(b1, b2 ∈ Z≤0) to the general case b1, b2 ∈ Z. We follow the corresponding
construction for the shifted Yangians of [24, Theorem 4.12].

The key ingredient of our approach are the shift homomorphisms ιn,m1,m2 (the
trigonometric analogues of the shift homomorphisms of [24]).

Proposition 10.8 For any n ∈ Z and m1,m2 ∈ Z≤0, there is a unique C(v)-
algebra homomorphism ιn,m1,m2 : Usc

0,n → Usc
0,n+m1+m2

, which maps the currents
as follows:

e(z) 	→ (1−z−1)−m1e(z), f (z) 	→ (1−z−1)−m2f (z), ψ±(z) 	→ (1−z−1)−m1−m2ψ±(z).

Proof The above assignment is obviously compatible with defining relations (U1–
U8). Moreover, we have ιn,m1,m2 : ψ+0 	→ ψ+0 , ψ−n 	→ (−1)m1+m2ψ−n+m1+m2

. ��
These homomorphisms satisfy two important properties:

Lemma 10.9

(a) We have ιn+m1+m2,m
′
1,m

′
2
◦ ιn,m1,m2 = ιn,m1+m′1,m2+m′2 for any n ∈ Z and

m1,m2,m
′
1,m

′
2 ∈ Z≤0.

(b) The homomorphism ιn,m1,m2 is injective for any n ∈ Z and m1,m2 ∈ Z≤0.

Part (a) is obvious, while part (b) is proved in Appendix E and follows from the
PBW property for Usc

0,n (cf. Theorem 10.19). The following is the key result of this
subsection.

Theorem 10.10 For any b1, b2 ∈ Z and b := b1 + b2, there is a unique C(v)-
algebra homomorphism

�b1,b2 : Usc
0,b −→ Usc

0,b1
⊗ Usc

0,b2
,
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such that for any m1,m2 ∈ Z≤0 the following diagram is commutative:

The proof of this theorem is presented in Appendix F and is similar to the proof
of [24, Theorem 4.12].

Corollary 10.11 For any b1, b2 ∈ Z, we have

�b1,b2(h1) = h1 ⊗ 1+ 1⊗ h1 − (v2 − v−2)e0 ⊗ f1,

�b1,b2(h−1) = h−1 ⊗ 1+ 1⊗ h−1 + (v2 − v−2)e−1 ⊗ f0.

Proof In the antidominant case b1, b2 ∈ Z≤0, both equalities are due to our
definition of �b1,b2 of Theorem 10.5. For general b1, b2, choose m1,m2 ∈ Z≤0
such that b1 + m1, b2 + m2 ∈ Z≤0. By the definition of ιb,m2,m1 , we have
ιb,m2,m1(h±1) = h±1 ± m1+m2

v−v−1 . Meanwhile, we also have

ιb1,0,m1 ⊗ ιb2,m2,0(h±1 ⊗ 1+ 1⊗ h±1) = h±1 ⊗ 1+ 1⊗ h±1 ± m1 +m2

v − v−1
,

while ιb1,0,m1(er ) = er , ιb2,m2,0(fs) = fs for any r, s ∈ Z. The result follows
by combining the formula for �b1+m1,b2+m2(h±1) with the commutativity of the
diagram of Theorem 10.10 (we also use injectivity of the vertical arrows, due
to Lemma 10.9(b)). ��

The following result is analogous to [24, Proposition 4.14] and we leave its proof
to the interested reader.

Lemma 10.12 For b = b1 + b2 + b3 with b1, b3 ∈ Z, b2 ∈ Z≤0, the following
diagram is commutative:
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10.5 Drinfeld-Jimbo Coproduct on Uv(Lsln) via Drinfeld
Generators

According to Theorem 5.5, the quantum loop algebra Uv(Lsln) is generated by
the elements {ei,0, fi,0, ei,−1, fi,1, ψ

±
i,0, hi,±1}n−1

i=1 . The key result of this subsection
provides explicit formulas for the action of the Drinfeld-Jimbo coproduct� on these
generators of Uv(Lsln). Since ei,0 = Ei, fi,0 = Fi, ψ

±
i,0 = K±1

i (for i ∈ I =
{1, 2, · · · , n− 1}), we obviously have

�(ei,0) = 1⊗ei,0+ei,0⊗ψ+i,0, �(fi,0) = fi,0⊗1+ψ−i,0⊗fi,0, �(ψ±i,0) = ψ±i,0⊗ψ±i,0.

It remains to compute the coproduct of the remaining generators above.

Theorem 10.13 Let � be the Drinfeld-Jimbo coproduct on Uv(Lsln). Then, we
have

�(hi,1) =
hi,1 ⊗ 1+ 1⊗ hi,1 − (v2 − v−2)E

(0)
i,i+1 ⊗ F (1)i+1,i + (v − v−1)

∑

l>i+1

E
(0)
i+1,l ⊗ F (1)l,i+1+

(v − v−1)
∑

k<i

vk+1−i Ẽ(0)ki ⊗ F (1)ik + v−2(v − v−1)
∑

l>i+1

[E(0)i,i+1, E
(0)
i+1,l]v3 ⊗ F (1)li −

(v − v−1)
∑

k<i

vk−i−1[E(0)i,i+1, Ẽ
(0)
ki ]v3 ⊗ F (1)i+1,k+

(v − v−1)2
k<i∑

l>i+1

vk−i
(
E
(0)
il Ẽ

(0)
ki − E(0)i+1,l Ẽ

(0)
k,i+1

)
⊗ F (1)lk ,

(10.2)
�(hi,−1) =
hi,−1 ⊗ 1+ 1⊗ hi,−1 + (v2 − v−2)E

(−1)
i,i+1 ⊗ F (0)i+1,i − (v − v−1)

∑

l>i+1

E
(−1)
i+1,l ⊗ F (0)l,i+1−

(v − v−1)
∑

k<i

vi−k−1E
(−1)
ki ⊗ F̃ (0)ik − v2(v − v−1)

∑

l>i+1

E
(−1)
il ⊗ [F (0)l,i+1, F

(0)
i+1,i ]v−3+

(v − v−1)
∑

k<i

vi+1−kE(−1)
k,i+1 ⊗ [F̃ (0)ik , F (0)i+1,i]v−3−

(v − v−1)2
k<i∑

l>i+1

vi−kE(−1)
kl ⊗

(
F̃
(0)
i+1,kF

(0)
l,i+1 − F̃ (0)ik F (0)li

)
,

(10.3)
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�(ei,−1) = 1⊗ ei,−1 + ei,−1 ⊗ ψ−i,0 − (v − v−1)
∑

l>i+1

E
(−1)
il ⊗ F (0)l,i+1ψ

−
i,0+

(v − v−1)
∑

k<i

vi−k−1E
(−1)
k,i+1 ⊗ F̃ (0)ik ψ−i,0 − (v − v−1)2

k<i∑

l>i+1

vi−k−1E
(−1)
kl ⊗ F̃ (0)ik F (0)l,i+1ψ

−
i,0,

(10.4)

�(fi,1) = fi,1 ⊗ 1+ ψ+
i,0 ⊗ fi,1 + v−1(v − v−1)

∑

l>i+1

E
(0)
i+1,lψ

+
i,0 ⊗ F(1)li −

(v − v−1)
∑

k<i

vk−i Ẽ(0)
ki
ψ+
i,0 ⊗ F(1)i+1,k − (v − v−1)2

k<i∑

l>i+1

vk−i−1E
(0)
i+1,l Ẽ

(0)
ki
ψ+
i,0 ⊗ F(1)lk ,

(10.5)

where for 1 ≤ j < i ≤ n we set

E
(0)
j i := [ei−1,0, · · · , [ej+1,0, ej,0]v−1 · · · ]v−1 = [· · · [ei−1,0, ei−2,0]v−1 , · · · , ej,0]v−1 ,

F
(0)
ij := [fj,0, · · · , [fi−2,0, fi−1,0]v · · · ]v = [· · · [fj,0, fj+1,0]v, · · · , fi−1,0]v,
E
(−1)
j i := [ei−1,0, · · · , [ej+1,0, ej,−1]v−1 · · · ]v−1

= [[· · · [ei−1,0, ei−2,0]v−1 , · · · , ej+1,0]v−1 , ej,−1]v−1 ,

F
(1)
ij := [fj,1, [fj+1,0, · · · , [fi−2,0, fi−1,0]v · · · ]v]v = [· · · [fj,1, fj+1,0]v, · · · , fi−1,0]v,
Ẽ
(0)
j i := [ei−1,0, · · · , [ej+1,0, ej,0]v · · · ]v = [· · · [ei−1,0, ei−2,0]v, · · · , ej,0]v,
F̃
(0)
ij := [fj,0, · · · , [fi−2,0, fi−1,0]v−1 · · · ]v−1 = [· · · [fj,0, fj+1,0]v−1 , · · · , fi−1,0]v−1 .

(10.6)

The proof of this result is based on the RTT realization of Uv(Lsln) and is
presented in Appendix G.

Remark 10.14 The right equalities in each of the lines of (10.6) are not obvious and
are established during our proof of Theorem 10.13. They play an important role in
the proof of Theorem 10.16 below.

Let U>v (Lg) and U≥v (Lg) (resp. U<v (Lg) and U≤v (Lg)) be the C(v)-subalgebras
of Uv(Lg) generated by {ei,r }r∈Zi∈I and {ei,r , ψ±i,±s}r∈Z,s∈Ni∈I (resp. {fi,r}r∈Zi∈I and

{fi,r , ψ±i,±s}r∈Z,s∈Ni∈I ).

Corollary 10.15 For any 1 ≤ i < n and r ∈ Z, we have

�(hi,±1)− hi,±1 ⊗ 1− 1⊗ hi,±1 ∈ U>v (Lsln)⊗ U<v (Lsln),

�(ei,r )− 1⊗ ei,r ∈ U>v (Lsln)⊗ U≤v (Lsln),

�(fi,r )− fi,r ⊗ 1 ∈ U≥v (Lsln)⊗ U<v (Lsln).
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Proof The claim is clear for �(hi,±1),�(ei,−1),�(fi,1), due to (10.2–10.5).
Applying iteratively [�(hi,±1),�(ei,r )] = [2]v · �(ei,r±1), [�(hi,±1),�(fi,r )] =
−[2]v ·�(fi,r±1), we deduce the claim for �(ei,r ) and �(fi,r ). ��

10.6 Homomorphisms �μ1,μ2 for μ1, μ2 ∈ �−, g = sln

In this subsection, we construct homomorphisms �μ1,μ2 : Usc
0,μ1+μ2

→ Usc
0,μ1

⊗
Usc

0,μ2
for μ1, μ2 ∈ '−, which coincide with the Drinfeld-Jimbo coproduct on

Uv(Lsln) for μ1 = μ2 = 0. Set b1,i := α∨i (μ1) and b2,i := α∨i (μ2) (so that
b1,i , b2,i ∈ Z≤0).

Theorem 10.16 For any μ1, μ2 ∈ '−, there is a unique C(v)-algebra homomor-
phism

�μ1,μ2 : Usc
0,μ1+μ2

−→ Usc
0,μ1

⊗ Usc
0,μ2

(we will denote � = �μ1,μ2 when the algebras involved are clear), such that

�(ei,r ) = 1⊗ ei,r , �(fi,s) = fi,s ⊗ 1 for b2,i ≤ r < 0, b1,i < s ≤ 0,

�(ei,0) = 1⊗ ei,0 + ei,0 ⊗ ψ+i,0, �(fi,b1,i ) = fi,b1,i ⊗ 1+ ψ−i,b1,i
⊗ fi,0,

�(ei,b2,i−1) = 1⊗ ei,b2,i−1 + ei,−1 ⊗ ψ−i,b2,i
− (v − v−1)

∑

l>i+1

E
(−1)
il ⊗ F (0)l,i+1ψ

−
i,b2,i

+

(v − v−1)
∑

k<i

vi−k−1E
(−1)
k,i+1 ⊗ F̃ (0)ik ψ−i,b2,i

− (v − v−1)2
k<i∑

l>i+1

vi−k−1E
(−1)
kl ⊗ F̃ (0)ik F (0)l,i+1ψ

−
i,b2,i

,

�(fi,1) = fi,1 ⊗ 1+ ψ+i,0 ⊗ fi,1 + v−1(v − v−1)
∑

l>i+1

E
(0)
i+1,lψ

+
i,0 ⊗ F (1)li −

(v − v−1)
∑

k<i

vk−i Ẽ(0)ki ψ
+
i,0 ⊗ F (1)i+1,k − (v − v−1)2

k<i∑

l>i+1

vk−i−1E
(0)
i+1,l Ẽ

(0)
ki ψ

+
i,0 ⊗ F (1)lk ,

�((ψ+i,0)
±1) = (ψ+i,0)±1⊗ (ψ+i,0)±1, �((ψ−i,b1,i+b2,i

)±1) = (ψ−i,b1,i
)±1⊗ (ψ−i,b2,i

)±1,
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�(hi,1) = hi,1 ⊗ 1+ 1⊗ hi,1 − (v2 − v−2)E
(0)
i,i+1 ⊗ F (1)i+1,i + (v − v−1)

∑

l>i+1

E
(0)
i+1,l ⊗ F (1)l,i+1+

(v − v−1)
∑

k<i

vk+1−i Ẽ(0)ki ⊗ F (1)ik + v−2(v − v−1)
∑

l>i+1

[E(0)i,i+1, E
(0)
i+1,l]v3 ⊗ F (1)li −

(v − v−1)
∑

k<i

vk−i−1[E(0)i,i+1, Ẽ
(0)
ki ]v3 ⊗ F (1)i+1,k+

(v − v−1)2
k<i∑

l>i+1

vk−i
(
E
(0)
il Ẽ

(0)
ki − E(0)i+1,l Ẽ

(0)
k,i+1

)
⊗ F (1)lk ,

�(hi,−1) = hi,−1 ⊗ 1+ 1⊗ hi,−1 + (v2 − v−2)E
(−1)
i,i+1 ⊗ F (0)i+1,i−

(v − v−1)
∑

l>i+1

E
(−1)
i+1,l ⊗ F (0)l,i+1−

(v − v−1)
∑

k<i

vi−k−1E
(−1)
ki ⊗ F̃ (0)ik − v2(v − v−1)

∑

l>i+1

E
(−1)
il ⊗ [F (0)l,i+1, F

(0)
i+1,i]v−3+

(v − v−1)
∑

k<i

vi+1−kE(−1)
k,i+1 ⊗ [F̃ (0)ik , F (0)i+1,i]v−3−

(v − v−1)2
k<i∑

l>i+1

vi−kE(−1)
kl ⊗

(
F̃
(0)
i+1,kF

(0)
l,i+1 − F̃ (0)ik F (0)li

)
,

where E(0)j i , Ẽ
(0)
j i , E

(−1)
j i , F

(0)
ij , F̃

(0)
ij , F

(1)
ij are defined as in (10.6).

The proof of this result is similar to our proof of Theorem 10.5, but is much more
tedious; we sketch it in Appendix H.

Remark 10.17 The similarity between the formulas for �μ1,μ2 of Theorem 10.16
and � of Theorem 10.13 can be explained via an analogue of Remark 10.6. To be
more precise, let U±v be the positive/negative Borel subalgebras in the Drinfeld-
Jimbo presentation of Uv(Lsln), while their analogues U

sc,±
0,μ1,μ2

(subalgebras of
Usc

0,μ1+μ2
) will be introduced in Appendix H. There are natural C(v)-algebra

homomorphisms j±μ1,μ2
: U±v → U

sc,±
0,μ1,μ2

, see Proposition H.1. According to
Proposition H.16, the following diagram is commutative:
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10.7 Homomorphisms �μ1,μ2 for Arbitrary μ1, μ2 ∈ �,
g = sln

Let us first generalize the shift homomorphisms of Proposition 10.8.

Lemma 10.18 For any μ ∈ ' and ν1, ν2 ∈ '−, there is a unique C(v)-algebra
homomorphism ιμ,ν1,ν2 : Usc

0,μ→ Usc
0,μ+ν1+ν2

, which maps the currents as follows:

ιμ,ν1,ν2 : ei(z) 	→ (1− z−1)−α∨i (ν1)ei(z), fi(z) 	→ (1− z−1)−α∨i (ν2)fi(z),

ψ±i (z) 	→ (1− z−1)−α∨i (ν1+ν2)ψ±i (z).

Proof The proof is analogous to that of Proposition 10.8. ��
The proof of the following technical result is presented in Appendix I and is based

on the shuffle realization of the quantum loop algebra Uv(Lsln), see [53] (cf. [63]).

Theorem 10.19 The homomorphism ιμ,ν1,ν2 is injective for any μ∈' and
ν1, ν2 ∈ '−.

Combining this theorem with Corollary 10.15 and our arguments from the proof
of Theorem 10.10, we get the key result of this section.

Theorem 10.20 For any μ1, μ2 ∈ ' and μ := μ1 + μ2, there is a unique C(v)-
algebra homomorphism

�μ1,μ2 : Usc
0,μ −→ Usc

0,μ1
⊗ Usc

0,μ2
,

such that for any ν1, ν2 ∈ '− the following diagram is commutative:

The following is proved analogously to Corollary 10.11:

Proposition 10.21 For arbitrary μ1, μ2 ∈ ', the images �μ1,μ2(hi,±1) are given
by formulas (10.2) and (10.3).
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10.8 Open Problems

Following [24], we expect that homomorphisms �μ1,μ2 : Usc
0,μ1+μ2

→ Usc
0,μ1

⊗
Usc

0,μ2
(specializing to the Drinfeld-Jimbo coproduct for μ1 = μ2 = 0) exist for

any simply-laced Lie algebra g and its two coweights μ1, μ2 ∈ '. Moreover,
their construction should proceed in the same way as for the aforementioned case
g = sln. To be more precise, for antidominant μ1, μ2 ∈ '−, we expect that the
homomorphism �μ1,μ2 is characterized by the following two properties:

(a) �μ1,μ2(ei,r ) = 1⊗ei,r , �μ1,μ2(fi,s) = fi,s⊗1 for α∨i (μ2) ≤ r < 0, α∨i (μ1) <

s ≤ 0;
(b) an analogue of the commutative diagram of Remark 10.17 holds.

For general μ1, μ2, we expect that the construction of �μ1,μ2 should be eas-
ily deduced from the antidominant case with the help of shift homomorphisms
ιμ,ν1,ν2 (μ ∈ ', ν1, ν2 ∈ '−) as in Theorems 10.10 and 10.20.

The outlined construction of�μ1,μ2 for a general g lacks explicit formulas for the
Drinfeld-Jimbo coproduct of {ei,0, ei,−1, fi,0, fi,1, ψ

±
i,0, hi,±1}i∈I–the generators of

Uv(Lg), similar to those of Lemma 10.4 and Theorem 10.13.

11 Ubiquity of RTT Relations

11.1 Rational Lax Matrix

Before we proceed to the trigonometric setting, let us recall the classical relation
between rational Lax matrices and type A quantum open Toda systems, which goes
back to [28].

Let Rrat(z) ∈ End(C2 ⊗ C
2) be the standard rational R-matrix:

Rrat(z) = Id+ h̄
z
P, where P ∈ End(C2 ⊗ C

2) is the permutation map.

Let Âh̄n be the associative C[h̄]-algebra generated by {u±1
i , wi}ni=1 with the defining

relations [ui ,uj ] = [wi,wj ] = 0,u±1
i u∓1

i = 1, [ui , wj ] = δij h̄ui . Define the
(local) rational Lax matrix

L
h̄
i (z) =

(
z− wi u−1

i

−ui 0

)
∈ Mat(2, Âh̄n[z]) (11.1)

and introduce the complete monodromy matrix T h̄n (z) := Lh̄n(z) · · ·Lh̄1(z). Then, the
monodromy matrix T h̄n (z) satisfies the rational RTT-relation:

Rrat(z− w)(T h̄n (z)⊗ 1)(1⊗ T h̄n (w)) = (1⊗ T h̄n (w))(T h̄n (z)⊗ 1)Rrat(z− w).
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Due to this relation, the coefficients (in z) of the matrix element T h̄n (z)11 generate
a commutative subalgebra of Âh̄n, known as the quantum open Toda system of gln.
The coefficient of zn−2 equals

Hrat
2 = 1

2

(
n∑

i=1

wi

)2

− 1

2

n∑

i=1

w2
i −

n−1∑

i=1

uiu
−1
i+1. (11.2)

We recover the standard quantum open Toda hamiltonian of sln once we set w1 +
. . .+ wn = 0.

11.2 Trigonometric/Relativistic Lax Matrices

Let Rtrig(z) ∈ End(C2 ⊗ C
2) be the standard trigonometric R-matrix (see [17,

(3.7)]):

Rtrig(z) =

⎛

⎜⎜⎜⎝

1 0 0 0

0 z−1
vz−v−1

z(v−v−1)

vz−v−1 0

0 v−v−1

vz−v−1
z−1

vz−v−1 0

0 0 0 1

⎞

⎟⎟⎟⎠ . (11.3)

Let Âv
n be the associative C(v)-algebra generated by {w̃±1

i , D
±1
i }ni=1 with the

defining relations [w̃i , w̃j ] = [Di,Dj ] = 0, w̃±1
i w̃∓1

i = D±1
i D

∓1
i = 1, Diw̃j =

vδij w̃jDi . If we set w±1
i = w̃±2

i , we see that Âv
n is a particular example of the

algebras Âv
frac of Sect. 7. Define the (local) relativistic Lax matrix

L
v,0
i (z) =

(
w̃−1
i z

1/2 − w̃iz−1/2 D−1
i z

1/2

−Diz−1/2 0

)
∈ Mat(2, z−1/2Âv

n[z]) (11.4)

and introduce the complete monodromy matrix T v,0
n (z) := Lv,0

n (z) · · ·Lv,0
1 (z).

Lemma 11.1 The monodromy matrix T v,0
n (z) satisfies the trigonometric RTT-

relation:

Rtrig(z/w)(T
v,0
n (z)⊗ 1)(1⊗ T v,0

n (w)) = (1⊗ T v,0
n (w))(T v,0

n (z)⊗ 1)Rtrig(z/w).

Proof It suffices to check the above relation for n = 1. The proof in the latter case
is straightforward. ��
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Corollary 11.2 The coefficients (in z) of the matrix element zn/2T v,0
n (z)11 generate

a commutative subalgebra of Âv
n. The coefficient of z equals

H0
2 = (−1)n−1w̃1 · · · w̃n ·

(
n∑

i=1

w̃−2
i +

n−1∑

i=1

w̃−1
i w̃−1

i+1DiD
−1
i+1

)
. (11.5)

This hamiltonian is equivalent to the quadratic hamiltonian of the q-difference
quantum Toda lattice of [19, (5.7)] (see also [56]) once we set w̃1 · · · w̃n = 1.

Remark 11.3 The notion of a relativistic Lax matrix goes back to [43]. In particular,
our choice of Lv,0

i (z) is a slight variation of their construction, which is adapted to
a different choice of the trigonometric R-matrix.

Now let us consider two (local) trigonometric Lax matrices

L
v,−1
i (z) =

(
w̃−1
i − w̃iz−1 w̃iD

−1
i

−w̃iDiz−1 w̃i

)
∈ Mat(2, z−1Âv

n[z]), (11.6)

L
v,1
i (z) =

(
w̃−1
i z− w̃i w̃−1

i D
−1
i z

−w̃−1
i Di −w̃−1

i

)
∈ Mat(2, Âv

n[z]). (11.7)

Lemma 11.4 The Lax matrices Lv,±1
i (z) satisfy the trigonometric RTT-relation:

Rtrig(z/w)(L
v,±1
i (z)⊗1)(1⊗Lv,±1

i (w)) = (1⊗Lv,±1
i (w))(L

v,±1
i (z)⊗1)Rtrig(z/w).

Proof The proof is straightforward. ��

11.3 Mixed Toda Hamiltonians

Now we construct 3n Hamiltonians generalizing H0
2 in spirit of [21, (90)], cf.

also [11, (1.1) and Section 2]. For any ,k = (kn, . . . , k1) ∈ {−1, 0, 1}n, define the
mixed complete monodromy matrix

T v
,k (z) := Lv,kn

n (z) · · ·Lv,k1
1 (z).

In particular, T v
,0 (z) = T

v,0
n (z). Since all three matrices Lv,−1

i (z), L
v,0
i (z), L

v,1
i (z)

satisfy the RTT-relation with the same R-matrix Rtrig(z), the same is true for T v
,k (z).

Hence, the coefficients (in z) of the matrix element T v
,k (z)11 generate a commutative

subalgebra of Âv
n. We have

T v
,k (z)11 = H,k1z

s + H,k2z
s+1 + higher powers of z,
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where s = ∑n
i=1

ki−1
2 . Here H,k1 = (−1)nw̃1 · · · w̃n, while the hamiltonian H,k2

equals

H,k2 = (−1)n−1w̃1 · · · w̃n·
⎛

⎝
n∑

i=1

w̃−2
i +

n−1∑

i=1

σi,i+1DiD
−1
i+1 +

ki+1=...=kj−1=1∑

1≤i<j−1<n

σi,jDiD
−1
j

⎞

⎠ ,

(11.8)

where σi,j := w̃−ki−1
i w̃−ki+1−1

i+1 · · · w̃−kj−1
j .

Remark 11.5 At the classical level, the birational Bäcklund-Darboux transforma-
tions interchanging various hamiltonians H,k2 are given in [34, Theorem 6.1].

Lemma 11.6 For any ,k, set ,k′ = (0, kn−1, . . . , k2, 0). Then, H,k2 is equivalent

to H,k′2 .

Proof It is straightforward to see that H,k′2 = Ad(F (w̃1, . . . , w̃n))H
,k
2,

where F(w̃1, . . . , w̃n) = exp(k1f−(log(w̃1)) + knf+(log(w̃n))) with

f±(t) = ± t2

2 log(v) + t
2 . ��

Remark 11.7 It follows that among the aforementioned 3n mixed Toda hamiltonians

H,k2, parameterized by ,k ∈ {−1, 0, 1}n, there are no more than 3n−2 different up to
equivalence. In [35] these hamiltonians are identified with the modified versions
of the q-Toda hamiltonian in [19, 56], which now depend on a choice of two
orientations of the Dynkin diagram of type An−1 (equivalently, a choice of a pair of
Coxeter elements). There are 4n−2 such choices, but some of them are equivalent
leading to exactly 3n−2 inequivalent hamiltonians, which turn out to be equivalent

to the aforementioned H,k2. All the q-Toda hamiltonians of [19, 56] correspond to
the pairs of coinciding orientations, i.e. to ,k = (0, . . . , 0), and they share the same
eigenfunction J [22, Section 3], while our mixed Toda hamiltonians do not admit
the common eigenfunctions. We are grateful to P. Etingof for his suggestion to study
the construction of [56] for pairs of different orientations.

11.4 Shifted RTT Algebras of sl2

Fix n ∈ N. Following [17] (cf. also Remark G.1), we introduce the (trigonometric)
shifted RTT algebras of sl2, denoted by Urtt

0,−2n. These are associative C(v)-algebras
generated by

{t+11[r], t+12[r], t+21[r + 1], t+22[r], t−11[−m], t−12[−m− 1], t−21[−m], t−22[−m− 1+ δn,0]}m≥−nr≥0 ∪
{(t+11[0])−1, (t−11[n])−1}
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subject to the following defining relations:

(t+11[0])±1(t+11[0])∓1 = 1, (t−11[n])±1(t−11[n])∓1 = 1, (R1)

Rtrig(z/w)(T
ε(z)⊗1)(1⊗T ε′(w)) = (1⊗T ε′(w))(T ε(z)⊗1)Rtrig(z/w), (R2)

qdet T ±(z) = 1 (R3)

for all ε, ε′ ∈ {±}, where the two-by-two matrices T ±(z) are given by

T ±(z) =
(
T ±11(z) T

±
12(z)

T ±21(z) T
±
22(z)

)
with T ±ij (z) :=

∑

r

t±ij [r]z−r ,

and the quantum determinant qdet is defined in a standard way as8

qdet T ±(z) := T ±11(z)T
±
22(v

−2z)− v−1T ±12(z)T
±
21(v

−2z).

Note that T ±(z) admits the following unique Gauss decomposition:

T ±(z) =
(

1 0
f̃±(z) 1

)(
g̃±1 (z) 0

0 g̃±2 (z)

)(
1 ẽ±(z)
0 1

)
,

where coefficients of the half-currents ẽ±(z), f̃±(z), g̃±1 (z), g̃
±
2 (z) are elements of

Urtt
0,−2n.

To establish the relation between Urtt
0,−2n and Uad

0,−2n (adjoint version of the
shifted quantum affine algebra of sl2), recall Drinfeld half-currents e±(z), f±(z)
of (6.5).

Theorem 11.8

(a) The currents g̃±1 (z), g̃
±
2 (z) pairwise commute and satisfy

g̃±2 (z)g̃
±
1 (v

−2z) = 1.

(b) There exists a unique C(v)-algebra homomorphismϒ0,−2n : Uad
0,−2n→ Urtt

0,−2n,
defined by

e±(z) 	→ ẽ±(z)/(v − v−1), f±(z) 	→ f̃±(z)/(v − v−1),

ψ±(z) 	→ g̃±2 (z)g̃
±
1 (z)

−1, (φ+)±1 	→ (t+11[0])∓1, (φ−)±1 	→ v∓n(t−11[n])∓1.

8It is instructive to point out the difference with [51], where the author uses a different
trigonometric R-matrix given by RM

trig(z/w) = (Rtrig(z/w)
t )−1 as well as TM,±(z) = T ±(z)t . For

this reason, the quantum determinant qdetM of [51, Exercise 1.6] is consistent with our definition of
qdet, that is, qdetM TM,±(z) := TM,±

11 (z)T
M,±
22 (v−2z)− v−1T

M,±
21 (z)T

M,±
12 (v−2z) = qdet T ±(z).
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(c) For any b1, b2 ∈ Z≤0, there exists a unique C(v)-algebra homomorphism

�rtt
2b1,2b2

: Urtt
0,2b1+2b2

−→ Urtt
0,2b1

⊗ Urtt
0,2b2

,

defined by T ±(z) 	→ T ±(z)⊗ T ±(z).
Remark 11.9 The n = 0 case of this theorem was proved in [17], cf. Remark G.1.

Proof The verification of part (b) is analogous to the one for n = 0, dealt with
in [17]. Once (b) is established, it is easy to see that qdet T ±(z) = g̃±2 (z)g̃±1 (v−2z),
hence (a). It is clear that �rtt

2b1,2b2
is well-defined on the generators. The compati-

bility of �rtt
2b1,2b2

with the defining relations (R1–R3) is checked analogously to the
case n = 0. ��

Recall the generating series A±(z), B±(z), C±(z),D±(z) with coefficients in
Uad

0,−2n, introduced in Sect. 6.

Corollary 11.10 The homomorphism ϒ0,−2n maps these generating series as
follows:

A+(z) 	→ T +11(z), B
+(z) 	→ T +12(z), C

+(z) 	→ T +21(z),D
+(z) 	→ T +22(z),

A−(z) 	→ (vz)nT −11(z), B
−(z) 	→ (vz)nT −12(z), C

−(z) 	→ (vz)nT −21(z),D
−(z) 	→ (vz)nT −22(z).

Proof Due to Theorem 11.8(a, b), we have

ϒ0,−2n(ψ
±(z)) = 1/g̃±1 (z)g̃

±
1 (v

−2z), ϒ0,−2n((φ
+)−1) = t+11[0], ϒ0,−2n((φ

−)−1) = vnt−11[n].

Combining this with ψ+(z) = 1
A+(z)A+(v−2z)

, ψ−(z) = z2n

A−(z)A−(v−2z)
, and A±0 =

(φ±)−1, we get ϒ0,−2n(A
+(z)) = g̃+1 (z) = T +11(z), ϒ0,−2n(A

−(z)) =
(vz)ng̃−1 (z) = (vz)nT −11(z). The computation of the images of the
remaining generating series is straightforward, e.g. ϒ0,−2n(B

−(z)) =
(v − v−1)ϒ0,−2n(A

−(z))ϒ0,−2n(e
−(z)) = (vz)ng̃−1 (z)ẽ−(z) = (vz)nT −12(z). ��

The following is the key result of this subsection.

Theorem 11.11 For n ∈ N,ϒ0,−2n : Uad
0,−2n→ Urtt

0,−2n is an isomorphism of C(v)-
algebras.

Proof Due to Theorem 11.8 and Corollary 11.10, it suffices to prove that there exists
a C(v)-algebra homomorphism Urtt

0,−2n→ Uad
0,−2n, such that

(t+11[0])−1 	→ φ+, (t−11[n])−1 	→ vnφ−,

T +11(z) 	→ A+(z), T +12(z) 	→ B+(z), T +21(z) 	→ C+(z), T +22(z) 	→ D+(z),

T −11(z) 	→ (vz)−nA−(z), T −12(z) 	→ (vz)−nB−(z),

T −21(z) 	→ (vz)−nC−(z), T −22(z) 	→ (vz)−nD−(z).
(11.9)
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This amounts to verifying that the assignment (11.9) preserves defining rela-
tions (R1–R3). Relation (R1) is preserved, due to A±0 φ± = φ±A±0 = 1, while (R3)
is preserved, due to relation (6.16). Finally, (R2) is an equality in End(C2 ⊗ C

2)⊗
Uad

0,−2n and thus can be viewed as a collection of 16 relations in Uad
0,−2n for each

choice of ε, ε′ ∈ {±}. It is straightforward to see that 6 of these relations follow from
the rest, while the remaining 10 relations exactly match the 10 relations of (6.7, 6.9–
6.15) under the assignment (11.9). ��
Remark 11.12 The results of this subsection admit natural generalizations to the
case of arbitrary b1, b2 ∈ Z≤0 such that b1 + b2 is even. In other words, one can
define an analogous shifted RTT algebra of sl2, denoted Urtt

b1,b2
, and construct a

C(v)-algebra isomorphism ϒb1,b2 : Uad
b1,b2

∼−→Urtt
b1,b2

. This observation is used in
Remark 11.14 below, where we provide an alternative interpretation of the Lax
matrices Lv,−1

1 (z), L
v,0
1 (z), L

v,1
1 (z) from Sect. 11.2.

11.5 Relation Between Two Different Appearances of RTT

Recall the local trigonometric Lax matrix Lv,−1
1 (z) of (11.6). Combining the

equality qdet Lv,−1
1 (z) = 1 with Lemma 11.4, we see that Lv,−1

1 (z) gives rise to

an algebra homomorphism �rtt
0,−2 : Urtt

0,−2 → Âv
1 defined by T ±(z) 	→ L

v,−1
1 (z).

Recall the homomorphism �̃0
−2 : Uad

0,−2 → Âv
1 of Theorem 7.1 (where w1/2 = w̃).

The following is straightforward.

Lemma 11.13 The composition �rtt
0,−2 ◦ ϒ0,−2 coincides with �̃0

−2.

Remark 11.14 Let us provide a similar interpretation of the other two Lax matrices
L

v,0
1 (z) and Lv,1

1 (z). Recall that the algebras Uad
0,−2 and Uad

b,−2−b are isomorphic for

any b ∈ Z. In particular, one can pull back the homomorphism �̃0
−2 to obtain a

homomorphism �̃b,−2−b : Uad
b,−2−b → Âv

1, explicitly given by

e(z) 	→ w̃2+b

v − v−1 δ

(
w̃2

z

)
D−1, f (z) 	→ w̃b

1− v2 δ

(
v2w̃2

z

)
D,

ψ±(z) 	→
(

v−bw̃2zb

(1−w̃2/z)(1−v2w̃2/z)

)±
, (φ+)±1 	→ v∓b/2w̃±1, (φ−)±1 	→ −v∓(b/2+1)w̃∓1.

Due to Remark 11.12, the algebra Uad
b,−2−b admits an RTT realization, that is

there is an isomorphism ϒb,−2−b : Uad
b,−2−b

∼−→Urtt
b,−2−b, only for b = 0,−1,−2.

Analogously to Lemma 11.13, recasting the homomorphisms �̃b,−2−b as the
homomorphisms Urtt

b,−2−b → Âv
1, we recover the Lax matrix Lv,0

1 (z) (for b = −1)

and Lv,1
1 (z) (for b = −2). Moreover, this also explains why we had exactly three

Lax matrices in Sect. 11.2.
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Fix n ≥ 1 and consider the complete monodromy matrix T
v,−1
n (z) =

L
v,−1
n (z) · · ·Lv,−1

1 (z). Applying iteratively �rtt•,• of Theorem 11.8(c), we
get �rtt

n : Urtt
0,−2n → (Urtt

0,−2)
⊗n. Composing it with the homomorphism

(�rtt
0,−2)

⊗n : (Urtt
0,−2)

⊗n → (Âv
1)
⊗n ) Âv

n, we obtain the homomorphism

�rtt
0,−2n : Urtt

0,−2n→ Âv
n. The following is straightforward.

Lemma 11.15 We have �rtt
0,−2n(T

±(z)) = T v,−1
n (z).

Remark 11.16 For n > 1, the composition �rtt
0,−2n ◦ϒ0,−2n does not coincide with

the homomorphism �̃0
−2n of Theorem 7.1.

Remark 11.17 The result of Lemma 11.13 admits a natural rational counterpart.
Let Y−2 be the shifted Yangian of sl2 with the shift −α. Recall the homomorphism
�0
−2 : Y−2 → Âh̄1 of [10, Corollary B.17]. Consider a slight modification of it

�̂−2 : E(z) 	→ (z−w)−1u−1, F (z) 	→ −(z−w−h̄)−1u, H(z) 	→ (z−w)−1(z−w−h̄)−1.

One can also define a (rational) shifted RTT algebra of sl2, denoted by Yrtt
−2. This

is an associative C[h̄]-algebra generated by {t11[r − 1], t12[r], t21[r], t22[r + 1],
(t11[−1])−1}r≥0 and with the defining relations (t11[−1])±1(t11[−1])∓1= 1,
T11(z)T22(z − h̄) − T12(z)T21(z − h̄) = 1, Rrat(z − w)(T (z) ⊗ 1)(1 ⊗ T (w)) =
(1 ⊗ T (w))(T (z) ⊗ 1)Rrat(z − w), where T (z) = (Tij (z))

2
i,j=1 with Tij (z) :=∑

r tij [r]z−r . Consider the Gauss decomposition of T (z):

T (z) =
(

1 0
f̃ (z) 1

)(
g̃1(z) 0

0 g̃2(z)

)(
1 ẽ(z)
0 1

)
.

Analogously to Theorem 11.8(b), there is a C[h̄]-algebra homomorphism
ϒ rat
−2 : Y−2 → Yrtt

−2, defined by E(z) 	→ ẽ(z), F (z) 	→ f̃ (z),H(z) 	→
g̃2(z)g̃1(z)

−1. Composing ϒ rat
−2 with the homomorphism Yrtt

−2 → Âh̄1 given by

T (z) 	→ L
h̄
1(z), we recover �̂−2 from above.

11.6 Homomorphism �b1,b2 (b1, b2 ∈ Z≤0) via Drinfeld
Half-Currents, g = sl2

Recall the currents e±(z), f±(z), ψ±(z) of (6.5).
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Proposition 11.18 Let � be the Drinfeld-Jimbo coproduct on Uv(Lsl2). Then, we
have

�(e±(z)) = 1⊗ e±(z)+
∞∑

r=0

(−v)r (v − v−1)2r · e±(z)r+1 ⊗ f±(v2z)rψ±(z),

(11.10)

�(f±(z)) = f±(z)⊗ 1+
∞∑

r=0

(−v)−r (v − v−1)2r · ψ±(z)e±(v2z)r ⊗ f±(z)r+1,

(11.11)

�(ψ±(z)) =
∞∑

r=0

(−1)r [r + 1]v(v − v−1)2r · ψ±(z)e±(v2z)r ⊗ f±(v2z)rψ±(z).

(11.12)

These formulas are analogous to those for the Yangian Yh̄(sl2) of [51,
Exercise 3.2]. The proof of this result is based on the RTT realization of Uv(Lsl2)
and is presented in Appendix J.

Proposition 11.19 Let b1, b2 ∈ Z≤0 and b = b1 + b2. Then, the homomorphism
�b1,b2 : Usc

0,b → Usc
0,b1
⊗Usc

0,b2
from Theorem 10.5 also satisfies the formulas (11.10–

11.12), where by abuse of notation e±(z), f±(z), ψ±(z) denote the generating
series for each respective algebra.

Proof Our proof is based on the commutative diagram of Remark 10.6:

Since j+•,• : e+(z) 	→ e+(z), f+(z) 	→ f+(z), ψ+(z) 	→ ψ+(z), we immedi-
ately get the validity of (11.10–11.12) for the currents e+(z), f+(z), ψ+(z) and the
homomorphism �b1,b2 .

Let us now treat the case of e−(z), f−(z), ψ−(z). Combining the commutativity
of the above diagram (in the “−” case) with equality (11.10) yields

�b1,b2,(e
−(z)) = 1⊗ e−(z)+

∞∑

r=0

(−v)r (v− v−1)2r · e−(z)r+1⊗ f−(v2z)rψ−(z),

where e−(z) := e−(z) + ∑−1
r=b2

erz
−r . Meanwhile, �b1,b2(er ) = 1 ⊗ er for

b2 ≤ r ≤ −1. Hence, �b1,b2(e
−(z)) is given by the right-hand side of (11.10).

Likewise, we get the validity of (11.11), (11.12) for the currents f−(z), ψ−(z) and
the homomorphism �b1,b2 . ��
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Since our proof of (11.10–11.12) in Appendix J is based on the RTT-type
coproduct �rtt

0,0, we immediately get

Corollary 11.20 Let b1, b2 ∈ Z≤0 and b = b1 + b2. The following diagram is
commutative:

11.7 Coproduct for Truncated Shifted Algebras, g = sl2

For b1, b2 ∈ Z≤0 and b = b1 + b2, recall the homomorphism �ad
2b1,2b2

: Uad
0,2b →

Uad
0,2b1

⊗ Uad
0,2b2

of Remark 10.7. Consider the truncated versions of the algebras

involved U0
2b,U

0
2b1
,U0

2b2
, see Definition 8.6. The goal of this subsection is to prove

the following result.

Proposition 11.21 For b1, b2 ≤ 0, the homomorphism �ad
2b1,2b2

descends to the

same named homomorphism U0
2b → U0

2b1
⊗ U0

2b2
.

Proof Define a 2-sided ideal I ⊂ Uad
0,2b1

⊗Uad
0,2b2

via I := I0
2b1
⊗Uad

0,2b2
+Uad

0,2b1
⊗

I0
2b2

. It suffices to show that �ad
2b1,2b2

(X) ∈ I for every generator X of the ideal I0
2b

of (8.5–8.6). To achieve this, recall the commutative diagram of Corollary 11.20.

Case X = A+s (s > −b) Applying the aforementioned commutative diagram to the
equality �rtt

2b1,2b2
(t+11[s]) =

∑s1+s2=s
s1,s2≥0 t

+
11[s1] ⊗ t+11[s2] +

∑s1+s2=s
s1,s2≥0 t

+
12[s1] ⊗ t+21[s2],

we get �ad
2b1,2b2

(A+s ) =
∑s1+s2=s
s1,s2≥0 A

+
s1
⊗ A+s2 +

∑s1+s2=s
s1,s2≥0 B

+
s1
⊗ C+s2 . For s1 + s2 =

s > −b, either s1 > −b1 or s2 > −b2. Hence, each summand in the right-hand side
belongs to I, due to Remark 8.8.

Case X = A+0 A
+
−b − (−1)b As above �ad

2b1,2b2
(A+−b) ≡ A+−b1

⊗ A+−b2
, where

the notation x ≡ y is used to denote x − y ∈ I. We also have �ad
2b1,2b2

(A+0 ) =
A+0 ⊗ A+0 . Thus �ad

2b1,2b2
(A+0 A

+
−b − (−1)b) ≡ A+0 A

+
−b1

⊗ A+0 A+−b2
− (−1)b =

(A+0 A
+
−b1

− (−1)b1) ⊗ A+0 A+−b2
+ (−1)b1 ⊗ (A+0 A+−b2

− (−1)b2) ≡ 0. Hence,

�ad
2b1,2b2

(A+0 A
+
−b − (−1)b) ∈ I.

Case X = A−−r − v−bA+−b−r (0 ≤ r ≤ −b) Analogously to the first

case considered above, we have �ad
2b1,2b2

(A+−b−r ) ≡ ∑r1+r2=r
0≤r1≤−b1
0≤r2≤−b2

A+−b1−r1 ⊗
A+−b2−r2 +

∑r1+r2=r
1≤r1≤−b1

0≤r2≤−b2−1

B+−b1−r1 ⊗ C+−b2−r2 , where the lower bounds on r1, r2

are due to Remark 8.8. Completely analogously, we obtain �ad
2b1,2b2

(A−−r ) ≡
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∑r1+r2=r
0≤r1≤−b1
0≤r2≤−b2

A−−r1 ⊗ A−−r2 +
∑r1+r2=r

1≤r1≤−b1
0≤r2≤−b2−1

B−−r1 ⊗ C−−r2 . Hence,

�ad
2b1,2b2

(A−−r − v−bA+−b−r ) ≡
r1+r2=r∑

0≤r1≤−b1
0≤r2≤−b2

(A−−r1 ⊗ A−−r2 − v−bA+−b1−r1 ⊗ A+−b2−r2)+

r1+r2=r∑

1≤r1≤−b1
0≤r2≤−b2−1

(B−−r1 ⊗ C−−r2 − v−bB+−b1−r1 ⊗ C+−b2−r2).

(11.13)
The first sum of (11.13) belongs to I as A−−r1 ⊗ A−−r2 − v−bA+−b1−r1 ⊗ A+−b2−r2 =
(A−−r1 − v−b1A+−b1−r1) ⊗ A−−r2 + v−b1A+−b1−r1 ⊗ (A−−r2 − v−b2A+−b2−r2) ∈ I.

Completely analogously, B−−r1 ⊗ C−−r2 − v−bB+−b1−r1 ⊗ C+−b2−r2 = (B−−r1 −
v−b1B+−b1−r1) ⊗ C−−r2 + v−b1B+−b1−r1 ⊗ (C−−r2 − v−b2C+−b2−r2). To complete the
proof, it suffices to show

B−−r1 − v−b1B+−b1−r1 ∈ I0
2b1

for 1 ≤ r1 ≤ −b1,

C−−r2 − v−b2C+−b2−r2 ∈ I0
2b2

for 0 ≤ r2 ≤ −b2 − 1.
(11.14)

To prove the first inclusion of (11.14), recall that B+(z) = [e0, A
+(z)]v−1 , due to

Corollary 7.3. Likewise (comparing the terms of degree 1 in w in the equality (6.10)
with ε = −, ε′ = +), we obtain B−(z) = [e0, A

−(z)]v−1 . Therefore,

B−−r1 − v−b1B+−b1−r1 = [e0, A
−−r1 − v−b1A+−b1−r1 ]v−1 ∈ I0

2b1
.

Similarly, applying the equalities zC±(z) = [A±(z), f1]v−1 , we obtain

C−−r2 − v−b2C+−b2−r2 = [A−−r2−1 − v−b2A+−b2−r2−1, f1]v−1 ∈ I0
2b2
,

which implies the second inclusion of (11.14). Thus,�ad
2b1,2b2

(A−−r−v−bA+−b−r )∈I.
The cases when X is one of A−−s(s > −b), A−0 A−b − (−v2)−b are treated

analogously to the above first two cases. This completes our proof. ��

11.8 Coproduct for Truncated Shifted Algebras, General g

Recall the homomorphism�μ1,μ2 : Usc
0,μ→ Usc

0,μ1
⊗Usc

0,μ2
of Theorem 10.20 (μ =

μ1 + μ2, g = sln). Given N = N1 +N2, this coproduct extends to

�ad
μ1,μ2

: Uad
0,μ[z±1

1 , . . . , z±1
N ] −→ Uad

0,μ1
[z±1

1 , . . . , z±1
N1
] ⊗ Uad

0,μ2
[z±1
N1+1, . . . , z

±1
N ]
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as in Remark 10.3(c). Given two sequences λ(1) = (ωi1 , . . . , ωiN1
), λ(2) =

(ωiN1+1, . . . , ωiN ), we concatenate them to λ = (ωi1 , . . . , ωiN ) and consider the

corresponding truncated shifted algebras Uλμ,U
λ(1)

μ1 ,U
λ(2)

μ2 as in Definition 8.6.

Conjecture 11.22 The aforementioned homomorphism �ad
μ1,μ2

descends to the

same named homomorphism �ad
μ1,μ2

: Uλμ→ U
λ(1)

μ1 ⊗ U
λ(2)

μ2 .

We hope that the comultiplication �ad
μ1,μ2

can be defined for arbitrary simply-
laced g (see Sect. 10.8) and descends to the truncated shifted algebras.

12 K-theory of Parabolic Laumon Spaces

12.1 Parabolic Laumon Spaces

We recall the setup of [7]. Let C be a smooth projective curve of genus zero. We fix
a coordinate z on C, and consider the action of C× on C such that v(z) = v−2z. We
have CC

× = {0,∞}.
We consider an N -dimensional vector space W with a basis w1, . . . , wN . This

defines a Cartan torus T ⊂ G = GL(N) = GL(W). We also consider its 2N -fold
cover, the bigger torus T̃ , acting onW as follows: for T̃ . t = (t1, . . . , tN ) we have
t(wi) = t2i wi .

We fix an n-tuple of positive integers π = (p1, . . . , pn) ∈ Z
n
>0 such that

p1 + . . . + pn = N . Let P ⊂ G be a parabolic subgroup preserving the flag
0 ⊂ W1 := 〈w1, . . . , wp1〉 ⊂ W2 := 〈w1, . . . , wp1+p2〉 ⊂ · · · ⊂ Wn−1 :=
〈w1, . . . , wp1+...+pn−1〉 ⊂ Wn := W. Let B := G/P be the corresponding partial
flag variety.

Given an (n− 1)-tuple of nonnegative integers d = (d1, . . . , dn−1) ∈ N
n−1, we

consider the Laumon parabolic quasiflags’ space Qd , see [46, § 4.2]. It is the moduli
space of flags of locally free subsheaves

0 ⊂W1 ⊂ · · · ⊂Wn−1 ⊂W = W ⊗ OC

such that rank(Wi ) = p1+ . . .+pi and deg(Wi ) = −di . It is known to be a smooth
connected projective variety of dimension dimB +∑n−1

i=1 di(pi + pi+1), see [46,
§ 2.10].

We consider the following locally closed subvariety Qd ⊂ Qd (parabolic
quasiflags based at∞ ∈ C) formed by the flags

0 ⊂W1 ⊂ · · · ⊂Wn−1 ⊂W = W ⊗ OC
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such that Wi ⊂W is a vector subbundle in a neighborhood of∞ ∈ C, and the fiber
of Wi at ∞ equals the span 〈w1, . . . , wp1+...+pi 〉 ⊂ W . It is known to be a smooth
connected quasiprojective variety of dimension

∑n−1
i=1 di(pi + pi+1).

12.2 Fixed Points

The group G × C
× acts naturally on Qd , and the group T̃ × C

× acts naturally on
Qd . The set of fixed points of T̃ × C

× on Qd is finite; its description is given in
[7, § 4.4].

Let ,d be a collection of nonnegative integral vectors ,dij = (d
(1)
ij , . . . , d

(pj )

ij ),

n − 1 ≥ i ≥ j ≥ 1, such that di = ∑i
j=1 |dij | =

∑i
j=1

∑pj
a=1 d

(a)
ij , and for

i ≥ k ≥ j we have ,dkj ≥ ,dij , i.e., d(a)kj ≥ d
(a)
ij for any 1 ≤ a ≤ pj . Abusing

notation, we denote by ,d the corresponding T̃ × C
×-fixed point in Qd :

W1 = OC(−d(1)11 · 0)w1 ⊕ · · · ⊕ OC(−d(p1)

11 · 0)wp1 ,

W2 = OC(−d(1)21 · 0)w1 ⊕ · · · ⊕OC(−d(p1)

21 · 0)wp1 ⊕OC(−d(1)22 · 0)wp1+1 ⊕ · · · ⊕
OC(−d(p2)

22 · 0)wp1+p2 ,

...

Wn−1 = OC(−d(1)n−1,1 · 0)w1 ⊕ · · · ⊕ OC(−d(p1)

n−1,1 · 0)wp1 ⊕ · · ·
· · · ⊕ OC(−d(1)n−1,n−1 · 0)wp1+...+pn−2+1 ⊕ · · · ⊕ OC(−d(pn−1)

n−1,n−1 · 0)wp1+...+pn−1 .

Notation Given a collection ,d as above, we will denote by ,d ± δ(p)ij the collection

,d ′, such that d ′(p)ij = d(p)ij ± 1, while d ′(a)kl = d(a)kl for (a, k, l) �= (p, i, j).

12.3 Correspondences

For i ∈ {1, . . . , n − 1} and d = (d1, . . . , dn−1), we set d + i := (d1, . . . , di +
1, . . . , dn−1). We have a correspondence Ed,i ⊂ Qd × Qd+i formed by the pairs
(W•,W′•) such that W′

i ⊂ Wi and we have Wj = W′
j for j �= i, see [7, § 4.5]. In

other words, Ed,i is the moduli space of flags of locally free sheaves

0 ⊂W1 ⊂ · · · ⊂Wi−1 ⊂W′
i ⊂Wi ⊂Wi+1 ⊂ · · · ⊂Wn−1 ⊂W

such that rank(Wj ) = p1 + . . . + pj and deg(Wj ) = −dj , while rank(W′
i ) =

p1 + . . .+ pi and deg(W′
i ) = −di − 1. According to [46, § 2.10], Ed,i is a smooth

projective algebraic variety of dimension dimB+∑n−1
i=1 di(pi + pi+1)+ pi .

We denote by p (resp. q) the natural projection Ed,i → Qd (resp. Ed,i → Qd+i).
We also have a map s : Ed,i → C,

(0 ⊂W1 ⊂ · · · ⊂Wi−1 ⊂W′
i ⊂Wi ⊂Wi+1 ⊂ · · · ⊂Wn−1 ⊂W) 	→ supp(Wi/W

′
i ).
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The correspondence Ed,i comes equipped with a natural line bundle Li whose fiber
at a point

(0 ⊂W1 ⊂ · · · ⊂Wi−1 ⊂W′
i ⊂Wi ⊂Wi+1 ⊂ · · · ⊂Wn−1 ⊂W)

equals �(C,Wi/W
′
i ). Finally, we have a transposed correspondence TEd,i ⊂

Qd+i × Qd .
Restricting to Qd ⊂ Qd , we obtain the correspondence Ed,i ⊂ Qd × Qd+i

together with the line bundle Li and the natural maps p : Ed,i → Qd , q : Ed,i →
Qd+i , s : Ed,i → C\{∞}. We also have a transposed correspondence TEd,i ⊂
Qd+i × Qd . It is a smooth quasiprojective variety of dimension

∑n−1
i=1 di(pi +

pi+1)+ pi .

12.4 Equivariant K-groups

We denote by ′M(π) the direct sum of equivariant (complexified) K-groups:

′M(π) =
⊕

d

KT̃×C×(Qd).

It is a module over KT̃×C×(pt) = C[T̃ × C
×] = C[t±1

1 , . . . , t±1
N , v±1]. We define

M(π) := ′M(π)⊗KT̃×C× (pt) Frac(KT̃×C×(pt)).

It is naturally graded

M(π) = ⊕dM(π)d, whereM(π)d = KT̃×C×(Qd)⊗KT̃×C× (pt) Frac(KT̃×C×(pt)).

According to the Thomason localization theorem, restriction to the T̃ ×C
×-fixed

point set induces an isomorphism

KT̃×C× (Qd )⊗KT̃×C× (pt) Frac(KT̃×C× (pt)) ∼−→KT̃×C× (QT̃×C
×

d )⊗KT̃×C× (pt) Frac(KT̃×C× (pt)).

The classes of the structure sheaves [,d] of the T̃ × C
×-fixed points ,d

(see Sect. 12.2) form a basis in
⊕
d K

T̃×C×(QT̃×C
×

d )⊗KT̃×C× (pt) Frac(KT̃×C×(pt)).

The embedding of a point ,d into Qd is a proper morphism, so the direct image in the
equivariantK-theory is well-defined, and we will denote by [,d] ∈ M(π)d the direct
image of the structure sheaf of the point ,d . The set {[,d]} forms a basis ofM(π).
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12.5 Action of Uv
π on M(π)

From now on, we will denote by Uv
π the shifted quantum affine algebra Usc

0,μ for

g = sln and μ = ∑n−1
j=1(pj+1 − pj )ωj . We will also need the characters Ti of

T̃ × C
× defined via Ti := ∏p1+...+pi

j=p1+...+pi−1+1 tj . Let v stand for the character of

T̃ × C
× : (t, v) 	→ v.

For any 0 ≤ i ≤ n, we will denote by Wi the tautological (p1 + . . . + pi)-
dimensional vector bundle on Qd × C. Let * : Qd × (C\{∞}) → Qd denote the
standard projection. We define the generating series bi (z) with coefficients in the
equivariant K-theory of Qd as follows:

bi (z) := '•−1/z(*∗(Wi |C\{∞})) = 1+
∑

r≥1

'r(*∗(Wi |C\{∞}))(−z−1)r .

We also define the operators

ei,r := T −1
i+1v

di+1−di+2−ip∗((viLi )⊗r ⊗ q∗) : M(π)d → M(π)d−i , (12.1)

fi,r := T −1
i vdi−di−1+iq∗((−Li )⊗pi ⊗ (viLi )⊗r ⊗ p∗) : M(π)d → M(π)d+i ,

(12.2)

and consider the following generating series of operators onM(π):

ei(z) =
∞∑

r=−∞
ei,r z

−r : M(π)d → M(π)d−i[[z, z−1]], (12.3)

fi(z) =
∞∑

r=−∞
fi,rz

−r : M(π)d → M(π)d+i[[z, z−1]]. (12.4)

We define ψ+i (z) : M(π)d → M(π)d [[z−1]] and ψ−i (z) : M(π)d →
zpi−pi+1M(π)d [[z]] via

ψ±i (z) := T −1
i+1Tiv

di+1−2di+di−1 ·
(

bi+1(zv
−i−2)bi−1(zv

−i )
bi (zv−i−2)bi (zv−i )

)±
, (12.5)

where as before γ (z)± denotes the expansion of a rational function γ (z) in z∓1,
respectively.

Notation To each ,d, we assign a collection of T̃ × C
×-weights

s
(a)
ij := t2p1+...+pj−1+av

−2d(a)ij .
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Proposition 12.1

(a) The matrix coefficients of the operators fi,r , ei,r in the fixed point basis {[,d]} of
M(π) are as follows:

f
i,r[,d,,d ′] = T −1

i vdi−di−1+i (1−v2)−1(−s(a)ij )pi (s(a)ij vi )r

∏a′≤pj ′
j ′≤i−1(1− s(a)ij /s(a

′)
i−1,j ′)

∏(j ′,a′)�=(j,a)
j ′≤i,a′≤pj ′ (1− s

(a)
ij /s

(a′)
ij ′ )

if ,d ′ = ,d + δ(a)ij for certain j ≤ i, 1 ≤ a ≤ pj ;

e
i,r[,d,,d ′] = T −1

i+1v
di+1−di+2−i (1−v2)−1(s

(a)
ij vi+2)r

∏a′≤pj ′
j ′≤i+1(1− s(a

′)
i+1,j ′/s

(a)
ij )

∏(j ′,a′) �=(j,a)
j ′≤i,a′≤pj ′ (1− s

(a′)
ij ′ /s

(a)
ij )

if ,d ′ = ,d − δ(a)ij for certain j ≤ i, 1 ≤ a ≤ pj .
All the other matrix coefficients of ei,r , fi,r vanish.

(b) The eigenvalue ψ±i (z)|,d of ψ±i (z) on [,d] equals

T −1
i+1Tiv

di+1−2di+di−1

⎛

⎝
∏a≤pj
j≤i+1(1− z−1vi+2s

(a)
i+1,j )

∏a≤pj
j≤i−1(1− z−1vi s

(a)
i−1,j )

∏a≤pj
j≤i (1− z−1vi+2s

(a)
ij )

∏a≤pj
j≤i (1− z−1vi s

(a)
ij )

⎞

⎠
±
.

The proof is straightforward and is analogous to that of [61, Proposition 2.15].
The following is the key result of this section.

Theorem 12.2 The generating series of operators {ψ±i (z), ei(z), fi(z)}n−1
i=1

of (12.3–12.5) acting on M(π) satisfy the relations in Uv
π , i.e., they give rise to

the action of Uv
π onM(π).

In the particular case π = 1n, we recover [61, Theorem 2.12].

Proof First, note that ψ+i (z) contains only nonpositive powers of z, while ψ−i (z)
contains only powers of z bigger or equal to pi − pi+1 (this follows from
Proposition 12.1(b)). Moreover, the coefficients of z0 in ψ+i (z) and of zpi−pi+1 in
ψ−i (z) are invertible operators.

Applying Proposition 12.1, the verification of all the defining relations of Uv
π ,

except for (U6), boils down to routine straightforward computations in the fixed
point basis (compare to the proof of [61, Theorem 2.12]). The same arguments
can be used to show that [ei(z), fj (w)] = 0 for i �= j . It remains to prove
(v − v−1)[ei(z), fi(w)] = δ

(
z
w

) (
ψ+i (z)− ψ−i (z)

)
. Applying Proposition 12.1(a),

we see that the left-hand side is diagonal in the fixed point basis and its eigenvalue
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on [,d] equals

T −1
i+1T

−1
i vdi+1−di−1(1− v2)−1 · δ

( z
w

)
×

a≤pj∑

j≤i
(−s(a)ij )pi

⎧
⎨

⎩v2pi

∏a′≤pj ′
j ′≤i+1(1− s(a

′)
i+1,j ′/s

(a)
ij )

∏a′≤pj ′
j ′≤i−1(1− v2s

(a)
ij /s

(a′)
i−1,j ′ )

∏(j ′,a′)�=(j,a)
j ′≤i,a′≤pj ′ (1− s

(a′)
ij ′ /s

(a)
ij )(1− v2s

(a)
ij /s

(a′)
ij ′ )

δ

(
z

vi+2s
(a)
ij

)
−

∏a′≤pj ′
j ′≤i+1(1− v2s

(a′)
i+1,j ′/s

(a)
ij )

∏a′≤pj ′
j ′≤i−1(1− s(a)ij /s(a

′)
i−1,j ′)

∏(j ′,a′) �=(j,a)
j ′≤i,a′≤pj ′ (1− v2s

(a′)
ij ′ /s

(a)
ij )(1− s(a)ij /s(a

′)
ij ′ )

δ

(
z

vi s
(a)
ij

)⎫⎬

⎭ .

To compare this expression with the eigenvalue of ψ+i (z)−ψ−i (z) on [,d], it suffices
to apply Lemma C.1 below to the particular case of γ (z) chosen to be the rational
function of Proposition 12.1(b).

The theorem is proved. ��
Remark 12.3

(a) The above verification of (U6) by applying Lemma C.1 significantly simplifies
our original indirect proof of this relation in [61].

(b) For π = pn, this produces the action of the quantum loop algebra Uv(Lsln) on
M(π).

(c) According to [4], there is an action of Av
frac on M(π). Its pull-back along

the homomorphism �
λ
μ (λ = (ωn−1, . . . , ωn−1) taken N times) yields essen-

tially the action of Uv
π on M(π) established above. In particular, the kernel

Ker(�λμ) = Ker(�̃λμ) acts trivially onM(π). The first instance of that is the fact
that the generators {A±i,±r : r > p1 + . . . + pi} of Uv

π (see Remark 6.7(b)) act

trivially on M(π), due to the observation that the eigenvalue of A±i (z) on [,d]
equals

∏a≤pj
j≤i (1− (z−1vi s

(a)
ij )

±1).

12.6 Tensor Products

Fix two n-tuples π ′ = (p′1, . . . , p′n), π ′′ = (p′′1 , . . . , p′′n) ∈ Z
n
>0 and define

π = (p1, . . . , pn) via pi := p′i+p′′i ∈ Z>0. Let Uv
π ′ ,U

v
π ′′ ,U

v
π be the corresponding

shifted quantum affine algebras of sln as defined in Sect. 12.5. According to
Theorem 12.2, we have natural actions of Uv

π on M(π), of Uv
π ′ on M(π ′), and

of Uv
π ′′ on M(π ′′). The vector spaces M(π) and M(π ′) ⊗ M(π ′′) have natural

fixed point bases {[,d]} and {[,d ′] ⊗ [,d ′′]}, parameterized by ,d and pairs (,d ′, ,d ′′) with
,d, ,d ′, ,d ′′ satisfying the conditions of Sect. 12.2. The assignment (,d ′, ,d ′′) 	→ ,d ′ ∪ ,d ′′
defined via (d ′∪d ′′)(a)ij = d ′(a)ij , (d

′∪d ′′)(p
′
j+b)

ij = d ′′(b)ij for 1 ≤ a ≤ p′j , 1 ≤ b ≤ p′′j
provides a bijection between such pairs (,d ′, ,d ′′) and ,d. We also identify
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T̃ ′ × T̃ ′′ ∼−→ T̃ via tp1+...+pj−1+a = t ′
p′1+...+p′j−1+a, tp1+...+pj−1+p′j+b =

t ′′
p′′1+...+p′′j−1+b for a, b as above. Finally, we use ,0 to denote the collection of

zero vectors.
Recall the Drinfeld formal coproduct �̃ : Uv

π → Uv
π ′ ⊗̂Uv

π ′′ of Lemma 10.2.

Theorem 12.4 There is a unique collection of c,d ′,,d ′′ ∈ Frac(KT̃×C×(pt)) with

c,0,,0 = 1, such that the map [,d ′]⊗ [,d ′′] 	→ c,d ′,,d ′′ · [,d ′ ∪ ,d ′′] induces an isomorphism

M(π ′)⊗̃M(π ′′) ∼−→M(π) of Uv
π -representations.

First let us make sense of the Uv
π -module M(π ′)⊗̃M(π ′′). The action of

ei(z) in the fixed point basis {[,d ′′]} of M(π ′′) can be written as ei(z)[,d ′′] =∑a≤pj
j≤i a,d ′′,δ(a)ij δ(s

(a)
ij vi+2/z)[,d ′′ − δ(a)ij ] for certain a,d ′′,δ(a)ij ∈ Frac(KT̃ ′′×C×(pt)).

According to the comultiplication formula (10.1), we have �̃(ei(z))([,d ′] ⊗ [,d ′′]) =
ei(z)([,d ′])⊗[,d ′′]+ψ−i (z)([,d ′])⊗ei(z)([,d ′′]). The first summand is well-defined. To
make sense of the second summand, we just need to apply the formula γ (z)δ(a/z) =
γ (a)δ(a/z) to the rational function γ (z) chosen to be the eigenvalue of ψ−i (z) on
[,d ′]. The action of fi(z) on M(π ′)⊗̃M(π ′′) is defined analogously. Finally, the
formula �̃(ψ±i (z)) = ψ±i (z) ⊗ ψ±i (z) provides a well-defined action of ψ±i (z).
These formulas endowM(π ′)⊗M(π ′′) with a well-defined action of Uv

π .

Proof According to Proposition 12.1(b), the eigenvalue of �̃(ψ±i (z)) = ψ±i (z) ⊗
ψ±i (z) on [,d ′] ⊗ [,d ′′] ∈ M(π ′) ⊗ M(π)′′ equals the eigenvalue of ψ±i (z) on
[,d ′ ∪ ,d ′′] ∈ M(π). Hence, the map [,d ′] ⊗ [,d ′′] 	→ c,d ′,,d ′′ · [,d ′ ∪ ,d ′′] intertwines

actions of ψ±i (z) for any c,d ′,,d ′′ ∈ Frac(KT̃×C×(pt)).
Consider c,d ′,,d ′′ ∈ Frac(KT̃×C×(pt)) such that c,0,,0 = 1 and

c,d ′−δ(a)ij ,,d ′′
c,d ′,,d ′′

= (T ′′i+1)
−1vd

′′
i+1−d ′′i ·

∏a′≤p′′
j ′

j ′≤i+1(1− s′′(a
′)

i+1,j ′/s
′(a)
ij )

∏a′≤p′′
j ′

j ′≤i (1− s′′(a′)
ij ′ /s

′(a)
ij )

,

c,d ′,,d ′′−δ(a)ij
c,d ′,,d ′′

= (T ′i )−1vd
′
i−d ′i−1 ·

∏a′≤p′
j ′

j ′≤i (1− v−2s
′(a′)
ij ′ /s

′′(a)
ij )

∏a′≤p′
j ′

j ′≤i−1(1− v−2s
′(a′)
i−1,j ′/s

′′(a)
ij )

.

(12.6)

The existence of c,d ′,,d ′′ satisfying these relations as well as a verification that [,d ′] ⊗
[,d ′′] 	→ c,d ′,,d ′′ · [,d ′ ∪ ,d ′′] intertwines actions of ei,r and fi,r are left to the interested
reader. ��

Remark 12.5 In the particular case p1 = . . . = pn = p, this implies the iso-
morphism M(pn) ) M(1n)⊗̃p of Uv(Lsln)-representations. This isomorphism is
reminiscent of the isomorphism between the action of the quantum toroidal algebra
of gl1 on the equivariant K-theory of the Gieseker moduli spaces M(r, n) and the
r-fold tensor product of such representation for r = 1, see [62, Theorem 4.6].



216 M. Finkelberg and A. Tsymbaliuk

12.7 Shifted Quantum Affine Algebras of gln

Let Uv(ĝln) be the quantum affine algebra of gln as defined in [17, Definition 3.1],
and let Uv(Lgln) be the quantum loop algebra of gln, that is, Uv(Lgln) :=
Uv(ĝln)/(v

±c/2 − 1). This is an associative C(v)-algebra generated by

{X±i,r , k±j,∓s±j |i = 1, . . . , n− 1, j = 1, . . . , n, r ∈ Z, s±j ∈ N}

and with the defining relations as in [17, (3.3, 3.4)]. There is a natural injective
C(v)-algebra homomorphism Uv(Lsln) ↪→ Uv(Lgln), defined by

ei(z) 	→ X−i (viz)
v − v−1 , fi(z) 	→

X+i (viz)
v − v−1 , ψ

±
i (z) 	→ (k∓i (v

iz))−1k∓i+1(v
iz).

(12.7)

For π = (p1, . . . , pn) ∈ Z
n
>0, define the shifted quantum affine algebra Uv

π (gln)

in the same way as Uv(Lgln) except that now s+j ≥ −pj and we formally add

inverse elements {(k−j,0)−1, (k+j,pj )
−1}nj=1 (as we no longer require k−j,0k

+
j,pj

= 1).

Note that the assignment (12.7) still gives rise to an injective9 homomorphism
0 : Uv

π ↪→ Uv
π (gln).

Consider the following generating series of operators onM(π):

X+i (z) := (v − v−1)fi(v
−iz) : M(π)d → M(π)d+i[[z, z−1]],

X−i (z) := (v − v−1)ei(v
−iz) : M(π)d → M(π)d−i[[z, z−1]],

k−j (z) := T −1
j vdj−dj−1 · (bj (zv−2j )/bj−1(zv

−2j ))+ : M(π)d → M(π)d [[z−1]],

k+j (z) := T −1
j vdj−dj−1 · (bj (zv−2j )/bj−1(zv

−2j ))− : M(π)d → z−pjM(π)d [[z]]

with ei(z), fi(z),bj (z) defined in Sect. 12.5.
The following is a simple generalization of Theorem 12.2.

Theorem 12.6 The generating series of operators X±i (z), k
±
j (z) acting on M(π)

satisfy the relations of Uv
π (gln), i.e., they give rise to the action of Uv

π (gln) onM(π).

The restriction of this action to the subalgebra Uv
π (embedded into Uv

π (gln) via
0) recovers the action of Uv

π onM(π) of Theorem 12.2.

9One can prove the injectivity of 0 by using Proposition 5.1 for both algebras. Indeed, the
homomorphism 0 is “glued” from three homomorphisms: 0> : Uv,>

π → Uv,>
π (gln), 0

< : Uv,<
π →

Uv,<
π (gln), 0

0 : Uv,0
π → Uv,0

π (gln). The homomorphisms 0>, 0< are isomorphisms due to
Proposition 5.1(b), while the injectivity of 00 is clear.
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12.8 The Cohomology Case Revisited

The above results can be immediately generalized to the cohomological setting. Let
V (π) be the direct sum of localized T × C

×-equivariant cohomology of type π
Laumon parabolic based quasiflags’ spaces:

V (π) :=
⊕

d

H •
T×C×(Qd)⊗H •T×C× (pt) Frac(H •

T×C×(pt)).

It is a module over Frac(H •
T×C×(pt)), where H •

T×C×(pt) = C[Lie(T × C
×)] =

C[x1, . . . , xN , h̄].
Let Yh̄π = Yπ ⊗C[h̄] C(h̄), where Yπ is the shifted Yangian of sln in the

sense of [10, Appendix B(i)]. It is the associative C(h̄)-algebra generated by
{E(r+1)
i , F

(r+1)
i , H

(r+1+pi−pi+1)

i }r∈N1≤i<n with the same defining relations as in the
standard Yangian Yh̄(sln).

We define the generating series ai (z)with coefficients in the equivariant coho-
mology of Qd as follows:

ai (z) := zp1+...+pi · c(*∗(Wi |C\{∞}), (−zh̄)−1),

where c(V, x) denotes the Chern polynomial (in x) of V. We also define the
operators

E
(r+1)
i := p∗((c1(Li )+ ih̄/2)r · q∗) : V (π)d → V (π)d−i , (12.8)

F
(r+1)
i := (−1)piq∗((c1(Li )+ ih̄/2)r · p∗) : V (π)d → V (π)d+i . (12.9)

We define Hi(z) = zpi+1−pi +∑r>pi−pi+1
H
(r)
i h̄−r+pi−pi+1+1z−r via

Hi(z) :=
(

ai+1(z− i+2
2 )ai−1(z− i

2 )

ai (z− i+2
2 )ai (z− i

2 )

)+
: V (π)d → zpi+1−piV (π)d [[z−1]].

(12.10)

The following result is completely analogous to Theorem 12.2.

Theorem 12.7 The operators {E(r+1)
i , F

(r+1)
i , H

(r+1+pi−pi+1)

i }r∈N1≤i<n of (12.8–

12.10) acting on V (π) satisfy the defining relations of Yh̄π , i.e., they give rise to
the action of Yh̄π on V (π).

A slight refinement of this theorem in the dominant case p1 ≤ . . . ≤
pn constituted the key result of [7]. In loc. cit., the authors constructed the
action of the shifted Yangian of gln, denoted by Yh̄π (gln), on V (π). There is

a natural (injective) homomorphism Yh̄π → Yh̄π (gln), such that F (r+1)
i 	→
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∑r
s=0

(
r
s

) ( 2−i
2 h̄
)r−s

f(s+1)
i , E

(r+1)
i 	→ ∑r

s=0

(
r
s

) ( 2−i
2 h̄
)r−s

e(s+1+pi+1−pi)
i . The

pull-back of the action of [7] along this homomorphism recovers the action Yh̄π on
V (π) of Theorem 12.7.

The proof of [7] was based on an explicit identification of the geometric action
in the fixed point basis with the formulas of [27] for the action of Yh̄π (gln) in the
Gelfand-Tsetlin basis. The benefits of our straightforward proof of Theorem 12.7
are two-fold:

(1) we eliminate the crucial assumption p1 ≤ . . . ≤ pn of [7],
(2) we obtain an alternative proof of the formulas of [27] (cf. Proposition 12.8

below).

Moreover, we can derive v-analogues of the Gelfand-Tsetlin formulas of [27] via
a certain specialization of the parameters in Proposition 12.1 as explained below.

We set tl = vβl for 1 ≤ l ≤ N . To a collection ,d = (d
(a)
ij )

1≤a≤pj
1≤j≤i≤n−1, we

associate a Gelfand-Tsetlin pattern ' = '(,d) = (λ(a)ij )
1≤a≤pj
1≤j≤i≤n as follows: λ(a)nj =

βp1+...+pj−1+a+j−1, λ(a)ij = βp1+...+pj−1+a+j−1−d(a)ij . Set λ(a)j := λ(a)nj , which

is independent of ,d . Note that the vector spaceM(π) has a basis {[']} parametrized

by ' = (λ
(a)
ij )

1≤a≤pj
1≤j≤i≤n with λ(a)nj = λ

(a)
j and λ(a)i+1,j − λ(a)ij ∈ N. Consider a

specialization of {βl}1≤l≤N such that λ(a)j − λ(a)j+1 ∈ N, while λ(a)i − λ(b)j /∈ Z if

a �= b. Let S be the subset of those ' from above such that λ(a)ij − λ(a)i+1,j+1 ∈ N

(note that S is finite), while S̄ will denote the set of the remaining Gelfand-Tsetlin
patterns '.

As before, we define

A±i (z) := k∓1 (v2−iz)k∓2 (v
4−iz) · · · k∓i (viz),

B±i (z) := (v − v−1)A±i (z)e
±
i (z),

C±i (z) := (v − v−1)f±i (z)A
±
i (z).

We set λij (z) := ∏pj
a=1(v

−λ(a)ij − v
λ
(a)
ij z−1). The next result follows from Proposi-

tion 12.1.

Proposition 12.8

(a) The vector subspace of M(π) spanned by {[']}'∈S̄ is Uv
π (gln)-invariant. We

denote by L(π) the corresponding quotient ofM(π).
(b) Let {ξ'}'∈S be the basis of L(π) inherited from {[']}'∈S . Then, we have:

A±i (v
iz)ξ' = vmiλi1(z)λi2(v

2z) · · · λii(v2(i−1)z)ξ',
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B±i (v
i · v2l(a)ij )ξ' = −vmi+1−i · λi+1,1(v

2l(a)ij )λi+1,2(v
2(l(a)ij +1)

) · · · λi+1,i+1(v
2(l(a)ij +i))ξ

'+δ(a)ij ,

C±i (v
i ·v2l(a)ij )ξ' = vmi−1+i−1·λi−1,1(v

2l(a)ij )λi−1,2(v
2(l(a)ij +1)

) · · · λi−1,i−1(v
2(l(a)ij +i−2)

)ξ
'−δ(a)ij ,

where mj :=∑j

j ′=1(j
′ − 1)pj ′ and l(a)ij := λ(a)ij − j + 1.

Remark 12.9

(a) In the simplest case π = 1n, the above homomorphism Yh̄π → Yh̄π (gln) is the
classical embedding of the Yangian of sln into the Yangian of gln.

(b) The injectivity of the above homomorphism Yh̄π → Yh̄π (gln) follows from the
PBW property for Yh̄π (see [24, Corollary 3.15]) and its analogue for Yh̄π (gln).

(c) We take this opportunity to correct the sign in [7, (4.2)], where the ‘−’ sign
should be replaced by (−1)pk , that is, f(r+1)

k := (−1)pkq∗(c1(L
′
k)
r · p∗).

(d) We take this opportunity to correct the typos in [23]. First, the formulas for
the eigenvalues of hi (u) and ami(u) of Theorem 3.20 and its proof should be
corrected by replacing pi′j ′ � h̄−1pi′j ′ . Second, the formulas defining am(u)
(Section 2.11), ami(u) (Section 2.13), ami(u) (Section 3.17) should be modified
by ignoring p∗,q∗.

Remark 12.10 Let eπ ∈ glN be a nilpotent element of Jordan type π . For p1 ≤
. . . ≤ pn, Brundan-Kleshchev proved that the finite W-algebra W(glN, eπ ) is the
quotient of Yh̄π (gln) by the 2-sided ideal generated by {d(r)1 }r>p1 , see [12]. Together
with Theorem 12.7 this yields a natural action ofW(glN, eπ ) on V (π), referred to as
a finite analogue of the AGT relation in [7]. We expect that the truncated version of
Uv
π (gln) with λ = Nωn−1 should be isomorphic to the v-version of the W -algebra
W(glN, eπ ) as defined by Sevostyanov in [57].

12.9 Shifted Quantum Toroidal sln and Parabolic Affine
Laumon Spaces

The second main result of [61] provides the action of the quantum toroidal algebra
Uv,u(ŝln) (denoted Üv(ŝln) in loc. cit.) on the direct sum of localized equivariant
K-groups of the affine Laumon spaces Pd . The cohomological counterpart of this
was established in [23], where the action of the affine Yangian Yh̄,h̄′(ŝln) (denoted
Ŷ in loc. cit.) on the direct sum of localized equivariant cohomology of Pd was
constructed.

Likewise, the results of Theorems 12.2 and 12.7 can be naturally generalized
to provide the actions of the shifted quantum toroidal algebra Uv,u

π (resp. shifted
affine Yangian Yh̄,h̄

′
π ) on the direct sum of localized equivariant K-groups (resp.

cohomology) of parabolic affine Laumon spaces. Here Uv,u
π is the associative
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C(v, u)-algebra generated by {ei,r , fi,r , ψ±
i,±s±i

|1 ≤ i ≤ n, r ∈ Z, s+i ≥ 0, s−i ≥
pi − pi+1} and with the same defining relations as for Uv,u(ŝln), while Yh̄,h̄

′
π is

the associative C(h̄, h̄′)-algebra generated by {E(r+1)
i , F

(r+1)
i , H

(r+1+pi−pi+1)

i |1 ≤
i ≤ n, r ∈ N} and with the same defining relations as for Yh̄,h̄′(ŝln) (here we set
pn+1 := p1). On the geometric side, the parabolic affine Laumon spaces of type π
are defined similarly to the case π = 1n. We leave details to the interested reader.

12.10 Whittaker Vector

Consider the Whittaker vector

m :=
∑

d

[OQd
] ∈ M(π)∧,

whereM(π)∧ :=∏d M(π)d . We also define the operators

e′i,r := p∗((viLi )⊗r ⊗ q∗) = vi−1(k−i+1,0)
−1ei,r : M(π)d → M(π)d−i .

Proposition 12.11 For 1 ≤ i ≤ n− 1, we have

e′i,0(m) = (1− v2)−1m and e′i,1(m) = . . . = e′i,pi−1(m) = 0.

Proof According to the Bott-Lefschetz formula, we have:

(1) m =∑,d a,d [,d], where a,d =
∏
w∈T,dQd

(1− w)−1;

(2)
a,d′
a,d

p∗((viLi )⊗r ⊗ q∗)[,d ′,,d] = q∗((viLi )⊗r ⊗ p∗)[,d,,d ′].
Set Ci,0 := (1− v2)−1 and Ci,r := 0 for 0 < r < pi . It suffices to prove the

equality Ci,r = ∑a≤pj
j≤i q∗((viLi )⊗r ⊗ p∗)[,d,,d+δ(a)ij ] for any ,d and any 1 ≤ i ≤

n− 1, 0 ≤ r ≤ pi − 1. According to Proposition 12.1(a), we have

q∗((viLi )⊗r ⊗ p∗)[,d,,d+δ(a)ij ] = (1− v2)−1(s
(a)
ij vi )r

∏a′≤pj ′
j ′≤i−1(1− s(a)ij /s(a

′)
i−1,j ′)

∏(j ′,a′)�=(j,a)
j ′≤i,a′≤pj ′ (1− s

(a)
ij /s

(a′)
ij ′ )

=

vi

1− v2

∏a′≤pj ′
j ′≤i s

(a′)
ij ′

∏a′≤pj ′
j ′≤i−1 s

(a′)
i−1,j ′

· (s(a)ij vi )r−1

∏a′≤pj ′
j ′≤i−1(s

(a′)
i−1,j ′ − s(a)ij )

∏(j ′,a′)�=(j,a)
j ′≤i,a′≤pj ′ (s

(a′)
ij ′ − s(a)ij )

.
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For 1 ≤ r ≤ pi − 1, the sum

a≤pj∑

j≤i
(s
(a)
ij vi )r−1

∏a′≤pj ′
j ′≤i−1(s

(a′)
i−1,j ′ − s(a)ij )

∏(j ′,a′) �=(j,a)
j ′≤i,a′≤pj ′ (s

(a′)
ij ′ − s(a)ij )

is a rational function in {s(a′)
ij ′ }

a′≤pj ′
j ′≤i of degree r − pi < 0 and without poles.

Hence, it is zero. For r = 0, the same arguments imply

a≤pj∑

j≤i
(s
(a)
ij vi )−1

∏a′≤pj ′
j ′≤i−1(s

(a′)
i−1,j ′ − s(a)ij )

∏(j ′,a′)�=(j,a)
j ′≤i,a′≤pj ′ (s

(a′)
ij ′ − s(a)ij )

=
a≤pj∑

j≤i
(s
(a)
ij vi )−1

∏a′≤pj ′
j ′≤i−1 s

(a′)
i−1,j ′

∏(j ′,a′)�=(j,a)
j ′≤i,a′≤pj ′ (s

(a′)
ij ′ − s(a)ij )

.

It remains to compute
∑a≤pj
j≤i

∏(j ′,a′) �=(j,a)
j ′≤i,a′≤pj ′

s
(a′)
ij ′

s
(a′)
ij ′ −s

(a)
ij

, which is a rational

function in {s(a′)
ij ′ }

a′≤pj ′
j ′≤i of degree 0 and without poles, hence, a constant.

Specializing s(1)i1 	→ 0, we see that this constant is equal to 1 (note that only
one summand is nonzero under this specialization).

The proposition is proved. ��
Remark 12.12

(a) For π = 1n, this result was proved in [6, Proposition 2.31].

(b) By the same arguments, we also find e′′i,pi (m) = (−1)pi−1vipi

1−v2 m, where e′′i,r :=
(k−i,0)2e′i,r .

(c) Likewise, one can prove that E(1)i (v) = . . . = E
(pi−1)
i (v) = 0, E(pi)i (v) =

h̄−1v, where v := ∑
d [Qd ] ∈ V (π)∧. This result was established in [7,

Proposition 5.1].

Appendix A Proof of Theorem 5.5 and Its Modification

To prove Theorem 5.5, let us first note that relations (Û1–Û9) hold in Usc
0,μ. Hence,

there exists an algebra homomorphism ε : Ûμ1,μ2 → Usc
0,μ such that ei,r 	→

ei,r , fi,s 	→ fi,s , (ψ
+
i,0)

±1 	→ (ψ+i,0)±1, (ψ−i,bi )
±1 	→ (ψ−i,bi )

±1, hi,±1 	→ hi,±1
for i ∈ I, b2,i − 1 ≤ r ≤ 0, b1,i ≤ s ≤ 1. Moreover, the way we defined
ei,r , fi,r , ψ

±
i,r ∈ Ûμ1,μ2 right before Theorem 5.5, it is clear that ε : ei,r 	→

ei,r , fi,r 	→ fi,r , ψ
±
i,±s±i

	→ ψ±
i,±s±i

for i ∈ I, r ∈ Z, s+i ≥ 0, s−i ≥ −bi . In

particular, ε is surjective. Injectivity of ε is equivalent to showing that relations (U1–
U8) hold in Ûμ1,μ2 . This occupies the rest of this Appendix until A(iv), where we
consider a slight modification of this presentation, see Theorem A.3 and its proof.
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A(i) Derivation of Some Useful Relations in Ûμ1,μ2

First, we note that (Û1, Û4, Û5) together with our definition of ei,r , fi,r , ψ
+
i,r imply:

ψ+i,0ej,r = v
cij
i ej,rψ

+
i,0, ψ

−
i,bi
ej,r = v

−cij
i ej,rψ

−
i,bi
, [hi,±1, ej,r ] = [cij ]vi · ej,r±1,

(v1)
ψ+i,0fj,r = v

−cij
i fj,rψ

+
i,0, ψ

−
i,bi
fj,r = v

cij
i fj,rψ

−
i,bi
, [hi,±1, fj,r ] = −[cij ]vi ·fj,r±1,

(v2)

[ψ+i,0, ψ±j,±s±j ] = 0, [ψ−i,bi , ψ±j,±s±j ] = 0 (v3)

for any i, j ∈ I, r ∈ Z, s+j ≥ 0, s−j ≥ −bj .

Second, combining relations (Û1, Û4, Û5, Û6), we get

[ei,1, fi,0] = [ei,0, fi,1] = ψ+i,1/(vi − v−1
i ),

[ei,b2,i , fi,b1,i−1] = [ei,b2,i−1, fi,b1,i ] = ψ−i,bi−1/(v
−1
i − vi ).

(v4)

Note that ψ+i,1 = (vi−v−1
i )[ei,0, fi,1] = (vi−v−1

i )ψ
+
i,0hi,1. Hence, [hi,1, ψ+i,1] = 0.

Combining this further with (v1, v2, v4) and our definition of ψ+i,2, we obtain

[ei,2, fi,0] = [ei,1, fi,1] = [ei,0, fi,2] = ψ+i,2/(vi − v−1
i ). (v5)

Likewise, we also get

[ei,b2,i , fi,b1,i−2] = [ei,b2,i−1, fi,b1,i−1] = [ei,b2,i−2, fi,b1,i ] = ψ−i,bi−2/(v
−1
i − vi ).

(v6)

Third, let us point out that relation (Û9) is equivalent to

[hi,1, ψ+i,2] = 0, [hi,−1, ψ
−
i,bi−2] = 0. (v7)

According to the above relations, for any i, j ∈ I we also have

[hj,−1, ψ
+
i,2] = 0, [hj,1, ψ−i,bi−2] = 0. (v8)
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Finally, we define elements hi,±2 ∈ Ûμ1,μ2 as follows:

hi,2 := (ψ+i,0)−1ψ+i,2/(vi − v−1
i )− (vi − v−1

i )h
2
i,1/2,

hi,−2 := (ψ−i,bi )−1ψ−i,bi−2/(v
−1
i − vi )− (v−1

i − vi )h
2
i,−1/2.

(A.1)

Due to relations (Û1, v7, v8), for every i, j ∈ I we have

[hi,±1, hi,±2] = 0, [hj,∓1, hi,±2] = 0. (v9)

Lemma A.1 For any i ∈ I, r ∈ Z, we have

[hi,±2, ei,r ] = [4]vi
2
· ei,r±2, [hi,±2, fi,r ] = −[4]vi

2
· fi,r±2.

Proof Due to (Û2), we have [ei,0, ei,−1]v2
i
= 0. Commuting this with hi,1 and

applying relation (Û4), we obtain ei,1ei,−1−v2
i e

2
i,0 = v2

i ei,−1ei,1−e2
i,0. Commuting

this further with fi,1 and applying relation (Û6), we obtain

ψ+i,2ei,−1 − v2
i ψ

+
i,1ei,0 + ei,1ψ+i,0 − v2

i ei,0ψ
+
i,1 − δbi ,0ei,1ψ−i,bi =

v2
i ei,−1ψ

+
i,2 − ei,0ψ+i,1 + v2

i ψ
+
i,0ei,1 − ψ+i,1ei,0 − v2

i δbi ,0ψ
−
i,bi
ei,1.

First, note that ei,1ψ
−
i,bi
= v2

i ψ
−
i,bi
ei,1, due to (Û4). Second, we have

ei,1ψ
+
i,0 − v2

i ei,0ψ
+
i,1 = v2

i ψ
+
i,0ei,1 − ψ+i,1ei,0. (v10)

Indeed, due to the equality ψ+i,1 = (vi − v−1
i )ψ

+
i,0hi,1 and relations (Û1, v1), we

have

ψ+i,1ei,0 − v2
i ei,0ψ

+
i,1 = v2

i (vi − v−1
i )[2]vi · ei,1ψ+i,0 = (v4

i − 1)ei,1ψ
+
i,0 = v2

i ψ
+
i,0ei,1 − ei,1ψ+i,0.

Therefore, we get

ψ+i,2ei,−1 − v2
i ψ

+
i,1ei,0 = v2

i ei,−1ψ
+
i,2 − ei,0ψ+i,1. (v11)

Combining the formulas ψ+i,1 = (vi − v−1
i )ψ

+
i,0hi,1, ψ

+
i,2 = (vi − v−1

i )ψ
+
i,0(hi,2 +

vi−v−1
i

2 h2
i,1) with relations (Û1, v1, v11), we finally get [hi,2, ei,−1] = [4]vi

2 ei,1.
Commuting this relation with hi,±1 and using (v1, v9), we obtain [hi,2, ei,r ] =
[4]vi

2 ei,r+2 for any r ∈ Z.
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Likewise, starting from the relation [ei,b2,i , ei,b2,i−1]v2
i
= 0 and commuting it

first with hi,−1 and then with fi,b1,i , we recover [hi,−2, ei,b2,i ] = [4]vi
2 ei,b2,i−2.

Commuting this further with hi,±1, we get [hi,−2, ei,r ] = [4]vi
2 ei,r−2 for any r ∈ Z.

The proof of [hi,±2, fi,r ] = −[4]vi2 · fi,r±2 is completely analogous. ��

A(ii) Verification of Relations (U1–U6) with i = j for Ûμ1,μ2

A(ii).a Verification of (U2)

We need to prove X+(i; r, s) = 0 for any r, s ∈ Z, where

X+(i; r, s) := [ei,r+1, ei,s]v2
i
+ [ei,s+1, ei,r ]v2

i
.

Note that X+(i; r, s) = X+(i; s, r), and X+(i;−1,−1) = 0 due to relation (Û2).
For a ∈ {±1,±2}, we define Li,a := a/[2a]vi · ad(hi,a) ∈ End(Ûμ1,μ2). Then,

we have Li,a(X+(i; r, s)) = X+(i; r+a, s)+X+(i; r, s+a). Set L±i := 1
2 (L

2
i,±1−

Li,±2). Then L±i (X+(i; r, s)) = X+(i; r ± 1, s ± 1). Applying iteratively L+i to
the equality X+(i;−1,−1) = 0, we get X+(i; r, r) = 0 for any r ≥ −1. Since
2X+(i;−1, 0) = Li,1(X+(i;−1,−1)) = 0, we analogously getX+(i; r, r+1) = 0
for r ≥ −1. Fix s ∈ Z>0 and assume by induction that X+(i; r, r +N) = 0 for any
r ≥ −1, 0 ≤ N ≤ s. Then X+(i;−1, s) = Li,1(X+(i;−1, s − 1))−X+(i; 0, s −
1) = 0, due to the above assumption. Applying (L+i )r+1 to the latter equality, we
get X+(i; r, r + s + 1) = 0 for r ≥ −1. An induction in s completes the proof
of X+(i; r, s) = 0 for any r, s ≥ −1. Finally, applying iteratively L−i , we obtain
X+(i; r, s) = 0 for any r, s ∈ Z.

A(ii).b Verification of (U3)

This relation is verified completely analogously to (U2).

A(ii).c Verification of (U4)

We consider the case ε = + (the case ε = − is completely analogous). We need to
prove Y+(i; r, s) = 0 for any r ∈ N, s ∈ Z, where

Y+(i; r, s) := [ψ+i,r+1, ei,s]v2
i
+ [ei,s+1, ψ

+
i,r ]v2

i
.

The r = s = 0 case is due to (v10) from our proof of Lemma A.1. Moreover, the
same argument also yields Y+(i; 0, s) = 0 for any s ∈ Z.
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Note that Y+(i; r, s−1)+Y+(i; s, r−1) = (vi−v−1
i )[X+(i; r−1, s−1), fi,1] =

0 for r, s ≥ 0. The first equality is due to (v1) and our definition of ψ+i,r , while the
second equality follows from X+(i; r − 1, s − 1) = 0 proved above. In particular,
Y+(i; r,−1)+ Y+(i; 0, r − 1) = 0 for r ∈ N.

Combining the above two observations, we find

Y+(i; r,−1) = 0 for any r ∈ N. (v12)

Commuting iteratively the equality Y+(i; 1,−1) = 0 with hi,±1, we get
Y+(i; 1, s) = 0 for any s ∈ Z, due to (Û1, v1, v9).

Next, we prove the following five statements by induction in N ∈ Z+:
(AN ) [hi,1, ψ+i,r ] = 0 for 0 ≤ r ≤ N + 1;

(BN ) [hi,−1, ψ
+
i,r ] = 0 for 0 ≤ r ≤ N + 1;

(CN ) [ei,r , fi,s] = ψ+i,r+s/(vi − v−1
i ) for any r, s ∈ N with 1 ≤ r + s ≤ N + 2;

(DN ) Y+(i; r, s) = 0 for any 0 ≤ r ≤ N, s ∈ Z;
(EN ) [ψ+i,r , ψ+i,s] = 0 for any r, s ≥ 0 with r + s ≤ N + 2.

Base of Induction (N = 1) The assertions (A1, B1, D1, E1) have been already
proved above, while (C1) follows immediately from [hi,1, ψ+i,2] = 0 (cf. (v7))
and (v1, v2, v4, v5).

Induction Step Assuming (AN–EN ) for a given N ∈ Z>0, we prove (AN+1–
EN+1).

Proof of the Induction Step Consider a polynomial algebra B := C(v)[{xr}∞r=1],
which is N-graded via deg(xr ) = r . Define elements {hr}∞r=1 of B via

exp
(
(vi − v−1

i )
∑∞
r=1 hr z−r

)
= 1 + ∑∞

r=1 xrz
−r . Then, hr = xr

vi−v−1
i

+
pr(x1, . . . , xr−1) with polynomials pr satisfying deg(pr(x1, . . . , xr−1)) = r .

Using the above polynomials pr , we define hi,1, . . . , hi,N+1 ∈ Ûμ1,μ2 via

hi,r :=
(ψ+i,0)−1ψ+i,r

vi − v−1
i

+ pr((ψ+i,0)−1ψ+i,1, . . . , (ψ
+
i,0)

−1ψ+i,r−1) for 1 ≤ r ≤ N + 1.

(A.2)

These hi,r are well-defined and are independent of the choice of N > r − 1, due to
the assumption (EN ) and the aforementioned degree condition on pr . The following
is straightforward:10

[hi,r , ei,s] = [2r]vi
r

· ei,s+r for 1 ≤ r ≤ N + 1, s ∈ Z. (v13)

10If we knew that [ψ+i,a, ψ+i,b] = 0 for any 0 ≤ a, b ≤ N + 1, then (v13) would immediately
follow from (DN ) by the standard arguments. However, every monomial appearing in pr involves
only pairwise commuting ψ+i,a’s, due to the degree condition on pr and the assumption (EN ).
Hence, the equality (v13) follows formally from its validity in the aforementioned simpler case
([ψ+i,a, ψ+i,b] = 0 for any 0 ≤ a, b ≤ N + 1).
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Validity of (AN+1) We need to prove [hi,1, ψ+i,N+2] = 0. According to (CN ), we

have ψ+i,N+2 = (vi − v−1
i )[ei,N+2−r , fi,r ] for 0 ≤ r ≤ N + 2. Hence,

[hi,1, ψ+i,N+2]/(v2
i −v−2

i ) = [ei,N+3−r , fi,r ]−[ei,N+2−r , fi,r+1] for 0 ≤ r ≤ N+2.
(v14)

Adding up these equalities for r = 0, 1 and using Lemma A.1 together with the
assumption (CN), we get

2[hi,1, ψ+i,N+2]
v2
i − v−2

i

= [ei,N+3, fi,0] − [ei,N+1, fi,2]

= 2

[4]vi
· [hi,2, [ei,N+1, fi,0]] =

2[hi,2, ψ+i,N+1]
v4
i − v−4

i

.

Likewise, adding up the equality (v14) for r = 0, 1, . . . , N and using (v13), we
obtain

N + 1

v2
i − v−2

i

[hi,1, ψ+i,N+2] =
N + 1

[2(N + 1)]vi
·[hi,N+1, [ei,2, fi,0]] =

(N + 1)[hi,N+1, ψ
+
i,2]

v
2(N+1)
i − v

−2(N+1)
i

.

Comparing the above two equalities, we find

[hi,1, ψ+i,N+2] =
v2
i − v−2

i

v4
i − v−4

i

[hi,2, ψ+i,N+1] =
v2
i − v−2

i

v
2(N+1)
i − v

−2(N+1)
i

[hi,N+1, ψ
+
i,2].
(v15)

On the other hand, combining (A.2) with the assumption (EN ), we get

[hi,s, ψ+i,N+3−s] = (ψ+i,0)−1[ψ+i,s , ψ+i,N+3−s]/(vi − v−1
i ) for 1 ≤ s ≤ N + 1.

Hence,

[hi,1, ψ+i,N+2] =
(ψ+i,0)−1[ψ+i,2, ψ+i,N+1]
(vi − v−1

i )[2]v2
i

= (ψ+i,0)−1[ψ+i,2, ψ+i,N+1]
(vi − v−1

i )[−N − 1]v2
i

. (v16)

Since [2]v2
i
�= [−N − 1]v2

i
, the second equality of (v16) implies [ψ+i,2, ψ+i,N+1] = 0.

Hence, [hi,1, ψ+i,N+2] = 0, and (AN+1) follows.

Validity of (BN+1) We need to prove [hi,−1, ψ
+
i,N+2] = 0. This follows from

[hi,−1, ψ
+
i,N+2] = (vi − v−1

i )[2]vi · ([ei,N , fi,1] − [ei,N+1, fi,0]) = 0, where we
used (v1, v2) in the first equality and (CN ) in the second one. Hence, (BN+1) holds.
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Validity of (CN+1) According to (CN ), we have ψ+i,N+2 = (vi −
v−1
i )[ei,r , fi,N+2−r ] for any 0 ≤ r ≤ N + 2. Therefore, [hi,1, ψ+i,N+2] =
(v2
i − v−2

i )([ei,r+1, fi,N+2−r ] − [ei,r , fi,N+3−r ]) due to (v1, v2). The left-hand
side is zero due to (AN+1) established above, hence

[ei,N+3, fi,0] = [ei,N+2, fi,1] = . . . = [ei,1, fi,N+2] = [ei,0, fi,N+3].

Combining this with our definitionψ+i,N+3 = (vi−v−1
i )[ei,N+2, fi,1] yields (CN+1).

Validity of (DN+1) Due to (AN+1) and (BN+1) established above, we have
[hi,±1, Y

+(i;N + 1, s)] = [2]vi · Y+(i;N + 1, s ± 1). Combining this with (v12),
we see that Y+(i;N + 1, s) = 0 for any s ∈ Z. Hence, (DN+1) holds.

Validity of (EN+1) We need to prove [ψ+i,r , ψ+i,N+3−r ] = 0 for any 1 ≤ r ≤ N +
1. Equivalently, it suffices to prove [hi,r , ψ+i,N+3−r ] = 0 for 1 ≤ r ≤ N + 1.

According to (CN ), we have ψ+i,N+3−r = (vi − v−1
i )[ei,N+3−r , fi,0]. Therefore,

[hi,r , ψ+i,N+3−r ] = v2r
i −v−2r

i

r
· ([ei,N+3, fi,0]− [eN+3−r , fi,r ]) = 0, due to (v13) and

the assertion (CN+1) proved above. ��
The induction step is accomplished. In particular, (DN ) completes our verifica-

tion of (U4) with i = j .

A(ii).d Verification of (U5)

This relation is verified completely analogously to (U4).

A(ii).e Verification of (U6)

We need to prove

[ei,r , fi,N−r ] = 1

vi − v−1
i

·

⎧
⎪⎪⎨

⎪⎪⎩

ψ+i,N − δN,0δbi ,0ψ−i,bi if N ≥ 0,

−ψ−i,N + δN,0δbi ,0ψ+i,0 if N ≤ bi,
0 if bi < N < 0.

Note that given any value of N ∈ Z, we know this equality for a certain value of
r ∈ Z.

Case N > 0 If 0 ≤ r ≤ N , then [ei,r , fi,N−r ] = ψ+i,N/(vi − v−1
i ), due to

(CN ). For r < 0, we proceed by induction in |r|. Due to (v1, v2), we have
[ei,r , fi,N−r ] = [2]−1

vi
· [[hi,−1, ei,r+1], fi,N−r ] = [2]−1

vi
· [hi,−1, [ei,r+1, fi,N−r ]] +

[ei,r+1, fi,N−r−1] = ψ+i,N , where in the last equality we used the induction
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assumption and the equality [hi,−1, ψ
+
i,N+1] = 0, due to (BN ). The case l :=

N − r < 0 is treated in the same way.

Case N ≤ 0 We proceed by induction in |N |. For any r ∈ Z, we have

[ei,r , fi,N−r ] = [2]−1
vi
·[hi,−1, [ei,r+1, fi,N−r ]]+[ei,r+1, fi,N−r−1] = [ei,r+1, fi,N−r−1],

where we used the induction assumption together with (Û1, v1, v2) and
[hi,−1, ψ

−
i (z)] = 0 (the latter is proved completely analogously to (AN )). Hence,

the expression [ei,r , fi,N−r ] is independent of r ∈ Z. The result follows since we
know the equality holds for a certain value of r .

A(ii).f Verification of (U1)

We consider the case ε = + (the case ε = − is completely analogous). We need
to prove [ψ+i,r , ψ+i,s+i ] = [ψ

+
i,r , ψ

−
i,−s−i

] = 0 for any r, s+i ≥ 0, s−i ≥ −bi . This is

clear for r = 0 or s+i = 0, or s−i = −bi , due to (v3). Therefore, it remains to prove
[hi,r , ψ+

i,s+i
] = 0 and [hi,r , ψ−

i,−s−i
] = 0 for r > 0, s+i > 0, s−i > −bi .

For s+i > 0, we have ψ+
i,s+i

= (vi − v−1
i )[ei,s+i −1, fi,1], so that

[hi,r , ψ+
i,s+i
] = [2r]vi

r
(vi − v−1

i ) · ([ei,s+i +r−1, fi,1] − [ei,s+i −1, fi,r+1]) = 0,

where the first equality is due to (v13), while the second equality is due to
relation (U6) with i = j proved above.

For s−i > −bi , we have ψ−
i,−s−i

= (v−1
i − vi )[ei,−b1,i−s−i , fi,b1,i ], so that

[hi,r , ψ−
i,−s−i

] = [2r]vi
r

(v−1
i − vi ) · ([ei,r−b1,i−s−i , fi,b1,i ] − [ei,−b1,i−s−i , fi,r+b1,i ]) = 0,

where the first equality is due to (v13), while the second equality is due to
relation (U6) with i = j proved above.

This completes our verification of relations (U1–U6) with i = j for Ûμ1,μ2 .

A(iii) Verification of Relations (U1–U8) with i �= j for Ûμ1,μ2

A(iii).a Verification of (U2)

We need to prove X+(i, j ; r, s) = 0 for any r, s ∈ Z, where

X+(i, j ; r, s) := [ei,r+1, ej,s]vciji + [ej,s+1, ei,r ]vciji .
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First, the equality X+(i, j ;−1,−1) = 0 follows from (Û2). Second, due to (v1) we
have

[hi,1, X+(i, j ; r, s)] = [cii]vi ·X+(i, j ; r + 1, s)+ [cij ]vi ·X+(i, j ; r, s + 1),

[hj,1, X+(i, j ; r, s)] = [cji]vj ·X+(i, j ; r + 1, s)+ [cjj ]vj ·X+(i, j ; r, s + 1).

Combining these equalities with nondegeneracy of the matrix Aij :=[ [cii]vi [cij ]vi
[cji]vj [cjj ]vj

]
, we see that X+(i, j ; r, s) = 0 ⇒ X+(i, j ; r + 1, s) =

0, X+(i, j ; r, s + 1) = 0. Since X+(i, j ;−1,−1) = 0, we get X+(i, j ; r, s) = 0
for r, s ≥ −1 by induction in r, s.

A similar reasoning with hi,−1, hj,−1 used instead of hi,1, hj,1 yields the
implication

X+(i, j ; r, s) = 0 �⇒ X+(i, j ; r − 1, s) = 0, X+(i, j ; r, s − 1) = 0.

Hence, an induction argument completes the proof of X+(i, j ; r, s) = 0 for any
r, s ∈ Z.

A(iii).b Verification of (U3)

We need to prove X−(i, j ; r, s) = 0 for any r, s ∈ Z, where

X−(i, j ; r, s) := [fi,r+1, fj,s]
v
−cij
i

+ [fj,s+1, fi,r ]
v
−cij
i

.

The r = s = 0 case follows from (Û3). The general case follows from

X−(i, j ; r, s) = 0 �⇒ X−(i, j ; r ± 1, s) = 0, X−(i, j ; r, s ± 1) = 0

applied iteratively toX−(i, j ; 0, 0) = 0, in the same vein as in the above verification
of (U2).

A(iii).c Verification of (U6)

We need to prove X(i, j ; r, s) = 0 for any r, s ∈ Z, where

X(i, j ; r, s) := [ei,r , fj,s].
First, the equality X(i, j ; 0, 0) = 0 follows from (Û6). Second, due to (v1, v2) we
have

[hi,±1, X(i, j ; r, s)] = [cii]vi ·X(i, j ; r ± 1, s)− [cij ]vi ·X(i, j ; r, s ± 1),

[hj,±1, X(i, j ; r, s)] = [cji]vj ·X(i, j ; r ± 1, s)− [cjj ]vj ·X(i, j ; r, s ± 1).
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Combining these equalities with nondegeneracy of the matrix Bij :=[ [cii]vi −[cij ]vi
[cji]vj −[cjj ]vj

]
, we see that X(i, j ; r, s) = 0 ⇒ X(i, j ; r ± 1, s) =

0, X(i, j ; r, s ± 1) = 0. Hence, the equality X(i, j ; r, s) = 0 for any r, s ∈ Z

follows from the r = s = 0 case considered above.

A(iii).d Verification of (U4)

We consider the case ε = + (the case ε = − is completely analogous). We need to
prove Y+(i, j ; r, s) = 0 for any r ∈ N, s ∈ Z, where

Y+(i, j ; r, s) := [ψ+i,r+1, ej,s]vciji + [ej,s+1, ψ
+
i,r ]vciji .

Due to relation (U6) (established already both for i = j and i �= j ), we have

(vi − v−1
i )[[ei,r+1, ej,s]vciji , fi,0] = [ψ

+
i,r+1, ej,s]vciji ,

(vi − v−1
i )[[ej,s+1, ei,r ]vciji , fi,0] = [ej,s+1, ψ

+
i,r − δr,0δbi ,0ψ−i,−bi ]vciji = [ej,s+1, ψ

+
i,r ]vciji .

Therefore, Y+(i, j ; r, s) = (vi − v−1
i )[X+(i, j ; r, s), fi,0] = 0, where the last

equality follows from X+(i, j ; r, s) = 0 proved above.

A(iii).e Verification of (U5)

We consider the case ε = + (the case ε = − is completely analogous). We need to
prove Y−(i, j ; r, s) = 0 for any r ∈ N, s ∈ Z, where

Y−(i, j ; r, s) := [ψ+i,r+1, fj,s]v−ciji

+ [fj,s+1, ψ
+
i,r ]v−ciji

.

Analogously to our verification of (U4), we have Y−(i, j ; r, s) = (vi −
v−1
i )[ei,0, X−(i, j ; r, s)]. Thus, the equality Y−(i, j ; r, s) = 0 follows from
X−(i, j ; r, s) = 0 proved above.

A(iii).f Verification of (U1)

We consider the case ε = ε′ = + (other cases are completely analogous). Due to
relation (v3), it suffices to prove [hi,r , ψ+j,s] = 0 for r, s ∈ Z>0, where the elements
{hi,r}∞r=1 were defined in (A.2).

Analogously to (v13), relations (U4, U5) imply

[hi,r , ej,s] = [rcij ]vi
r

· ej,s+r , [hi,r , fj,s] = −[rcij ]vi
r

· fj,s+r for any r ∈ Z>0, s ∈ Z.
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Hence, we have

[hi,r , ψ+j,s ] = (vi−v−1
i )[hi,r , [ej,s , fj,0]] = (vi−v−1

i )
[rcij ]vi
r

·([ej,s+r , fj,0]−[ej,s , fj,r ]) = 0,

where the first and the last equalities follow from (U6) with i = j established above.

A(iii).g Verification of (U7)

In the simplest case cij = 0, we need to prove [ei,r , ej,s] = 0 for any r, s ∈ Z.
The equality [ei,0, ej,0] = 0 is due to (Û7), while commuting it iteratively with
hi,±1, hj,±1, we get [ei,r , ej,s] = 0, due to (v1, v2).

In general, we set m := 1 − cij . For any ,r = (r1, . . . , rm) ∈ Z
m and s ∈ Z,

define

Z+(i, j ; ,r, s) :=
∑

π∈Sm

m∑

t=0

(−1)t
[
m

t

]

vi

ei,rπ(1) · · · ei,rπ(t)ej,sei,rπ(t+1) · · · ei,rπ(m) .

To check (U7), we need to prove Z+(i, j ; ,r, s) = 0 for any ,r ∈ Z
m, s ∈ Z.

Let ,0 = (0, . . . , 0) ∈ Z
m. The equality Z+(i, j ; ,0, 0) = 0 follows from (Û7)

(cf. Remark 5.4). Commuting Z+(i, j ; ,0, s) with hi,±1, hj,±1, and using nondegen-
eracy of the matrix Aij , we get Z+(i, j ; ,0, s) = 0 ⇒ Z+(i, j ; ,0, s ± 1) = 0.
Therefore, Z+(i, j ; ,0, s) = 0 for any s ∈ Z.

Next, we prove that Z+(i, j ; ,r, s) = 0 for any ,r = (r1, . . . , rk, 0, . . . , 0) ∈
Z
m, s ∈ Z by induction in 0 ≤ k ≤ m. The base case k = 0 was just treated

above. For the induction step, note that the commutator [hi,r ′ , Z+(i, j ; ,r, s)] equals
(m−k)·[2r ′]vi

r ′ Z+(i, j ; (r1, . . . , rk, r ′, 0, . . . , 0), s) plus some other terms which are
zero by the induction assumption. Hence, Z+(i, j ; ,r, s) = 0 for any ,r ∈ Z

m, s ∈ Z.

A(iii).h Verification of (U8)

Set m := 1− cij . For any ,r ∈ Z
m, s ∈ Z, define

Z−(i, j ; ,r, s) :=
∑

π∈Sm

m∑

t=0

(−1)t
[
m

t

]

vi

fi,rπ(1) · · · fi,rπ(t)fj,sfi,rπ(t+1) · · · fi,rπ(m) .

Then, we need to show Z−(i, j ; ,r, s) = 0. This is proved completely analogously
to (U7).

This completes our proof of Theorem 5.5.
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Remark A.2

(a) Specializing v 	→ v ∈ C
× from the beginning and viewing all algebras as C-

algebras, the statement of Theorem 5.5 still holds as long as v is not a root of
unity.

(b) A slightly different proof can be obtained by following the arguments in [47].
(c) We note that both Theorem 5.5 and its proof are valid also for all affine Lie

algebras, except for the type A(1)1 .

A(iv) An Alternative Presentation of Usc
0,μ

for μ ∈ �−

Inspired by the recent result [33, Theorem 2.13], we provide another realization of
Usc

0,μ (with μ ∈ '−) without the defining relation (Û9). Following the notations of

Sect. 5.2, denote by Ũμ1,μ2 the associative C(v)-algebra generated by

{ei,r , fi,s , (ψ+i,0)±1, (ψ−i,bi )
±1, hi,±1|i ∈ I, b2,i − 1 ≤ r ≤ 1, b1,i − 1 ≤ s ≤ 1}

with the defining relations (Û1–Û8). Define inductively ei,r , fi,r , ψ
±
i,r as it was done

for Ûμ1,μ2 right before Theorem 5.5.

Theorem A.3 There is a unique C(v)-algebra isomorphism Ũμ1,μ2
∼−→Usc

0,μ, such
that

ei,r 	→ ei,r , fi,r 	→ fi,r , ψ
±
i,±s±i

	→ ψ±
i,±s±i

for i ∈ I, r ∈ Z, s+i ≥ 0, s−i ≥ −bi .

Proof Due to Theorem 5.5, it suffices to show that (Û9) can be derived from (Û1–
Û8). We will treat only the first relation of (Û9) (the second is completely
analogous).

First, we note that relations (v1–v5) and (U2, U3, U6) with i �= j hold in Ũμ1,μ2 ,
since their proofs for the algebra Ûμ1,μ2 were solely based on relations (Û1–Û6).
Likewise, the equalities Y±(i, j ; r, s) = 0 from our verifications of (U4, U5) for
i �= j still hold for r ∈ {0, 1}, s ∈ Z.

Second, we have

[ψ+i,2, ei,0]v2
i
+ [ei,1, ψ+i,1]v2

i
= 0, [ψ+i,2, fi,0]v−2

i
+ [fi,1, ψ+i,1]v−2

i
= 0. (v18)

These equalities are proved completely analogously to (v11) from our proof of
Lemma A.1, but now we start from the equality [ei,1, ei,0]v2

i
= 0 rather than

[ei,0, ei,−1]v2
i
= 0 (commuting it first with hi,1 and then further with fi,0).
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Recall hi,2 of (A.1). Analogously to Lemma A.1, we see that (v18) implies11

[hi,2, ei,0] = [4]vi
2
· ei,2, [hi,2, fi,0] = −[4]vi

2
· fi,2. (v19)

Likewise, the aforementioned equalities Y±(i, j ; 1, s) = 0 for i �= j, s ∈ Z, also
imply

[hi,2, ej,s] = [2cij ]vi
2

· ej,s+2, [hi,2, fj,s] = −[2cij ]vi
2

· fj,s+2 for i �= j, s ∈ Z.

(v20)

Finally, due to (Û7, Û8, v1, v2, v19, v20), we also get [ei,r , ej,s] = [fi,r , fj,s] = 0
if cij = 0 and Z±(i, j ; r ′, 0, s) = Z±(i, j ; 1, 1, s) = 0 if cij = −1 for r, s ∈
Z, r ′ ∈ {0, 1, 2}.

In the simply-laced case, the rest of the proof follows from the next result.

Lemma A.4 Let i, j ∈ I be such that cij = −1. Then [ψ+i,1, ψ+i,2] = 0.

Proof As just proved, we have [fi,1, [fi,1, fj,0]v−1
i
]vi = 0. Commuting this

equality with ej,1 and applying (v4) together with (U6) for i �= j , we get
[fi,1, [fi,1, ψ+j,1]v−1

i
]vi = 0. Combining the latter equality with ψ+j,1 = (vj −

v−1
j )ψ

+
j,0hj,1 = (vi − v−1

i )ψ
+
j,0hj,1 and using (v2), we find

[fi,1, [fi,1, hj,1]]v2
i
= 0 �⇒ [fi,1, fi,2]v2

i
= 0 �⇒ [fi,2, fi,1]v−2

i
= 0.

Commuting this further with ei,0, we obtain

[ψ+i,2, fi,1]v−2
i
+ [fi,2, ψ+i,1]v−2

i
= 0.

Finally, we apply [ei,0,−]v−2
i

to the latter equality. In the left-hand side we get two

summands computed below.

(1) We have [ei,0, [fi,2, ψ+i,1]v−2
i
]
v−2
i
=[[ei,0, fi,2], ψ+i,1]v−4

i
+[fi,2, [ei,0, ψ+i,1]v−2

i
]
v−2
i
.

Due to (Û4), [ei,0, ψ+i,1]v−2
i
= (v−2

i − v2
i )ei,1ψ

+
i,0 ⇒ [fi,2, [ei,0, ψ+i,1]v−2

i
]
v−2
i
=

(v−2
i − v2

i )[fi,2, ei,1]v−4
i
ψ+i,0. Combining this with (v5), we thus get

[ei,0, [fi,2, ψ+i,1]v−2
i
]
v−2
i
= [ψ+i,2, ψ+i,1]v−4

i
/(vi−v−1

i )+(v−2
i −v2

i )[fi,2, ei,1]v−4
i
ψ+i,0.

(v21)

11Note that we cannot deduce the statement of Lemma A.1 due to the absence of (Û9).
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(2) We have [ei,0, [ψ+i,2, fi,1]v−2
i
]
v−2
i

= [[ei,0, ψ+i,2]v−2
i
, fi,1]v−2

i
+

v−2
i [ψ+i,2, [ei,0, fi,1]]. By (v18): [ei,0, ψ+i,2]v−2

i
= −v−2

i [ψ+i,2, ei,0]v2
i
=

v−2
i [ei,1, ψ+i,1]v2

i
= v−2

i (vi − v−1
i )[ei,1, hi,1]v4

i
ψ+i,0. Hence,

[[ei,0, ψ+i,2]v−2
i
, fi,1]v−2

i
= v−4

i (vi − v−1
i )[ei,1hi,1 − v4

i hi,1ei,1, fi,1]ψ+i,0 =
v−4
i (vi − v−1

i )([ψ+i,2, hi,1]v4
i
/(vi − v−1

i )− (vi + v−1
i )[ei,1, fi,2]v4

i
)ψ+i,0.

Therefore,

[ei,0, [ψ+i,2, fi,1]v−2
i
]
v−2
i
= [ψ+i,2, ψ+i,1]

v2
i (vi − v−1

i )
+ (v2

i − v−2
i )[fi,2, ei,1]v−4

i
ψ+i,0 +

[ψ+i,2, ψ+i,1]v4
i

v4
i (vi − v−1

i )
.

(v22)
Substituting (v22) and (v21) into [ei,0, [ψ+i,2, fi,1]v−2

i
+ [fi,2, ψ+i,1]v−2

i
]
v−2
i
=

0, we find

[ψ+i,2, ψ+i,1]v−4
i
+ v−2

i [ψ+i,2, ψ+i,1] + v−4
i [ψ+i,2, ψ+i,1]v4

i
= 0.

The left-hand side of this equality equals
1−v−6

i

1−v−2
i

· [ψ+i,2, ψ+i,1]. Hence,

[ψ+i,1, ψ+i,2] = 0.
��

Our next result completes the proof for non-simply-laced g.

Lemma A.5 If cij �= 0 and [ψ+i,1, ψ+i,2] = 0, then [ψ+j,1, ψ+j,2] = 0.

Proof Due to (v1, v2): [hi,1, ei,r ] = [2]vi[cji ]vj · [hj,1, ei,r ], [hi,1, fi,r ] =
[2]vi[cji ]vj ·

[hj,1, fi,r ]. Hence [hi,1, ψ+i,2] = (vi−v−1
i )([[hi,1, ei,1], fi,1]+[ei,1, [hi,1, fi,1]]) =

[2]vi /[cji]vj · [hj,1, ψ+i,2]. Therefore, [ψ+i,1, ψ+i,2] = 0 ⇒ [hj,1, ψ+i,2] = 0 ⇒
[hj,1, hi,2] = 0 with the second implication due to (Û1). Commuting the latter
equality with fj,0, we get

0 = [fj,0, [hj,1, hi,2]] = [cjj ]vj · [fj,1, hi,2] +
[2cij ]vi

2
· [hj,1, fj,2].

Commuting this further with ej,0, we obtain

[cjj ]vj · [ej,0, [fj,1, hi,2]] +
[2cij ]vi

2
· [ej,0, [hj,1, fj,2]] = 0. (v23)
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Note that

[ej,0, [fj,1, hi,2]] = [ψ+j,1, hi,2]/(vj − v−1
j )−

[2cij ]vi
2

· [fj,1, ej,2] = −[2cij ]vi
2

· [fj,1, ej,2],

[ej,0, [hj,1, fj,2]] = −[cjj ]vj · [ej,1, fj,2] + [hj,1, ψ+j,2]/(vj − v−1
j ),

[ej,2, fj,1] − [ej,1, fj,2] = [cjj ]−1
vj
· [hj,1, [ej,1, fj,1]] = [cjj ]−1

vj
· [hj,1, ψ+j,2]/(vj − v−1

j ).

Substituting the last three equalities into (v23), we get
[2cij ]vi
vj−v−1

j

· [hj,1, ψ+j,2] = 0.

Thus, [hj,1, ψ+j,2] = 0 ⇒ [ψ+j,1, ψ+j,2] = 0. ��
This completes our proof of Theorem A.3. ��

Appendix B Proof of Theorem 6.6

The proof of part (a) proceeds in two steps. First, we consider the simplest case
g = sl2. Then, we show how a general case can be easily reduced to the case of sl2.

B(i) Proof of Theorem 6.6(a) for g = sl2

First, let us derive an explicit formula for A±(z). Recall the elements {h±r}∞r=1

of Sect. 5, such that z∓b±(ψ±∓b±)
−1ψ±(z) = exp

(±(v − v−1)
∑
r>0 h±rz∓r

)
. For

r �= 0, define tr := −hr/(1+ v2r ), and set

A±(z) := (φ±)−1 · exp

(
±(v − v−1)

∑

r>0

t±rz∓r
)
. (B.1)

Then, z∓b±ψ±(z) = 1
A±(z)A±(v−2z)

and A±(z) is the unique solution with A±0 :=
(φ±)−1.

Relations (6.6) and (6.7) follow immediately from (U10) and (U1), respectively,
while the verification of (6.9–6.16) is based on the following result.

Lemma B.1 For any ε, ε′ ∈ {±}, we have:

(a1) (vz− v−1w)Aε(z)e(w) = (z− w)e(w)Aε(z).
(a2) (vz− v−1w)Aε(z)eε

′
(w)− (z− w)eε′(w)Aε(z) = (v − v−1)wAε(z)eε(z).

(a3) (vz− v−1w)Aε(z)eε
′
(w)− (z−w)eε′(w)Aε(z) = (1− v−2)weε(v2z)Aε(z).

(b1) (z− w)Aε(z)f (w) = (vz− v−1w)f (w)Aε(z).

(b2) (z− w)Aε(z)f ε′(w)− (vz− v−1w)f ε
′
(w)Aε(z) = (v−1 − v)zf ε(z)Aε(z).

(b3) (z−w)Aε(z)f ε′(w)− (vz− v−1w)f ε
′
(w)Aε(z) = (1− v2)zAε(z)f ε(v2z).
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(c) (z− w)[eε(z), f ε′(w)] = z(ψε′(w)− ψε(z))/(v − v−1).

(d1) (z − v2w)eε(z)eε
′
(w) − (v2z − w)eε

′
(w)eε(z) = z[e0, e

ε′(w)]v2 +
w[e0, e

ε(z)]v2 .

(d2) (z−v2w)eε(z)eε
′
(w)−(v2z−w)eε′(w)eε(z) = (1−v2)(weε(z)2+zeε′(w)2).

(e1) (v2z − w)f ε(z)f ε′(w) − (z − v2w)f ε
′
(w)f ε(z) = v2[f1, f

ε′(w)]v−2 +
v2[f1, f

ε(z)]v−2 .

(e2) (v2z − w)f ε(z)f ε′(w) − (z − v2w)f ε
′
(w)f ε(z) = (v2 − 1)(zf ε(z)2 +

wf ε
′
(w)2).

(f1) (z−v2w)ψε(z)eε
′
(w)− (v2z−w)eε′(w)ψε(z) = (v−2−v2)wψε(z)eε(v2z).

(f2) (z− v2w)ψε(z)eε
′
(w)− (v2z−w)eε′(w)ψε(z) = (1− v4)weε(v−2z)ψε(z).

(g1) (v2z − w)ψε(z)f ε
′
(w) − (z − v2w)f ε

′
(w)ψε(z) = (v2 −

v−2)zψε(z)f ε(v−2z).

(g2) (v2z−w)ψε(z)f ε′(w)− (z− v2w)f ε
′
(w)ψε(z) = (v4 − 1)zf ε(v2z)ψε(z).

Proof

(a1) According to (U4′), we have [tr , es] = v−2r−1
r(v−v−1)

es+r for r �= 0,

s ∈ Z. Combining this with (B.1), we find A±(z)e(w) =
e(w)A±(z)v∓1 exp

(∑
r>0

v∓2r−1
r

(w/z)±r
)
. The latter exponent equals

z−w
z−v−2w

(in the “+” case) or z−w
v2z−w (in the “−” case), hence, (a1).

(a2, a3) First, we consider the case ε = ε′ = +. Due to (a1), we have vA+r+1es −
v−1A+r es+1 = esA+r+1 − es+1A

+
r for any r ∈ N, s ∈ Z. Multiplying this

equality by z−rw−s−1 and summing over all r, s ∈ N, we find w−1((vz−
v−1w)A+(z)e+(w) − (z − w)e+(w)A+(z)) = [e0, A

+(z)]v−1 . Note that
the right-hand side is independent of w. Substituting either w = z or w =
v2z into the left-hand side, we get the equalities (a2) and (a3) for ε = ε′ =
+, respectively.

Next, we consider the case ε = ε′ = −. Due to (a1), we have
vA−−r+1e−s − v−1A−r e−s+1 = e−sA−−r+1 − e−s+1A

−−r for any r ∈ N, s ∈
Z, where we set A−1 := 0. Multiplying this equality by−zrws−1 and sum-
ming over all r ∈ N, s ∈ Z>0, we find w−1((vz − v−1w)A−(z)e−(w) −
(z − w)e−(w)A−(z)) = [e0, A

−(z)]v−1 . Note that the right-hand side is
independent of w. Substituting either w = z or w = v2z into the left-hand
side, we get the equalities (a2) and (a3) for ε = ε′ = −, respectively.

The case ε′ �= ε follows by combining the formula eε
′
(w) = eε(w) +

ε′e(w) with part (a1) and the cases ε = ε′ of parts (a2, a3), established
above.

(b1–b3) Parts (b1, b2, b3) are proved completely analogously to (a1, a2, a3),
respectively.

(c) First, we consider the case ε = ε′. According to (U6), we have

[er , fs] = ψ+r+s
v−v−1 for r ≥ 0, s > 0. For N > 0, we have (z −

w)
∑N
s=1w

−szs−N = z(w−N − z−N). Hence, (z − w)[e+(z), f+(w)] =
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∑
N>0 z(w

−N − z−N) ψ+N
v−v−1 = z

ψ+(w)−ψ+(z)
v−v−1 . Likewise, we have

[e−r , f−s] = − ψ−−r−s
v−v−1 for r > 0, s ≥ 0. For N > 0, we have

(z−w)∑N
s=1 z

swN−s = z(zN −wN). Hence, (z−w)[e−(z), f−(w)] =
−∑N>0 z(z

N − wN) ψ
−
−N

v−v−1 = zψ
−(w)−ψ−(z)

v−v−1 .
Next, we consider the case ε �= ε′. According to (U6), we have

[e(z), f (w)] = δ(z/w)

v−v−1 (ψ
+(z) − ψ−(z)) = δ(z/w)

v−v−1 (ψ
+(w) − ψ−(w)).

Taking the terms with negative powers of w, we find [e(z), f+(w)] =
z/w

1−z/w
ψ+(z)−ψ−(z)

v−v−1 ⇒ (z − w)[e(z), f+(w)] = z
ψ−(z)−ψ+(z)

v−v−1 , while

taking the terms with nonpositive powers of z, we find [e+(z), f (w)] =
1

1−w/z
ψ+(w)−ψ−(w)

v−v−1 ⇒ (z− w)[e+(z), f (w)] = zψ+(w)−ψ−(w)
v−v−1 . Combin-

ing these equalities with (z − w)[e+(z), f+(w)] = z
ψ+(w)−ψ+(z)

v−v−1 from

above and e−(z) = e+(z) − e(z), f−(z) = f+(z) − f (z), we obtain the
ε �= ε′ cases of part (c).

(d1) Comparing the coefficients of z−εrw−ε′s in both sides of relation (U2),
we find eεr+1eε′s − v2eεreε′s+1 = v2eε′seεr+1 − eε′s+1eεr for any r, s ∈
Z. Multiplying this equality by εε′ · z−εrw−ε′s and summing over r ≥
δε,−, s ≥ δε′,−, we get (d1).

(d2) Substituting w = z into the ε = ε′ case of (d1), we find [e0, e
±(z)]v2 =

(1 − v2)e±(z)2. Replacing accordingly the right-hand side of (d1), we
obtain (d2).

(e1, e2) Parts (e1, e2) are proved completely analogously to (d1, d2), respectively.
(f1, f2) Parts (f1, f2) are deduced from relation (U4) in the same way as we

deduced parts (a2, a3) from (a1).
(g1, g2) Parts (g1, g2) are proved completely analogously to (f1, f2), respectively.

��
Now let us verify relations (6.9–6.16) using Lemma B.1. The idea is first to use

parts (a3, b2) of Lemma B.1 (resp. parts (a2, b3)) to move all the series A•(·) to the
right (resp. to the left), and then to use Lemma B.1(c–g2) to simplify the remaining
part. Since g = sl2 we will drop the index i from our notation.

B(i).a Verification of the First Relation in (6.9)

We need to prove [Bε(z), Bε′(w)] = 0, or equivalently, (z − w)[Bε(z), Bε′(w)] =
0. By definition, Bε(z)Bε

′
(w) = (v − v−1)2Aε(z)eε(z)Aε

′
(w)eε

′
(w). Applying

Lemma B.1(a2), we see that

(z−w)Bε(z)Bε′ (w) = (v−v−1)2Aε(z)Aε
′
(w)((v−1z−vw)eε(z)eε

′
(w)+(v−v−1)zeε

′
(w)2).
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Hence, the equality (z− w)[Bε(z), Bε′(w)] = 0 boils down to the vanishing of

(v−1z−vw)eε(z)eε
′
(w)+ (v−v−1)zeε

′
(w)2+ (v−1w−vz)eε

′
(w)eε(z)+ (v−v−1)weε(z)2,

which is exactly the statement of Lemma B.1(d2).

B(i).b Verification of the Second Relation in (6.9)

We need to prove [Cε(z), Cε′(w)] = 0, or equivalently, (z − w)[Cε(z), Cε′(w)] =
0. By definition, Cε(z)Cε

′
(w) = (v − v−1)2f ε(z)Aε(z)f ε

′
(w)Aε

′
(w). Applying

Lemma B.1(b2), we see that

(z−w)Cε(z)Cε′ (w) = (v−v−1)2((vz−v−1w)f ε(z)f ε
′
(w)+(v−1−v)zf ε(z)2)Aε(z)Aε

′
(w).

Hence, the equality (z− w)[Cε(z), Cε′(w)] = 0 boils down to the vanishing of

(vz−v−1w)f ε(z)f ε
′
(w)+(v−1−v)zf ε(z)2+(vw−v−1z)f ε

′
(w)f ε(z)+(v−1−v)wf ε

′
(w)2,

which is exactly the statement of Lemma B.1(e2).

B(i).c Verification of the Third Relation in (6.9)

The verification of the equality [Dε(z),Dε′(w)] = 0 is much more cumbersome
and is left to the interested reader.

B(i).d Verification of (6.10)

We need to prove (z − w)[Bε′(w),Aε(z)]v−1 = (v − v−1)(zAε(z)Bε
′
(w) −

wAε
′
(w)Bε(z)). By definition and (6.7), the RHS equals (v −

v−1)2Aε(z)Aε
′
(w)(zeε

′
(w)− weε(z)). Meanwhile, the LHS equals (v − v−1)(z−

w)(Aε
′
(w)eε

′
(w)Aε(z) − v−1Aε(z)Aε

′
(w)eε

′
(w)). We use Lemma B.1(a2) to

replace the first term, so that the LHS equals

(v − v−1)Aε(z)Aε
′
(w)

(
(vz− v−1w)eε

′
(w)− (v − v−1)weε(z)− v−1(z− w)eε′ (w)

)
,

which exactly coincides with the above formula for the RHS.
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B(i).e Verification of (6.11)

We need to prove (z − w)[Aε(z), Cε′(w)]v = (v − v−1)(wCε
′
(w)Aε(z) −

zCε(z)Aε
′
(w)). By definition and (6.7), the RHS equals (v − v−1)2(wf ε

′
(w) −

zf ε(z))Aε(z)Aε
′
(w). Meanwhile, the LHS equals (v − v−1)(z −

w)(Aε(z)f ε
′
(w)Aε

′
(w)−vf ε

′
(w)Aε

′
(w)Aε(z)). We use Lemma B.1(b2) to replace

the first term, so that the LHS equals

(v−v−1)
(
(vz− v−1w)f ε

′
(w)+ (v−1 − v)zf ε(z)− v(z− w)f ε′(w)

)
Aε(z)Aε

′
(w),

which exactly coincides with the above formula for the RHS.

B(i).f Verification of (6.12)

We need to prove (z − w)[Bε(z), Cε′(w)] = (v − v−1)z(Dε
′
(w)Aε(z) −

Dε(z)Aε
′
(w)). Applying the equality Aε(z)eε(z) = v−1eε(v2z)Aε(z), which

follows from Lemma B.1(a2), we see that the LHS equals

v−1(v−v−1)2(z−w)
(
eε(v2z)Aε(z)f ε

′
(w)Aε

′
(w)− f ε′(w)Aε′(w)eε(v2z)Aε(z)

)
.

Applying Lemma B.1(a3, b2) to move both Aε(z), Aε
′
(w) to the right and simpli-

fying the resulting expression, we find that the LHS equals

v−1(v − v−1)2
(
(vz− v−1w)[eε(v2z), f ε

′
(w)]+

(v − v−1)(zf ε
′
(w)eε

′
(v2w)− (v − v−1)zeε(v2z)f ε(z))

)
Aε(z)Aε

′
(w).

Meanwhile, Dε(z) = ψε(z)Aε(z)+ v−1(v − v−1)2f ε(z)eε(v2z)Aε(z), so that the
RHS equals

(v−v−1)
(
z(ψε

′
(w)− ψε(z))+ v−1(v − v−1)2z(f ε

′
(w)eε

′
(v2w)− f ε(z)eε(v2z))

)
Aε(z)Aε

′
(w).

Thus, the equality LHS = RHS boils down to proving

v−2(v2z−w)[eε(v2z), f ε
′
(w)] − (1− v−2)z[eε(v2z), f ε(z)] = z

v − v−1
(ψε

′
(w)−ψε(z)),

which immediately follows by applying Lemma B.1(c) to both terms on the left.



240 M. Finkelberg and A. Tsymbaliuk

B(i).g Verification of (6.13)

We need to prove (z − w)[Bε(z),Dε′(w)]v = (v − v−1)(wDε
′
(w)Bε(z) −

zDε(z)Bε
′
(w)). Combining the aforementioned equality Aε(z)eε(z) =

v−1eε(v2z)Aε(z) with Lemma B.1(a3), we find that (w − z) · RHS equals

(
v−1(v − v−1)2(w(v−1w − vz)ψε

′
(w)eε(v2z)+ z(v−1z− vw)ψε(z)eε

′
(v2w))+

v−1(v − v−1)3zw(ψε
′
(w)eε

′
(v2w)+ ψε(z)eε(v2z))+

v−2(v − v−1)4(w(v−1w − vz)f ε
′
(w)eε

′
(v2w)eε(v2z)+ z(v−1z− vw)f ε(z)eε(v2z)eε

′
(v2w))+

v−2(v − v−1)5zw(f ε
′
(w)eε

′
(v2w)2 + f ε(z)eε(v2z)2)

)
Aε(z)Aε

′
(w).

Meanwhile, using Lemma B.1(a3, b2) to moveAε(z) to the right of f ε
′
(w)eε

′
(v2w),

we find that (w − z) · LHS equals

v−1(v − v−1)(w − z) ·
(
(w − v2z)ψε

′
(w)eε(v2z)+ (v2 − 1)zψε

′
(w)eε

′
(v2w)+

(z− w)eε(v2z)ψε
′
(w))

)
Aε(z)Aε

′
(w)+

v−2(v − v−1)3 ·
(
(w − v2z)(w − z)f ε′ (w)eε′ (v2w)eε(v2z)+ (v2 − 1)z(w − z)f ε′ (w)eε′ (v2w)2−

(vz− v−1w)(v−1z− vw)eε(v2z)f ε
′
(w)eε

′
(v2w)− (v−1 − v)z(v−1z− vw)eε(v2z)f ε(z)eε

′
(v2w)−

(vz− v−1w)(v − v−1)weε(v2z)f ε
′
(w)eε(v2z)− (v−1 − v)(v − v−1)zweε(v2z)f ε(z)eε(v2z)

)
×

Aε(z)Aε
′
(w).

To check that the above two big expressions coincide, we first reorder some of the
terms. We use Lemma B.1(f1) to move ψε

′
(w) to the left of eε(v2z) via

(w−z)eε(v2z)ψε
′
(w) = ψε′(w)

(
(v−2w − v2z)eε(v2z)− (v−2 − v2)zeε

′
(v2w)

)
.

We also use Lemma B.1(c) to move f •(·) to the left of e•(·). After obvious
cancelations, everything boils down to proving

(v−1z−vw)eε(v2z)eε
′
(v2w)−(vz−v−1w)eε

′
(v2w)eε(v2z) = (v−1−v)(zeε

′
(v2w)2+weε(v2z)2),

which is exactly the statement of Lemma B.1(d2).

B(i).h Verification of (6.14)

This verification is completely analogous to the above verification of (6.13) and is
left to the interested reader.
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B(i).i Verification of (6.15)

We need to prove (z − w)[Aε(z),Dε′(w)] = (v − v−1)(wCε
′
(w)Bε(z) −

zCε(z)Bε
′
(w)). The LHS equals (v − v−1)2(z − w)(Aε(z)f ε′(w)Aε′(w)eε′(w) −

f ε
′
(w)Aε

′
(w)eε

′
(w)Aε(z)). Applying Lemma B.1(b2) to the first summand and

Lemma B.1(a2) to the second summand, we see that the LHS equals

(v − v−1)2((vz− v−1w)f ε
′
(w)+ (v−1 − v)zf ε(z))Aε(z)Aε′(w)eε′(w)−

(v − v−1)2f ε
′
(w)Aε(z)Aε

′
(w)((vz− v−1w)eε

′
(w)− (v − v−1)weε(z)) =

(v − v−1)3(wf ε
′
(w)Aε

′
(w)Aε(z)eε(z)− zf ε(z)Aε(z)Aε′(w)eε′(w)),

which obviously coincides with the RHS.

B(i).j Verification of (6.16)

We need to prove Aε(z)Dε(v−2z) − v−1Bε(z)Cε(v−2z) = zεb
ε
. Due

to Lemma B.1(b3), we have f ε(v−2z)Aε(v−2z) = vAε(v−2z)f ε(z). Thus,

Aε(z)Dε(v−2z) = Aε(z)Aε(v−2z)(ψε(v−2z)+ v(v − v−1)2f ε(z)eε(v−2z)),

Bε(z)Cε(v−2z) = v(v − v−1)2Aε(z)eε(z)Aε(v−2z)f ε(z).

According to Lemma B.1(a2), we have eε(z)Aε(v−2z) = vAε(v−2z)eε(v−2z).
Hence,

Bε(z)Cε(v−2z) = v2(v − v−1)2Aε(z)Aε(v−2z)eε(v−2z)f ε(z).

Due to Lemma B.1(c), we have −v(v − v−1)2[eε(v−2z), f ε(z)] = ψε(z) −
ψε(v−2z). Therefore, we finally get

Aε(z)Dε(v−2z)− v−1Bε(z)Cε(v−2z) = Aε(z)Aε(v−2z)ψε(v−2z)−
v(v − v−1)2Aε(z)Aε(v−2z)[eε(v−2z), f ε(z)] = Aε(z)Aε(v−2z)ψε(z) = zεbε ,

which completes our verification of (6.16).

B(ii) Proof of Theorem 6.6(a) for a General g

First, let us derive an explicit formula for A±i (z). Recall the elements {hi,±r}r>0
i∈I

of Sect. 5, such that z∓b
±
i (ψ±

i,∓b±i
)−1ψ±i (z) = exp

(
±(vi − v−1

i )
∑
r>0 hi,±r z∓r

)
.
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For r �= 0, consider the following I × I matrix Cv(r):

Cv(r)ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if cij = 0,

−1− v2r
i if j = i,

vj−v−1
j

vi−v−1
i

∑−cji
p=1 v

r(cji+2p)
j if j − i.

Set ti,r := ∑
j∈I (Cv(r)

−1)ij hj,r (matrix Cv(r) is invertible, due to Lemma B.3
below). Define

A±i (z) := (φ±i )−1 · exp

(
±(vi − v−1

i )
∑

r>0

ti,±rz∓r
)
. (B.2)

These A±i (z) satisfy z∓b
±
i ψ±i (z) =

∏
j−i
∏−cji
p=1 A

±
j (v

−cji−2p

j z)

A±i (z)A
±
i (v

−2
i z)

as well as A±i,0 =
(φ±i )−1. This provides an explicit formula forA±i (z), which we referred to in Sect. 6.

Remark B.2 Comparing the coefficients of z∓r (r > 0) in the system of equa-
tions (6.1) for all i, we see that Ai,±r are recovered uniquely modulo the values of
Ai,±s(0 ≤ s < r), due to invertibility of Cv(r). Therefore, an induction in r implies
that the system of equations (6.1) has a unique solution {A±i (z)}i∈I , hence, given
by (B.2).

Define auxiliary I × I matrices Bv(r),Dv(r) via Bv(r)ij = [rcij ]vi
r
, Dv(r)ij =

δij
v−2r
j −1

r(vj−v−1
j )
. The matrix Bv(r) is a v-version of the Cartan matrix of g and it is

known to be invertible for any r �= 0. The following is straightforward.

Lemma B.3 For r �= 0, we have Bv(r) = Cv(r)Dv(r). In particular, Cv(r) is
invertible.

The following result is an immediate corollary of Lemma B.3 and relations
(U4′, U5′).

Lemma B.4 For ε ∈ {±}, we have:

(a) (viz − v−1
i w)A

ε
i (z)ei(w) = (z − w)ei(w)A

ε
i (z), while Aεi (z)ej (w) =

ej (w)A
ε
i (z) for j �= i.

(b) (z − w)Aεi (z)fi(w) = (viz − v−1
i w)fi(w)A

ε
i (z), while Aεi (z)fj (w) =

fj (w)A
ε
i (z) for j �= i.

Now we are ready to sketch the proof of Theorem 6.6(a) for a general g.

B(ii).a Verification of (6.7) and (6.8)

Relations (6.7, 6.8) follow from Lemma B.4 and relations (U1, U6).
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B(ii).b Verification of (6.9–6.16)

Let us introduce the series Ā±i (z) via z∓b
±
i ψ±i (z) = 1

Ā±i (z)Ā
±
i (v

−2
i z)

, and define the

generating series B̄±i (z), C̄
±
i (z), D̄

±
i (z) by using formulas (6.2–6.4) but with Ā±i (z)

instead of A±i (z). For a fixed i, these series satisfy the corresponding relations (6.9–
6.16) of the sl2 case. However, A±i (z)Ā

±
i (z)

−1 is expressed through {A±j (z)}j �=i ,
hence, commutes with eεi (z), f

ε
i (z), A

ε
i (z), due to Lemma B.4. Relations (6.9–6.16)

follow (this also explains the RHS of (6.16)).

B(ii).c Verification of (6.17)

Analogously to Lemma B.1(d1), relation (U2) implies the following equality:

(z− v
cij
i w)e

ε
i (z)e

ε′
j (w)− (vciji z−w)eε

′
j (w)e

ε
i (z) = z[ei,0, eε

′
j (w)]vciji +w[ej,0, e

ε
i (z)]vciji

for any ε, ε′ ∈ {±} (we also note that these equalities for all possible ε, ε′
imply (U2)). Multiplying the above equality by (vi − v−1

i )(vj − v−1
j )A

ε
i (z)A

ε′
j (w)

on the left and using Lemma B.4(a), relation (6.7), and an equality (vi − v−1
i )ei,0 =

φ+i B
+
i,0, we obtain (6.17).

B(ii).d Verification of (6.18)

Analogously to Lemma B.1(e1), relation (U3) implies the following equality:

(v
cij
i z−w)f εi (z)f ε

′
j (w)−(z−v

cij
i w)f

ε′
j (w)f

ε
i (z) = −[f ε

′
j (w), fi,1]vciji −[f

ε
i (z), fj,1]vciji

for any ε, ε′ ∈ {±} (we also note that these equalities for all possible ε, ε′
imply (U3)). Multiplying the above equality by (vi−v−1

i )(vj−v−1
j )A

ε
i (z)A

ε′
j (w) on

the right and using Lemma B.4(b), relation (6.7), and an equality (vi − v−1
i )fi,1 =

C+i,1φ
+
i , we obtain (6.18).

B(ii).e Verification of (6.19)

Case cij = 0 The equality [Bεi (z), Bε
′
j (w)] = 0 follows immediately from

Lemma B.4(a) and [eεi (z), eε
′
j (w)] = 0, which is a consequence of the correspond-

ing Serre relation (U7).
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Case cij = −1 The corresponding Serre relation (U7) is equivalent to

{eε1i (z1)e
ε2
i (z2)e

ε′
j (w)−(vi+v−1

i )e
ε1
i (z1)e

ε′
j (w)e

ε2
i (z2)+eε′j (w)eε1i (z1)e

ε2
i (z2)}+{z1 ↔ z2} = 0

for any ε1, ε2, ε
′ ∈ {±}. Let us denote the first {· · · } in the LHS by

J ε1,ε2,ε
′
(z1, z2, w). Set

M := (vi − v−1
i )

2(vj − v−1
j )(viz1 − v−1

i z2)(viz2 − v−1
i z1)A

ε1
i (z1)A

ε2
i (z2)A

ε′
j (w).

Combining the equality

(viz2− v−1
i z1)A

ε2
i (z2)e

ε1
i (z1) = (z2− z1)e

ε1
i (z1)A

ε2
i (z2)+ (vi − v−1

i )z1A
ε2
i (z2)e

ε2
i (z2)

(see Lemma B.1(a2)) with Lemma B.4(a), we find

M · J ε1,ε2,ε′ (z1, z2, w) = (vi − v−1
i )z1

viz2 − v−1
i z1

M · J ε2,ε2,ε′ (z2, z2, w)+ (z2 − z1)(viz1 − v−1
i z2)×

{Bε1i (z1)B
ε2
i (z2)B

ε′
j (w)− (vi + v−1

i )B
ε1
i (z1)B

ε′
j (w)B

ε2
i (z2)+ Bε′j (w)Bε1i (z1)B

ε2
i (z2)}.

The first summand in the RHS is zero as J ε2,ε2,ε
′
(z2, z2, w) = 0. Therefore,

multiplying J ε1,ε2,ε
′
(z1, z2, w) + J ε2,ε1,ε′(z2, z1, w) = 0 by M on the left, we

obtain (6.19).

Case cij = −2,−3 These cases are treated similarly to cij = −1, but the
corresponding computations become more cumbersome. We verified these cases
using MATLAB.

B(ii).f Verification of (6.20)

This verification is analogous to that of (6.19) and is left to the interested reader.

B(iii) Proof of Theorem 6.6(b)

Part (b) of Theorem 6.6 can be obtained by reversing the above arguments. In
other words, starting from the algebra generated by (A±i,0)−1 and the coefficients

of the currents A±i (z), B
±
i (z), C

±
i (z),D

±
i (z) with the defining relations (6.6–6.20),

we need to show that the elements φ±i and currents ei(z), fi(z), ψ
±
i (z), defined

via (6.1–6.4), satisfy relations (U1–U10).

This completes our proof of Theorem 6.6.
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Appendix C Proof of Theorem 7.1

We denote the images of ei(z), fi(z), ψ
±
i (z) under �̃λμ by Ei(z), Fi(z),2i(z)±. It

suffices to prove that they satisfy relations (U1–U8), since relations (U9, U10) are
obviously preserved by �̃λμ. While checking these relations, we will use LHS and
RHS when referring to their left-hand and right-hand sides. Set ρ+i := −vi

1−v2
i

, ρ−i :=
1

1−v2
i

,Wi,rs(z) :=
r �=t �=s∏
1≤t≤ai

(1− wi,t
z
).

C(i) Compatibility with (U1)

First, we check that the range of powers of z in ψ±i (z) and 2i(z)± agree. Note that

(1−ν/z)+ = 1−ν ·z−1 ∈ C[[z−1]], (1/(1−ν/z))+ = 1+νz−1+ν2z−2+. . . ∈ C[[z−1]],

(1−ν/z)− = −ν·z−1(1−z/ν) ∈ z−1
C[[z]], (1/(1−ν/z))− = −z/ν−z2/ν2−. . . ∈ zC[[z]].

Therefore, 2i(z)+ contains only nonpositive powers of z, while 2i(z)− contains
only powers of z bigger or equal to

−#{s : is = i} + 2ai −
∑

j−i
aj (−cji ) = −α∨i (λ)+ α∨i (λ− μ) = −α∨i (μ) = −α∨i (μ−) = −b−i .

Moreover, the coefficients of z0 in 2i(z)+ and of z−b
−
i in 2i(z)− are invertible.

The equality [2i(z)ε,2j (w)ε′ ] = 0 follows from the commutativity of

{w±1/2
i,r }1≤r≤aii∈I .

C(ii) Compatibility with (U2)

Case cij = 0 The equality [Ei(z), Ej (w)] = 0 is obvious in this case, since D−1
i,r

commute with w±1/2
k,s for k = j or k → j , while D−1

j,s commute with w±1/2
k,r for

k = i or k→ i.

Case cij = 2 We may assume g = sl2 and we will drop the index i from our nota-
tion. We need to prove (z−v2w)E(z)E(w)/(ρ+)2 = −(w−v2z)E(w)E(z)/(ρ+)2.



246 M. Finkelberg and A. Tsymbaliuk

The LHS equals

v−2
a∏

t=1

w2
t · (z− v2w) ·

a∑

r=1

δ

(
wr
z

)
δ

(
v−2wr
w

)
Z(wr )Z(v−2wr )
Wr(wr )Wr(v−2wr )

D−2
r +

v−2
a∏

t=1

w2
t · (z− v2w) ·

∑

1≤r �=s≤a
δ

(
wr
z

)
δ
(ws
w

) Z(wr )Z(ws )
Wr(wr )Wrs(ws )(1− v−2wr /ws )

D−1
r D

−1
s .

Using the equality

G(z,w)δ

(
ν1

z

)
δ
(ν2

w

)
= G(ν1, ν2)δ

(
ν1

z

)
δ
(ν2

w

)
, (C.1)

we see that the first sum is zero, while the second sum equals

a∏

t=1

w2
t ·

∑

1≤r �=s≤a
δ

(
wr
z

)
δ
(ws
w

) Z(wr )Z(ws )
Wrs(wr )Wrs(ws )

v−2(wr − v2ws )
(1− ws/wr )(1− v−2wr /ws )

D−1
r D

−1
s =

a∏

t=1

w2
t ·

∑

1≤r �=s≤a
δ

(
wr
z

)
δ
(ws
w

) Z(wr )Z(ws )
Wrs(wr )Wrs(ws )

wrws
ws − wr

D−1
r D

−1
s .

Swapping z and w, we see that −(w − v2z)E(w)E(z)/(ρ+)2 equals

−
a∏

t=1

w2
t ·

∑

1≤r �=s≤a
δ
(wr
w

)
δ

(
ws
z

)
Z(wr )Z(ws)

Wrs(wr )Wrs(ws)
wrws

ws − wr
D−1
r D

−1
s .

Swapping r and s in the latter sum, we get exactly the same expression as for the
LHS.

Case cij < 0 In this case, we can assume I = {i, j} and i → j . We need to
prove (z − v

cij
i w)Ei(z)Ej (w)/(ρ

+
i ρ

+
j ) = (v

cij
i z − w)Ej (w)Ei(z)/(ρ+i ρ+j ). The

LHS equals

v
−cij
i

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

wj,t · (z− v
cij
i w)×

1≤s≤aj∑

1≤r≤ai
δ

(
wi,r
z

)
δ
(wj,s
w

) Zi(wi,r )
Wi,r (wi,r )

D−1
i,r

Zj (wj,s)
Wj,s(wj,s)

−cij∏

p=1

Wi(v
−cij−2p
i w)D−1

j,s =

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

wj,t · A(z,w)×

1≤s≤aj∑

1≤r≤ai
δ

(
wi,r
z

)
δ
(wj,s
w

) Zi(wi,r )Zj (wj,s)
∏−cij
p=1Wi,r (v

−cij−2p
i wj,s)

Wi,r (wi,r )Wj,s(wj,s)
D−1
i,r D

−1
j,s ,
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where A(z,w) = v
−cij
i (z − v

cij
i w)

∏−cij
p=1

(
1− v−2

i z

v
−cij−2p

i w

)
, due to (C.1). Likewise,

the RHS equals

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

wj,t · (vciji z− w)×

1≤s≤aj∑

1≤r≤ai
δ
(wj,s
w

)
δ

(
wi,r
z

)
Zj (wj,s)
Wj,s(wj,s)

−cij∏

p=1

Wi(v
−cij−2p
i w)D−1

j,s

Zi(wi,r )
Wi,r (wi,r )

D−1
i,r =

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

wj,t · B(z,w)×

1≤s≤aj∑

1≤r≤ai
δ

(
wi,r
z

)
δ
(wj,s
w

) Zi(wi,r )Zj (wj,s)
∏−cij
p=1Wi,r (v

−cij−2p
i wj,s)

Wi,r (wi,r )Wj,s(wj,s)
D−1
i,r D

−1
j,s ,

where B(z,w) = (vciji z− w)
∏−cij
p=1

(
1− z

v
−cij−2p

i w

)
, due to (C.1).

The equality LHS = RHS follows from A(z,w) = B(z,w).

C(iii) Compatibility with (U3)

Case cij = 0 The equality [Fi(z), Fj (w)] = 0 is obvious in this case, since Di,r
commute with w±1/2

k,s for k = j or k ← j , while Dj,s commute with w±1/2
k,r for

k = i or k← i.

Case cij = 2 We may assume g = sl2 and we will drop the index i from our nota-
tion. We need to prove (v2z−w)F(z)F (w)/(ρ−)2 = −(v2w−z)F (w)F (z)/(ρ−)2.
The LHS equals

(v2z− w) ·
a∑

r=1

δ

(
v2wr
z

)
δ

(
v4wr
w

)
1

Wr(wr )Wr(v2wr )
D2
r+

(v2z− w) ·
∑

1≤r �=s≤a
δ

(
v2wr
z

)
δ

(
v2ws
w

)
1

Wr(wr )Wrs(ws)(1− v2wr/ws)
DrDs.
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Using equality (C.1), we see that the first sum is zero, while the second sum equals

∑

1≤r �=s≤a
δ

(
v2wr
z

)
δ

(
v2ws
w

)
1

Wrs(wr )Wrs(ws)
v4wr − v2ws

(1− ws/wr )(1− v2wr/ws)
DrDs =

∑

1≤r �=s≤a
δ

(
v2wr
z

)
δ

(
v2ws
w

)
1

Wrs(wr )Wrs(ws)
v2wrws
ws − wr

DrDs.

Swapping z and w, we see that −(v2w − z)F (w)F (z)/(ρ−)2 equals

−
∑

1≤r �=s≤a
δ

(
v2wr
w

)
δ

(
v2ws
z

)
1

Wrs(wr )Wrs(ws)
v2wrws
ws − wr

DrDs.

Swapping r and s in this sum, we get exactly the same expression as for the LHS.

Case cij < 0 In this case, we can assume I = {i, j} and i → j . Recall
that v

cij
i = v

cji
j . We need to prove (v

cji
j z − w)Fi(z)Fj (w)/(ρ−i ρ−j ) = (z −

v
cji
j w)Fj (w)Fi(z)/(ρ

−
i ρ

−
j ). The LHS equals

aj∏

t=1

w
cji /2
j,t · (vcjij z− w)×

1≤s≤aj∑

1≤r≤ai
δ

(
v2
iwi,r
z

)
δ

(
v2
jwj,s

w

)
1

Wi,r (wi,r )

−cji∏

p=1

Wj(v
−cji−2p
j z)Di,r

1

Wj,s(wj,s)
Dj,s =

aj∏

t=1

w
cji /2
j,t · A(z,w) ·

1≤s≤aj∑

1≤r≤ai
δ

(
v2
iwi,r
z

)
δ

(
v2
jwj,s

w

) ∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi,r (wi,r )Wj,s(wj,s )
Di,rDj,s ,

where A(z,w) = (v
cji
j z − w)

∏−cji
p=1

(
1− v−2

j w

v
−cji−2p

j z

)
, due to (C.1). Likewise, the

RHS equals

v
cji
j

aj∏

t=1

w
cji /2
j,t · (z− v

cji
j w)×

1≤s≤aj∑

1≤r≤ai
δ

(
v2
jwj,s

w

)
δ

(
v2
iwi,r
z

)
1

Wj,s(wj,s )
Dj,s

1

Wi,r (wi,r )

−cji∏

p=1

Wj(v
−cji−2p
j z)Di,r =

aj∏

t=1

w
cji /2
j,t · B(z,w) ·

1≤s≤aj∑

1≤r≤ai
δ

(
v2
iwi,r
z

)
δ

(
v2
jwj,s

w

) ∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi,r (wi,r )Wj,s(wj,s )
Di,rDj,s ,

where B(z,w) = v
cji
j (z− v

cji
j w)

∏−cji
p=1

(
1− w

v
−cji−2p

j z

)
, due to (C.1).

The equality LHS = RHS follows from A(z,w) = B(z,w).



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 249

C(iv) Compatibility with (U4)

Case cij = 0 The equality [2i(z), Ej (w)] = 0 is obvious in this case, since D−1
j,s

commute with w±1/2
k,r for k = i or k − i.

Case cij = 2 We may assume g = sl2 and we will drop the index i from our
notation. We need to prove (z − v2w)2(z)E(w)/ρ+ = (v2z − w)E(w)2(z)/ρ+.
The LHS equals

a∏

t=1

w2
t · (z− v2w) · Z(z)

W(z)W(v−2z)

a∑

r=1

δ
(wr
w

) Z(wr )
Wr(wr )

D−1
r =

a∏

t=1

w2
t ·

a∑

r=1

δ
(wr
w

) Z(z)Z(wr )
Wr(wr )Wr(z)Wr(v−2z)

z− v2w

(1− w/z)(1− w/v−2z)
D−1
r ,

due to (C.1). Likewise, the RHS equals

v−2
a∏

t=1

w2
t · (v2z− w) ·

a∑

r=1

δ
(wr
w

) Z(wr )
Wr(wr )

D−1
r

Z(z)

W(z)W(v−2z)
=

a∏

t=1

w2
t ·

a∑

r=1

δ
(wr
w

) Z(z)Z(wr )
Wr(wr )Wr(z)Wr(v−2z)

v−2(v2z− w)
(1− v−2w/z)(1− v−2w/v−2z)

D−1
r .

The equality LHS = RHS follows.

Case cij < 0 In this case, we can assume I = {i, j}. There are two situations to
consider: i → j and i ← j . Let us first treat the former case. Since v

cij
i = v

cji
j ,

we need to prove (z− v
cji
j w)2i(z)Ej (w)/ρ

+
j = (v

cji
j z− w)Ej (w)2i(z)/ρ+j . The

LHS equals

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

w
1+cji /2
j,t · (z− v

cji
j w)×

Zi(z)

Wi(z)Wi(v
−2
i z)

−cji∏

p=1

Wj(v
−cji−2p
j z)

aj∑

s=1

δ
(wj,s
w

) Zj (wj,s)
Wj,s(wj,s )

−cij∏

p′=1

Wi(v
−cij−2p′
i w)D−1

j,s =

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

w
1+cji /2
j,t · A(z,w)×

aj∑

s=1

δ
(wj,s
w

) Zi(z)Zj (wj,s )
∏−cij
p′=1Wi(v

−cij−2p′
i w)

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi(z)Wi(v
−2
i z)Wj,s(wj,s )

D−1
j,s ,
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where A(z,w) = (z− v
cji
j w)

∏−cji
p=1

(
1− w

v
−cji−2p

j z

)
. Likewise, the RHS equals

v
−cji
j

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

w
1+cji /2
j,t · (vcjij z− w)×

aj∑

s=1

δ
(wj,s
w

) Zj (wj,s)
Wj,s(wj,s )

−cij∏

p′=1

Wi(v
−cij−2p′
i w)D−1

j,s

Zi(z)

Wi(z)Wi(v
−2
i z)

−cji∏

p=1

Wj(v
−cji−2p
j z) =

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

w
1+cji /2
j,t · B(z,w)×

aj∑

s=1

δ
(wj,s
w

) Zi(z)Zj (wj,s )
∏−cij
p′=1Wi(v

−cij−2p′
i w)

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi(z)Wi(v
−2
i z)Wj,s(wj,s )

D−1
j,s ,

where B(z,w) = v
−cji
j (v

cji
j z− w)

∏−cji
p=1

(
1− v−2

j w

v
−cji−2p

j z

)
.

The equality LHS = RHS follows from A(z,w) = B(z,w).
The case i ← j is analogous: 2i(z) is given by the same formula, while Ej(w)

differs by an absence of the factor
∏ai
t=1 w

cij /2
i,t · ∏−cij

p′=1Wi(v
−cij−2p′
i w). Tracing

back the above calculations, it is clear that the equality still holds when this factor
is dropped out.

C(v) Compatibility with (U5)

Case cij = 0 The equality [2i(z), Fj (w)] = 0 is obvious in this case, since Dj,s
commute with w±1/2

k,r for k = i or k − i.
Case cij = 2 We may assume g = sl2 and we will drop the index i from our
notation. We need to prove (v2z − w)2(z)F (w)/ρ− = (z − v2w)F(w)2(z)/ρ−.
The LHS equals

a∏

t=1

wt · (v2z− w) · Z(z)

W(z)W(v−2z)

a∑

r=1

δ

(
v2wr
w

)
1

Wr(wr )
Dr =

a∏

t=1

wt ·
a∑

r=1

δ

(
v2wr
w

)
Z(z)

Wr(wr )Wr(z)Wr(v−2z)

v2z− w
(1− v−2w/z)(1− v−2w/v−2z)

Dr,
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due to (C.1). Likewise, the RHS equals

v2
a∏

t=1

wt · (z− v2w) ·
a∑

r=1

δ

(
v2wr
w

)
1

Wr(wr )
Dr

Z(z)

W(z)W(v−2z)
=

a∏

t=1

wt ·
a∑

r=1

δ

(
v2wr
w

)
Z(z)

Wr(wr )Wr(z)Wr(v−2z)

v2(z− v2w)

(1− w/z)(1− w/v−2z)
Dr .

The equality LHS = RHS follows.

Case cij < 0 In this case, we can assume I = {i, j}. There are two situations to
consider: i → j and i ← j . Let us first treat the former case. Since v

cij
i = v

cji
j , we

need to prove (v
cji
j z−w)2i(z)Fj (w)/ρ−j = (z−v

cji
j w)Fj (w)2i(z)/ρ

−
j . The LHS

equals

ai∏

t=1

wi,t

aj∏

t=1

w
cji/2
j,t · (vcjij z− w)×

Zi(z)

Wi(z)Wi(v
−2
i z)

−cji∏

p=1

Wj(v
−cji−2p
j z)

aj∑

s=1

δ

(
v2
jwj,s

w

)
1

Wj,s(wj,s)
Dj,s =

ai∏

t=1

wi,t

aj∏

t=1

w
cji/2
j,t · A(z,w) ·

aj∑

s=1

δ

(
v2
jwj,s

w

)
Zi(z)

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi(z)Wi(v
−2
i z)Wj,s(wj,s)

Dj,s,

where A(z,w) = (vcjij z− w)
∏−cji
p=1

(
1− v−2

j w

v
−cji−2p

j z

)
. Likewise, the RHS equals

v
cji
j

ai∏

t=1

wi,t

aj∏

t=1

w
cji/2
j,t · (z− v

cji
j w)×

aj∑

s=1

δ

(
v2
jwj,s

w

)
1

Wj,s(wj,s)
Dj,s

Zi(z)

Wi(z)Wi(v
−2
i z)

−cji∏

p=1

Wj(v
−cji−2p
j z) =

ai∏

t=1

wi,t

aj∏

t=1

w
cji/2
j,t · B(z,w) ·

aj∑

s=1

δ

(
v2
jwj,s

w

)
Zi(z)

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi(z)Wi(v
−2
i z)Wj,s(wj,s)

Dj,s,

where B(z,w) = v
cji
j (z− v

cji
j w)

∏−cji
p=1

(
1− w

v
−cji−2p

j z

)
.

The equality LHS = RHS follows from A(z,w) = B(z,w).
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The case i ← j is analogous: 2i(z) is given by the same formula, while Fj (w)

has an extra factor
∏ai
t=1 w

cij /2
i,t ·∏−cij

p′=1Wi(v
−cij−2p′
i w). The contributions of this

factor into the LHS and the RHS are the same, hence, the equality still holds.

C(vi) Compatibility with (U6)

Case cij = 0 The equality [Ei(z), Fj (w)] = 0 is obvious in this case, since D−1
i,r

commute with w±1/2
k,s for k = i or k← j , whileDj,s commute with w±1/2

k,r for k = i
or k→ i.

Case cij = 2 We may assume g = sl2, and we will drop the index i from our
notation. We need to prove [E(z), F (w)] = 1

v−v−1 δ
(
z
w

) (
2(z)+ −2(z)−). The

LHS equals

ρ+ρ−
[
a∏

t=1

wt ·
a∑

r=1

δ

(
wr
z

)
Z(wr )
Wr(wr )

D−1
r ,

a∑

s=1

δ

(
v2ws
w

)
1

Ws(ws )
Ds

]
= −v

(1− v2)2

a∏

t=1

wt×
{

a∑

r=1

(
δ

(
wr
z

)
δ
(wr
w

) Z(wr )
Wr(wr )Wr(v−2wr )

− v2δ

(
v2wr
z

)
δ

(
v2wr
w

)
Z(v2wr )

Wr(wr )Wr(v2wr )

)
+

∑

1≤r �=s≤a
δ

(
wr
z

)
δ

(
v2ws
w

)
Z(wr )

Wrs(wr )Wrs(ws )

(
1

A(z,w)
− v2

B(z,w)

)
D−1
r Ds

⎫
⎬

⎭ ,

whereA(z,w) = (1−v−2w/z)(1−v−2z/v−2w) and B(z,w) = (1−z/v−2w)(1−
w/z). The second sum is zero as A(z,w) = v−2B(z,w).

To evaluate the RHS, we need the following standard result.

Lemma C.1 For any rational function γ (z) with simple poles {xt } ⊂ C
× and

possibly poles of higher order at z = 0,∞, the following equality holds:

γ (z)+ − γ (z)− =
∑

t

δ

(
z

xt

)
Resz=xt γ (z)

dz

z
. (C.2)

Proof Consider the partial fraction decomposition of γ (z):

γ (z) = P(z)+
∑

t

νt

z− xt ,
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where P(z) is a Laurent polynomial. Then P(z)± = P(z)⇒ P(z)+ − P(z)− = 0.
Meanwhile:

(
νt

z− xt
)+
= νt

z
+ νtxt
z2
+ νtx

2
t

z3
+ . . . and

(
νt

z− xt
)−
= −νt

xt
− νt z
x2
t

− νt z
2

x3
t

− . . . ,

so that

(
νt

z− xt
)+
−
(

νt

z− xt
)−
= νt

xt
δ

(
z

xt

)
= δ

(
z

xt

)
· Resz=xt

νt

z− xt
dz

z
.

The lemma is proved. ��
Since 2(z) is a rational function in z, which has (simple) poles only at

{wr , v2wr}ar=1 and possibly poles of higher order at z = 0,∞, we can apply
Lemma C.1 to evaluate 2(z)+ −2(z)−:

2(z)+ −2(z)− =
a∏

t=1

wt ·
a∑

r=1

(
δ

(
z

wr

)
Z(wr )

Wr(wr )W(v−2wr )
+ δ

(
z

v2wr

)
Z(v2wr )

Wr(wr )W(v2wr )

)
=

1

1− v2

a∏

t=1

wt ·
a∑

r=1

(
δ

(
wr
z

)
Z(wr )

Wr(wr )Wr(v−2wr )
− v2δ

(
v2wr
z

)
Z(v2wr )

Wr(wr )Wr(v2wr )

)
.

Hence, the RHS equals

1

(v − v−1)(1− v2)

a∏

t=1

wt×

a∑

r=1

(
δ

(
wr
z

)
δ
(wr
w

) Z(wr )
Wr(wr )Wr(v−2wr )

− δ
(

v2wr
z

)
δ

(
v2wr
w

)
v2Z(wr )

Wr(wr )Wr(v2wr )

)
.

As a result, we finally get LHS = RHS.

Case cij < 0, i → j We may assume I = {i, j}, and we need to check
[Ei(z), Fj (w)] = 0. We have

[Ei(z), Fj (w)]
ρ+i ρ

−
j

=
ai∏

t=1

wi,t ·
[
ai∑

r=1

δ

(
wi,r
z

)
Zi(wi,r )
Wi,r (wi,r )

D−1
i,r ,

aj∑

s=1

δ

(
v2
jwj,s

w

)
1

Wj,s(wj,s )
Dj,s

]
.

The latter is obviously zero, since [D−1
i,r ,wj,s] = 0 = [Dj,s,wi,r ].
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Case cij < 0, i ← j We may assume I = {i, j}, and we need to check
Ei(z)Fj (w)/(ρ

+
i ρ

−
j ) = Fj (w)Ei(z)/(ρ+i ρ−j ). The LHS equals

v
−cij
i

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

w
cji /2
j,t ×

1≤s≤aj∑

1≤r≤ai
δ

(
wi,r
z

)
δ

(
v2
jwj,s

w

)
Zi(wi,r )

∏−cji
p=1 Wj(v

−cji−2p
j z)

Wi,r (wi,r )
D−1
i,r

∏−cij
p′=1Wi(v

−cij−2p′
i w)

Wj,s(wj,s )
Dj,s =

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

w
cji /2
j,t · A(z,w)×

1≤s≤aj∑

1≤r≤ai
δ

(
wi,r
z

)
δ

(
v2
jwj,s

w

)
Zi(wi,r )

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

∏−cij
p′=1Wi,r (v

−cij−2p′
i w)

Wi,r (wi,r )Wj,s(wj,s )
D−1
i,r Dj,s ,

where A(z,w) = v
−cij
i

∏−cji
p=1

(
1− v−2

j w

v
−cji−2p

j z

)
∏−cij
p′=1

(
1− v−2

i z

v
−cij−2p′
i w

)
.

Likewise, the RHS equals

v
cji
j

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

w
cji /2
j,t ×

1≤s≤aj∑

1≤r≤ai
δ

(
v2
jwj,s

w

)
δ

(
wi,r
z

) ∏−cij
p′=1Wi(v

−cij−2p′
i w)

Wj,s (wj,s )
Dj,s

Zi(wi,r )
∏−cji
p=1 Wj(v

−cji−2p
j z)

Wi,r (wi,r )
D−1
i,r =

ai∏

t=1

w
1+cij /2
i,t

aj∏

t=1

w
cji /2
j,t · B(z,w)×

1≤s≤aj∑

1≤r≤ai
δ

(
wi,r
z

)
δ

(
v2
jwj,s

w

)
Zi(wi,r )

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

∏−cij
p′=1Wi,r (v

−cij−2p′
i w)

Wi,r (wi,r )Wj,s (wj,s )
D−1
i,r Dj,s ,

where B(z,w) = v
cji
j

∏−cji
p=1

(
1− w

v
−cji−2p

j z

)
∏−cij
p′=1

(
1− z

v
−cij−2p′
i w

)
.

The equality LHS = RHS follows from A(z,w) = B(z,w).

C(vii) Compatibility with (U7)

Case cij = 0 In this case, [Ei(z), Ej (w)] = 0, due to our verification of (U2).
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Case cij < 0 To simplify our calculations, we introduce

χi′,r :=
ai′∏

t=1

wi′,t ·
∏

j ′→i′

aj ′∏

t=1

w
cj ′i′/2
j ′,t · Zi′(wi′,r )

Wi′,r (wi′,r )

∏

j ′→i′

−cj ′i′∏

p=1

Wj ′(v
−cj ′i′−2p
j ′ wi′,r )D

−1
i′,r ,

so that Ei′(z) = ρ+i′
∑ai′
r=1 δ

(
wi′,r
z

)
χi′,r .

The verification of (U7) is based on the following result.

Lemma C.2 The following relations hold:

χi,rwj,s = v
−2δij δrs
i wj,sχi,r for 1 ≤ r ≤ ai, 1 ≤ s ≤ aj ,

(wi,r1 − v2
iwi,r2)χi,r1χi,r2 = (v2

iwi,r1 − wi,r2)χi,r2χi,r1 for 1 ≤ r1 �= r2 ≤ ai,

(wi,r − v
cij
i wj,s)χi,rχj,s = (vciji wi,r − wj,s)χj,sχi,r for 1 ≤ r ≤ ai, 1 ≤ s ≤ aj .

Proof Follows from straightforward computations. ��
With the help of this lemma, let us verify (U7) for cij = −1.

The latter amounts to proving [Ei(z1), [Ei(z2), Ej (w)]v]v−1/((ρ
+
i )

2ρ+j ) =
−[Ei(z2), [Ei(z1), Ej (w)]v]v−1/((ρ

+
i )

2ρ+j ). The LHS equals

(1− v2)

⎡

⎣
ai∑

r1=1

δ

(
wi,r1
z1

)
χi,r1 ,

1≤s≤aj∑

1≤r2≤ai
δ

(
wi,r2
z2

)
δ
(wj,s
w

) wi,r2
wi,r2 − vwj,s

χi,r2χj,s

⎤

⎦

v−1

=

1≤s≤aj∑

1≤r≤ai
δ
(wj,s
w

){
δ

(
wi,r
z1

)
δ

(
v−2wi,r
z2

)
− δ

(
wi,r
z2

)
δ

(
v−2wi,r
z1

)}
(v2 − 1)wi,r
wi,r − v3wj,s

χ2
i,rχj,s−

(v2 − 1)2
1≤s≤aj∑

1≤r1 �=r2≤ai
δ

(
wi,r1
z1

)
δ

(
wi,r2
z2

)
δ
(wj,s
w

) A(z1, z2, w)

v2wi,r1 − wi,r2
χi,r1χi,r2χj,s ,

where A(z1, z2, w) = z1z2(z1+z2−(v+v−1)w)
(z1−vw)(z2−vw)

and the last equality is obtained by
treating separately r1 = r2 and r1 �= r2 cases. The first sum is obviously skew-
symmetric in z1, z2. The second sum is also skew-symmetric, due to the above
relations on χi,r .

The cases cij = −2,−3 can be treated similarly, but the corresponding
computations become more cumbersome. We verified these cases using MATLAB.
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C(viii) Compatibility with (U8)

The case cij = 0 is obvious. The case cij = −1 can be treated analogously to the
above verification of (U7). The verification for the cases cij = −2,−3 is more
cumbersome and can be performed as outlined in the verification of (U7). Our
verification involved a simple computation in MATLAB.

This completes our proof of Theorem 7.1.

Remark C.3 Theorem 7.1 admits the following straightforward generalization. For
every i ∈ I , pick two polynomials Z(1)i (z), Z

(2)
i (z) in z−1 such that Zi(z) =

Z
(1)
i (z)Z

(2)
i (z). There is a unique C(v)[z±1

1 , . . . , z±1
N ]-algebra homomorphism

Uad
0,μ[z±1

1 , . . . , z±1
N ] → Ãv

frac[z±1
1 , . . . , z±1

N ], such that

ei(z) 	→ −vi

1− v2
i

ai∏

t=1

wi,t
∏

j→i

aj∏

t=1

w
cji /2
j,t ·

ai∑

r=1

δ

(
wi,r
z

)
Z
(1)
i (wi,r )

Wi,r (wi,r )

∏

j→i

−cji∏

p=1

Wj(v
−cji−2p
j z)D−1

i,r ,

fi(z) 	→ 1

1− v2
i

∏

j←i

aj∏

t=1

w
cji /2
j,t ·

ai∑

r=1

δ

(
v2
iwi,r
z

)
Z
(2)
i (v

2
iwi,r )

Wi,r (wi,r )

∏

j←i

−cji∏

p=1

Wj(v
−cji−2p
j z)Di,r ,

ψ±i (z) 	→ 2i(z)
±, (φ+i )

±1 	→
ai∏

t=1

w±1/2
i,t , (φ−i )

±1 	→ (−vi )
∓ai

ai∏

t=1

w∓1/2
i,t .

Appendix D Proof of Theorem 10.5

Due to Theorem 5.5, it suffices to check that the assignment � of Theorem 10.5
preserves defining relations (Û1–Û6, Û9). To simplify our exposition, we will
assume that b1, b2 < 0, while the case when one of them is zero is left to the
interested reader (note that the case b1 = b2 = 0 has been treated in Remark 10.4).
We will also work with h̄±1 := [2]−1

v h±1 instead of h±1, so that [h̄±1, er ] =
er±1, [h̄±1, fr ] = −fr±1.

D(i) Compatibility with (Û1)

The equalities�((ψ+0 )±1)�((ψ+0 )∓1) = 1 and�((ψ−b )±1)�((ψ−b )∓1) = 1 follow
immediately from relation (Û1) for both Usc

0,b1
and Usc

0,b2
.

The commutativity of �((ψ+0 )±1),�((ψ−b )±1) between themselves and with
each of �(h̄±1) is due to relations (Û1, Û4, Û5) for both Usc

0,b1
and Usc

0,b2
.
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It remains to prove [�(h̄1),�(h̄−1)] = 0. The LHS is equal to
[h̄1⊗ 1+ 1⊗ h̄1 − (v− v−1)e0⊗ f1, h̄−1⊗ 1+ 1⊗ h̄−1 + (v− v−1)e−1⊗ f0] =
(v−v−1)(e0⊗f0−e−1⊗f1+e−1⊗f1−e0⊗f0)−(v−v−1)2[e0⊗f1, e−1⊗f0] =
−(v − v−1)2(e0e−1 ⊗ f1f0 − e−1e0 ⊗ f0f1) = 0.

Here we used (Û1, Û4, Û5) for both Usc
0,b1
,Usc

0,b2
in the first equality, while the

second equality follows from e0e−1 = v2e−1e0, f1f0 = v−2f0f1, due to (Û2) for
Usc

0,b1
and (Û3) for Usc

0,b2
.

D(ii) Compatibility with (Û2)

We need to prove [�(er+1),�(es)]v2 + [�(es+1),�(er)]v2 = 0 for
b2 − 1 ≤ r , s ≤ −1.

Case b2 − 1 < r, s < −1 Then, [�(er+1),�(es)]v2 + [�(es+1),�(er)]v2 = 1 ⊗
([er+1, es]v2 + [es+1, er ]v2) = 0 as the second term is zero in Usc

0,b2
by (Û2).

Case r = s = b2 − 1 It suffices to show that [�(eb2),�(eb2−1)]v2 = 0, which
follows from [�(eb2),�(eb2−1)]v2 = [1⊗ eb2 , e−1 ⊗ ψ−b2

+ 1⊗ eb2−1]v2 = e−1 ⊗
[eb2 , ψ

−
b2
]v2+1⊗[eb2 , eb2−1]v2 = 0. The last equality follows from [eb2, ψ

−
b2
]v2 = 0

and [eb2 , eb2−1]v2 = 0 in Usc
0,b2

, due to (Û2) and (Û4), respectively.

Case r = b2 − 1, b2 − 1 < s < −1 Then, [�(eb2),�(es)]v2 +
[�(es+1),�(eb2−1)]v2 = 1 ⊗ ([eb2, es]v2 +[es+1, eb2−1]v2) + e−1 ⊗
[es+1, ψ

−
b2
]v2 = 0. The last equality follows again from (Û2) and (Û4) for Usc

0,b2
.

Case r = b2 − 1, s = −1 Then [�(eb2),�(e−1)]v2 = 1 ⊗ [eb2, e−1]v2 and
[�(e0),�(eb2−1)]v2 = [e0 ⊗ ψ+0 + 1 ⊗ e0, e−1 ⊗ ψ−b2

+ 1 ⊗ eb2−1]v2 = e0 ⊗
[ψ+0 , eb2−1]v2 + [e0, e−1]v2 ⊗ ψ+0 ψ−b2

+ e−1 ⊗ [e0, ψ
−
b2
]v2 + 1 ⊗ [e0, eb2−1]v2 =

1⊗ [e0, eb2−1]v2 as the first three terms are zero, due to (Û2) for Usc
0,b1

and (Û4) for

Usc
0,b2

. The result follows from (Û2) for Usc
0,b2

.

Case r = s = −1 It suffices to show that [�(e0),�(e−1)]v2 = 0, which follows
from [�(e0),�(e−1)]v2 = [e0 ⊗ ψ+0 + 1 ⊗ e0, 1 ⊗ e−1]v2 = e0 ⊗ [ψ+0 , e−1]v2 +
1⊗ [e0, e−1]v2 = 0. The last equality follows again from relations (Û2, Û4) for the
algebra Usc

0,b2
.

Case r = −1, b2 − 1 < s < −1 Then, [�(e0),�(es)]v2 = [e0 ⊗ ψ+0 +
1⊗ e0, 1⊗ es]v2 = 1⊗ [e0, es]v2 , while [�(es+1),�(e−1)]v2 = 1⊗ [es+1, e−1]v2 .

The sum of these two terms is zero, due to (Û2) for Usc
0,b2

.
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D(iii) Compatibility with (Û3)

We need to prove [�(fr),�(fs+1)]v2 + [�(fs),�(fr+1)]v2 = 0 for b1 ≤ r, s ≤ 0.

Case b1 < r, s < 0 Then, [�(fr),�(fs+1)]v2 + [�(fs),�(fr+1)]v2 =
([fr, fs+1]v2 + [fs, fr+1]v2)⊗ 1 = 0 as the first term is zero in Usc

0,b1
by (Û3).

Case r = s = b1 It suffices to show that [�(fb1),�(f1+b1)]v2 = 0, which follows
from [�(fb1),�(f1+b1)]v2 = [fb1⊗1+ψ−b1

⊗f0, f1+b1⊗1]v2 = [fb1 , f1+b1 ]v2⊗
1 + [ψ−b1

, f1+b1 ]v2 ⊗ f0 = 0. The last equality follows from [fb1, f1+b1 ]v2 = 0 =
[ψ−b1

, f1+b1 ]v2 , due to (Û3, Û5) for Usc
0,b1

.

Case r = b1 < s < 0 Then, [�(fs),�(f1+b1)]v2 = [fs, f1+b1 ]v2 ⊗ 1 and
[�(fb1),�(fs+1)]v2 = [fb1 , fs+1]v2 ⊗ 1 as [ψ−b1

, fs+1]v2 = 0 in Usc
0,b1

by (Û5).

It remains to use (Û3) for Usc
0,b1

.

Case r = b1, s = 0 Then [�(fb1),�(f1)]v2 = [fb1, f1]v2⊗1+[fb1, ψ
+
0 ]v2⊗f1+

[ψ−b1
, f1]v2⊗f0+ψ−b1

ψ+0 ⊗[f0, f1]v2 , and [�(f0),�(f1+b1)]v2 = [f0, f1+b1 ]v2⊗1.

It remains to use [fb1 , f1]v2 + [f0, f1+b1 ]v2 = [fb1, ψ
+
0 ]v2 = [ψ−b1

, f1]v2 = 0 in

Usc
0,b1

, due (Û3) and (Û5), and [f0, f1]v2 = 0 in Usc
0,b2

, due to (Û3).

Case r = s = 0 It suffices to show that [�(f0),�(f1)]v2 = 0, which follows from
[�(f0),�(f1)]v2 = [f0⊗ 1, f1⊗ 1+ψ+0 ⊗f1]v2 = [f0, f1]v2 ⊗ 1+[f0, ψ

+
0 ]v2 ⊗

f1 = 0, due to (Û3, Û5) for Usc
0,b1

.

Case r = 0, b1 < s < 0 Then [�(f0),�(fs+1)]v2 = [f0, fs+1]v2 ⊗ 1, and
[�(fs),�(f1)]v2 = [fs⊗1, f1⊗1+ψ+0 ⊗f1]v2 = [fs, f1]v2⊗1+[fs, ψ+0 ]v2⊗f1.
It remains to apply the equalities [f0, fs+1]v2 + [fs, f1]v2 = 0 and [fs, ψ+0 ]v2 = 0
in Usc

0,b1
, due to (Û3) and (Û5).

D(iv) Compatibility with (Û4)

The equalities �(ψ+0 )�(er) = v2�(er)�(ψ
+
0 ) and �(ψ−b )�(er) =

v−2�(er)�(ψ
−
b ) for b2 − 1 ≤ r ≤ 0 are obvious, due to relations (Û1) and

(Û4) for Usc
0,b1
,Usc

0,b2
.

Let us now verify the equality [�(h̄1),�(er )] = �(er+1) for b2 − 1 ≤ r ≤ −1.

Case b2 ≤ r ≤ −2 We have [�(h̄1),�(er)] = [h̄1 ⊗ 1+ 1⊗ h̄1 − (v − v−1)e0 ⊗
f1, 1 ⊗ er ] = 1 ⊗ er+1 − (v − v−1)e0 ⊗ [f1, er ] = 1 ⊗ er+1 = �(er+1), due
to (Û4, Û6) for Usc

0,b2
.
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Case r=−1 As above, we get [�(h̄1),�(e−1)]= [h̄1⊗1+1⊗h̄1− (v−v−1)e0⊗f1,

1⊗e−1] = 1⊗e0−(v−v−1)e0⊗[f1, e−1] = 1⊗e0+(v−v−1)e0⊗ ψ+0
v−v−1 = �(e0).

Case r=b2−1 We have [�(h̄1),�(eb2−1)]=[h̄1⊗1+1 ⊗ h̄1 − (v−v−1)e0⊗f1,
e−1⊗ψ−b2

+1⊗eb2−1] = e0⊗ψ−b2
+1⊗eb2−e0⊗ψ−b2

−(v−v−1)[e0⊗f1, e−1⊗ψ−b2
] =

1⊗ eb2 = �(eb2), where we used [e0 ⊗ f1, e−1 ⊗ψ−b2
] = 0 as e0e−1 = v2e−1e0 in

Usc
0,b1

, due to (Û2), and ψ−b2
f1 = v2f1ψ

−
b2

in Usc
0,b2

, due to (Û5).

Let us now verify the equality [�(h̄−1),�(er)] = �(er−1) for b2 ≤ r ≤ 0.

Case b2<r<0 We have [�(h̄−1),�(er)] = [h̄−1⊗1+1⊗h̄−1+(v−v−1)e−1 ⊗ f0,
1⊗er ] = 1⊗er−1+(v−v−1)e−1⊗[f0, er ] = 1⊗er−1 = �(er−1), due to (Û4, Û6)
for Usc

0,b2
.

Case r=0 We have [�(h̄−1),�(e0)]=[h̄−1⊗1+1⊗h̄−1+(v−v−1)e−1⊗f0,
e0⊗ψ+0 +1⊗e0] = e−1⊗ψ+0 +1⊗e−1+(v−v−1)e−1⊗[f0, e0]+(v−v−1)[e−1⊗
f0, e0 ⊗ ψ+0 ] = 1 ⊗ e−1 = �(e−1), where we used [e−1 ⊗ f0, e0 ⊗ ψ+0 ] = 0 as
e0e−1 = v2e0e−1 in Usc

0,b1
, due to (Û2), and f0ψ

+
0 = v2ψ+0 f0 in Usc

0,b2
, due to (Û5).

Case r=b2 We have [�(h̄−1),�(eb2)]=[h̄−1⊗1+1 ⊗ h̄−1 + (v−v−1)e−1⊗f0,

1 ⊗ eb2 ] = 1 ⊗ eb2−1 + (v − v−1)e−1 ⊗ ψ−b2
v−v−1 = �(eb2−1), due to (Û4, Û6)

for Usc
0,b2

.

D(v) Compatibility with (Û5)

The equalities �(ψ+0 )�(fr) = v−2�(fr)�(ψ
+
0 ) and �(ψ−b )�(fr) =

v2�(fr)�(ψ
−
b ) for b1 ≤ r ≤ 1 are obvious, due to relations (Û1) and (Û5)

for Usc
0,b1
,Usc

0,b2
.

Let us now verify the equality [�(h̄1),�(fr)] = −�(fr+1) for b1 ≤ r ≤ 0.

Case b1 < r < 0 We have [�(h̄1),�(fr)] = [h̄1 ⊗ 1 + 1⊗ h̄1 − (v − v−1)e0 ⊗
f1, fr ⊗ 1] = −fr+1⊗ 1− (v− v−1)[e0, fr ]⊗ f1 = −fr+1⊗ 1 = −�(fr+1), due
to (Û5, Û6) for Usc

0,b1
.

Case r = 0 As above, we get [�(h̄1),�(f0)] = [h̄1⊗ 1+ 1⊗ h̄1− (v− v−1)e0⊗
f1, f0⊗ 1] = −f1⊗ 1− (v− v−1)[e0, f0]⊗f1 = −f1⊗ 1−ψ+0 ⊗f1 = −�(f1).

Case r = b1 We have [�(h̄1),�(fb1)] = [h̄1 ⊗ 1 + 1 ⊗ h̄1 − (v − v−1)e0 ⊗
f1, fb1 ⊗ 1+ ψ−b1

⊗ f0] = −f1+b1 ⊗ 1− ψ−b1
⊗ f1 + ψ−b1

⊗ f1 − (v − v−1)[e0 ⊗
f1, ψ

−
b1
⊗f0] = −f1+b1⊗1 = −�(f1+b1), where we used [e0⊗f1, ψ

−
b1
⊗f0] = 0

as f1f0 = v−2f0f1 in Usc
0,b2

, due to (Û3), and ψ−b1
e0 = v−2e0ψ

−
b1

in Usc
0,b1

, due

to (Û4).
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Let us now verify the equality [�(h̄−1),�(fr)] = −�(fr−1) for 1+b1 ≤ r ≤ 1.

Case 1 + b1 < r < 1 We have [�(h̄−1),�(fr)] = [h̄−1 ⊗ 1 + 1 ⊗ h̄−1 + (v −
v−1)e−1 ⊗ f0, fr ⊗ 1] = −fr−1 ⊗ 1 + (v − v−1)[e−1, fr ] ⊗ f0 = −fr−1 ⊗ 1 =
−�(fr−1), due to (Û5, Û6) for Usc

0,b1
.

Case r = 1 We have [�(h̄−1),�(f1)] = [h̄−1 ⊗ 1 + 1⊗ h̄−1 + (v − v−1)e−1 ⊗
f0, f1 ⊗ 1 + ψ+0 ⊗ f1] = −f0 ⊗ 1 − ψ+0 ⊗ f0 + ψ+0 ⊗ f0 + (v − v−1)[e−1 ⊗
f0, ψ

+
0 ⊗ f1] = −f0 ⊗ 1 = −�(f0), where we used [e−1 ⊗ f0, ψ

+
0 ⊗ f1] = 0 as

f0f1 = v2f1f0 in Usc
0,b2

and ψ+0 e−1 = v2e−1ψ
+
0 in Usc

0,b1
.

Case r = 1 + b1 We have [�(h̄−1),�(f1+b1)] = [h̄−1 ⊗ 1 + 1 ⊗ h̄−1 + (v −
v−1)e−1⊗ f0, f1+b1 ⊗ 1] = −fb1 ⊗ 1−ψ−b1

⊗ f0 = −�(fb1), due to (Û5, Û6) for
Usc

0,b1
.

D(vi) Compatibility with (Û6)

Case b2 ≤ r < 0, b1 < s ≤ 0 The equality [�(er),�(fs)] = 0 is obvious.

Case r = s = 0 We need to prove [�(e0),�(f0)] = 1
v−v−1�(ψ

+
0 ). This follows

from [�(e0),�(f0)] = [e0 ⊗ψ+0 + 1⊗ e0, f0 ⊗ 1] = [e0, f0] ⊗ψ+0 = ψ+0 ⊗ψ+0
v−v−1 =

�(ψ+0 )
v−v−1 , due to (Û6) for Usc

0,b1
.

Case r = 0, s = 1 We need to prove [�b1,b2(e0),�b1,b2(f1)] =
�b1,b2(ψ

+
0 )�b1,b2(h1). This can be easily deduced from the unshifted case

b1 = b2 = 0 by applying Remark 10.6. Indeed, [�b1,b2(e0),�b1,b2(f1)] =
[j+b1,0

⊗ j+0,b2
(�(e0)), j

+
b1,0

⊗ j+0,b2
(�(f1))] = j+b1,0

⊗ j+0,b2
(�([e0, f1])) =

j+b1,0
⊗ j+0,b2

(�(ψ+0 )�(h1)) = �b1,b2(ψ
+
0 )�b1,b2(h1), where the subscripts in

�b1,b2 are used this time to distinguish it from the Drinfeld-Jimbo coproduct �.

Case r = 0, b1 < s < 0 We need to prove [�(e0),�(fs)] = 0. This follows from
[�(e0),�(fs)] = [e0 ⊗ψ+0 + 1⊗ e0, fs ⊗ 1] = [e0, fs] ⊗ψ+0 = 0 as [e0, fs] = 0
in Usc

0,b1
by (Û6).

Case r = 0, s = b1 We need to prove [�(e0),�(fb1)] = 0. This follows from
[�(e0),�(fb1)] = [e0 ⊗ ψ+0 + 1 ⊗ e0, fb1 ⊗ 1 + ψ−b1

⊗ f0] = [e0, fb1 ] ⊗ ψ+0 +
ψ−b1
⊗[e0, f0] = −ψ

−
b1
⊗ψ+0

v−v−1 +
ψ−b1⊗ψ

+
0

v−v−1 = 0, where we used [e0⊗ψ+0 , ψ−b1
⊗f0] = 0

as ψ+0 f0 = v−2f0ψ
+
0 in Usc

0,b2
, ψ−b1

e0 = v−2e0ψ
−
b1

in Usc
0,b1

.

Case r = −1, s = 1 We need to prove [�(e−1),�(f1)] = 1
v−v−1�(ψ

+
0 ). This

follows from [�(e−1),�(f1)] = [1⊗ e−1, f1⊗1+ψ+0 ⊗f1] = ψ+0 ⊗[e−1, f1] =
ψ+0 ⊗ψ+0
v−v−1 = �(ψ+0 )

v−v−1 , due to (Û6) for Usc
0,b2

.
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Case b2 ≤ r < −1, s = 1 We need to prove [�(er),�(f1)] = 0. This follows
from [�(er),�(f1)] = [1 ⊗ er , f1 ⊗ 1 + ψ+0 ⊗ f1] = ψ+0 ⊗ [er , f1] = 0 as
[er , f1] = 0 in Usc

0,b2
by (Û6).

Case r = b2 − 1, s = 1 We need to prove [�(eb2−1),�(f1)] = 0. This follows
from [�(eb2−1),�(f1)] = [e−1⊗ψ−b2

+1⊗eb2−1, f1⊗1+ψ+0 ⊗f1] = [e−1, f1]⊗
ψ−b2

+ ψ+0 ⊗ [eb2−1, f1] + [e−1 ⊗ ψ−b2
, ψ+0 ⊗ f1] = ψ+0 ⊗ψ−b2

v−v−1 − ψ+0 ⊗ψ−b2
v−v−1 = 0. Here

we used [e−1 ⊗ ψ−b2
, ψ+0 ⊗ f1] = 0 as ψ−b2

f1 = v2f1ψ
−
b2

in Usc
0,b2

, due to (Û5), and

ψ+0 e−1 = v2e−1ψ
+
0 in Usc

0,b1
, due to (Û4).

Case r = b2 − 1, s = b1 The proof of [�b1,b2(eb2−1),�b1,b2(fb1)] =
�b1,b2(ψ

−
b )�b1,b2(h−1) can be deduced by applying Remark 10.6 analo-

gously to the case r = 0, s = 1. Indeed, [�b1,b2(eb2−1),�b1,b2(fb1)] =
[j−b1,0

⊗ j−0,b2
(�(e−1)), j

−
b1,0

⊗ j−0,b2
(�(f0))] = j−b1,0

⊗ j−0,b2
(�([e−1, f0])) =

j−b1,0
⊗ j−0,b2

(�(ψ−0 )�(h−1)) = �b1,b2(ψ
−
b )�b1,b2(h−1).

Case r = b2, s = b1 We need to prove [�(eb2),�(fb1)] = − 1
v−v−1�(ψ

−
b ). This

follows from [�(eb2),�(fb1)] = [1⊗ eb2 , fb1 ⊗1+ψ−b1
⊗f0] = ψ−b1

⊗[eb2, f0] =
−ψ

−
b1
⊗ψ−b2

v−v−1 = −�(ψ−b )
v−v−1 , due to (Û6) for Usc

0,b2
.

Case b2 < r < 0, s = b1 We need to prove [�(er),�(fb1)] = 0. This follows
from [�(er),�(fb1)] = [1 ⊗ er , fb1 ⊗ 1 + ψ−b1

⊗ f0] = ψ−b1
⊗ [er , f0] = 0 as

[er , f0] = 0 in Usc
0,b2

by (Û6).

Case r = b2 − 1, 1 + b1 < s ≤ 0 We need to prove [�(eb2−1),�(fs)] = 0. This
follows from [�(eb2−1),�(fs)] = [e−1 ⊗ ψ−b2

+ 1⊗ eb2−1, fs ⊗ 1] = [e−1, fs] ⊗
ψ−b2

= 0 as [e−1, fs] = 0 in Usc
0,b1

.

Case r = b2 − 1, s = 1 + b1 We need to prove [�(eb2−1),�(f1+b1)] =
− 1

v−v−1�(ψ
−
b ). This follows from [�(eb2−1),�(f1+b1)] = [e−1 ⊗ ψ−b2

+ 1 ⊗
eb2−1, f1+b1 ⊗ 1] = [e−1, f1+b1 ] ⊗ ψ−b2

= −ψ
−
b1
⊗ψ−b2

v−v−1 = −�(ψ−b )
v−v−1 , due to (Û6)

for Usc
0,b1

.

D(vii) Compatibility with (Û9)

Applying Remark 10.6 as we did above, we see that the equalities

[�(h1), [�(f1), [�(h1),�(e0)]]] = 0 and [�(h−1), [�(eb2−1), [�(h−1),�(fb1)]]] = 0
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follow from the equalities [h1, [f1, [h1, e0]]] = [2]v · [h1, [f1, e1]] = [2]v ·
[h1,

−ψ+2
v−v−1 ] = 0 in U+v and [h−1, [e−1, [h−1, f0]]] = −[2]v · [h−1, [e−1, f−1]] =

[2]v · [h−1,
ψ−−2

v−v−1 ] = 0 in U−v , respectively.

This completes our proof of Theorem 10.5.

Appendix E Proof of Lemma 10.9(b)

E(i) PBW Property for Usc
0,n

For Usc
0,n, the simply-connected shifted quantum affine algebra of sl2, define the

PBW variables to be {es}s∈Z ∪ {fs}s∈Z ∪ {ψ+r }r>0 ∪ {ψ−n−r}r>0 ∪ {(ψ+0 )±1} ∪
{(ψ−n )±1}. We order the elements in each group according to the decreasing order
of s, r . Any expression of the form

es+1
· · · es+a fs−1 · · · fs−b ψ

+
r+1
· · ·ψ+

r+
c+
ψ−
r−1
· · ·ψ−

r−
c−
(ψ+0 )

γ+(ψ−n )γ
−

with s+1 ≥ · · · ≥ s+a , s−1 ≥ · · · ≥ s−b , r+1 ≥ · · · ≥ r+
c+ > 0, r−1 ≤ · · · ≤ r−

c− <
n, γ± ∈ Z, a, b, c± ∈ N, will be referred to as the ordered monomial in the PBW
variables.

The following result is easy to check using defining relations (U1–U6).

Lemma E.1 The algebra Usc
0,n is spanned by the ordered monomials in the PBW

variables.

The key result of this section is a refinement of the previous statement.

Theorem E.2 For any n ∈ Z, the algebra Usc
0,n satisfies the PBW property, that is,

the set of the ordered monomials in the PBW variables forms a C(v)-basis of Usc
0,n.

E(ii) Proof of Theorem E.2

We will prove this result in four steps.

Step 1 Reduction to Ũsc
0,n.

Consider the associative C(v)-algebra Ũsc
0,n, defined in the same way as Usc

0,n but

without the generators (ψ+0 )−1, (ψ−n )−1. Note that Usc
0,n is the localization of Ũsc

0,n

by the multiplicative set generated by ψ+0 , ψ−n . Since these generators are among
the PBW variables, the PBW property for Usc

0,n follows from the PBW property for

Ũsc
0,n.
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Step 2 PBW property for Ũsc
0,0.

It is well-known that the algebra Uv(Lsl2) satisfies the PBW property with the
PBW variables chosen as {es}s∈Z∪{fs}s∈Z∪{ψ+r }r>0∪{ψ−−r }r>0∪{(ψ+0 )±1}. Here
the elements in each group are ordered according to the decreasing order of r, s.

Lemma E.3 There is an embedding of algebras Ũsc
0,0 ↪→ Uv(Lsl2)⊗C(v) C(v)[t],

such that

es 	→ es ⊗ t, fs 	→ fs ⊗ 1, ψ±±r 	→ ψ±±r ⊗ t.

Proof The above assignment obviously preserves all the defining relations of Ũsc
0,0.

Hence, it gives rise to a homomorphism Ũsc
0,0 → Uv(Lsl2)⊗C(v) C(v)[t].

To prove the injectivity of this homomorphism, let us first note that Ũsc
0,0

is spanned by the ordered monomials in the PBW variables, cf. Lemma E.1.
The above homomorphism maps these monomials to a subset of the basis for
Uv(Lsl2) ⊗C(v) C(v)[t], where we used the PBW property for Uv(Lsl2). Hence,
the ordered monomials in the PBW variable for Ũsc

0,0 are linearly independent and
the above homomorphism is injective. ��

Our proof of Lemma E.3 implies the PBW property for Ũsc
0,0.

Step 3 PBW property for Ũsc
0,n, n < 0.

For n < 0, the algebra Ũsc
0,n is obviously a quotient of Ũsc

0,0 by the 2-sided ideal

In := 〈ψ−0 , ψ−−1, . . . , ψ
−
1+n〉2−sided.

Let I ln be the left ideal generated by the same elements

I ln := 〈ψ−0 , ψ−−1, . . . , ψ
−
1+n〉left.

Lemma E.4 We have I ln = In.

Proof It suffices to show that I ln is also a right ideal. According to (U4), we have

ψ−−r es = v−2ψ−−r+1es−1 − es−1ψ
−
−r+1 + v−2esψ

−−r , ψ−0 es = v−2esψ
−
0 ,

so that the right multiplication by es preserves I ln. Similarly for fs (need to
apply (U5)), while for ψ+r , ψ−−r this is obvious. These elements generate Ũsc

0,0,
hence, the claim. ��

Combining the PBW property for Ũsc
0,0 (established in Step 2) with Lemma E.4

and Ũsc
0,n ) Ũsc

0,0/In, we get the PBW property for Ũsc
0,n.
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Step 4 PBW property for Ũsc
0,n, n > 0.

The proof proceeds by induction in n. We assume that the PBW property holds
for Ũsc

0,m with m < n and want to deduce the PBW property for Ũsc
0,n. Consider

the homomorphism ι̃n,−1,0 : Ũsc
0,n → Ũsc

0,n−1 defined analogously to ιn,−1,0 of
Proposition 10.8. Explicitly,

ι̃n,−1,0 : es 	→ es − es−1, fs 	→ fs, ψ
+
r 	→ ψ+r − ψ+r−1, ψ

−
r 	→ ψ−r − ψ−r−1,

where we set ψ+−1 := 0, ψ−n := 0 in the right-hand sides. The image of an ordered
monomial in the PBW variables for Ũsc

0,n under ι̃n,−1,0 is a linear combination of the

same ordered monomial in the PBW variables for Ũsc
0,n−1 with all ψ−r replaced by

(−ψ−r−1), called the leading monomial, and several other (not necessarily ordered)
monomials in the PBW variables. Based on the equality eses−1 = v2es−1es (s ∈ Z),
we see that rewriting these extra monomials as linear combinations of the ordered
monomials in the PBW variables, all of them are actually lexicographically smaller
than the leading monomial. Hence, the PBW property for Ũsc

0,n−1 implies the PBW

property for Ũsc
0,n. Moreover, we immediately get the injectivity of ι̃n,−1,0.

This completes our proof of Theorem E.2.

E(iii) Proof of Lemma 10.9(b)

Now we are ready to prove Lemma 10.9(b). Due to Lemma 10.9(a), it suffices to
verify the injectivity of the homomorphisms ιn,−1,0 and ιn,0,−1. The former follows
from the injectivity of ι̃n,−1,0 from Step 4 above, while the latter can be deduced in
the same way.

Appendix F Proof of Theorem 10.10

The proof of Theorem 10.10 proceeds in three steps. First, we construct�b1,b2 (this
construction depends on a choice of sufficiently small m1,m2 ≤ 0). Then, we
verify that this construction is independent of the choice made. Finally, we prove
the commutativity of the diagram of Theorem 10.10 for any m1,m2 ∈ Z≤0.
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F(i) Construction of �b1,b2

Fix any m1,m2 ∈ Z≤0 such that b1 +m1, b2 +m2 ∈ Z≤0. Consider the diagram

where the bottom horizontal arrow � = �b1+m1,b2+m2 is defined in Theorem 10.5.
Since the homomorphisms ιb,m2,m1 and ιb1,0,m1 ⊗ ιb2,m2,0 are injective, the homo-
morphism�b1+m1,b2+m2 gives rise to a uniquely determined homomorphism�b1,b2

making the above diagram commutative as far as we can prove

�(ιb,m2,m1(U
sc
0,b)) ⊂ (ιb1,0,m1 ⊗ ιb2,m2,0)(U

sc
0,b1

⊗ Usc
0,b2
). (♦)

As before, we use U
sc,>
0,b′ ,U

sc,≥
0,b′ ,U

sc,<
0,b′ ,U

sc,≤
0,b′ to denote the C(v)-subalgebras of

Usc
0,b′ generated by {er}, {er , ψ±±s±}, {fr }, {fr, ψ±±s±}, respectively. For r ∈ Z, we

claim that

�(er) ∈ 1⊗ er + U
sc,>
0,b1+m1

⊗ U
sc,≤
0,b2+m2

, �(fr) ∈ fr ⊗ 1+ U
sc,≥
0,b1+m1

⊗ U
sc,<
0,b2+m2

.

(31)

This follows by combining iteratively the formulas for�(e−1),�(f0),�(h±1)with
the relations [h±1, er ] = [2]v · er±1, [h±1, fr ] = −[2]v · fr±1. We also note that

U
sc,≥
0,b1

⊗ U
sc,≤
0,b2

⊂ (ιb1,0,m1 ⊗ ιb2,m2,0)(U
sc
0,b1

⊗ Usc
0,b2
). (32)

According to (31), we get

�(ιb,m2,m1(er )) ∈ 1⊗
−m2∑

s=0

(−1)s
(−m2

s

)
er−s + U

sc,>
0,b1+m1

⊗ U
sc,≤
0,b2+m2

.

The right-hand side is an element of (ιb1,0,m1 ⊗ ιb2,m2,0)(U
sc
0,b1
⊗Usc

0,b2
), due to (32)

and the equality 1⊗∑−m2
s=0 (−1)s

(−m2
s

)
er−s = (ιb1,0,m1⊗ιb2,m2,0)(1⊗er ). Likewise,

�(ιb,m2,m1(fr)) ∈
−m1∑

s=0

(−1)s
(−m1

s

)
fr−s ⊗ 1+ U

sc,≥
0,b1+m1

⊗ U
sc,<
0,b2+m2

.

The right-hand side is an element of (ιb1,0,m1 ⊗ ιb2,m2,0)(U
sc
0,b1

⊗ Usc
0,b2
), due

to (32) and the equality
∑−m1
s=0 (−1)s

(−m1
s

)
fr−s ⊗ 1 = (ιb1,0,m1 ⊗ ιb2,m2,0)(fr ⊗ 1).

We also have
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�(ιb,m2,m1((ψ
+
0 )
±1)) = (ιb1,0,m1 ⊗ ιb2,m2,0)((ψ0)

±1 ⊗ (ψ0)
±1),

�(ιb,m2,m1((ψ
−
b )
±1)) = (ιb1,0,m1 ⊗ ιb2,m2,0)((ψ

−
b1
)±1 ⊗ (ψ−b2

)±1).

Finally, combining the relations ψ+r = (v − v−1)[er , f0], ψ−b−r = (v−1 −
v)[eb−r , f0] (r ∈ Z>0) in Usc

0,b+m1+m2
with (31) and (32), we get

�(ψ+r ),�(ψ−b−r ) ∈ U
sc,≥
0,b1+m1

⊗ U
sc,≤
0,b2+m2

⊂ (ιb1,0,m1 ⊗ ιb2,m2,0)(U
sc
0,b1

⊗ Usc
0,b2
).

This completes our proof of (♦).
Therefore, we obtain the homomorphism �b1,b2 for the particular choice of

m1,m2.

F(ii) Independence of the Choice of m1,m2

Let us now prove that the homomorphism�b1,b2 constructed above does not depend
on the choice of m1,m2. To this end, fix another pair m′1,m′2 ∈ Z≤0 such that
b1 +m′1, b2 +m′2 ∈ Z≤0, and set m = m1 +m2,m

′ = m′1 +m′2.
Consider the following diagram:

According to Lemma 10.9(a): ιb+m,m′2,m′1 ◦ ιb,m2,m1 = ιb,m2+m′2,m1+m′1 and
(ιb1+m1,0,m′1 ⊗ ιb2+m2,m

′
2,0
) ◦ (ιb1,0,m1 ⊗ ιb2,m2,0) = (ιb1,0,m1+m′1 ⊗ ιb2,m2+m′2,0).

On the other hand, tracing back the explicit formulas for �b1+m1,b2+m2 and
�b1+m1+m′1,b2+m2+m′2 of Theorem 10.5, it is easy to check that the lower square
is commutative.

The above two observations imply that the maps �b1,b2 are the same for both
(m1,m2) and (m1 + m′1,m2 + m′2). Due to the symmetry, we also see that the
maps �b1,b2 are the same for both (m′1,m′2) and (m1 + m′1,m2 + m′2). Therefore,
the maps �b1,b2 are the same for both (m1,m2) and (m′1,m′2). This completes our
verification.
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F(iii) Commutativity of the Diagram for Any m1,m2 ∈ Z≤0

It remains to prove the commutativity of the diagram of Theorem 10.10. To this end,
choose m′1,m′2 ∈ Z≤0 such that b1 + m1 + m′1, b2 + m2 + m′2 ∈ Z≤0. Consider a
diagram analogous to the previous one:

By our construction, the lower square is commutative. Applying Lemma 10.9(a)
as in Sect. F(ii), we also see that the outer square is commutative. Hence, the
commutativity of the top square follows from the injectivity of the homomorphism
ιb1+m1,0,m′1 ⊗ ιb2+m2,m

′
2,0

, due to Lemma 10.9(b).

Appendix G Proof of Theorem 10.13

The proof of Theorem 10.13 proceeds in several steps. First, we recall the RTT
presentation of Uv(Lsln), and derive the equalities of the right-hand sides of (10.6).
Then, we compute the RTT coproduct of certain elements g̃(±1)

i from the RTT
presentation, see Theorems G.10, G.13 (this is the most technical part). This allows
us to derive formulas (10.2) and (10.3). Based on these, we deduce (10.4) and (10.5).

G(i) RTT Presentation of Uv(Lsln)

LetRtrig(z/w) ∈ End(Cn⊗Cn) be the standard trigonometricR-matrix of sln-type:

Rtrig(z/w) :=
n∑

i=1

Eii ⊗ Eii +
∑

1≤i �=j≤n

z− w
vz− v−1w

Eii ⊗ Ejj+

∑

1≤j<i≤n

(
(v − v−1)z

vz− v−1w
Eji ⊗ Eij + (v − v−1)w

vz− v−1w
Eij ⊗ Eji

) (G.1)

(for n = 2, this definition coincides with formula (11.3)).
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Define the RTT algebra of sln, denoted by U rtt(sln), to be the associative C(v)-
algebra generated by {t±ij [±r]}r∈N1≤i,j≤n subject to the following defining relations:

t±ii [0]t∓ii [0] = 1 for 1 ≤ i ≤ n, t+ij [0] = t−j i[0] = 0 for j < i, (G.2)

Rtrig(z/w)(T
ε(z)⊗1)(1⊗T ε′(w)) = (1⊗T ε′(w))(T ε(z)⊗1)Rtrig(z/w), (G.3)

qdet T ±(z) = 1, (G.4)

for all ε, ε′ ∈ {±}, where the matrices T ±(z) ∈ Matn×n(U rtt(sln)) are given by

T ±(z) :=
n∑

i,j=1

T ±ij (z) · Eij with T ±ij (z) :=
∑

r≥0

t±ij [±r]z∓r ,

and the quantum determinant qdet is defined in a standard way as

qdet T ±(z) :=
∑

τ∈Sn

(−v)−l(τ )T ±1,τ (1)(z)T
±
2,τ (2)(v

−2z) · · · T ±n,τ(n)(v2−2nz)

(cf. Sect. 11.4 and a footnote there).

Remark G.1 Let us point out right away that the RTT presentation of Uq(ĝln)
(with a nontrivial central charge), given in [17, Definition 3.2], involves only
three out of four relations (G.3), namely for (ε, ε′) = (+,+), (−,−), (−,+).
However, as pointed out in [32, 2.3], if the central charge is trivial, then the
fourth relation for (ε, ε′) = (+,−) is equivalent to the one for (ε, ε′) =
(−,+). Indeed, in our notations, this follows from the equalities Rtrig(z/w)

−1 =
R′trig(z/w), PR′trig(w/z)P−1 = Rtrig(z/w), where R′trig(z/w) is obtained from

Rtrig(z/w) by replacing v with v−1 and P ∈ End(Cn⊗C
n) denotes the permutation

operator.

Note that T ±(z) admits the following unique Gauss decomposition:

T ±(z) = F̃±(z) · G̃±(z) · Ẽ±(z)

with F̃±(z), G̃±(z), Ẽ±(z) ∈ Matn×n(U rtt(sln)) of the form

F̃±(z) =
∑

i

Eii+
∑

j<i

f̃±ij (z)·Eij , G̃±(z) =
∑

i

g̃±i (z)·Eii , Ẽ±(z) =
∑

i

Eii+
∑

j<i

ẽ±ji (z)·Eji .

We endowU rtt(sln)with the coproduct structure (also known as the RTT coproduct)
via

�rtt : U rtt(sln) −→ U rtt(sln)⊗U rtt(sln) given by �rtt(T ±(z)) := T ±(z)⊗T ±(z).
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Theorem G.2 ([17]) There exists a unique C(v)-algebra isomorphism

ϒ : U ad
v (Lsln)

∼−→U rtt(sln),

such that

e±j (z) 	→
ẽ±j,j+1(v

j z)

v − v−1 , f±j (z) 	→
f̃±j+1,j (v

j z)

v − v−1 ,

ψ±j (z) 	→ g̃±j+1(v
j z)(g̃±j (v

j z))−1, φ±j 	→ t∓11[0]t∓22[0] · · · t∓jj [0] for 1 ≤ j < n.

Moreover, this isomorphism intertwines the Drinfeld-Jimbo coproduct �ad on
U ad

v (Lsln) with the RTT coproduct �rtt on U rtt(sln).

Remark G.3 Restrictingϒ toUv(Lsln), viewed as a Hopf subalgebra ofU ad
v (Lsln),

we get an embedding Uv(Lsln) ↪→ U rtt(sln). We will deliberately refer to U rtt(sln)
as an RTT presentation of both algebras Uv(Lsln) and U ad

v (Lsln).

Let us express the matrix coefficients of F̃±(z), G̃±(z), Ẽ±(z) as Taylor
series in z∓1: ẽ+j i(z) = ∑

r≥0 ẽ
(r)
j i z

−r , ẽ−j i(z) = ∑
r<0 ẽ

(r)
j i z

−r , f̃+ij (z) =
∑
r>0 f̃

(r)
ij z

−r , f̃−ij (z) =
∑
r≤0 f̃

(r)
ij z

−r , g̃±i (z) = g̃±i +
∑
r>0 g̃

(±r)
i z∓r . According

to Theorem G.2, we have

ϒ−1(ẽ
(0)
j,j+1) = (v − v−1)ej,0, ϒ

−1(f̃
(0)
j+1,j ) = −(v − v−1)fj,0,

ϒ−1(ẽ
(−1)
j,j+1) = −v−j (v − v−1)ej,−1, ϒ

−1(f̃
(1)
j+1,j ) = vj (v − v−1)fj,1.

(G.5)

The following is the key technical result of this subsection.

Proposition G.4 For any 1 ≤ j < k < i ≤ n, we have:

(a) ẽ(0)j i = 1
v−v−1 [ẽ(0)ki , ẽ(0)jk ]v−1 .

(b) f̃ (0)ij = −1
v−v−1 [f̃ (0)kj , f̃ (0)ik ]v .

(c) ẽ(−1)
j i = 1

v−v−1 [ẽ(0)ki , ẽ(−1)
jk ]v−1 .

(d) f̃ (1)ij = −1
v−v−1 [f̃ (1)kj , f̃ (0)ik ]v .

Proof

(a) Comparing the matrix coefficients 〈vj ⊗ vk| · · · |vk ⊗ vi〉 of both sides of
the equality Rtrig(z/w)(T

+(z) ⊗ 1)(1 ⊗ T +(w))= (1 ⊗ T +(w))(T +(z)⊗ 1)
Rtrig(z/w), we get

(z−w)T +jk(z)T +ki (w)+(v−v−1)zT +kk (z)T
+
ji (w) = (z−w)T +ki (w)T +jk(z)+(v−v−1)wT +kk (w)T

+
ji (z).
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Evaluating the coefficients of z1w0 in both sides of this equality, we find

g̃+j ẽ
(0)
jk g̃

+
k ẽ
(0)
ki + (v − v−1)g̃+k g̃

+
j ẽ
(0)
j i = g̃+k ẽ(0)ki g̃+j ẽ(0)jk .

Combining this with Lemma G.5 below, we obtain

(v−v−1)g̃+k g̃
+
j ẽ
(0)
j i = g̃+k g̃+j [ẽ(0)ki , ẽ(0)jk ]v−1 �⇒ ẽ

(0)
j i = [ẽ(0)ki , ẽ(0)jk ]v−1/(v−v−1).

(b) Comparing the matrix coefficients 〈vi ⊗ vk| · · · |vk ⊗ vj 〉 of both sides of the
equality Rtrig(z/w)(T

−(z) ⊗ 1)(1 ⊗ T −(w)) = (1 ⊗ T −(w))(T −(z) ⊗ 1)
Rtrig(z/w), we get

(z−w)T −ik (z)T −kj (w)+(v−v−1)wT −kk (z)T
−
ij (w) = (z−w)T −kj (w)T −ik (z)+(v−v−1)zT −kk (w)T

−
ij (z).

Evaluating the coefficients of z0w1 in both sides of this equality, we find

−f̃ (0)ik g̃−k f̃ (0)kj g̃−j + (v − v−1)g̃−k f̃
(0)
ij g̃

−
j = −f̃ (0)kj g̃−j f̃ (0)ik g̃−k .

Combining this with Lemma G.5 below, we obtain

−(v− v−1)f̃
(0)
ij g̃

−
k g̃

−
j = [f̃ (0)kj , f̃ (0)ik ]v · g̃−k g̃−j �⇒ f̃

(0)
ij = −[f̃ (0)kj , f̃ (0)ik ]v/(v− v−1).

(c) Comparing the matrix coefficients 〈vk ⊗ vj | · · · |vi ⊗ vk〉 of both sides of the
equality Rtrig(z/w)(T

+(z) ⊗ 1)(1 ⊗ T −(w)) = (1 ⊗ T −(w))(T +(z) ⊗ 1)
Rtrig(z/w), we get

(z−w)T +ki z)T −jk(w)+(v−v−1)wT +ji (z)T
−
kk(w) = (z−w)T −jk(w)T +ki (z)+(v−v−1)zT −ji (w)T

+
kk(z).

Evaluating the coefficients of z1w1 in both sides of this equality, we find

g̃+k ẽ
(0)
ki

⎛

⎝g̃−j ẽ
(−1)
jk +

∑

j ′<j
f̃
(0)
jj ′ g̃

−
j ′ ẽ
(−1)
j ′k

⎞

⎠ =

⎛

⎝g̃−j ẽ
(−1)
jk +

∑

j ′<j
f̃
(0)
jj ′ g̃

−
j ′ ẽ
(−1)
j ′k

⎞

⎠ g̃+k ẽ
(0)
ki + (v − v−1)

⎛

⎝g̃−j ẽ
(−1)
j i +

∑

j ′<j
f̃
(0)
jj ′ g̃

−
j ′ ẽ
(−1)
j ′i

⎞

⎠ g̃+k .

(G.6)

This equation actually implies g̃+k ẽ
(0)
ki g̃

−
j ẽ
(−1)
jk = g̃−j ẽ(−1)

jk g̃+k ẽ
(0)
ki +

(v− v−1)g̃−j ẽ
(−1)
j i g̃+k . We prove this by induction in j . For j = 1, this

is just (G.6). In general, note that for j ′ < j < k < i, the element
f̃
(0)
jj ′ commutes with ẽ

(0)
ki and g̃+k . The latter follows from Lemma G.5,

while the equality [f̃ (0)
jj ′ , ẽ

(0)
ki ] = 0 follows by combining parts (a,b) from
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above with [ea,0, fb,0]= 0 for a �= b. Hence, (G.6) implies A(j, k, i) +∑
j ′<j f̃

(0)
jj ′ A(j

′, k, i) = 0, where we set

A(j, k, i) := g̃+k ẽ(0)ki g̃−j ẽ(−1)
jk − g̃−j ẽ(−1)

jk g̃+k ẽ
(0)
ki − (v − v−1)g̃−j ẽ

(−1)
j i g̃+k .

By the induction assumption A(j ′, k, i) = 0 for j ′ < j , hence, A(j, k, i) = 0.
Combining this with Lemma G.5 below, we obtain

(v − v−1)g̃−j g̃
+
k ẽ
(−1)
j i = g̃−j g̃+k [ẽ(0)ki , ẽ(−1)

jk ]v−1 �⇒ ẽ
(−1)
j i = [ẽ(0)ki , ẽ(−1)

jk ]v−1/(v − v−1).

(d) Comparing the matrix coefficients 〈vk ⊗ vi | · · · |vj ⊗ vk〉 of both sides of the
equality Rtrig(z/w)(T

+(z) ⊗ 1)(1 ⊗ T −(w)) = (1 ⊗ T −(w))(T +(z) ⊗ 1)
Rtrig(z/w), we get

(z−w)T +kj (z)T −ik (w)+(v−v−1)zT +ij (z)T
−
kk (w) = (z−w)T −ik (w)T +kj (z)+(v−v−1)wT −ij (w)T

+
kk (z).

Evaluating the coefficients of z0w0 in both sides of this equality, we find

⎛

⎝f̃ (1)kj g̃
+
j +

∑

j ′<j
f̃
(1)
kj ′ g̃

+
j ′ ẽ
(0)
j ′j

⎞

⎠ f̃ (0)ik g̃
−
k + (v − v−1)

⎛

⎝f̃ (1)ij g̃
+
j +

∑

j ′<j
f̃
(1)
ij ′ g̃

+
j ′ ẽ
(0)
j ′j

⎞

⎠ g̃−k =

f̃
(0)
ik g̃

−
k

⎛

⎝f̃ (1)kj g̃
+
j +

∑

j ′<j
f̃
(1)
kj ′ g̃

+
j ′ ẽ
(0)
j ′j

⎞

⎠ .

(G.7)

This equation actually implies f̃ (1)kj g̃
+
j f̃

(0)
ik g̃

−
k + (v − v−1)f̃

(1)
ij g̃

+
j g̃

−
k =

f̃
(0)
ik g̃

−
k f̃

(1)
kj g̃

+
j . We prove this by induction in j . For j = 1, this is just (G.7).

Analogously to part (c) above, we note that the element ẽ(0)
j ′j commutes with

f̃
(0)
ik and g̃−k for j ′ < j < k < i. Hence, (G.7) implies B(j, k, i) +
∑
j ′<j B(j

′, k, i)ẽ(0)
j ′j = 0, where we set

B(j, k, i) := f̃ (1)kj g̃+j f̃ (0)ik g̃−k + (v − v−1)f̃
(1)
ij g̃

+
j g̃

−
k − f̃ (0)ik g̃−k f̃ (1)kj g̃+j .

By the induction assumption B(j ′, k, i) = 0 for j ′ < j , hence, B(j, k, i) = 0.
Combining this with Lemma G.5 below, we obtain
−(v − v−1)f̃

(1)
ij g̃

−
k g̃

+
j = [f̃ (1)kj , f̃ (0)ik ]v · g̃−k g̃+j

�⇒ f̃
(1)
ij = −[f̃ (1)kj , f̃ (0)ik ]v/(v − v−1).

��
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Lemma G.5 For any 1 ≤ j < i ≤ n and 1 ≤ a, b ≤ n, we have:

(a) g̃εag̃
ε′
b = g̃ε

′
b g̃

ε
a for any ε, ε′ ∈ {±}.

(b) g̃±a ẽ
(0)
j i = v±δai∓δaj ẽ(0)j i g̃±a .

(c) g̃±a f̃
(0)
ij = v∓δai±δaj f̃ (0)ij g̃±a .

(d) g̃±a ẽ
(−1)
j i = v±δai∓δaj ẽ(−1)

j i g̃±a .

(e) g̃±a f̃
(1)
ij = v∓δai±δaj f̃ (1)ij g̃±a .

Proof First, we note that t±ii [0] = g̃±i . Hence, we have g̃±i g̃
∓
i = 1, due to

relation (G.2).

(a) Due to the above observation, it suffices to prove g̃+a g̃+b = g̃+b g̃+a for
a <b. This follows by evaluating the coefficients of z0w1 in the equality of
the matrix coefficients 〈va ⊗ vb| · · · |va ⊗ vb〉 of both sides of the equality
((vz− v−1w)Rtrig(z/w))(T

+(z)⊗1)(1⊗T +(w)) = (1⊗T +(w))(T +(z)⊗1)
((vz− v−1w)Rtrig(z/w)).

(b) Due to the above observation, it suffices to prove g̃+a ẽ
(0)
j i = vδai−δaj ẽ(0)j i g̃+a .

This follows by evaluating the coefficients of z0w1 in the equality of the
matrix coefficients 〈va ⊗ vj | · · · |va ⊗ vi〉 of both sides of the equality ((vz −
v−1w)Rtrig(z/w))(T

+(z)⊗ 1)(1⊗T +(w)) = (1⊗T +(w))(T +(z)⊗ 1)((vz−
v−1w)Rtrig(z/w)). Note that the cases a < j, a = j, j < a < i, a = i, a > i
have to be treated separately.

(c) Due to the above observation, it suffices to prove g̃−a f̃
(0)
ij = vδai−δaj f̃ (0)ij g̃−a .

This follows by evaluating the coefficients of z0w1 in the equality of the
matrix coefficients 〈vi ⊗ va| · · · |vj ⊗ va〉 of both sides of the equality ((vz −
v−1w)Rtrig(z/w))(T

−(z)⊗ 1)(1⊗T −(w)) = (1⊗T −(w))(T −(z)⊗ 1)((vz−
v−1w)Rtrig(z/w)). Note that the cases a < j, a = j, j < a < i, a = i, a > i
have to be treated separately.

(d) Due to the above observation, it suffices to prove g̃+a ẽ
(−1)
j i = vδai−δaj ẽ(−1)

j i g̃+a .

This follows by evaluating the coefficients of z1w1 in the equality of the
matrix coefficients 〈va ⊗ vj | · · · |va ⊗ vi〉 of both sides of the equality ((vz −
v−1w)Rtrig(z/w))(T

+(z)⊗ 1)(1⊗T −(w)) = (1⊗T −(w))(T +(z)⊗ 1)((vz−
v−1w)Rtrig(z/w)). Note that the cases a < j, a = j, j < a < i, a = i, a > i
have to be treated separately.

Let us emphasize that this case is less trivial than part (b), due to the fact that

[w1]T −j i (w) = g̃−j ẽ(−1)
j i +

∑

j ′<j
f̃
(0)
jj ′ g̃

−
j ′ ẽ
(−1)
j ′i .

Hence, the proof proceeds by induction in j , while we also use part (c) from
above.

(e) Due to the above observation, it suffices to prove g̃−a f̃
(1)
ij = vδai−δaj f̃ (1)ij g̃−a .

This follows by evaluating the coefficients of z0w0 in the equality of the
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matrix coefficients 〈vi ⊗ va| · · · |vj ⊗ va〉 of both sides of the equality ((vz −
v−1w)Rtrig(z/w))(T

+(z)⊗ 1)(1⊗T −(w)) = (1⊗T −(w))(T +(z)⊗ 1)((vz−
v−1w)Rtrig(z/w)). Note that the cases a < j, a = j, j < a < i, a = i, a > i
have to be treated separately.

Analogously to part (d), this case is less trivial than part (c), due to the fact
that

[z−1]T +ij (z) = f̃ (1)ij g̃+j +
∑

j ′<j
f̃
(1)
ij ′ g̃

+
j ′ ẽ
(0)
j ′j .

Hence, the proof proceeds by induction in j , while we also use part (b) from
above. ��

The following explicit formulas follow immediately from Proposition G.4.

Corollary G.6 For any 1 ≤ j < i ≤ n, we have:

ẽ
(0)
j i = (v − v−1)j−i+1[ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ

(0)
j,j+1]v−1 · · · ]v−1 ]v−1 =

(v − v−1)j−i+1[[· · · [ẽ(0)i−1,i , ẽ
(0)
i−2,i−1]v−1 , · · · , ẽ(0)j+1,j+2]v−1, ẽ

(0)
j,j+1]v−1 ,

(G.8)

f̃
(0)
ij = (v−1 − v)j−i+1[f̃ (0)j+1,j , [f̃ (0)j+2,j+1, · · · , [f̃ (0)i−1,i−2, f̃

(0)
i,i−1]v · · · ]v]v =

(v−1 − v)j−i+1[[· · · [f̃ (0)j+1,j , f̃
(0)
j+2,j+1]v, · · · , f̃ (0)i−1,i−2]v, f̃ (0)i,i−1]v,

(G.9)

ẽ
(−1)
j i = (v − v−1)j−i+1[ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ

(−1)
j,j+1]v−1 · · · ]v−1 ]v−1 =

(v − v−1)j−i+1[[· · · [ẽ(0)i−1,i , ẽ
(0)
i−2,i−1]v−1 , · · · , ẽ(0)j+1,j+2]v−1 , ẽ

(−1)
j,j+1]v−1 ,

(G.10)

f̃
(1)
ij = (v−1 − v)j−i+1[f̃ (1)j+1,j , [f̃ (0)j+2,j+1, · · · , [f̃ (0)i−1,i−2, f̃

(0)
i,i−1]v · · · ]v]v =

(v−1 − v)j−i+1[[· · · [f̃ (1)j+1,j , f̃
(0)
j+2,j+1]v, · · · , f̃ (0)i−1,i−2]v, f̃ (0)i,i−1]v.

(G.11)

Recall elements E(0)j i , F
(0)
ij , E

(−1)
j i , F

(1)
ij ∈ Uv(Lsln) of (10.6). Combining

Corollary G.6 with (G.5), we get the following result.

Corollary G.7

(a) We have

ϒ−1(ẽ
(0)
j i ) = (v − v−1)E

(0)
j i , ϒ

−1(f̃
(0)
ij ) = −(v − v−1)F

(0)
ij ,

ϒ−1(ẽ
(−1)
j i ) = −v−j (v − v−1)E

(−1)
j i , ϒ−1(f̃

(1)
ij ) = vj (v − v−1)F

(1)
ij .

(G.12)
(b) The right equalities in each of the first four lines of (10.6) hold.
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To derive the right equalities of the last two lines of (10.6), we introduce

A+j i :=
∑

s≥1

∑

j=j1<...<js+1=i
(−1)s−1ẽ

(0)
j1j2
· · · ẽ(0)jsjs+1

,

A−ij :=
∑

s≥1

∑

j=j1<...<js+1=i
(−1)s−1f̃

(0)
js+1js

· · · f̃ (0)j2j1
(G.13)

for 1 ≤ j < i ≤ n. These elements will play an important role in Sect. G(ii) below.

Lemma G.8 For any 1 ≤ j < i ≤ n, we have

A+j i = (v − v−1)j−i+1[ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v · · · ]v]v =

(v − v−1)j−i+1[[· · · [ẽ(0)i−1,i , ẽ
(0)
i−2,i−1]v, · · · , ẽ(0)j+1,j+2]v, ẽ(0)j,j+1]v,

(G.14)

A−ij = (v−1 − v)j−i+1[f̃ (0)j+1,j , [f̃ (0)j+2,j+1, · · · , [f̃ (0)i−1,i−2, f̃
(0)
i,i−1]v−1 · · · ]v−1 ]v−1 =

(v−1 − v)j−i+1[[· · · [f̃ (0)j+1,j , f̃
(0)
j+2,j+1]v−1 , · · · , f̃ (0)i−1,i−2]v−1 , f̃

(0)
i,i−1]v−1 .

(G.15)

Proof We prove (G.14) by induction in i − j . The result is obvious for i − j = 1.
To perform the induction step, note that A+j i = ẽ(0)j i −

∑
j<k<i ẽ

(0)
jk · A+ki . Applying

the first equality of (G.8) together with the induction assumption, we get

(v − v−1)i−j−1A+ji = [ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v−1 · · · ]v−1 ]v−1−

(v − v−1)
∑

j<k<i

[ẽ(0)k−1,k, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v−1 · · · ]v−1 · [ẽ(0)i−1,i , · · · , [ẽ(0)k+1,k+2, ẽ

(0)
k,k+1]v · · · ]v .

Rewriting [ẽ(0)i−1,i , X]v±1 as ẽ(0)i−1,i · X − v±1X · ẽ(0)i−1,i and using the equality

[ẽ(0)i−1,i , ẽ
(0)
l,l+1] = 0 for any l < i − 2 (due to the quadratic Serre relations in

U ad
v (Lsln)), we immediately find

(v − v−1)i−j−1A+ji =
⎡

⎣ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v−1 · · · ]v−1 − (v − v−1)·

∑

j<k<i−1

[ẽ(0)k−1,k, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v−1 · · · ]v−1 · [ẽ(0)i−2,i−1, · · · , [ẽ(0)k+1,k+2, ẽ

(0)
k,k+1]v · · · ]v

⎤

⎦

v

=

[ẽ(0)i−1,i , (v − v−1)i−j−2A+j,i−1]v = [ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v · · · ]v]v .

Note that the last equality follows from the induction assumption applied to A+j,i−1.

To prove that A+j i also equals the rightmost commutator of (G.14), we apply

similar arguments to the equality A+j i = ẽ(0)j i −
∑
j<k<i A

+
jk · ẽ(0)ki . We evaluate the



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 275

right-hand side by applying the rightmost expression of (G.8) to the terms ẽ(0)j i , ẽ
(0)
ki

and the induction assumption to A+jk . Rewriting [X, ẽ(0)j,j+1]v±1 as X · ẽ(0)j,j+1 −
v±1ẽ

(0)
j,j+1 · X and taking ẽ(0)j,j+1 to the leftmost or the rightmost sides, we get the

result.
The proof of (G.15) is completely analogous and is left to the interested reader.

��
The following result follows by combining Lemma G.8 with formula (G.5).

Corollary G.9

(a) We have

ϒ−1(A+j i) = (v − v−1)Ẽ
(0)
j i , ϒ

−1(A−ij ) = −(v − v−1)F̃
(0)
ij . (G.16)

(b) The right equalities in the last two lines of (10.6) hold.

G(ii) Computation of �rtt(g̃
(±1)

i
)

Given a Laurent series F(z), we use [zr ]F(z) to denote the coefficient of zr in F(z).
In this subsection, we compute explicitly�rtt(g̃

(±1)
i ), see Theorems G.10 and G.13.

Theorem G.10 For 1 ≤ i ≤ n, we have

�rtt(g̃
(1)
i ) = g̃(1)i ⊗ g̃+i + g̃+i ⊗ g̃(1)i +

∑

l>i

g̃+i ẽ
(0)
il ⊗ f̃ (1)li g̃+i +

∑

s≥1

∑

j1<...<js+1=i
(−1)s g̃+i ẽ

(0)
j1j2
· · · ẽ(0)jsjs+1

⊗ f̃ (1)ij1 g̃+i +

∑

l>i

∑

s≥1

∑

j1<...<js+1=i
(−1)s g̃+i ẽ

(0)
il ẽ

(0)
j1j2
· · · ẽ(0)jsjs+1

⊗ f̃ (1)lj1 g̃+i .

(G.17)

Proof Our starting point is the equality

[z−1]T +ii (z) = g̃(1)i +
∑

j<i

f̃
(1)
ij g̃

+
j ẽ
(0)
j i . (G.18)

We also note that [z−1]T +ij (z) = f̃
(1)
ij g̃

+
j +

∑
j ′<j f̃

(1)
ij ′ g̃

+
j ′ ẽ
(0)
j ′i for any i > j .

Rewriting this as f̃ (1)ij g̃
+
j = [z−1]T +ij (z) −

∑
j ′<j f̃

(1)
ij ′ g̃

+
j ′ ẽ
(0)
j ′i and applying this

formula iteratively, we finally get

f̃
(1)
ij g̃

+
j =

∑

s≥1

∑

j1<...<js=j
(−1)s−1

(
[z−1]T +ij1(z)

)
ẽ
(0)
j1j2
· · · ẽ(0)js−1js

. (G.19)
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Combining formulas (G.18) and (G.19), we get

g̃
(1)
i = [z−1]T +ii (z)−

∑

j<i

(
[z−1]T +ij (z)

)
· A+j i , (G.20)

where A+j i was defined in (G.13).

Thus, it remains to compute explicitly �rtt([z−1]T +ii (z)),�rtt([z−1]T +ij (z)),
�rtt(A+j i) for i > j . Evaluating the coefficients of z−1 in �rtt(T +ii (z)) =
∑n
a=1 T

+
ia (z)⊗ T +ai (z), we find

�rtt([z−1]T +ii (z)) =
∑

j<i

f̃
(1)
ij g̃

+
j ⊗ g̃+j ẽ(0)j i +

∑

j ′<j<i
f̃
(1)
ij ′ g̃

+
j ′ ẽ
(0)
j ′j ⊗ g̃+j ẽ(0)j i +

g̃
(1)
i ⊗ g̃+i + g̃+i ⊗ g̃(1)i +

∑

j<i

f̃
(1)
ij g̃

+
j ẽ
(0)
j i ⊗ g̃+i +

∑

j<i

g̃+i ⊗ f̃ (1)ij g̃+j ẽ(0)j i +

∑

l>i

g̃+i ẽ
(0)
il ⊗ f̃ (1)li g̃+i +

j<i∑

l>i

g̃+i ẽ
(0)
il ⊗ f̃ (1)lj g̃+j ẽ(0)j i ,

(G.21)
where the first, second, and third lines in the right-hand side correspond to the
contributions arising from the cases a < i, a = i, and a > i, respectively.

Evaluating the coefficients of z−1 in �rtt(T +ij (z)) =
∑n
a=1 T

+
ia (z) ⊗ T +aj (z), we

find

�rtt([z−1]T +ij (z)) =
∑

j ′<j
f̃
(1)
ij ′ g̃

+
j ′ ⊗ g̃+j ′ ẽ(0)j ′j +

∑

j ′′<j ′<j
f̃
(1)
ij ′′ g̃

+
j ′′ ẽ

(0)
j ′′j ′ ⊗ g̃+j ′ ẽ(0)j ′j+

f̃
(1)
ij g̃

+
j ⊗ g̃+j +

∑

j ′<j
f̃
(1)
ij ′ g̃

+
j ′ ẽ
(0)
j ′j ⊗ g̃+j + g̃+i ⊗ f̃ (1)ij g̃+j +

∑

j ′<j
g̃+i ⊗ f̃ (1)ij ′ g̃+j ′ ẽ(0)j ′j+

∑

l>i

g̃+i ẽ
(0)
il ⊗ f̃ (1)lj g̃+j +

j ′<j∑

l>i

g̃+i ẽ
(0)
il ⊗ f̃ (1)lj ′ g̃+j ′ ẽ(0)j ′j ,

(G.22)
where the first, second, and third lines in the right-hand side correspond to the
contributions arising from a < j , a = j or i, and a > i, respectively. Note that
for j < a < i both T +ia (z), T

+
aj (z) contain only negative powers of z and hence do

not contribute above.
Finally, let us compute the coproduct of A+j i .

Lemma G.11 We have

�rtt(A+ji ) =
∑

s≥1

∑

j=j1<...<js+1=i

s+1∑

r=1

(−1)s−1ẽ
(0)
jr jr+1

· · · ẽ(0)js js+1
⊗ ẽ(0)j1j2 · · · ẽ

(0)
jr−1jr

(g̃+jr )
−1g̃+i .
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Proof We prove this by induction in i − j . The base of induction i = j + 1
follows from the equality A+j,j+1 = ẽ

(0)
j,j+1 and Lemma G.12 below. To perform

the induction step, note that

A+j i = ẽ(0)j i −
∑

j<j ′<i
ẽ
(0)
jj ′A

+
j ′i . (G.23)

Next, we compute the coproduct of ẽ(0)j i .

Lemma G.12 We have

�rtt(ẽ
(0)
j i ) = 1⊗ ẽ(0)j i + ẽ(0)j i ⊗ (g̃+j )−1g̃+i +

∑

j<a<i

ẽ
(0)
ja ⊗ (g̃+j )−1g̃+a ẽ

(0)
ai .

Proof First, let us note that g̃+j = [z0]T +jj (z). Thus,

�rtt(g̃+j ) = [z0]
(

n∑

a=1

T +ja(z)⊗ T +aj (z)
)
= [z0](T +jj (z)⊗ T +jj (z)) = g̃+j ⊗ g̃+j .

We also note that [z0]T +j i (z) = g̃+j ẽ(0)j i . Hence, we have

�rtt(g̃+
j
ẽ
(0)
j i
) = [z0]

⎛

⎝T+
jj
(z)⊗ T+

j i
(z)+ T+

j i
(z)⊗ T+

ii
(z)+

∑

j<a<i

T+
ja
(z)⊗ T+

ai
(z)

⎞

⎠ =

g̃+
j
⊗ g̃+

j
ẽ
(0)
j i
+ g̃+

j
ẽ
(0)
j i
⊗ g̃+

i
+
∑

j<a<i

g̃+
j
ẽ
(0)
ja
⊗ g̃+a ẽ(0)ai .

Note that in the first equality we used [z0](T +ja(z)⊗T +ai (z)) = 0 for a < j or a > i.

Evaluating �rtt(ẽ
(0)
j i ) = �rtt(g̃+j )−1�rtt(g̃+j ẽ

(0)
j i ) via these formulas completes

our proof. ��
Combining (G.23) with Lemma G.12 and applying the induction assumption to

�rtt(A+
j ′i ), we immediately get the formula for �rtt(A+j i) of Lemma G.11. ��

Combining (G.20–G.22) with Lemma G.11, we get (G.17) after tedious compu-
tations. ��
Theorem G.13 For 1 ≤ i ≤ n, we have

�rtt(g̃
(−1)
i ) = g̃(−1)

i ⊗ g̃−i + g̃−i ⊗ g̃(−1)
i +

∑

l>i

g̃−i ẽ
(−1)
il ⊗ f̃ (0)li g̃−i +

∑

s≥1

∑

j1<...<js+1=i
(−1)s g̃−i ẽ

(−1)
j i ⊗ f̃ (0)js+1js

· · · f̃ (0)j2j1 g̃−i +
∑

l>i

∑

s≥1

∑

j1<...<js+1=i
(−1)s g̃−i ẽ

(−1)
j l ⊗ f̃ (0)js+1js

· · · f̃ (0)j2j1 f̃
(0)
li g̃

−
i .

(G.24)
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Proof Our starting point is the equality

[z]T −ii (z) = g̃(−1)
i +

∑

j<i

f̃
(0)
ij g̃

−
j ẽ
(−1)
j i . (G.25)

We also note that [z]T −j i (z) = g̃−j ẽ
(−1)
j i + ∑j ′<j f̃

(0)
jj ′ g̃

−
j ′ ẽ
(−1)
j ′i for any i > j .

Rewriting this as g̃−j ẽ
(−1)
j i = [z]T −j i (z) −

∑
j ′<j f̃

(0)
jj ′ g̃

−
j ′ ẽ
(−1)
j ′i and applying this

formula iteratively, we finally get

g̃−j ẽ
(−1)
j i =

∑

s≥1

∑

j1<...<js=j
(−1)s−1f̃

(0)
jsjs−1

· · · f̃ (0)j2j1 ·
(
[z]T −j1i (z)

)
. (G.26)

Combining formulas (G.25) and (G.26), we get

g̃
(−1)
i = [z]T −ii (z)−

∑

j<i

A−ij ·
(
[z]T −j i (z)

)
, (G.27)

where A−ij was defined in (G.13).

Thus, it remains to compute explicitly �rtt([z]T −ii (z)),�rtt([z]T −j i (z)),�rtt(A−ij )
for i > j . Evaluating the coefficients of z1 in�rtt(T −ii (z)) =

∑n
a=1 T

−
ia (z)⊗T −ai (z),

we find

�rtt([z]T −ii (z)) =
∑

j<i

f̃
(0)
ij g̃

−
j ⊗ g̃−j ẽ(−1)

j i +
∑

j ′<j<i
f̃
(0)
ij g̃

−
j ⊗ f̃ (0)jj ′ g̃−j ′ ẽ(−1)

j ′i +

g̃−i ⊗ g̃(−1)
i + g̃(−1)

i ⊗ g̃−i +
∑

j<i

g̃−i ⊗ f̃ (0)ij g̃−j ẽ(−1)
j i +

∑

j<i

f̃
(0)
ij g̃

−
j ẽ
(−1)
j i ⊗ g̃−i +

∑

l>i

g̃−i ẽ
(−1)
il ⊗ f̃ (0)li g̃−i +

j<i∑

l>i

f̃
(0)
ij g̃

−
j ẽ
(−1)
j l ⊗ f̃ (0)li g̃−i ,

(G.28)

where the first, second, and third lines in the right-hand side correspond to the
contributions arising from the cases a < i, a = i, and a > i, respectively.

Evaluating the coefficients of z1 in �rtt(T −j i (z)) =
∑n
a=1 T

−
ja(z) ⊗ T −ai (z), we

find

�rtt([z]T −ji (z)) =
∑

j ′<j
f̃
(0)
jj ′ g̃

−
j ′ ⊗ g̃−j ′ ẽ(−1)

j ′i +
∑

j ′′<j ′<j
f̃
(0)
jj ′ g̃

−
j ′ ⊗ f̃ (0)j ′j ′′ g̃−j ′′ ẽ(−1)

j ′′i +

g̃−j ⊗ g̃−j ẽ(−1)
j i +

∑

j ′<j
g̃−j ⊗ f̃ (0)jj ′ g̃−j ′ ẽ(−1)

j ′i + g̃−j ẽ(−1)
j i ⊗ g̃−i +

∑

j ′<j
f̃
(0)
jj ′ g̃

−
j ′ ẽ
(−1)
j ′i ⊗ g̃−i +

∑

l>i

g̃−j ẽ
(−1)
j l ⊗ f̃ (0)li g̃−i +

j ′<j∑

l>i

f̃
(0)
jj ′ g̃

−
j ′ ẽ
(−1)
j ′l ⊗ f̃ (0)li g̃−i ,

(G.29)
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where the first, second, and third lines in the right-hand side correspond to the
contributions arising from a < j , a = j or i, and a > i, respectively. Note that
for j < a < i both T −ja(z), T

−
ai (z) contain only positive powers of z and hence do

not contribute above.
Finally, let us compute the coproduct of A−ij .

Lemma G.14 We have

�rtt(A−ij ) =
∑

s≥1

∑

j=j1<...<js+1=i

s+1∑

r=1

(−1)s−1g̃−i (g̃
−
jr
)−1f̃

(0)
jr jr−1

· · · f̃ (0)j2j1 ⊗ f̃
(0)
js+1js

· · · f̃ (0)jr+1jr
.

Proof We prove this by induction in i − j . The base of induction i = j + 1
follows from the equality A−j+1,j = f̃

(0)
j+1,j and Lemma G.15 below. To perform

the induction step, note that

A−ij = f̃ (0)ij −
∑

j<j ′<i
A−
ij ′ f̃

(0)
j ′j . (G.30)

Next, we compute the coproduct of f̃ (0)ij .

Lemma G.15 We have

�rtt(f̃
(0)
ij ) = f̃ (0)ij ⊗ 1+ g̃−i (g̃−j )−1 ⊗ f̃ (0)ij +

∑

j<a<i

f̃
(0)
ia g̃

−
a (g̃

−
j )
−1 ⊗ f̃ (0)aj .

Proof First, let us note that g̃−j = [z0]T −jj (z). Thus,

�rtt(g̃−j ) = [z0]
(

n∑

a=1

T −ja(z)⊗ T −aj (z)
)
= [z0](T −jj (z)⊗ T −jj (z)) = g̃−j ⊗ g̃−j .

We also note that [z0]T −ij (z) = f̃ (0)ij g̃−j . Hence, we have

�rtt(f̃
(0)
ij g̃

−
j ) = [z0]

⎛

⎝T −ij (z)⊗ T −jj (z)+ T −ii (z)⊗ T −ij (z)+
∑

j<a<i

T −ia (z)⊗ T −aj (z)
⎞

⎠ =

f̃
(0)
ij g̃

−
j ⊗ g̃−j + g̃−i ⊗ f̃ (0)ij g̃−j +

∑

j<a<i

f̃
(0)
ia g̃

−
a ⊗ f̃ (0)aj g̃−j .

Note that in the first equality we used [z0](T −ia (z)⊗T −aj (z)) = 0 for a < j or a > i.

Evaluating �rtt(f̃
(0)
ij ) = �rtt(f̃

(0)
ij g̃

−
j )�

rtt(g̃−j )−1 via these formulas completes
our proof. ��
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Combining (G.30) with Lemma G.15 and applying the induction assumption to
�rtt(A−

ij ′), we immediately get the formula for �rtt(A−ij ) of Lemma G.14. ��
Combining (G.27–G.29) with Lemma G.14, we get (G.24) after tedious compu-

tations. ��
For 1 ≤ i ≤ n, define Hi,±1 ∈ U rtt(sln) via Hi,±1 := (g̃±i )−1g̃

(±1)
i . Recall the

elements A+j i and A−ij of (G.13). Combining Theorems G.10, G.13 with Lemma G.5

and the formula �rtt(g̃±i ) = g̃±i ⊗ g̃±i , we get the following expressions for
�rtt(Hi,±1).

Corollary G.16 We have

�rtt(Hi,1) = Hi,1⊗1+1⊗Hi,1+v−1
∑

l>i

ẽ
(0)
il ⊗f̃ (1)li −v

∑

j<i

A+ji⊗f̃ (1)ij −
j<i∑

l>i

ẽ
(0)
il A

+
ji⊗f̃ (1)lj ,

(G.31)

�rtt(Hi,−1) = Hi,−1⊗1+1⊗Hi,−1+v
∑

l>i

ẽ
(−1)
il ⊗f̃ (0)li −v−1

∑

j<i

ẽ
(−1)
j i ⊗A−ij−

j<i∑

l>i

ẽ
(−1)
j l ⊗A−ij f̃ (0)li .

(G.32)

G(iii) Proof of Formula (10.2)

Recall the Hopf algebra embeddingϒ : Uv(Lsln) ↪→ U rtt(sln) of Theorem G.2 (see
also Remark G.3). It is easy to see that

ϒ(hi,1) = Hi+1,1 −Hi,1
vi (v − v−1)

.

Combining Corollaries G.7, G.9 with formula (G.31) and the fact thatϒ intertwines
� and �rtt, we immediately get

�(hi,1)− hi,1 ⊗ 1− 1⊗ hi,1 = v−i (v − v−1)−1×
(

vi (v − v−1)2
∑

l>i+1

E
(0)
i+1,l ⊗ F (1)l,i+1 − (v − v−1)2

∑

k<i+1

vk+1Ẽ
(0)
k,i+1 ⊗ F (1)i+1,k−

(v − v−1)3
∑

k<i+1<l

vkE
(0)
i+1,l Ẽ

(0)
k,i+1 ⊗ F (1)lk − vi−1(v − v−1)2

∑

l>i

E
(0)
il ⊗ F (1)li +

(v − v−1)2
∑

k<i

vk+1Ẽ
(0)
ki ⊗ F (1)ik + (v − v−1)3

∑

k<i<l

vkE
(0)
il Ẽ

(0)
ki ⊗ F (1)lk

)
.

(G.33)
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This formula implies (10.2) after the following simplifications:

∑

k<i<l

vkE
(0)
il Ẽ

(0)
ki ⊗ F (1)lk −

∑

k<i+1<l

vkE
(0)
i+1,l Ẽ

(0)
k,i+1 ⊗ F (1)lk =

k<i∑

l>i+1

vk(E
(0)
il Ẽ

(0)
ki −E(0)i+1,l Ẽ

(0)
k,i+1)⊗F (1)lk +

∑

k<i

vkE
(0)
i,i+1Ẽ

(0)
ki ⊗F (1)i+1,k−vi

∑

l>i+1

E
(0)
i+1,l Ẽ

(0)
i,i+1⊗F (1)li ,

− v−1
∑

l>i

E
(0)
il ⊗ F (1)li − (v − v−1)

∑

l>i+1

E
(0)
i+1,lE

(0)
i,i+1 ⊗ F (1)li =

− v−1E
(0)
i,i+1 ⊗ F (1)i+1,i + v−2

∑

l>i+1

[E(0)i,i+1, E
(0)
i+1,l]v3 ⊗ F (1)li ,

−
∑

k<i+1

vk+1−i Ẽ(0)k,i+1 ⊗ F (1)i+1,k + (v − v−1)
∑

k<i

vk−iE(0)i,i+1Ẽ
(0)
ki ⊗ F (1)i+1,k =

− vE
(0)
i,i+1 ⊗ F (1)i+1,i −

∑

k<i

vk−i−1[E(0)i,i+1, Ẽ
(0)
ki ]v3 ⊗ F (1)i+1,k,

where in the second and third equalities we used

E
(0)
il = [E(0)i+1,l , E

(0)
i,i+1]v−1 , Ẽ

(0)
k,i+1 = [E(0)i,i+1, Ẽ

(0)
ki ]v.

G(iv) Proof of Formula (10.3)

The proof of (10.3) is completely analogous and is based on the formula

ϒ(hi,−1) = Hi,−1 −Hi+1,−1

v−i (v − v−1)
.

Combining this with Corollaries G.7, G.9, formula (G.32) and the fact that ϒ
intertwines� and�rtt, one derives (10.3). The computations are similar to the above
proof of (10.2) and are left to the interested reader.

G(v) Proof of Formula (10.4)

Recall that [hi,−1, ei,0] = [2]v · ei,−1, so that

�(ei,−1) = [2]−1
v · [�(hi,−1),�(ei,0)] = [2]−1

v · [�(hi,−1), 1⊗ ei,0 + ei,0 ⊗ ψ+i,0].

Applying formula (10.3) to �(hi,−1) and using Lemma G.17 below, we
recover (10.4).
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Lemma G.17 For k < i and l > i + 1, the following equalities hold:

(a) [F (0)l,i+1, ei,0] = 0.

(b) [F̃ (0)ik , ei,0] = 0.

(c) [F (0)li , ei,0] = −F (0)l,i+1ψ
−
i,0.

(d) [F̃ (0)i+1,k, ei,0] = v−1F̃
(0)
ik ψ

−
i,0.

(e) [[F (0)l,i+1, F
(0)
i+1,i]v−3 , ei,0] = 1−v−4

v−v−1F
(0)
l,i+1ψ

−
i,0 − 1−v−2

v−v−1F
(0)
l,i+1ψ

+
i,0.

(f) [[F̃ (0)ik , F (0)i+1,i]v−3, ei,0] = 1−v−4

v−v−1 F̃
(0)
ik ψ

−
i,0 − 1−v−2

v−v−1 F̃
(0)
ik ψ

+
i,0.

(g) [E(−1)
i+1,l , ei,0]v = vE

(−1)
il .

(h) [E(−1)
ki , ei,0]v = −vE

(−1)
k,i+1.

(i) [E(−1)
il , ei,0]v−1 = 0.

(j) [E(−1)
k,i+1, ei,0]v−1 = 0.

(k) [E(−1)
kl , ei,0] = 0.

Proof Recall that [fj,0, ei,0] = δji

v−v−1 (ψ
−
i,0 − ψ+i,0).

Parts (a, b) are obvious as ei,0 commutes with fi+1,0, . . . , fl−1,0 and
fk,0, . . . , fi−1,0. Combining (a, b) with equalities F (0)li = [fi,0, F (0)l,i+1]v and

F̃
(0)
i+1,k = [F̃ (0)ik , fi,0]v−1 , we get [F (0)li , ei,0] = [ψ

−
i,0−ψ+i,0
v−v−1 , F

(0)
l,i+1]v = −F (0)l,i+1ψ

−
i,0

and [F̃ (0)i+1,k, ei,0] = [F̃ (0)ik ,
ψ−i,0−ψ+i,0
v−v−1 ]v−1 = v−1F̃

(0)
ik ψ

−
i,0, which proves parts (c, d).

Parts (e, f) also follow immediately from (a, b).

(g) Due to the quadratic Serre relations ei,0 commutes with ei+2,0, . . . , el−1,0,
hence, also with E

(0)
i+2,l . Meanwhile, we have [ei+1,−1, ei,0]v =

v[ei+1,0, ei,−1]v−1 , due to (U2). Thus, [E(−1)
i+1,l , ei,0]v =

[[E(0)i+2,l , ei+1,−1]v−1 , ei,0]v = [E(0)i+2,l , v[ei+1,0, ei,−1]v−1 ]v−1 = vE
(−1)
il .

(h) We have [E(−1)
ki , ei,0]v = −v[ei,0, E(−1)

ki ]v−1 = −vE
(−1)
k,i+1.

(i) Note that [[ei+1,0, ei,−1]v−1 , ei,0]v−1 = v−1[[ei+1,−1, ei,0]v, ei,0]v−1 = 0, due
to (U2) and (U7). Since also ei,0 commutes with ei+2,0, . . . , el−1,0, we get
[E(−1)
il , ei,0]v−1 = 0.

(j) As in (i), [E(−1)
k,i+1, ei,0]v−1 = 0 follows from [[ei,0, ei−1,0]v−1 , ei,0]v−1 = 0, due

to (U7).
(k) Comparing the matrix coefficients 〈vi ⊗ vk| · · · |vi+1 ⊗ vl〉 of both sides of

the equality Rtrig(z/w)(T
+(z)⊗ 1)(1⊗ T −(w)) = (1⊗ T −(w))(T +(z)⊗ 1)

Rtrig(z/w), we get

(z− w)T +i,i+1(z)T
−
kl (w)+ (v − v−1)wT +k,i+1(z)T

−
il (w) =

(z− w)T −kl (w)T +i,i+1(z)+ (v − v−1)wT −k,i+1(w)T
+
il (z).
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Evaluating the coefficients of z1w1 in both sides of this equality, we find

[g̃+i ẽ(0)i,i+1, g̃
−
k ẽ
(−1)
kl +

∑

j<k

f̃
(0)
kj g̃

−
j ẽ
(−1)
j l ] = 0.

Hence, by induction in k, we find [ẽ(0)i,i+1, ẽ
(−1)
kl ] = 0, which implies

[E(−1)
kl , ei,0] = 0.

��
This completes our proof of (10.4).

G(vi) Proof of Formula (10.5)

Recall that [hi,1, fi,0] = −[2]v · fi,1, so that

�(fi,1) = −[2]−1
v · [�(hi,1),�(fi,0)] = −[2]−1

v · [�(hi,1), fi,0 ⊗ 1+ψ−i,0 ⊗ fi,0].

Applying formula (10.2) to �(hi,1) and using Lemma G.18 below, we
recover (10.5).

Lemma G.18 For k < i and l > i + 1, the following equalities hold:

(a) [E(0)i+1,l , fi,0] = 0.

(b) [Ẽ(0)ki , fi,0] = 0.

(c) [E(0)il , fi,0] = v−1E
(0)
i+1,lψ

+
i,0.

(d) [Ẽ(0)k,i+1, fi,0] = −Ẽ(0)ki ψ+i,0.

(e) [[E(0)i,i+1, E
(0)
i+1,l]v3, fi,0] = v−1−v3

v−v−1 E
(0)
i+1,lψ

+
i,0 − v−v3

v−v−1E
(0)
i+1,lψ

−
i,0.

(f) [[E(0)i,i+1, Ẽ
(0)
ki ]v3 , fi,0] = v−1−v3

v−v−1 Ẽ
(0)
ki ψ

+
i,0 − v−v3

v−v−1 Ẽ
(0)
ki ψ

−
i,0.

(g) [F (1)l,i+1, fi,0]v = −F (1)li .

(h) [F (1)ik , fi,0]v = F (1)i+1,k .

(i) [F (1)li , fi,0]v−1 = 0.

(j) [F (1)i+1,k, fi,0]v−1 = 0.

(k) [F (1)lk , fi,0] = 0.

This lemma is proved completely analogously to Lemma G.17. The details are
left to the interested reader.

This completes our proof of Theorem 10.13.
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Appendix H Proof of Theorem 10.16 and Homomorphisms
j±
μ1,μ2

Our proof of Theorem 10.16 proceeds in three steps. First, we introduce subalgebras
U

sc,±
0,μ1,μ2

of Usc
0,μ1+μ2

and construct homomorphisms j±μ1,μ2
which we referred to in

Remark 10.17. Then, we prove Theorem 10.16, reducing some of the verifications
to the case of Uv(Lsln) via the aforementioned j±μ1,μ2

. Finally, we verify the
commutativity of the diagram from Remark 10.17.

Throughout this section, we assume μ1, μ2 ∈ '−.

H(i) Homomorphisms j±
μ1,μ2

First, we introduce subalgebras Usc,±
0,μ1,μ2

of Usc
0,μ1+μ2

. To this end, recall the explicit
identification of the Drinfeld-Jimbo and the new Drinfeld realizations of Uv(Lsln)
from Theorem 8.10:

Ei 	→ ei,0, Fi 	→ fi,0, K
±1
i 	→ (ψ+i,0)

±1 = ψ±i,0 = (ψ−i,0)∓1 for 1 ≤ i ≤ n− 1,

(Ki0)
±1 	→ (ψ+1,0 · · ·ψ+n−1,0)

∓1,

Ei0 	→ (−v)−n · (ψ+1,0 · · ·ψ+n−1,0)
−1 · [· · · [f1,1, f2,0]v, · · · , fn−1,0]v,

Fi0 	→ (−v)n · [en−1,0, · · · , [e2,0, e1,−1]v−1 · · · ]v−1 · ψ+1,0 · · ·ψ+n−1,0.

Hence, the images U+v and U−v of the Drinfeld-Jimbo Borel subalgebras

are the subalgebras of Uv(Lsln) generated by {ei,0, (ψ+i,0)±1, F
(1)
n1 }n−1

i=1 and

{fi,0, (ψ+i,0)±1, E
(−1)
1n }n−1

i=1 , respectively.

Likewise, let Usc,+
0,μ1,μ2

and U
sc,−
0,μ1,μ2

be the C(v)-subalgebras of Usc
0,μ1+μ2

gener-

ated by the elements {ei,0, (ψ+i,0)±1, F
(1)
n1 }n−1

i=1 and {fi,b1,i , (ψ
−
i,b1,i+b2,i

)±1, Ê
(−1)
1n }n−1

i=1 ,
respectively, where as before b1,i = α∨i (μ1), b2,i = α∨i (μ2), bi =
b1,i + b2,i . Here, the elements {Ê(−1)

j i }j<i are defined via Ê
(−1)
j i :=

[ei−1,b2,i−1 , [ei−2,b2,i−2 , · · · , [ej+1,b2,j+1 , ej,b2,j−1]v−1 · · · ]v−1 ]v−1 .

Proposition H.1

(a) There is a unique C(v)-algebra homomorphism j+μ1,μ2
: U+v → U

sc,+
0,μ1,μ2

, such

that ei,0 	→ ei,0, (ψ
+
i,0)

±1 	→ (ψ+i,0)±1, F
(1)
n1 	→ F

(1)
n1 .

(b) There is a unique C(v)-algebra homomorphism j−μ1,μ2
: U−v → U

sc,−
0,μ1,μ2

, such

that fi,0 	→ fi,b1,i , (ψ
−
i,0)

±1 	→ (ψ−i,bi )
±1, E

(−1)
1n 	→ Ê

(−1)
1n .
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Proof

(a) Converting the defining relations of the positive Drinfeld-Jimbo Borel sub-
algebra into the new Drinfeld realization, we see that U+v is generated by

{ei,0, (ψ+i,0)±1, F
(1)
n1 }n−1

i=1 with the following defining relations:

(ψ+i,0)
±1 · (ψ+i,0)∓1 = 1, ψ+i,0ψ

+
j,0 = ψ+j,0ψ+i,0, (H.1)

ψ+i,0ej,0 = vcij ej,0ψ
+
i,0, ψ

+
i,0F

(1)
n1 = v−δi1−δi,n−1F

(1)
n1 ψ

+
i,0, (H.2)

[ei,0, [ei,0, ei±1,0]v]v−1 = 0, [ei,0, ej,0] = 0 if cij = 0, (H.3)

[ei,0, F (1)n1 ] = 0 for 1 < i < n− 1, (H.4)

[e1,0, [e1,0, F
(1)
n1 ]]v−2 = 0, [en−1,0, [en−1,0, F

(1)
n1 ]]v−2 = 0, (H.5)

[F (1)n1 , [F (1)n1 , e1,0]]v2 = 0, [F (1)n1 , [F (1)n1 , en−1,0]]v2 = 0. (H.6)

Thus, it suffices to check that these relations are preserved under the specified
assignment ei,0 	→ ei,0, (ψ

+
i,0)

±1 	→ (ψ+i,0)±1, F
(1)
n1 	→ F

(1)
n1 . The validity

of (H.1–H.4) is obvious.
To verify the first equality of (H.5), we note that [ψ+1,1, f2,0]v = (v2 −

1)f2,1ψ
+
1,0, due to (U5). Combining this with (U6), we get

[e1,0, F
(1)
n1 ] = (v − v−1)−1 · [· · · [ψ+1,1, f2,0]v, · · · , fn−1,0]v = vF

(1)
n2 ψ

+
1,0.

Hence, [e1,0, [e1,0, F
(1)
n1 ]]v−2 = v[e1,0, F

(1)
n2 ψ

+
1,0]v−2 = v[e1,0, F

(1)
n2 ]ψ+1,0 = 0,

due to (U6).
The verification of the second equality of (H.5) is similar and is based on

[en−1,0, F
(1)
n1 ] =

[[· · · [f1,1, f2,0]v, · · · , fn−2,0]v, ψ+n−1,0 − δbn−1,0ψ
−
n−1,0]v

v − v−1
= −vF

(1)
n−1,1ψ

+
n−1,0.

Due to the above equality [e1,0, F
(1)
n1 ] = vF

(1)
n2 ψ

+
1,0 and (U4), the verification

of the first equality of (H.6) boils down to the proof of [F (1)n1 , F
(1)
n2 ]v = 0.

This is an equality in U
sc,<
0,μ1+μ2

. However, U
sc,<
0,μ1+μ2

) U<v (Lsln), due to
Proposition 5.1(b). Hence, it suffices to check this equality in Uv(Lsln). The
latter follows immediately from the validity of (H.6) for U+v .

Due to [en−1,0, F
(1)
n1 ] = −vF

(1)
n−1,1ψ

+
n−1,0 from above and (U4), the verifica-

tion of the second equality of (H.6) boils down to the proof of [F (1)n1 , F
(1)
n−1,1]v =

0. Analogously to the previous verification, the latter follows from the same
equality in U+v .

(b) The proof of part (b) is completely analogous and is left to the interested
reader. ��
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This completes our construction of the homomorphisms j±μ1,μ2
: U±v →

U
sc,±
0,μ1,μ2

, which we referred to in Remark 10.17. The following results are needed
for the next subsection.

Lemma H.2

(a) For any 1 ≤ j < i ≤ n, we have E(0)j i , Ẽ
(0)
j i , F

(1)
ij ∈ U

sc,+
0,μ1,μ2

.
(b) For any 1 ≤ j < i ≤ n, define

F̂
±,(0)
ij := [· · · [fj,b1,j , fj+1,b1,j+1 ]v±1 , · · · , fi−1,b1,i−1 ]v±1 .

We have F̂±,(0)ij , Ê
(−1)
j i ∈ U

sc,−
0,μ1,μ2

.

Proof

(a) Since E(0)j i , Ẽ
(0)
j i are expressed via v±1-commutators of ek,0 ∈ U

sc,+
0,μ1,μ2

, we
obviously get the first two inclusions. The last inclusion is clear for (i, j) =
(n, 1). Applying iteratively [ek,0, F (1)k+1,1] = −vF

(1)
k1 ψ

+
k,0, [el,0, F (1)il ] =

vF
(1)
i,l+1ψ

+
l,0, we get F (1)ij ∈ U

sc,+
0,μ1,μ2

for any j < i.

(b) The inclusions F̂±,(0)ij ∈ U
sc,−
0,μ1,μ2

are obvious. It remains to prove Ê(−1)
j i ∈

U
sc,−
0,μ1,μ2

. This is clear for (j, i) = (1, n). To deduce the general case, it remains

to apply the equalities [fi−1,b1,i−1 , Ê
(−1)
1i ] = Ê(−1)

1,i−1ψ
−
i−1,bi−1

, [fl,b1,l , Ê
(−1)
li ] =

−Ê(−1)
l+1,iψ

−
l,bl

. ��
The proof of the following result is straightforward.

Lemma H.3 For any 1 ≤ j < i ≤ n, we have:

j+μ1,μ2
: E(0)j i 	→ E

(0)
j i , Ẽ

(0)
j i 	→ Ẽ

(0)
j i , F

(1)
ij 	→ F

(1)
ij , fi,1 	→ fi,1, hi,1 	→ hi,1,

j−μ1,μ2
: F (0)ij 	→ F̂

+,(0)
ij , F̃

(0)
ij 	→ F̂

−,(0)
ij , E

(−1)
j i 	→ Ê

(−1)
j i , ei,−1 	→ ei,b2,i−1, hi,−1 	→ hi,−1.

H(ii) Proof of Theorem 10.16

Due to Theorem 5.5, it suffices to check that the assignment � of Theorem 10.16
preserves defining relations (Û1–Û9). To simplify our exposition, we will assume
that μ1, μ2 are strictly antidominant: b1,i , b2,i < 0 for any 1 ≤ i < n. This
verification is similar to the n = 2 case (carried out in Appendix D) and we only
indicate the key technical details, see Lemmas H.4–H.15 (their proofs are similar
to that of Lemma G.17 and therefore omitted). For 1 ≤ a ≤ b < n, we define
α∨[a,b] := α∨a + α∨a+1 + . . .+ α∨b.
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H(ii).a Compatibility with (Û1)

• The equalities �((ψ+i,0)±1)�((ψ+i,0)∓1) = 1 and �((ψ−i,bi )
±1)�((ψ−i,bi )

∓1) = 1

follow immediately from relation (Û1) for both Usc
0,μ1

,Usc
0,μ2

.

• The commutativity of {�(ψ+i,0),�(ψ−i,bi )}n−1
i=1 between themselves and with

{�(hj,±1)}n−1
j=1 is due to relations (Û1, Û4, Û5) for both Usc

0,μ1
,Usc

0,μ2
.

• Finally, we verify [�(hi,r ),�(hj,s)] = 0 for r, s ∈ {±1}. To this end, recall
the homomorphism ι0,0,μ1 ⊗ ι0,μ2,0 : Usc

0,0 ⊗ Usc
0,0 → Usc

0,μ1
⊗ Usc

0,μ2
. The key

observation is that ι0,0,μ1 ⊗ ι0,μ2,0(�(hi,r )) = �(hi,r ) + α∨i (μ1+μ2)

vr−v−r for any
i ∈ I, r ∈ {±1} (cf. proof of Corollary 10.11), where by abuse of notation we
use �(hi,r ) to denote elements of both Usc

0,0 ⊗ Usc
0,0 and Usc

0,μ1
⊗ Usc

0,μ2
. Hence,

it suffices to prove [�(hi,r ),�(hj,s)] = 0 in Usc
0,0 ⊗ Usc

0,0. The latter follows
immediately from the corresponding result for Uv(Lsln), in which case the
assignment � of Theorem 10.16 coincides with the Drinfeld-Jimbo coproduct,
due to Theorem 10.13.

H(ii).b Compatibility with (Û2)

We need to prove [�(ei,r+1),�(ej,s)]vcij + [�(ej,s+1),�(ei,r )]vcij = 0 for
b2,i − 1 ≤ r ≤ −1, b2,j − 1 ≤ s ≤ −1.

Case b2,i − 1 < r ≤ −1, b2,j − 1 < s ≤ −1 In this case, the above sum equals
1 ⊗ ([ei,r+1, ej,s]vcij + [ej,s+1, ei,r ]vcij ) = 0, due to relations (Û2) and (Û4) for
Usc

0,μ2
.

Case r = b2,i − 1, b2,j − 1 < s < −1 Note that [ej,s+1, fa,0] = 0 for any 1 ≤
a < n, due to (Û6) for Usc

0,μ2
. As a result, we have [ej,s+1, F

(0)
ba ] = [ej,s+1, F̃

(0)
ba ] =

0 for any 1 ≤ a < b ≤ n. Combining this with (Û2) and (Û4) for Usc
0,μ2

, we
get [�(ei,b2,i ),�(ej,s)]vcij + [�(ej,s+1),�(ei,b2,i−1)]vcij = 1⊗ ([ei,b2,i , ej,s]vcij +[ej,s+1, ei,b2,i−1]vcij ) = 0 as above.

Case r = b2,i − 1, s = b2,j − 1 Due to relation (Û4) for both Usc
0,μ1

,Usc
0,μ2

, we get

[�(ej,b2,j ),�(ei,b2,i−1)]vcij = 1⊗ [ej,b2,j , ei,b2,i−1]vcij −
(v − v−1)

∑

l>i+1

E
(−1)
il ⊗ [ej,b2,j , F

(0)
l,i+1]ψ−i,b2,i

+ (v − v−1)
∑

k<i

vi−k−1E
(−1)
k,i+1 ⊗ [ej,b2,j , F̃

(0)
ik ]ψ−i,b2,i

−

(v − v−1)2
k<i∑

l>i+1

vi−k−1E
(−1)
kl ⊗ [ej,b2,j , F̃

(0)
ik F

(0)
l,i+1]ψ−i,b2,i

.
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Using this formula and Lemma H.4 below, it is straightforward to check that
again we obtain [�(ei,b2,i ),�(ej,b2,j−1)]vcij + [�(ej,b2,j ),�(ei,b2,i−1)]vcij = 1 ⊗
([ei,b2,i , ej,b2,j−1]vcij + [ej,b2,j , ei,b2,i−1]vcij ) = 0.

Lemma H.4 For any 1 ≤ k < i, i + 1 < l ≤ n, 1 ≤ j < n, the following holds in
Usc

0,μ2
:

(a) [ej,b2,j , F
(0)
l,i+1] = δj,i+1F

(0)
l,i+2ψ

−
j,b2,j

, where we set F (0)i+2,i+2 := −1
v−v−1 .

(b) [ej,b2,j , F̃
(0)
ik ] = −v−1δj,i−1F̃

(0)
i−1,kψ

−
j,b2,j

, where we set F̃ (0)i−1,i−1 := v
v−v−1 .

Case r = b2,i − 1, s = −1 Clearly, [�(ei,b2,i ),�(ej,−1)]vcij = 1 ⊗
[ei,b2,i , ej,−1]vcij and [�(ej,0),�(ei,b2,i−1)]vcij = [1 ⊗ ej,0 + ej,0 ⊗
ψ+j,0,�(ei,b2,i−1)]vcij . We claim that as in the previous cases, one gets
[�(ei,b2,i ),�(ej,−1)]vcij + [�(ej,0),�(ei,b2,i−1)]vcij = 1 ⊗ ([ei,b2,i , ej,−1]vcij +[ej,0, ei,b2,i−1]vcij ) = 0. To this end, we note that the computations of
[1 ⊗ ej,0,�(ei,b2,i−1)]vcij and [ej,0 ⊗ ψ+j,0,�(ei,b2,i−1)]vcij are straightforward
and are crucially based on Lemmas H.5 and H.6 below, respectively.

Lemma H.5 For any 1 ≤ k < i, i + 1 < l ≤ n, 1 ≤ j < n, the following holds in
Usc

0,μ2
:

(a) [ej,0, F (0)l,i+1] = −vδj,l−1F
(0)
j,i+1ψ

+
j,0, where we set F (0)i+1,i+1 := −1

v(v−v−1)
.

(b) [ej,0, F̃ (0)ik ] = δjkF̃ (0)i,j+1ψ
+
j,0, where we set F̃ (0)ii := 1

v−v−1 .

Lemma H.6 For any 1 ≤ k < l−1 < n, 1 ≤ j < n, the following holds in Usc
0,μ1

:

[ej,0, E(−1)
kl ]

v
(α∨
j
,α∨[k,l−1]) = δjlE

(−1)
k,l+1 − δj,k−1E

(−1)
k−1,l .

H(ii).c Compatibility with (Û3)

We need to prove [�(fi,r+1),�(fj,s)]v−cij + [�(fj,s+1),�(fi,r )]v−cij = 0 for
b1,i ≤ r ≤ 0, b1,j ≤ s ≤ 0.

Case b1,i ≤ r < 0, b1,j ≤ s < 0 In this case, the above sum equals
([fi,r+1, fj,s]v−cij + [fj,s+1, fi,r ]v−cij ) ⊗ 1 = 0, due to relations (Û3) and (Û5)
for Usc

0,μ1
.

Case r = 0, b1,j < s < 0 Note that [fj,s, ea,0] = 0 for any 1 ≤ a < n, due to (Û6)

for Usc
0,μ1

. As a result, we have [fj,s, E(0)ab ] = [fj,s, Ẽ(0)ab ] = 0 for any 1 ≤ a < b ≤
n. Combining this with (Û3) and (Û5) for Usc

0,μ1
, we get [�(fi,1),�(fj,s)]v−cij +[�(fj,s+1),�(fi,0)]v−cij = ([fi,1, fj,s]v−cij +[fj,s+1, fi,0]v−cij )⊗1 = 0 as above.
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Case r = 0, s = 0 Due to relation (Û5) for both Usc
0,μ1

,Usc
0,μ2

, we get

[�(fi,1),�(fj,0)]v−cij = [fi,1, fj,0]v−cij ⊗ 1+ (v − v−1)v−cij−1
∑

l>i+1

[E(0)i+1,l , fj,0]ψ+i,0 ⊗ F (1)li −

(v − v−1)v−cij
∑

k<i

vk−i [Ẽ(0)ki , fj,0]ψ+i,0 ⊗ F (1)i+1,k − (v − v−1)2v−cij
k<i∑

l>i+1

vk−i−1[E(0)i+1,l Ẽ
(0)
ki , fj,0]ψ+i,0 ⊗ F (1)lk .

Using this formula and Lemma H.7 below, it is straightforward to check that
we obtain [�(fi,1),�(fj,0)]v−cij + [�(fj,1),�(fi,0)]v−cij = ([fi,1, fj,0]v−cij +[fj,1, fi,0]v−cij )⊗ 1 = 0.

Lemma H.7 For any 1 ≤ k < i, i + 1 < l ≤ n, 1 ≤ j < n, the following holds in
Usc

0,μ1
:

(a) [E(0)i+1,l , fj,0] = v−1δj,i+1E
(0)
i+2,lψ

+
j,0, where we set E(0)i+2,i+2 := v

v−v−1 .

(b) [Ẽ(0)ki , fj,0] = −δj,i−1Ẽ
(0)
k,i−1ψ

+
j,0, where we set Ẽ(0)i−1,i−1 := −1

v−v−1 .

Case r = 0, s = b1,j Clearly, [�(fj,b1,j+1),�(fi,0)]v−cij = [fj,b1,j+1, fi,0]v−cij ⊗
1 and [�(fi,1),�(fj,b1,j )]v−cij = [�(fi,1), fj,b1,j ⊗ 1 + ψ−j,b1,j

⊗ fj,0]v−cij .
We claim that as in the previous cases, one gets [�(fi,1),�(fj,b1,j )]v−cij +[�(fj,b1,j+1),�(fi,0)]v−cij = ([fi,1, fj,b1,j ]v−cij + [fj,b1,j+1, fi,0]v−cij ) ⊗ 1 =
0. To this end, we note that the computations of [�(fi,1), fj,b1,j ⊗ 1]

v
−cij and

[�(fi,1), ψ−j,b1,j
⊗ fj,0]v−cij are straightforward and are crucially based on Lem-

mas H.8 and H.9 below, respectively.

Lemma H.8 For any 1 ≤ k < i, i + 1 < l ≤ n, 1 ≤ j < n, the following holds in
Usc

0,μ1
:

(a) [E(0)i+1,l , fj,b1,j ] = −δj,l−1E
(0)
i+1,jψ

−
j,b1,j

, where we set E(0)i+1,i+1 := 1
v−v−1 .

(b) [Ẽ(0)ki , fj,b1,j ] = vδjkẼ
(0)
j+1,iψ

−
j,b1,j

, where we set Ẽ(0)ii := −1
v(v−v−1)

.

Lemma H.9 For any 1 ≤ k < l−1 < n, 1 ≤ j < n, the following holds in Usc
0,μ2

:

[F (1)lk , fj,0]
v
−(α∨

j
,α∨[k,l−1]) = δjlF

(1)
l+1,k − δj,k−1F

(1)
l,k−1.

H(ii).d Compatibility with (Û4)

Due to relations (Û1, Û4, Û5) for both Usc
0,μ1

,Usc
0,μ2

, we immediately obtain

the equalities �(ψ+i,0)�(ej,r ) = vcij �(ej,r )�(ψ
+
i,0), �(ψ−i,bi )�(ej,r ) =

v−cij �(ej,r )�(ψ−i,bi ) for b2,j−1 ≤ r ≤ 0.

Let us now verify [�(hi,1),�(ej,r )] = [cij ]v ·�(ej,r+1) for b2,j − 1 ≤ r ≤ −1.
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Case b2,j ≤ r < −1 The verification in this case follows immediately from
relation (Û4) for Usc

0,μ2
combined with Lemma H.10 below.

Lemma H.10 For any 1 ≤ a < b ≤ n, b2,j ≤ r < −1, we have [F (1)ba , ej,r ] = 0
in Usc

0,μ2
.

Case r = −1 Due to relation (Û4) for Usc
0,μ2

, we get

[�(hi,1),�(ej,−1)] = [cij ]v · 1⊗ ej,0 − (v2 − v−2)E
(0)
i,i+1 ⊗ [F (1)i+1,i , ej,−1]+

(v − v−1)
∑

l>i+1

E
(0)
i+1,l ⊗ [F (1)l,i+1, ej,−1] + (v − v−1)

∑

k<i

vk+1−i Ẽ(0)ki ⊗ [F (1)ik , ej,−1]+

v−2(v − v−1)
∑

l>i+1

[E(0)i,i+1, E
(0)
i+1,l]v3 ⊗ [F (1)li , ej,−1]−

(v − v−1)
∑

k<i

vk−i−1[E(0)i,i+1, Ẽ
(0)
ki ]v3 ⊗ [F (1)i+1,k, ej,−1]+

(v − v−1)2
k<i∑

l>i+1

vk−i (E(0)il Ẽ
(0)
ki − E(0)i+1,l Ẽ

(0)
k,i+1)⊗ [F (1)lk , ej,−1].

Using this formula and Lemma H.11 below, it is straightforward to check that we
obtain [�(hi,1),�(ej,−1)] = [cij ]v · (1⊗ ej,0 + ej,0 ⊗ ψ+j,0) = [cij ]v ·�(ej,0).
Lemma H.11 For any 1 ≤ a < b ≤ n, we have [F (1)ba , ej,−1] =
−1

v−v−1 δjaδj,b−1ψ
+
j,0 in Usc

0,μ2
.

Case r = b2,j − 1 According to the next step, we have �(ej,b2,j−1) =
[�(hj,−1),�(ej,b2,j )]

[2]v . Apply the Jacobi identity to get [2]v · [�(hi,1),�(ej,b2,j−1)] =
[�(hj,−1), [�(hi,1),�(ej,b2,j )]] − [�(ej,b2,j ), [�(hi,1),�(hj,−1)]]. The second
summand is zero as [�(hi,1),�(hj,−1)] = 0 by above. Due to the r = b2,j case
considered above, we have [�(hi,1),�(ej,b2,j )] = [cij ]v · �(ej,b2,j+1). It remains
to apply [�(hj,−1),�(ej,b2,j+1)] = [2]v ·�(ej,b2,j ) as proved below.

Let us now verify the equality [�(hi,−1),�(ej,r )] = [cij ]v ·�(ej,r−1) for b2,j ≤
r ≤ 0.

Case b2,j < r < 0 The verification in this case follows immediately from
relation (Û4) for Usc

0,μ2
combined with Lemma H.12 below.

Lemma H.12 For 1 ≤ a < b ≤ n, b2,j < r < 0, we have [F (0)ba , ej,r ] =
[F̃ (0)ba , ej,r ] = 0 in Usc

0,μ2
.

Case r = b2,j For i = j , the verification of [�(hj,−1),�(ej,b2,j )] = [2]v ·
�(ej,b2,j−1) coincides with our proof of formula (10.4) from Appendix G. To
prove the claim for i �= j , we can either perform similar long computations
or we can rather deduce from the aforementioned case i = j . To achieve
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the latter, we apply the Jacobi identity to get [2]v · [�(hi,−1),�(ej,b2,j )] =
[�(hj,−1), [�(hi,−1),�(ej,b2,j+1)]] − [�(ej,b2,j+1), [�(hi,−1),�(hj,−1)]]. The
second summand is zero as [�(hi,−1),�(hj,−1)] = 0 by above. Due to the
r = b2,j + 1 case considered above, we have [�(hi,−1),�(ej,b2,j+1)] = [cij ]v ·
�(ej,b2,j ). It remains to apply the aforementioned equality [�(hj,−1),�(ej,b2,j )] =
[2]v ·�(ej,b2,j−1).

Case r = 0 The verification of [�(hi,−1),�(ej,0)] = [cij ]v · 1 ⊗ ej,−1 is similar
to our proof of formula (10.4) from Appendix G. To this end, we note that the
computations of [�(hi,−1), 1⊗ej,0] and [�(hi,−1), ej,0⊗ψ+j,0] are straightforward
and are crucially based on the above Lemmas H.5 and H.6.

H(ii).e Compatibility with (Û5)

Due to relations (Û1, Û4, Û5) for both Usc
0,μ1

,Usc
0,μ2

, we immediately obtain

the equalities �(ψ+i,0)�(fj,r ) = v−cij �(fj,r )�(ψ+i,0), �(ψ−i,bi )�(fj,r ) =
vcij �(fj,r )�(ψ

−
i,bi
) for b1,j ≤ r ≤ 1.

Let us now verify [�(hi,−1),�(fj,r )] = −[cij ]v ·�(fj,r−1) for b1,j+1 ≤ r ≤ 1.

Case b1,j + 1 < r < 1 The verification in this case follows immediately from
relation (Û5) for Usc

0,μ1
combined with Lemma H.13 below.

Lemma H.13 For any 1 ≤ a < b ≤ n, b1,j + 1 < r < 1, we have [E(−1)
ab , fj,r ] =

0 in Usc
0,μ1

.

Case r = b1,j + 1 Due to relation (Û5) for Usc
0,μ1

, we have

[�(hi,−1),�(fj,b1,j+1)] = −[cij ]v · fj,b1,j ⊗ 1+ (v2 − v−2)[E(−1)
i,i+1, fj,b1,j+1] ⊗ F (0)i+1,i−

(v − v−1)
∑

l>i+1

[E(−1)
i+1,l , fj,b1,j+1] ⊗ F (0)l,i+1 − (v − v−1)

∑

k<i

vi−k−1[E(−1)
ki , fj,b1,j+1] ⊗ F̃ (0)ik −

v2(v − v−1)
∑

l>i+1

[E(−1)
il , fj,b1,j+1] ⊗ [F (0)l,i+1, F

(0)
i+1,i ]v−3+

(v − v−1)
∑

k<i

vi+1−k[E(−1)
k,i+1, fj,b1,j+1] ⊗ [F̃ (0)ik , F (0)i+1,i ]v−3−

(v − v−1)2
k<i∑

l>i+1

vi−k[E(−1)
kl , fj,b1,j+1] ⊗ (F̃ (0)i+1,kF

(0)
l,i+1 − F̃ (0)ik F (0)li ).

Using this formula and Lemma H.14 below, it is straightforward to check that we
obtain [�(hi,−1),�(fj,b1,j+1)] = −[cij ]v · (fj,b1,j ⊗1+ψ−j,b1,j

⊗fj,0) = −[cij ]v ·
�(fj,b1,j ).
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Lemma H.14 For any 1 ≤ a < b ≤ n, we have [E(−1)
ab , fj,b1,j+1] =

−δjaδj,b−1

v−v−1 ψ−j,b1,j
in Usc

0,μ1
.

Case r = 1 According to the next step, we have �(fj,1) = −[2]−1
v ·

[�(hj,1),�(fj,0)]. Apply the Jacobi identity to get [2]v · [�(hi,−1),�(fj,1)] =
[�(hj,1), [�(hi,−1),�(fj,0)]] − [�(fj,0), [�(hi,−1),�(hj,1)]]. The second sum-
mand is zero as [�(hi,−1),�(hj,1)] = 0 by above. Due to the r = 0 case considered
above, we have [�(hi,−1),�(fj,0)] = −[cij ]v · �(fj,−1). It remains to apply
[�(hj,1),�(fj,−1)] = −[2]v ·�(fj,0) as proved below.

Let us now verify [�(hi,1),�(fj,r )] = −[cij ]v ·�(fj,r+1) for b1,j ≤ r ≤ 0.

Case b1,j < r < 0 The verification in this case follows immediately from
relation (Û5) for Usc

0,μ1
combined with Lemma H.15 below.

Lemma H.15 For 1 ≤ a < b ≤ n, b1,j < r < 0, we have [E(0)ab , fj,r ] =
[Ẽ(0)ab , fj,r ] = 0 in Usc

0,μ1
.

Case r = 0 For i = j , the verification of [�(hj,1),�(fj,0)] = −[2]v ·
�(fj,1) coincides with our proof of formula (10.5), sketched in Appendix G. To
prove the claim for i �= j , we can either perform similar long computations
or we can rather deduce from the aforementioned case i = j . To achieve
the latter, we apply the Jacobi identity to get −[2]v · [�(hi,1),�(fj,0)] =
[�(hj,1), [�(hi,1),�(fj,−1)]] − [�(fj,−1), [�(hi,1),�(hj,1)]]. The second sum-
mand is zero as [�(hi,1),�(hj,1)] = 0 by above. Due to the r = −1 case
considered above, we have [�(hi,1),�(fj,−1)] = −[cij ]v · �(fj,0). It remains to
apply the aforementioned equality [�(hj,1),�(fj,0)] = −[2]v ·�(fj,1).
Case r = b1,j The verification of [�(hi,1),�(fj,b1,j )] = −[cij ]v · fj,b1,j+1 ⊗ 1
is similar to our proof of formula (10.5), sketched in Appendix G. To this end, we
note that the computations of [�(hi,1), fj,b1,j ⊗ 1] and [�(hi,1), ψ−j,b1,j

⊗ fj,0] are
straightforward and are crucially based on the above Lemmas H.8 and H.9.

H(ii).f Compatibility with (Û6)

We need to verify

[�(ei,r ),�(fj,s)] = δij ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(ψ+i,0)�(hi,1) if r + s = 1,

�(ψ−i,bi )�(hi,−1) if r + s = bi − 1,
�(ψ+i,0)
v−v−1 if r + s = 0,
−�(ψ−i,bi )

v−v−1 if r + s = bi,
0 otherwise,
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for b2,i − 1 ≤ r ≤ 0, b1,j ≤ s ≤ 1, where we set bi := b1,i + b2,i as before.

Cases b2,i − 1 < r ≤ 0, b1,j ≤ s < 1 Obviously follows from (Û4, Û5, Û6) for
both Usc

0,μ1
,Usc

0,μ2
.

Case b2,i ≤ r < −1, s = 1 In this case, we get [�(ei,r ),�(fj,1)] = 0, due to
Lemma H.10.

Case r = −1, s = 1 Applying Lemma H.11 from above, it is straightforward to
see that we get [�(ei,−1),�(fj,1)] = δij

v−v−1ψ
+
i,0 ⊗ ψ+i,0 = δij

v−v−1�(ψ
+
i,0).

Case r = b2,i − 1, s = 1 According to relation (Û4) verified above, we
have �(ei,b2,i−1) = [2]−1

v · [�(hi,−1),�(ei,b2,i )]. Applying the Jacobi iden-
tity, we get [2]v · [�(ei,b2,i−1),�(fj,1)] = [�(hi,−1), [�(ei,b2,i ),�(fj,1)]] −
[�(ei,b2,i ), [�(hi,−1),�(fj,1)]]. However, both summands in the right-hand side
are zero, due to the above cases and relation (Û5) established above.

Case r = b2,i−1, b1,j+1 < s < 1 In this case, we get [�(ei,b2,i−1),�(fj,s)] = 0,
due to Lemma H.13.

Case r = b2,i − 1, s = b1,j + 1 Applying Lemma H.14 from above, it is

straightforward to see that we get [�(ei,b2,i−1),�(fj,b1,j+1)] = − δij

v−v−1ψ
−
i,b1,i

⊗
ψ−i,b2,i

= − δij

v−v−1�(ψ
−
i,bi
).

Case r = 0, s = 1 Consider the homomorphism j+μ1,0
⊗ j+0,μ2

: U+v ⊗ U+v →
U

sc,+
0,μ1,0

⊗U
sc,+
0,0,μ2

. Comparing the formulas of Theorems 10.13, 10.16 and applying
Lemma H.3, we get

[�μ1,μ2 (ei,0),�μ1,μ2 (fj,1)] = [j+μ1,0
⊗ j+0,μ2

(�(ei,0)), j
+
μ1,0

⊗ j+0,μ2
(�(fj,1))] =

j+μ1,0
⊗ j+0,μ2

([�(ei,0),�(fj,1)]
) = j+μ1,0

⊗ j+0,μ2
(δij�(ψ

+
i,0)�(hi,1)) = δij�μ1,μ2 (ψ

+
i,0)�μ1,μ2 (hi,1),

where the subscripts in�μ1,μ2 are used this time to distinguish it from the Drinfeld-
Jimbo coproduct � on Uv(Lsln).

Case r = b2,i − 1, s = b1,j Consider the homomorphism j−μ1,0
⊗ j−0,μ2

: U−v ⊗
U−v → U

sc,−
0,μ1,0

⊗ U
sc,−
0,0,μ2

. Comparing the formulas of Theorems 10.13, 10.16 and
applying Lemma H.3, we get

[�μ1,μ2 (ei,b2,i−1),�μ1,μ2 (fj,b1,j )] = [j−μ1,0
⊗ j−0,μ2

(�(ei,−1)), j
−
μ1,0

⊗ j−0,μ2
(�(fj,0))] =

j−μ1,0
⊗ j−0,μ2

([�(ei,−1),�(fj,0)]
) = j−μ1,0

⊗ j−0,μ2
(δij�(ψ

−
i,0)�(hi,−1)) =

δij�μ1,μ2 (ψ
−
i,bi
)�μ1,μ2 (hi,−1).
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H(ii).g Compatibility with (Û7)

Utilizing the homomorphism j+μ1,0
⊗j+0,μ2

: U+v ⊗U+v → U
sc,+
0,μ1,0

⊗U
sc,+
0,0,μ2

as above,
we get

[�μ1,μ2(ei,0), [�μ1,μ2(ei,0), · · · , [�μ1,μ2(ei,0),�μ1,μ2(ej,0)]vcij · · · ]v−cij−2 ]v−cij =
j+μ1,0

⊗ j+0,μ2
([�(ei,0), [�(ei,0), · · · , [�(ei,0),�(ej,0)]vcij · · · ]v−cij−2 ]v−cij ) =

j+μ1,0
⊗ j+0,μ2

(�([ei,0, [ei,0, · · · , [ei,0, ej,0]vcij · · · ]v−cij−2 ]v−cij )) = 0,

where the last equality is due to the Serre relation in U+v (cf. Remark 5.4).

H(ii).h Compatibility with (Û8)

Due to relation (Û8) for Usc
0,μ1

, we have

[�μ1,μ2(fi,0), [�μ1,μ2(fi,0), · · · , [�μ1,μ2(fi,0),�μ1,μ2(fj,0)]vcij · · · ]v−cij−2 ]v−cij =
[fi,0, [fi,0, · · · , [fi,0, fj,0]vcij · · · ]v−cij−2 ]v−cij ⊗ 1 = 0.

H(ii).i Compatibility with (Û9)

Applying the homomorphisms j±μ1,0
⊗ j±0,μ2

, we see that it suffices to prove the
equalities:

[hi,1, [fi,1, [hi,1, ei,0]]] = 0 in U+v , [hi,−1, [ei,−1, [hi,−1, fi,0]]] = 0 in U−v .

These follow from [hi,±1, ψ
±
i,±2] = 0 in U±v .

This completes our proof of Theorem 10.16.

H(iii) Relation Between � and �μ1,μ2

The following result completes our discussion of Remark 10.17.

Proposition H.16 The following diagram is commutative:
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Proof To simplify our computations, we will assume that μ1, μ2 are strictly
antidominant.

(a) To prove the commutativity of the above diagram in the ‘+’ case, it suf-
fices to verify that j+μ1,0

⊗ j+0,μ2
(�(X)) = �μ1,μ2(j

+
μ1,μ2

(X)) for X ∈
{ei,0, (ψ+i,0)±1, F

(1)
n1 }n−1

i=1 . The only non-obvious verification is the one for X =
F
(1)
n1 .

The computation of �(F (1)n1 ) is based on the computation of �rtt(f̃
(1)
n1 ).

Comparing the coefficients of z−1 in the equality

�rtt(T +n1(z)) = T +n1(z)⊗ T +11(z)+ T +nn(z)⊗ T +n1(z)+
∑

1<i<n

T +ni (z)⊗ T +i1 (z),

we get �rtt(f̃
(1)
n1 g̃

+
1 ) = f̃

(1)
n1 g̃

+
1 ⊗ g̃+1 + g̃+n ⊗ f̃ (1)n1 g̃

+
1 , so that �rtt(f̃

(1)
n1 ) =

f̃
(1)
n1 ⊗1+g̃+n (g̃+1 )−1⊗f̃ (1)n1 . Applyingϒ−1 of Theorem G.2 and formula (G.12),

we finally find

�(F
(1)
n1 ) = F (1)n1 ⊗ 1+ ψ+1,0 · · ·ψ+n−1,0 ⊗ F (1)n1 .

Therefore, j+μ1,0
⊗ j+0,μ2

(�(F
(1)
n1 )) = F (1)n1 ⊗ 1+ ψ+1,0 · · ·ψ+n−1,0 ⊗ F (1)n1 .

On the other hand, we have �μ1,μ2(j
+
μ1,μ2

(F
(1)
n1 )) = �μ1,μ2(F

(1)
n1 ) and

�μ1,μ2(F
(1)
n1 ) = [· · · [�μ1,μ2(f1,1),�μ1,μ2(f2,0)]v, · · · ,�μ1,μ2(fn−1,0)]v.

Let us first note that [E(0)2l , f2,0] = v−1E
(0)
3l ψ

+
2,0, where we set E(0)33 := v

v−v−1 .
Combining this with relation (U5) and the formula

�μ1,μ2(f1,1) = f1,1 ⊗ 1+ ψ+1,0 ⊗ f1,1 + v−1(v − v−1)
∑

l>2

E
(0)
2l ψ

+
1,0 ⊗ F (1)l1 ,

we find

[�μ1,μ2(f1,1),�μ1,μ2 (f2,0)]v = [f1,1, f2,0]v⊗1+v−1(v−v−1)
∑

l>2

E
(0)
3l ψ

+
1,0ψ

+
2,0⊗F (1)l1 .

Further v-commuting this with �μ1,μ2(f3,0), . . . ,�μ1,μ2(fn−1,0), we finally
obtain

�μ1,μ2(F
(1)
n1 ) = F (1)n1 ⊗ 1+ ψ+1,0 · · ·ψ+n−1,0 ⊗ F (1)n1 .

This completes our verification of j+μ1,0
⊗ j+0,μ2

(�(F
(1)
n1 )) =

�μ1,μ2(j
+
μ1,μ2

(F
(1)
n1 )).

(b) The proof of the commutativity in the ‘−’ case is completely analogous. ��
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Appendix I Proof of Theorem 10.19

Our proof of Theorem 10.19 proceeds in three steps. First, we reduce the problem
to its unshifted counterpart, see Theorem I.1. To prove this theorem, we recall the
shuffle realization of U>v , see Theorem I.3. In the last and final step, we apply a
simple result Proposition I.4.

I(i) Reduction to an Unshifted Case

Given μ ∈ ' and ν1, ν2 ∈ '−, recall the shift homomorphisms ιμ,ν1,ν2 : Usc
0,μ →

Usc
0,μ+ν1+ν2

introduced in Lemma 10.18. Note that ιμ,ν1,ν2 gives rise to the homo-
morphisms (restrictions)

ι>μ,ν1,ν2
: Usc,>

0,μ → U
sc,>
0,μ+ν1+ν2

, ι<μ,ν1,ν2
: Usc,<

0,μ → U
sc,<
0,μ+ν1+ν2

, ι0μ,ν1,ν2
: Usc,0

0,μ → U
sc,0
0,μ+ν1+ν2

.

Moreover, evoking the triangular decomposition of Proposition 5.1(a) for both alge-
bras Usc

0,μ and Usc
0,μ+ν1+ν2

, we see that ιμ,ν1,ν2 is “glued” from the aforementioned

three homomorphisms ι>μ,ν1,ν2
, ι<μ,ν1,ν2

, ι0μ,ν1,ν2
. Hence, Theorem 10.19 is equivalent

to the injectivity of these restrictions ι>μ,ν1,ν2
, ι<μ,ν1,ν2

, ι0μ,ν1,ν2
. The injectivity of

ι0μ,ν1,ν2
is clear. On the other hand, according to Proposition 5.1(b), we have

U
sc,>
0,μ ) U>v ) U

sc,>
0,μ+ν1+ν2

,U
sc,<
0,μ ) U<v ) U

sc,<
0,μ+ν1+ν2

, where U>v , U
<
v denote

the corresponding subalgebras of Uv(Lsln). As such, the injectivity of ι>μ,ν1,ν2
(resp.

ι<μ,ν1,ν2
) is equivalent to the injectivity of ι>ν1

: U>v → U>v (resp. ι<ν2
: U<v → U<v )

given by ei(z) 	→ (1− z−1)−α∨i (ν1)ei(z) (resp. fi(z) 	→ (1− z−1)−α∨i (ν2)fi(z)) for
i ∈ I .

Thus, we have reduced Theorem 10.19 to its unshifted counterpart:

Theorem I.1

(a) The homomorphism ι>ν : U>v → U>v is injective for any ν ∈ '−.
(b) The homomorphism ι<ν : U<v → U<v is injective for any ν ∈ '−.

Our proof of part (a) is crucially based on the shuffle realization of U>v , which
we recall next (the proof of part (b) is completely analogous).

I(ii) Shuffle Algebra (of Type An−1)

Consider an N
I -graded C(v)-vector space S = ⊕

k=(k1,...,kn−1)∈NI
Sk, where

S(k1,...,kn−1) consists of
∏

Ski -symmetric rational functions in the variables

{xi,r }1≤r≤kii∈I . We also fix an I × I matrix of rational functions (ζi,j (z))i,j∈I ∈
MatI×I (C(z)) by setting ζi,j (z) = z−v

−cij
z−1 , where (cij )

n−1
i,j=1 is the Cartan matrix
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of sln as before. Let us now introduce the bilinear  product on S: given F ∈ Sk and
G ∈ Sl , define F  G ∈ Sk+l by

(F  G)(x1,1, . . . , x1,k1+l1; . . . ; xn−1,1, . . . , xn−1,kn−1+ln−1) :=
∏n−1

i=1
ki ! · li !×

Sym∏Ski+li

⎛

⎝F({xi,r}1≤r≤kii∈I )G({xi′,r ′ }ki′<r
′≤ki′+li′

i′∈I ) ·
i′∈I∏

i∈I

r ′>ki′∏

r≤ki
ζi,i′(xi,r/xi′,r ′)

⎞

⎠ .

Here and afterwards, given a function f ∈ C({xi,1, . . . , xi,mi }i∈I ), we define

Sym∏Smi
(f ) :=

∏

i∈I

1

mi ! ·
∑

(σ1,...,σn−1)∈Sm1×...×Smn−1

f ({xi,σi (1), . . . , xi,σi (mi)}i∈I ).

This endows S with a structure of an associative unital algebra with the unit
1 ∈ S(0,...,0). We will be interested only in a certain subspace of S, defined by the
pole and wheel conditions:

• We say that F ∈ Sk satisfies the pole conditions if and only if

F = f (x1,1, . . . , xn−1,kn−1)
∏n−2
i=1

∏r ′≤ki+1
r≤ki (xi,r − xi+1,r ′)

, where f ∈ (C(v)[x±1
i,r ]1≤r≤kii∈I )

∏
Ski .

• We say that F ∈ Sk satisfies the wheel conditions if and only if

F({xi,r}) = 0 once xi,r1 = vxi+ε,l = v2xi,r2 for some ε, i, r1, r2, l,

where ε ∈ {±1}, i, i + ε ∈ I, 1 ≤ r1, r2 ≤ ki, 1 ≤ l ≤ ki+ε .
Let Sk ⊂ Sk be the subspace of all elements F satisfying these two conditions

and set S := ⊕

k∈NI
Sk. It is straightforward to check that the subspace S ⊂ S is

-closed.

Definition I.2 The algebra (S, ) is called the shuffle algebra (of An−1-type).

The following key result, identifying this algebra with U>v , is due to [53]12 (see
also [63]).

Theorem I.3 There is a unique C(v)-algebra isomorphism2 : U>v ∼−→ S such that
ei,r 	→ xri,1 for any i ∈ I, r ∈ Z.

12To be more precise, [53, Theorem 1.1] establishes such a shuffle realization for the half of the
quantum toroidal algebra of sln. Since the latter naturally contains U>v as a subalgebra, we get the
claimed result.
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I(iii) Proof of Theorem I.1(a)

The following result is straightforward:

Proposition I.4

(a) For any ν ∈ '−, there is a unique algebra homomorphism ι′ν : S → S such

that f ({xi,r }1≤r≤kii∈I ) 	→ ∏1≤r≤ki
i∈I (1− x−1

i,r )
−α∨i (ν) · f ({xi,r}1≤r≤kii∈I ) for any f ∈

S(k1,...,kn−1).
(b) The homomorphisms ι>ν and ι′ν are compatible: ι′ν(2(X)) = 2(ι>ν (X)) for any

X ∈ U>v .
(c) ι′ν is injective.

Combining Theorem I.3 and Proposition I.4 immediately yields Theorem I.1(a).

This completes our proof of Theorem 10.19.

Appendix J Proof of Proposition 11.18

Consider the n = 0 case of Sect. 11.4. Let ẽ±(z), f̃±(z), g̃±1 (z), g̃
±
2 (z) be

the currents entering the Gauss decomposition of T ±(z), and set ψ̃±(z) :=
g̃±2 (z)(g̃

±
1 (z))

−1. According to [17] (see also Theorem G.2) there is a C(v)-algebra
isomorphism

ϒ : U ad
v (Lsl2)

∼−→Urtt
0,0/(t

±
11[0]t∓11[0] − 1),

defined by

e±(z) 	→ ẽ±(vz)
v − v−1 , f

±(z) 	→ f̃±(vz)
v − v−1 , ψ

±(z) 	→ ψ̃±(vz), φ± 	→ t∓11[0]
(J.1)

(a slight modification of ϒ0,0). The isomorphism ϒ intertwines coproducts �rtt :=
�rtt

0,0 and �ad. In particular, the restriction of the pull-back of �rtt to the subalgebra

Uv(Lsl2) of U ad
v (Lsl2) recovers the Drinfeld-Jimbo coproduct � on Uv(Lsl2).

J(i) Computation of �(e±(z)) and �(f ±(z))

The verification of formulas (11.10) and (11.11) is based on the following result.

Lemma J.1 We have T ±11(z)
−1T ±21(z) = vf̃±(v2z), T ±12(z)T

±
11(z)

−1 =
v−1ẽ±(v2z).
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Proof Comparing the matrix coefficients 〈v1⊗ v2| · · · |v1⊗ v1〉 of both sides of the
equality Rtrig(z/w)(T

±(z)⊗1)(1⊗T ±(w)) = (1⊗T ±(w))(T ±(z)⊗1)Rtrig(z/w),

we get

(z− w)T ±11(z)T
±
21(w)+ (v − v−1)zT ±21(z)T

±
11(w) = (vz− v−1w)T ±21(w)T

±
11(z).

Plugging w = v2z into this identity, we obtain the first equality:

T ±11(z)
−1T ±21(z) = vT ±21(v

2z)T ±11(v
2z)−1 = vf̃±(v2z).

Likewise, comparing the matrix coefficients 〈v1⊗v1| · · · |v1⊗v2〉, we get the second
equality. ��
• We have ẽ±(z) = (T ±11(z))

−1T ±12(z). Hence,

�rtt(ẽ±(z)) = (T ±11(z)⊗ T ±11(z)+ T ±12(z)⊗ T ±21(z)
)−1 (

T ±11(z)⊗ T ±12(z)+ T ±12(z)⊗ T ±22(z)
) =

(
1+ T ±11(z)

−1T ±12(z)⊗ T ±11(z)
−1T ±21(z)

)−1 (
1⊗ ẽ±(z)+ ẽ±(z)⊗ T ±11(z)

−1T ±22(z)
)
=

( ∞∑

r=0

(−v)r ẽ±(z)r ⊗ f̃±(v2z)r

)(
1⊗ ẽ±(z)+ ẽ±(z)⊗ (vf̃±(v2z)ẽ±(z)+ g̃±1 (z)−1g̃±2 (z))

)
=

1⊗ ẽ±(z)+
∞∑

r=0

(−v)r · ẽ±(z)r+1 ⊗ f̃±(v2z)r ψ̃±(z),

where we used Lemma J.1 twice in the third equality. Applying ϒ−1, we
recover (11.10).

• We have f̃±(z) = T ±21(z)(T
±
11(z))

−1. Hence,

�rtt(f̃±(z)) = (T ±21(z)⊗ T ±11(z)+ T ±22(z)⊗ T ±21(z)
) (
T ±11(z)⊗ T ±11(z)+ T ±12(z)⊗ T ±21(z)

)−1 =
(
f̃±(z)⊗ 1+ T ±22(z)T

±
11(z)

−1 ⊗ f̃±(z)
) (

1+ T ±12(z)T
±
11(z)

−1 ⊗ f̃±(z)
)−1 =

(
f̃±(z)⊗ 1+ (v−1f̃±(z)ẽ±(v2z)+ g̃±2 (z)g̃±1 (z)−1)⊗ f̃±(z)

)
×

( ∞∑

r=0

(−v)−r ẽ±(v2z)r ⊗ f̃±(z)r
)
= f̃±(z)⊗ 1+

∞∑

r=0

(−v)−r · ψ̃±(z)ẽ±(v2z)r ⊗ f̃±(z)r+1,

where we used Lemma J.1 twice in the third equality. Applying ϒ−1, we
recover (11.11).
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J(ii) Computation of �(ψ±(z))

We have ψ̃±(z) = g̃±(z)−1g̃±2 (z) = T ±11(z)
−1T ±22(z) − vf̃±(v2z)ẽ±(z), due

to Lemma J.1. Evaluating �rtt(T ±11(z)
−1T ±22(z)) as before, we get the following

formula:

�rtt(ψ̃±(z)) =
∞∑

r=0

(−1)r+1vr+2ẽ±(z)r [ẽ±(z), f̃±(v2z)] ⊗ f̃±(v2z)r+1ẽ±(z)+

∞∑

r=0

(−1)r (vr+1ẽ±(z)r ψ̃±(z)− v1−r ψ̃±(v2z)ẽ±(v4z)r )⊗ f̃±(v2z)r+1ẽ±(z)+

∞∑

r=0

(−1)rvr+1[ẽ±(z)r , f̃±(v2z)]ẽ±(z)⊗ f̃±(v2z)r ψ̃±(z)+

∞∑

r=0

(−1)rvr ẽ±(z)r ψ̃±(z)⊗ f̃±(v2z)r ψ̃±(z)+

∞∑

r,s=0

(−1)r+s+1v−r+s+1ψ̃±(v2z)ẽ±(v4z)r ẽ±(z)s+1 ⊗ f̃±(v2z)r+s+1ψ̃±(z).

(J.2)

To simplify the right-hand side of this equality, we need the following result.

Lemma J.2 We have:

(a) [ẽ±(z), f̃±(w)] = (v−v−1)z
w−z · (ψ̃±(z)− ψ̃±(w)).

(b) [ẽ±(z), f̃±(v2z)] = ψ̃±(z)−ψ̃±(v2z)
v

.

(c) (z− v2w)ψ̃±(z)ẽ±(w) = (v2z− w)ẽ±(w)ψ̃±(z)± w · [ẽ0, ψ̃
±(z)]v2 .

(d) ψ̃±(z)ẽ±(v2z) = v2ẽ±(v−2z)ψ̃±(z) = ẽ±(z)ψ̃±(z)+ψ̃±(z)ẽ±(z)
1+v−2 .

(e) (z − v2w)ẽ±(z)ẽ±(w) − z · [ẽ0, ẽ
±(w)]v2 = (v2z − w)ẽ±(w)ẽ±(z) + w ·

[ẽ0, ẽ
±(z)]v2 .

(f) ẽ±(v2z)2 − (1+ v2)ẽ±(z)ẽ±(v2z)+ v2ẽ±(z)2 = 0.

Proof Parts (a, c, e) follow from the corresponding relations for
e±(z), f±(z), ψ±(z), established in Lemma B.1(c, f1, d1), respectively.

Part (b) is obtained by specializing w = v2z in (a). Part (d) is obtained by
comparing the specializations of (c) at w = v2z,w = v−2z, and w = z. Part
(f) is obtained by comparing the specializations of (e) at w = v2z and w = z. ��
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The first two sums of (J.2) add up to zero, due to Lemma J.2(b, d). Applying
Lemma J.2(b) to the third sum of (J.2) and Lemma J.2(d) to the last sum of (J.2), we
get

�rtt(ψ̃±(z)) =
∞∑

r=0

(−v)rAr(z)⊗ f̃±(v2z)r ψ̃±(z) (J.3)

with

Ar(z) = ẽ±(z)r ψ̃±(z)+ ẽ±(z)r−1ψ̃±(z)ẽ±(z)+ . . .+ ẽ±(z)ψ̃±(z)ẽ±(z)r−1+ ψ̃±(z)ẽ±(z)r .

Finally, a simple induction argument based on Lemma J.2(d, f) yields the equality

Ar(z) = ψ̃±(z)ẽ±(v2z)r (1+v−2+v−4+. . .+v−2r ) = v−r [r+1]v ·ψ̃±(z)ẽ±(v2z)r .

Plugging this into (J.3) and applying ϒ−1, we recover (11.12).

This completes our proof of Proposition 11.18.
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Some Properties of Orbital Varieties
in Extremal Nilpotent Orbits

Lucas Fresse
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Abstract The intersection between a nilpotent orbit of a simple Lie algebra and a
Borel subalgebra is always equidimensional. Its irreducible components are called
orbital varieties. Orbital varieties belonging to different nilpotent orbits may have
quite different behaviours. The orbital varieties of the subregular nilpotent orbit are
always smooth but they have in general infinitely manyB-orbits. At the opposite, the
minimal nilpotent orbit is spherical but its orbital varieties may have singularities.
In this paper, we characterize the orbital varieties of the subregular nilpotent orbit
which have a finite number of B-orbits and we give a smoothness criterion for the
orbital varieties of the minimal nilpotent orbit.

MSC: 17B08 (primary); 17B22, 17B45 14M27 (secondary)

1 Introduction

1.1 Nilpotent Orbits

Let G be a connected simple algebraic group over K (an algebraically closed field
of characteristic zero). By g we denote the Lie algebra of G, by (g, x) 	→ g · x we
denote the adjoint action. Let B ⊂ G be a Borel subgroup and let n ⊂ g be the
nilpotent radical of the Lie algebra of B.
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An adjoint orbit O = G·x := {g ·x : g ∈ G} is called nilpotent if the intersection
O ∩ n is nonempty. The set N := G · n is the nilpotent cone. It consists of a finite
number of nilpotent orbits. We emphasize four of them:

• The regular nilpotent elements form a single orbit O reg, called the regular
nilpotent orbit, which is dense in N .

• There is a single orbit O subreg, called the subregular nilpotent orbit, which is
dense in N \ O reg.

• There is a single nontrivial nilpotent orbit Omin of minimal dimension, called the
minimal nilpotent orbit; it lies in the closure of every nontrivial nilpotent orbit.

• The only closed nilpotent orbit is the trivial orbit O triv = {0}.

1.2 Orbital Varieties

Every nilpotent orbit O ⊂ N has a structure of symplectic variety, in particular its
dimension dimO is even. The intersection O∩n is a quasi-affine variety, which is in
fact equidimensional of dimension 1

2 dimO (see [10]). The irreducible components
of O∩n are called orbital varieties. They areB-stable, Lagrangian subvarieties of O .
Orbital varieties arise in geometric representation theory, in relation with associated
varieties of simple highest weight modules. We refer to the works of A. Joseph [8, 9]
and the references therein. In [9], the orbital varieties of the minimal nilpotent orbit
are studied with respect to their quantization properties.

Orbital varieties may be singular and may have an infinite number of B-orbits,
and they have a complicated intersection pattern. There is no general classification
of orbital varieties with respect to their geometrical or topological properties. We
refer to [7] for some partial classifications, mainly in type A.

In this paper we study some properties of orbital varieties for an arbitrary simple
algebraic groupG, but in the case of the particular nilpotent orbits mentioned above.

There is not much to say about the trivial nilpotent orbit O triv = {0} and its
sole orbital variety O triv ∩ n = {0}. In the case of the regular nilpotent orbit,
the intersection O reg ∩ n is a single B-orbit, hence a single B-homogeneous (and
therefore smooth) orbital variety. For the remaining two extremal nilpotent orbits
Omin and O subreg, the situation is not so straightforward. We stress the following
facts:

• The minimal nilpotent orbit Omin is spherical, hence every orbital variety of Omin
has a finite number of B-orbits. Moreover Omin ∩ n contains a unique closed B-
orbit, which therefore lies in every orbital variety. However the orbital varieties
of Omin may be singular.

In this paper, we characterize the singular orbital varieties of Omin.
• At the opposite, in the subregular nilpotent orbit O subreg, every orbital variety is

smooth; in fact, it is open in the nilradical of some minimal parabolic subalgebra.
However an orbital variety of O subreg does not always contain a dense B-orbit,
and two orbital varieties of O subreg rarely intersect.
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In this paper, we characterize the orbital varieties of O subreg which have a
dense B-orbit (resp. a finite number of B-orbits), and we characterize the pairs
of orbital varieties of O subreg which intersect.

In particular, the results shown in this paper illustrate how orbital varieties
belonging to different nilpotent orbits may have different properties. Our main
results are stated in terms of roots, simple roots and biggest root: see Sect. 2.2. The
orbital varieties of O subreg can indeed be parameterized by the simple roots whereas
the orbital varieties of Omin can be parameterized by the simple long roots. These
parameterizations are explained in Sect. 2.1.

2 Main Results

2.1 Parameterization of Orbital Varieties

Hereafter we fix a maximal torus T ⊂ B and let h ⊂ g denote the corresponding
Cartan subalgebra. We then consider the root system Φ = Φ(g, h), the root space
decomposition

g = h⊕
⊕

α∈Φ
gα,

and the subset of positive roots Φ+ corresponding to the choice of B and n, i.e.,
such that n =⊕α∈Φ+ gα . Let Π ⊂ Φ+ be the set of simple roots.

LetW = W(G, T ) be the Weyl group. By [12] there is a surjective map fromW

onto the set of orbital varieties of N : for every w ∈ W , there is a unique nilpotent
orbit Ow which intersects the linear space n ∩ (w · n) densely; then, the set Vw :=
B · (n ∩ (w · n)) ∩ Ow is an orbital variety, and every orbital variety is obtained in
this way. In particular Oe = O reg, Ve = O reg ∩ n, Vw0 = Ow0 = {0}, where
e,w0 ∈ W , respectively, stand for the neutral element and the longest element.

The orbital varieties contained in the nilpotent orbits Omin and O subreg have an
alternative, handy parameterization, obtained as follows.

Every simple root α ∈ Π gives rise to a minimal parabolic subgroup Pα and a
nilradical nα =⊕γ∈Φ+\{α} gγ . By [5, §4.1], we have

n \ O reg =
⋃

α∈Π
nα, hence O subreg ∩ n =

⋃

α∈Π
O subreg ∩ nα.

By [5, Theorem 7.1.1], for every α ∈ Π , the intersection O subreg ∩ nα is Pα-
homogeneous (thus irreducible, smooth) and dense in nα . This yields:
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Proposition 1

(a) The subsets V subreg(α) := O subreg ∩ nα , for α ∈ Π , are exactly the irreducible
components of O subreg ∩ n, i.e., the orbital varieties of O subreg.

(b) V subreg(α) is Pα-homogeneous (thus smooth) and its closure is the linear space
nα (thus this closure is also smooth).

(c) For α, α′ ∈ Π , the orbital varieties V subreg(α) and V subreg(α
′) intersect if and

only if the roots α, α′ are not orthogonal.
(d) V subreg(α) = V sα , where sα ∈ W is the simple reflection attached to the root α.

Proof Parts (a) and (b) follow from the previous discussion. Part (d) follows from
the definitions of V subreg(α) and V sα . Let us show part (c). If the simple roots
α and α′ are orthogonal, then the intersection nα ∩ nα′ is the nilradical of a
parabolic subalgebra. By [5, Theorem 7.1.1], the maximal dimension of a nilpotent
orbit intersecting nα ∩ nα′ is 2 dim nα ∩ nα′ < 2 dim nα = dimO subreg. Hence
V subreg(α) ∩ V subreg(α

′) = O subreg ∩ nα ∩ nα′ = ∅. We have shown that two
orbital varieties of O subreg have an empty intersection if they correspond to simple
roots which are orthogonal, i.e., which are not connected by an edge in the Dynkin
diagram. By Spaltenstein [10], the variety O subreg∩n is connected. This implies that
V subreg(α) and V subreg(α

′) must intersect if there is an edge between α and α′ in the
Dynkin diagram. ��

For every root α ∈ Φ+ we fix a root vector eα ∈ gα \ {0}. In the simply laced
cases, we say that all the roots are long. In general, let Φ� (resp., Φ+� ) stand for the
set of long roots (resp., positive long roots) and let Π� ⊂ Π be the subset of simple
long roots. Let 4 be the usual partial order on the root system Φ determined by the
choice of the set of positive roots Φ+. Let βmax ∈ Φ+ be the biggest root, i.e., the
biggest element of Φ with respect to the order 4. It is always a long root, and the
root vector eβmax is a representative of the minimal nilpotent orbit Omin. Note that

B · eβmax = gβmax \ {0}, hence Omin = G · eβmax =
⋃

w∈W
B · ew(βmax),

where the last equality follows from the Bruhat decomposition G = ⊔w∈W BwB,
whence

Omin =
⋃

α∈Φ�
B · eα and Omin ∩ n =

⋃

α∈Φ+�
B · eα (1)

since the Weyl groupW acts transitively on the set of long roots. The next statement
follows from [4, 8] and [3, §6.1].

Proposition 2

(a) For every α ∈ Φ+� , we have

B · eα ∩ Omin =
⋃

γ5α
B · eγ

where the union is taken over all long roots γ ∈ Φ+� satisfying γ 5 α.
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(b) Thus, the subsets Vmin(α) := B · eα ∩ Omin, for α ∈ Π�, are exactly the
irreducible components of Omin ∩ n, i.e., the orbital varieties of Omin. Every
orbital variety contains in particular the orbit B · eβmax .

(c) Every orbital variety Vmin(α) (for α ∈ Π�) is normal, Cohen–Macaulay, and
has rational singularities.

(d) Vmin(α) = V sαw0 .

2.2 Statement of Main Results

As in Sect. 2.1, βmax stands for the biggest root. It decomposes as a sum of simple
roots

βmax =
∑

α∈Π
n(α)α,

where the coefficients n(α) are positive integers.
Our first main result is a smoothness criterion for the orbital varieties of the

minimal nilpotent orbit. The proof is given in Sect. 3.3.

Theorem 1 Let α ∈ Π� be a simple long root and let Vmin(α) = B · eα ∩ Omin be
the corresponding orbital variety of the minimal nilpotent orbit Omin. Then:

Vmin(α) is smooth if and only if n(α) = 1.

Our second main result is a criterion of finiteness of number of B-orbits /
existence of dense B-orbit for the orbital varieties of the subregular nilpotent orbit.
In the result below we say that a simple root α is extremal if it belongs to only one
(possibly multiple) edge of the Dynkin diagram (i.e., there is only one simple root
which is not orthogonal to α). In types E6, E7, E8, we consider the numbering of
the simple roots determined by the following diagram (of type E8)

and its subdiagrams {α1, . . . , α7} (of type E7) and {α1, . . . , α6} (of type E6).

Theorem 2 Let α ∈ Π be a simple root and let V subreg(α) = O subreg ∩ nα be
the corresponding orbital variety of the subregular nilpotent orbit O subreg. The
following conditions are equivalent:

(i) V subreg(α) has a finite number of B-orbits;
(ii) V subreg(α) has a dense B-orbit;

(iii) One of the following conditions is satisfied:
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(1) the group G is of type A or B;
(2) the group G is of type C or D, and α is an extremal root of the Dynkin

diagram;
(3) the group G is of type G2 or F4, and α is long and extremal;
(4) the group G is of type E6 (resp., E7) and α ∈ {α1, α6} (resp., α = α7).

The proof is given in Sect. 4.

Corollary 1

(a) In types A and C, every orbital variety of Omin is smooth.
(b) In types G2, F4, and E8, every orbital variety of Omin is singular.
(c) In types A and B, every orbital variety of O subreg has a finite number of B-

orbits.
(d) In type E8, every orbital variety of O subreg has an infinite number of B-orbits.

Remark 1 Let Φ∨ = {α∨ : α ∈ Φ} be the dual root system of Φ and let (βmax)
∨ =∑

α∈Π n∨(α)α∨, where n∨(α) are positive integers, be the decomposition of the
coroot associated to βmax in the basis Π∨ = {α∨ : α ∈ Π}. Then condition (iii) of
Theorem 2 is equivalent to having n∨(α) = 1. In this way, the conditions involved
in Theorems 1 and 2 appear to be related. Similar facts (in type A but for orbital
varieties of arbitrary nilpotent orbits), which suggest a relation between smooth
orbital varieties and orbital varieties admitting a dense B-orbit, are also pointed
out in [7].

3 Proof of Theorem 1

3.1 Notation

Recall that the root system Φ is endowed with the partial order 4 defined by letting
α 4 β if β − α is a sum of simple roots, and βmax stands for the biggest element of
Φ relatively to this order.

Given two positive roots α, β, we write:

• α � β if β − α ∈ Φ+;
• α <�β if β = α + kη for some η ∈ Φ+ and some positive integer k.

Moreover we consider the set

Mmax := {α ∈ Φ+ : α � βmax}.

The following technical lemmas can be checked case by case. The first lemma is
immediate in the simply laced case (where by convention we say that all the roots
are long, i.e., there is no short root).
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Lemma 1 Let γ be a short positive root such that the set

{β ∈ Φ+ long : β 4 γ }

is nonempty. Then, this set contains a biggest element β0 relatively to the order 4,
and we have β0 <�γ .

Moreover, let us suppose that γ ∈ Mmax, so that βmax − γ ∈ Φ+. Then, the
following alternative holds:

(i) Either γ − β0 = βmax − γ ,
(ii) Or, for all root β such that β0 4 β ≺ γ , we have β + βmax − γ /∈ Φ.

Lemma 2 Let α be a simple long root such that n(α) ≥ 2. Then there is a couple
(γ, γ ′) of positive roots such that α 4 γ , α 4 γ ′, and γ + γ ′ = βmax.

For every root α, we fix a morphism of algebraic groups uα : K→ G such that
huα(s)h

−1 = uα(α(h)s) for all h ∈ T and Im duα = gα (see [11, Lemma 7.3.3]).
Note that there is a nonzero root vector xα ∈ gα \ {0} such that

Ad uα(s) = exp(s ad xα) for all s ∈ K (1)

where Ad : G→ GL(g) and ad : g→ gl(g) stand for the adjoint representations.

3.2 Tangent Space of the Minimal Nilpotent Orbit
at the Biggest Root Vector

Recall that for each positive root α we consider a root vector eα ∈ gα \ {0}. The
biggest root vector eβmax is a representative of the minimal nilpotent orbit Omin. By
Teβmax

Omin we denote the tangent space of Omin at eβmax .

Proposition 3 Teβmax
Omin = gβmax ⊕ [gβmax, g−βmax ] ⊕

⊕
γ∈Mmax

gγ .

Proof We first claim that

dim Teβmax
Omin = dimOmin = |Mmax| + 2. (2)

The first equality in (2) follows from the fact that Omin is smooth. For showing the
second equality, we compute the stabilizer zg(eβmax) := {v ∈ g : [v, eβmax ] = 0}.
Let v ∈ g and let us write v = h +∑α∈Φ vα where h ∈ h and vα ∈ gα for all
α ∈ Φ. We get

[v, eβmax ] = βmax(h)eβmax + [v−βmax, eβmax ] +
∑

α∈Φ\{−βmax}
[vα, eβmax ],
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and the equality [v, eβmax ] = 0 holds if and only if h ∈ kerβmax, v−βmax = 0, and
vα = 0 whenever α+βmax is a root. The last fact is equivalent to having−α ∈ Mmax.
Altogether, this yields

dim zg(eβmax) = dim g− 2− |Mmax|.
Since dimOmin = dim g− dim zg(eβmax), the verification of (2) is complete.

In view of (2), for showing the proposition, it suffices to show the inclusion

gβmax ⊕ [gβmax , g−βmax ] ⊕
⊕

γ∈Mmax

gγ ⊂ Teβmax
Omin. (3)

There is a cocharacter λ : K
∗ → T such that λ(K∗) · eβmax = K

∗eβmax .
Hence K

∗eβmax ⊂ Omin, which yields the inclusion gβmax = Teβmax
(K∗eβmax) ⊂

Teβmax
Omin. By (1), the inclusion

[g−βmax , gβmax ] = K[x−βmax , eβmax ] = Teβmax

(
u−βmax(K) · eβmax

) ⊂ Teβmax
Omin

holds. Similarly, for every γ ∈ Mmax, letting γ ′ := βmax − γ (which is a positive
root), the inclusion

gγ = K[x−γ ′ , eβmax ] = Teβmax

(
u−γ ′(K) · eβmax

) ⊂ Teβmax
Omin

holds. Altogether we get (3). The proof is complete. ��
Remark 2

(a) More insight on the dimension formula for Omin (see (2)) can be found in [14].
(b) An alternative proof of Proposition 3, which relies on sl2-theory, can be

obtained as follows. The subalgebra s := g−βmax ⊕ [g−βmax, gβmax ] ⊕ gβmax

is isomorphic to sl2(K). The decomposition of g into simple s-modules
comprises 1-dimensional representations, 2-dimensional representations of the
form g−γ ′ ⊕ gγ corresponding to the couples of positive roots (γ, γ ′) such that
γ + γ ′ = βmax (i.e., γ ∈ Mmax), and a single 3-dimensional representation,
namely s. The tangent space Teβmax

Omin, which coincides with [g, eβmax ], is
then spanned by weight vectors which are not low-weight vector in any simple
s-submodule of g, whence the formula stated in Proposition 3.

3.3 Tangent Space of Orbital Varieties of the Minimal
Nilpotent Orbit at the Biggest Root Vector

Theorem 1 is implied by Proposition 4 (b) below. We need two preparatory lemmas.

Lemma 3 For every x ∈ Omin, we have K
∗x ⊂ B · x.
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Proof By (1), there is a long root vector eβ and an element b ∈ B such that x =
b · eβ . For every s ∈ K

∗, we can find h ∈ T such that h · eβ = seβ , whence
sx = (bh) · eβ ∈ B · eβ = B · x. ��

Recall that for every positive long root α, the root vector eα belongs to the
minimal nilpotent orbit Omin and the biggest long root vector eβmax belongs to the
closure of B · eα (see Proposition 2 (a)).

Lemma 4 Let γ ∈ Mmax.

(a) Assume that the root γ is long. Then gγ ⊂ Teβmax
B · eγ .

(b) Assume that γ is short and such that the set {β ∈ Φ+ long : β 4 γ } is
nonempty, hence contains a biggest element β0 (see Lemma 1). Then gγ ⊂
Teβmax

B · eβ0 .

Proof Let γ ′ := βmax − γ , which is a positive root. First we show part (a) of the
lemma. In view of (1), there is an element xγ ′ ∈ gγ ′ \ {0} such that

eγ + s−1[xγ ′ , eγ ] = uγ ′(s−1) · eγ ∈ B · eγ
for all s ∈ K

∗. Note that [xγ ′ , eγ ] ∈ gβmax \ {0} = K
∗eβmax . By Lemma 3, we get

eβmax + seγ ∈ B · eγ for all s ∈ K
∗. Whence the inclusion gγ ⊂ Teβmax

B · eγ .
Next let us show part (b) of the lemma. First assume that condition (i) of Lemma 1

holds, so that γ = β0+γ ′ and βmax = β0+2γ ′. In view of (1), we have in this case

eβ0+s−1[xγ ′ , eβ0 ]+
1

2
s−2[xγ ′ , [xγ ′ , eβ0 ]] = uγ ′(s−1) ·eβ0 ∈ B ·eβ0 for all s ∈ K

∗

for some xγ ′ ∈ gγ ′ \ {0}. Note that [xγ ′ , eβ0 ] ∈ gγ \ {0} while [xγ ′ , [xγ ′ , eβ0 ]] ∈
gβmax \ {0}, hence [xγ ′ , [xγ ′ , eβ0 ]] = s−1

0 eβmax for some s0 ∈ K
∗. Invoking also

Lemma 3, this yields

eβmax + 2ss0[xγ ′ , eβ0 ] + 2s2s0eβ0 ∈ B · eβ0 for all s ∈ K
∗.

Whence the inclusion gγ = K[xγ ′ , eβ0 ] ⊂ Teβmax
B · eβ0 .

Finally assume that condition (ii) of Lemma 1 holds. By Lemma 1, there is a
positive root η and a positive integer k such that γ = β0 + kη. Let r ≥ k be the
integer such that γ� := β0 + �η is a root for all � ∈ {0, 1, . . . , r} and is not a root
whenever � > r . By (1), there are root vectors e′γ� ∈ gγ� \ {0} (for � = 0, 1, . . . , r)
such that

uη(t) · eβ0 =
r∑

�=0

t�e′γ� for all t ∈ K.

By assumption, γ�+ γ ′ is a root if and only if � = k, and γk + γ ′ = γ + γ ′ = βmax.
Applying again (1), we get
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tks−1s−1
0 eβmax +

r∑

�=0

t�e′γ� = uγ ′(s−1)uη(t) · eβ0 for all t ∈ K, all s ∈ K
∗,

for some s0 ∈ K
∗. Whence (by Lemma 3)

eβmax + ss0t−k
r∑

�=0

t�e′γ� ∈ B · eβ0 for all t ∈ K, all s ∈ K
∗.

We deduce that

r∑

�=0

t�e′γ� ∈ Teβmax
B · eβ0 for all t ∈ K

and therefore

gγ ⊂
r⊕

�=0

gγ� ⊂ Teβmax
B · eβ0 .

The proof of the lemma is complete. ��
Proposition 4 Let α be a simple long root, so that Vmin(α) := B · eα ∩ Omin is an
orbital variety of Omin and B · eβmax is the unique closed B-orbit of Vmin(α) (see
Proposition 2).

(a) Teβmax
Vmin(α) = gβmax ⊕

⊕
γ∈Mmax, γ5α gγ .

(b) The following conditions are equivalent:

(i) Vmin(α) is singular;
(ii) |{γ ∈ Mmax : γ 5 α}| > 1

2 |Mmax|;
(iii) there exists a pair (γ, γ ′) of positive roots such that γ 5 α, γ ′ 5 α,

γ + γ ′ = βmax;
(iv) n(α) ≥ 2.

Proof First we show the inclusion⊃ in (a). Since gβmax \{0} = B ·eβmax ⊂ Vmin(α),
we have gβmax ⊂ Teβmax

Vmin(α). Next let γ ∈ Mmax such that γ 5 α. If γ
is a long root, then we have B · eγ ⊂ Vmin(α) by Proposition 2, hence gγ ⊂
Teβmax

Vmin(α) by Lemma 4 (a). Assume now that γ is a short root and let β0 be
as in Lemmas 1 and 4 (b). The maximality property of β0 implies that β0 5 α,
whence B · eβ0 ⊂ Vmin(α) (by Proposition 2). In view of Lemma 4 (b), this yields
gγ ⊂ Teβmax

Vmin(α). Altogether we get the inclusion ⊃ in (a).
In view of the inclusion Vmin(α) ⊂ B · eα ⊂⊕γ5α gγ and of Proposition 3, we

also have

Teβmax
Vmin(α) ⊂

(⊕

γ5α
gγ

)
∩ Teβmax

Omin = gβmax ⊕
⊕

γ∈Mmax, γ5α
gγ ,

and this completes the proof of part (a).
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On the one hand, part (a) and Proposition 3 yield

dim Teβmax
Vmin(α) = 1+ |{γ ∈ Mmax : γ 5 α}|

and

dimVmin(α) = 1

2
dimOmin = 1+ 1

2
|Mmax|

(recall from Sect. 1.2 that we have dimV = 1
2 dimO whenever V is an orbital

variety of a nilpotent orbit O). On the other hand, since B · eβmax is the unique
closed B-orbit in Vmin(α), we know that Vmin(α) is singular if and only if
dim Teβmax

Vmin(α) > dimVmin(α). The equivalence between conditions (i) and (ii)
of part (b) ensues.

Since α necessarily occurs in the decomposition of βmax as a sum of simple roots,
for every γ ∈ Mmax we must have γ 5 α or βmax − γ 5 α. Whence |{γ ∈ Mmax :
γ 5 α}| ≥ 1

2 |Mmax| with strict inequality if and only if there is an element γ ∈
Mmax such that γ 5 α and βmax − γ 5 α, which is equivalent to the existence of a
couple (γ, γ ′) as in (iii). Conditions (ii) and (iii) of part (b) are therefore equivalent.

The implication (iii)⇒(iv) is immediate while the inverse implication (iv)⇒(iii)
follows from Lemma 2. The proof of part (b) of the statement is now complete. ��
Remark 3 For every simple root α ∈ Π , we get a maximal parabolic subgroup
Pmax,α = ⊔w∈Wmax,α

BwB, where Wmax,α ⊂ W is the subgroup generated by the
simple reflections sβ for β ∈ Π \ {α}. Assume that α is a simple long root. It is seen
from Proposition 2 (a)–(b) that the orbital variety Vmin(α) is Pmax,α-stable, because
the groupWmax,α acts on the set of long positive roots β such that β 5 α. Moreover,
in the case where n(α) = 1, the latter action is transitive. Therefore, in that case,
Vmin(α) is Pmax,α-homogeneous. This yields another proof of the smoothness of the
orbital variety Vmin(α) in the case n(α) = 1.

4 Proof of Theorem 2

As in Sect. 2.1, for every simple root α, we denote by Pα the corresponding standard
minimal parabolic subgroup and by nα the nilpotent radical of its Lie algebra.

As noted in Proposition 1 (b), the orbital variety V subreg(α) := O subreg ∩ nα
of O subreg attached to α is Pα-homogeneous. In view of well-known properties of
spherical varieties [2, 13] (see also [6, Lemma 1]), this fact already guarantees the
equivalence between parts (i) and (ii) of Theorem 2. The purpose of this section is
to prove the equivalence between parts (ii) and (iii) of Theorem 2.
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4.1 Criteria of Existence of Dense B-Orbit

For a simple root α, we also denote by pα the Lie algebra of the minimal
parabolic subgroup Pα and by Rad(pα) its radical, i.e., the intersection of the Borel
subalgebras of pα; in other words,

Rad(pα) = {h ∈ h : α(h) = 0} ⊕ nα.

Proposition 5 Let α be a simple root. Let x ∈ V subreg(α) = O subreg ∩ nα . The
following conditions are equivalent:

(i) V subreg(α) has a dense B-orbit;
(ii) {y ∈ pα : [y, x] = 0} �⊂ Rad(pα).

Proof The orbital variety V subreg(α) (which coincides with the Pα-orbit of x) has a
dense B-orbit if and only if there exists an element g ∈ Pα such that dimB ·(g ·x) =
dimV subreg(α). By b we denote the Lie algebra of the Borel subgroup B. Note that

dimB · (g · x) = dimB − dim{y ∈ b : [y, g · x] = 0}
= dimB − dim{y ∈ g−1 · b : [y, x] = 0}

and

dimV subreg(α) = dimPα · x = dimPα − dim{y ∈ pα : [y, x] = 0}

hence

dimV subreg(α)−dimB ·(g·x) = 1−dim{y ∈ pα : [y, x] = 0}/{y ∈ g−1 ·b : [y, x] = 0}.

Therefore the existence of a denseB-orbit in V subreg(α) is equivalent to the existence
of a Borel subalgebra b′ = g−1 · b ⊂ pα such that {y ∈ pα : [y, x] = 0} �⊂ b′. This
property is equivalent to condition (ii) of the statement. The proof is complete. ��

Proposition 5 is an efficient criterion of existence of dense B-orbit once we
know a representative x of the orbital variety V subreg(α), i.e., an element x of the
intersection O subreg ∩ nα . Such an element x is called a Richardson element of
the nilradical nα . In the classical cases, due to the combinatorial classification of
nilpotent orbits in terms of Jordan forms, it is possible to construct Richardson
elements for many parabolic subalgebras; see [1]. In the classical cases, our proof of
Theorem 2 relies on Proposition 5. In particular we construct Richardson elements
for nilradicals of the form nα (the constructions made in [1] do not apply to all the
nilradicals of this form).

In the exceptional cases, out of our knowledge, there is no construction of
Richardson elements. For this reason, we cannot use Proposition 5 for proving
Theorem 2 in the exceptional cases (however, as a byproduct of our proof, we
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provide Richardson elements for certain nilradicals nα; see also Remark 5 below).
We rely on the construction of Chevalley bases and on the following criterion.

Proposition 6 Let α be a simple root and let V subreg(α) = O subreg ∩ nα be the
corresponding orbital variety of O subreg. Let x ∈ nα and letMα(x) be the matrix of
the linear transformation b → nα , y 	→ [y, x] (relatively to some bases of b and
nα , e.g., subbases of a Chevalley basis of g). Then

(a) dimB · x = rankMα(x).
(b) V subreg(α) has a dense B-orbit if and only if for some x ∈ nα the rows ofMα(x)

are linearly independent.

Proof Part (a) is obtained as follows:

dimB · x = dimB − dim{y ∈ b : [y, x] = 0} = dim b− dim kerMα(x) = rankMα(x).

From part (a), it follows that if the rows of Mα(x) are linearly independent, i.e.,
rankMα(x) = dim nα , then B · x is a dense, open subset of nα , which implies that
its intersection with O subreg ∩ nα is nonempty; in fact, this ensures that x belongs to
O subreg ∩ nα (i.e., to V subreg(α)) since this set is B-stable. The equivalence in part
(b) immediately follows from part (a) and this observation. ��
Corollary 2 We consider a connected subdiagram of the Dynkin diagram of g,
which corresponds to a subset of simple roots Π ′ ⊂ Π . Let G′ ⊂ G be the
connected simple algebraic subgroup corresponding to Π ′, let g′ ⊂ g be its Lie
algebra, and let B ′ ⊂ G′ be the standard Borel subgroup.

In this way, in addition to the orbital variety V subreg(α) (relative to g), a simple
root α ∈ Π ′ determines an orbital variety V ′subreg(α) relative to g′, contained in the
subregular nilpotent orbit of g′.

If V ′subreg(α) has no dense B ′-orbit, then V subreg(α) has no dense B-orbit.
More precisely, if B := B · x is a dense orbit of V subreg(α), denoting by x′

the natural projection of x onto g′, we have that B ′ := B ′ · x′ is a dense orbit of
V subreg(α

′). Moreover, the map B → B ′, x 	→ x′ is then surjective.

Proof Let Φ ′ ⊂ Φ be the root system generated by Π ′, i.e., the subset of roots
which are linear combinations of the elements of Π ′. Let Φ ′+ := Φ ′ ∩ Φ+ be the
subset of positive roots. Let b′ be the Lie algebra of B ′, let n′α ⊂ b′ be the nilradical
corresponding to α, let h′ be the standard Cartan subalgebra of g′. Thus

b′ = h′ ⊕
⊕

γ∈Φ ′+
gγ and n′α =

⊕

γ∈Φ ′+\{α}
gγ .

Recall that for each root γ ∈ Φ+ we consider a root vector eγ ∈ gγ \ {0}. Let
{λ′γ : γ ∈ Π ′} ⊂ h′ and {λγ : γ ∈ Π} ⊂ h be the dual bases of Π ′ ⊂ h′∗ and
Π ⊂ h∗, respectively. Let an element x ∈ nα and let x′ ∈ n′α be its image by the
projection relative to the decomposition nα = n′α ⊕

⊕
γ∈Φ+\Φ ′+ gγ . Let Mα(x) be

the matrix of the linear map b→ nα , y 	→ [y, x] in the bases {λγ : γ ∈ Π} ∪ {eγ :
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γ ∈ Φ+} (of b) and {eγ : γ ∈ Φ+ \ {α}} (of nα). Let M ′
α(x

′) be the matrix of the
map b′ → n′α , y 	→ [y, x′] in the bases {λ′γ : γ ∈ Π ′} ∪ {eγ : γ ∈ Φ ′+} (of b′)
and {eγ : γ ∈ Φ ′+ \ {α}} (of n′α). Then (up to adding columns of zeros) the matrix
M ′
α(x

′) coincides with the submatrix of Mα(x) formed by the rows corresponding
to the basis vectors eγ for γ ∈ Φ ′+ \ {α}. Therefore, if the rows of M ′

α(x
′) are

linearly dependent, then so are the rows of Mα(x). The corollary now follows from
Proposition 6 (b) (the last claim follows from the fact that the map x 	→ x′ is B ′-
equivariant). ��
Remark 4 Let {h, x, y} ⊂ g be an sl2-triple (i.e., [h, x] = 2x, [h, y] = −2y, and
[x, y] = h) and let g = ⊕

i∈Z g(i), where g(i) = {z ∈ g : [h, z] = iz}. Then
g(≥ 0) := ⊕i≥0 g(i) is a parabolic subalgebra of g. Up to replacing the sl2-triple
by a conjugate, we may assume that g(≥ 0) contains the Lie algebra of the Borel
subgroup B.

If x belongs to the subregular nilpotent orbit O subreg, then g(≥ 0) is the Lie
algebra of the minimal parabolic subgroup Pα0 , where α0 is the simple root which
has label 0 in the weighted Dynkin diagram corresponding to O subreg (see [5]).
Moreover, in this case, the grading satisfies

• g(i) = 0 for all odd i;
• if G is of type C, D, E6–E8, F4, or G2, then dim g(0) = dim g(2), i.e., x is

distinguished.

In the case where x is distinguished, by the properties of the representations of
sl2(K) ∼= 〈h, x, y〉K, we have {z ∈ g : [z, x] = 0} ⊂⊕i≥2 g(i) = nα0 . Proposition
5 implies that V subreg(α0) has no dense B-orbit in this case. A different proof of the
latter fact (which relies on Proposition 6 and Corollary 2) is given below.

4.2 Proof of Theorem 2 in Classical Cases

We rely on a technical lemma:

Lemma 5 Let α be a simple root. Assume that there is an element x ∈ O subreg ∩nα
of the form

x =
∑

γ∈I
xγ with xγ ∈ gγ \ {0}

where I is a subset of Φ+ \ {α} satisfying the following conditions:

(A) There is γ ∈ I such that γ − α ∈ Φ \ (I ∪ I ′) where I ′ = I +Φ+;
(B) There is γ ∈ I such that γ + α ∈ Φ \ (I ∪ Î ′) where Î ′ = I + (Φ+ \ {α});
(C) For every δ ∈ {γ ′ − γ : γ, γ ′ ∈ I } ∩ Φ+ \ {α}, there is β ∈ I such that

β + δ ∈ Φ \ I and (β + δ)− β ′ /∈ Φ+ \ {α} for all β ′ ∈ I \ {β};
(D) Φ is contained in the linear space spanned by I .
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Then V subreg(α) has no dense B-orbit.

Proof In view of Proposition 5, it suffices to show the inclusion

{y ∈ pα : [y, x] = 0} ⊂ nα. (1)

So, let y ∈ pα such that [y, x] = 0, write

y = h+ yα + y−α + y′ with h ∈ h, yα ∈ gα, y−α ∈ g−α, y′ ∈ nα,

and let us show that h = yα = y−α = 0. Let γ1 ∈ I and γ2 ∈ I be the elements
provided by conditions (A) and (B), respectively. First we see that

[y−α, x] = [−h− yα − y′, x] ∈
⊕

γ∈I∪I ′
gγ .

The vector [y−α, xγ1 ] is the component of [y−α, x] in the root space gγ1−α . Since
γ1 − α /∈ I ∪ I ′, we must have [y−α, xγ1 ] = 0, hence y−α = 0. Next we see that

[yα, x] = [−h− y′, x] ∈
⊕

γ∈I∪Î ′
gγ

and the condition γ2 + α /∈ I ∪ Î ′ implies that [yα, xγ2 ] = 0; since γ2 + α is a root,
this forces yα = 0. Thus the relation

[y′, x] = [−h, x] ∈
⊕

γ∈I
gγ (2)

holds. We claim that [y′, x] = 0. Arguing by contradiction, say [y′, x] �= 0. Hence
there are roots γ ∈ I and δ ∈ Φ+ \ {α} such that [y′δ, xγ ] �= 0, where y′δ is the
component of y′ in the root space gδ . By (2), this yields γ ′ := γ + δ ∈ I . Then, let
β ∈ I be as in condition (C). Condition (C) implies that [y′δ, xβ ] is the component of
[y′, x] in the root space gβ+δ and that it is nonzero. Since β+δ /∈ I , this contradicts
(2). Therefore [y′, x] = 0 and in turn (again by (2)) [h, x] = 0. The last relation
implies that h ∈ ⋂γ∈I ker γ , which, in view of condition (D), yields h = 0. The
proof of the lemma is complete. ��

Hereafter we denote by {λα : α ∈ Π} the basis of the Cartan subalgebra h which
is dual to the basis of h∗ formed by the simple roots.

By E(n)i,j we denote the elementary n × n matrix with 1 in position (i, j) and
zeros elsewhere. By t a we denote the transpose of a matrix a. For each classical Lie
algebra g considered below, we consider the root datum (Φ,Φ+) corresponding to
the Cartan subalgebra h ⊂ g formed by diagonal matrices and the Borel subalgebra
b ⊂ g formed by upper triangular matrices.
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Proof (Proof of Theorem 2 in Type A) Assume that G is a simple group of type
An−1, i.e., g = sln(K) is the space of n × n matrices of trace zero. The subregular
orbit O subreg consists of all nilpotent matrices x ∈ sln(K) with Jordan form (n −
1, 1). Let Φ = {εi − εj : 1 ≤ i �= j ≤ n} and Φ+ = {εi − εj : 1 ≤ i < j ≤ n}.
The matrix eεi−εj := E(n)i,j is a root vector for the root εi − εj . Let αi := εi − εi+1
(i = 1, . . . , n− 1) be the simple roots.

Let a simple root α = αi . Up to automorphism of the Dynkin diagram, we may
suppose that i < n− 1. The matrix x := eαi+αi+1 +

∑
j /∈{i,i+1} eαj is an element of

O subreg∩nαi and the matrix y := λαi−λαi+1 ∈ pαi \Rad(pαi ) is such that [y, x] = 0.
From Proposition 5, we conclude that V subreg(αi) has a dense B-orbit. ��
Proof (Proof of Theorem 2 in Type B) Assume that G is a simple group of type
Bm with m ≥ 2, i.e., g = son(K) with n = 2m + 1, seen as the subalgebra of
sln(K) of matrices which are skew symmetric with respect to the skew diagonal.
The roots are Φ = {±εi ± εj : 1 ≤ i < j ≤ m} ∪ {±εi : 1 ≤ i ≤ m} and
Φ+ = {εi±εj : 1 ≤ i < j ≤ m}∪{εi : 1 ≤ i ≤ m} and corresponding root vectors
are

eεi−εj = E(n)i,j − E(n)n+1−j,n+1−i , eεi+εj = E(n)i,n+1−j − E(n)j,n+1−i for 1 ≤ i < j ≤ m,
eεi = E(n)i,m+1 − E(n)m+1,n+1−i for 1 ≤ i ≤ m, e−α = t eα for α ∈ Φ+.

The simple roots are αi := εi − εi+1, for i = 1, . . . , m− 1, and αm := εm.
The subregular orbit O subreg consists of nilpotent matrices x ∈ son(K) of Jordan

form (n− 2, 1, 1). For i ∈ {1, . . . , m− 1}, the matrix

xi := eαi+αi+1 +
∑

j /∈{i,i+1}
eαj

belongs to O subreg ∩ nαi . Moreover the matrix yi := λαi − λαi+1 is an element of
pαi \Rad(pαi ) such that [yi, xi] = 0. From Proposition 5, it follows that V subreg(αi)

has a dense B-orbit. Note that xm−1 also belongs to O subreg ∩ nαm and ym−1 also
belongs to pαm \ Rad(pαm), hence the orbital variety V subreg(αm) has also a dense
B-orbit. We have shown that, in type B, all the orbital varieties of O subreg have a
dense B-orbit. ��
Proof (Proof of Theorem 2 in Type C) Assume G of type Cm with m ≥ 3. We deal
with the following realization of g = spn(K) with n = 2m:

g =
{(
a b

c −a∗
)
: a, b, c are m×m matrices, b = b∗, c = c∗

}

where x∗ stands for the transpose of x by the skew diagonal. In this case, we have
the roots Φ = {±εi ± εj : 1 ≤ i < j ≤ m} ∪ {±2εi : 1 ≤ i ≤ m} and
Φ+ = {εi ± εj : 1 ≤ i < j ≤ m} ∪ {2εi : 1 ≤ i ≤ m}, and we consider the
following root vectors:
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eεi−εj = E(n)i,j − E(n)n+1−j,n+1−i , eεi+εj = E(n)i,n+1−j + E(n)j,n+1−i for 1 ≤ i < j ≤ m,
e2εi = E(n)i,n+1−i for 1 ≤ i ≤ m, e−α = t eα for α ∈ Φ+.

The simple roots are αi := εi − εi+1, for i = 1, . . . , m− 1, and αm := 2εm.
The subregular orbit O subreg ⊂ spn(K) consists of all nilpotent matrices x ∈

spn(K) of Jordan form (n− 2, 2).
The element x1 := e2ε1 +

∑m
j=2 eαj belongs to O subreg ∩ nα1 and the element

y1 := e−α1+eε1+ε3 belongs to pα1\Rad(pα1) and satisfies [y1, x1] = 0. The element
xm := e2εm−1 +

∑m−1
j=1 eαj belongs to O subreg ∩ nαm and satisfies [e−αm, xm] = 0.

By applying Proposition 5, we get that V subreg(α1) and V subreg(αm) contain a dense
B-orbit.

Finally let us show that V subreg(αi) has no dense B-orbit whenever i ∈
{2, . . . , m − 1}. In view of Corollary 2, arguing by induction on m ≥ 3, we may
assume that i = 2. Let I = {αj : j /∈ {2, 3}}∪{α2+α3, 2ε3} and set x2 =∑α∈I eα .
Note that x2 ∈ O subreg ∩ nα2 . Moreover, it is easy to see that the set I fulfills the
conditions (A)–(D) of Lemma 5. It follows that V subreg(α2) has no dense B-orbit.
The proof of the theorem is complete in type C. ��
Proof (Proof of Theorem 2 in Type D) Assume G of type Dm for m ≥ 4. Hence
g = son(K) with n = 2m, seen as the subalgebra of sln(K) formed by matrices
which are skew symmetric by the skew diagonal. The roots are Φ = {±εi ± εj :
1 ≤ i < j ≤ m} and Φ+ = {εi ± εj : 1 ≤ i < j ≤ m} and we consider the root
vectors

eεi−εj = E(n)i,j − E(n)n+1−j,n+1−i and eεi+εj = E(n)i,n+1−j − E(n)j,n+1−i

for 1 ≤ i < j ≤ m, and e−α = t eα for all α ∈ Φ+. The simple roots are αi :=
εi − εi+1, for i = 1, . . . , m−1, and αm := εm−1+ εm. The subregular orbit O subreg
is the set of nilpotent elements x ∈ son(K) of Jordan form (n− 3, 3).

The element x1 := eε1+εm +
∑m
j=2 eαj belongs to O subreg ∩ nα1 . The matrix

y1 := 2e−α1 − eε1+ε4 − eε2−εm−1 − eε3−εm + eε3+εm belongs to pα1 \ Rad(pα1) and
commutes with x1. By Proposition 5, we deduce that V subreg(α1) has a dense B-
orbit. The element xm−1 := eεm−2+εm−1 +

∑
j �=m−1 eαj belongs to O subreg ∩ nαm−1

and it commutes with ym−1 := e−αm−1 + eαm ∈ pαm−1 \ Rad(pαm−1), hence
V subreg(αm−1) contains a dense B-orbit. The symmetry of the Dynkin diagram
guarantees that V subreg(αm) also contains a dense B-orbit.

Next we show that V subreg(αm−2) has no dense B-orbit. In view of Corollary 2,
we may assume that m = 4. In this case x := eα1 + eα1+α2 + eα2+α3 + eα4 is
an element of O subreg ∩ nα2 . Then, Lemma 5 shows that V subreg(α2) has no dense
B-orbit.

Finally assume that m ≥ 5 and let us show that the orbital variety V subreg(αi)

has no dense B-orbit for i ∈ {2, . . . , m − 3}. Invoking again Corollary 2, we may
assume that i = 2. Letting I = {αj : j /∈ {2, 3}}∪{α2+α3, α3+ . . .+αm−2+αm},
it is easy to check that the set I fulfills conditions (A)–(D) of Lemma 5 and that the
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element x := ∑α∈I eα belongs to O subreg ∩ nα2 . Hence, by Lemma 5, V subreg(α2)

contains no dense B-orbit. The proof is complete in type D. ��

4.3 Proof of Theorem 2 in Exceptional Cases

In this section, G is a simple algebraic group of exceptional type. As in Sect. 4.2,
we denote by {λα : α ∈ Π} the basis of the Cartan subalgebra h which is dual
to the basis of h∗ formed by the simple roots. Moreover for each exceptional type
we have determined a Chevalley basis of n = ⊕

α∈Φ+ gα , i.e., the subbasis of a
Chevalley basis of g. To this end, we consider the following total ordering of the
positive roots:

• In types G2 and F4, the simple roots are ordered according to the following
Dynkin diagrams:

In type E8 (and in type E6, resp., E7), the simple roots are ordered according
to the numbering of the Dynkin diagram drawn above Theorem 2 (and its
subdiagram of vertices α1, . . . , α6, resp., α1, . . . , α7)

• Next each positive root is identified with the tuple of its coordinates in the basis
Π . We consider the partial order determined by the height (i.e., the sum of the
coordinates) and we order the roots of same height by the lexicographic order of
the coordinates.

For instance, here is the ordered list of the positive roots in type G2, identified with
the couples of their coordinates in the basis (α1, α2):

α1 = [1, 0], α2 = [0, 1], α3 = [1, 1], α4 = [2, 1], α5 = [3, 1], α6 = [3, 2].

In each case let r be the number of simple roots, so α1, . . . , αr are the simple
roots, and let n denote the number of positive roots. For i ∈ {1, . . . , r}, we set
λi := λαi . Finally let (e1, . . . , en) be the Chevalley basis of n, numbered according
to the total ordering of the positive roots. We fix an element

x =
n∑

j=1

xj ej ∈ n.

We consider the linear map b→ n, y 	→ [y, x], and we denote by A(x) the matrix
of this map between the bases (λ1, . . . , λr , e1, . . . , en) and (e1, . . . , en) of b and n,
respectively. Note that for every simple root α = αi (with i ∈ {1, . . . , r}), the matrix
Mα(x) of Proposition 6 is obtained from the matrix A(x) by deleting the i-th row
of the matrix (i.e., the row of the matrix corresponding to ei) and replacing all the
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coefficients xi by zeros. The explicit matrices A(x) corresponding to the different
exceptional cases are given in the Appendix.

Proof (Proof of Theorem 2 in TypeG2) On the one hand, for x ∈ nα1 , it is easy to see
that the matrixMα1(x) has rank at most 4 whereas it has five rows. By Proposition 6,
V subreg(α1) has no dense B-orbit. On the other hand, the matrix Mα2(e1 + e6) has
five linearly independent rows. It follows from Proposition 6 that B · (e1 + e6) is a
dense B-orbit of V subreg(α2). ��
Proof (Proof of Theorem 2 in Type F4) The roots α2, α3, α4 generate a root system
of type C3. Hence it follows from Corollary 2 and the proof of the theorem in type
C that V subreg(α3) has no dense B-orbit.

For every x ∈ nα2 , the rows of the matrix Mα2(x) corresponding to the root
vectors e1, e3, e4, . . . , e10 are linearly dependent. By Proposition 6, it follows that
V subreg(α2) has no dense B-orbit.

For x ∈ nα4 , the rows of the matrix Mα4(x) corresponding to the root vectors ej
for j ∈ {1, . . . , 16} \ {4} are linearly dependent, and this shows that V subreg(α4) has
no dense B-orbit.

Finally, it can be seen that the matrix Mα1(e2 + e3 + e4 + e12) has linearly
independent rows, and this shows that B ·(e2+e3+e4+e12) is dense in V subreg(α1).
The proof is complete in type F4. ��
Proof (Proof of Theorem 2 in Types E6, E7, E8) In type E8, the roots α1, . . . , α5
generate a root system of typeD5 while the roots α2, . . . , α8 generate a root system
of type D7. By comparing Corollary 2 and the proof of the theorem in type D,
we deduce that the orbital varieties of type E8 corresponding to α3, . . . , α7 have
no dense B-orbit. Arguing in the same way shows that the orbital varieties of type
E7 (resp., E6) attached to the roots α3, . . . , α6 (resp., α3, . . . , α5) have no dense
B-orbit.

In type E6, letting x1 :=∑6
j=2 eαj +eα1+α3+α4+α5 , it can be seen that the matrix

Mα1(x1) has linearly independent rows. Therefore, Proposition 6 implies that the
element x1 belongs to a dense B-orbit of V subreg(α1). In view of the symmetry of
the Dynkin diagram of type E6, the orbital variety V subreg(α6) has also a dense B-
orbit whose representative is

∑5
j=1 eαj + eα3+α4+α5+α6 . By combining Corollary 2

and the proof of Theorem 2 in type D, we obtain that, if V subreg(α2) has a dense
B-orbit, then this orbit contains an element x ∈ nα2 whose natural projection on
the subalgebra g′ ⊂ g of type D5 corresponding to the set of simple roots Π ′ =
{α1, . . . , α5} is x′ = eα1 + eα3 + eα4 + eα5 + eα2+α4+α5 . For such an element x, one
can see that the matrixMα2(x) has linearly dependent rows (the row corresponding
to the root vector eα2+α4+α5+α6 is a linear combination of the rows above it). By
Proposition 6, this implies that V subreg(α2) has no dense B-orbit. This completes
the proof of the theorem in type E6.

In type E7, the above proof of the theorem in type E6 and Corollary 2 imply
that V subreg(α2) has no dense B-orbit. It can be seen that the matrix Mα7(x7)

corresponding to the element x7 := ∑6
j=1 eαj + eα6+α7 + eα3+α4+α5+α6+α7 has

linearly independent rows, hence Proposition 6 implies that B ·x7 is a dense B-orbit
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of V subreg(α7). Finally, invoking again Corollary 2, we obtain that a dense B-orbit of
V subreg(α1) (if it exists) must contain an element x ∈ nα1 whose natural projection
on the Lie subalgebra g′ ⊂ g of type E6 corresponding to the set of simple roots
Π ′ = {α1, . . . , α6} is the element x1 written above. However, for such an element
x, one can check that the row of the matrixMα1(x) corresponding to the root vector
eα1+α3+α4+α5+α6+α7 is a linear combination of the rows above it. This implies that
V subreg(α1) has no dense B-orbit. This completes the proof of the theorem in type
E7.

In typeE8, comparing Corollary 2 with the proof of the theorem in typeE7 given
above, we already deduce that V subreg(α1) and V subreg(α2) have no dense B-orbit.
Invoking again Corollary 2 and the proof of the theorem in type D, we obtain that a
denseB-orbit of V subreg(α8) (if it exists) should have a representative x ∈ nα8 whose
natural projection x′ on the subalgebra g′ ⊂ g of type D7 corresponding to the
simple rootsΠ ′ = {α2, . . . , α8} is given by x′ =∑7

j=2 ej +e43. However, a careful
calculation shows that for any such element x, the row of Mα8(x) corresponding to
the root vector e68 is a linear combination of the rows above it. This implies that
V subreg(α8) has no dense B-orbit. The proof of the theorem is complete. ��
Remark 5 Note that, in the proofs done in this section, in each case where
V subreg(α) has a dense B-orbit, we provide a representative of this orbit. This
element is in particular a Richardson element of the nilradical nα .

Appendix

In this appendix, g is a simple Lie algebra of exceptional type, (λ1, . . . , λr ) is the
basis of the Cartan subalgebra h which is dual to the basis of h∗ formed by the
simple roots α1, . . . , αr , (e1, . . . , en) is a Chevalley basis of the maximal nilpotent
subalgebra n (the numbering of the vectors corresponds to the total ordering of the
positive roots determined by the height, roots with the same height being ordered
according to the lexicographic order of their coordinates).

Given x =∑n
j=1 xj ej , we denote by A(x) the matrix of the linear map b→ n,

y 	→ [y, x] with respect to the bases (λ1, . . . , λr , e1, . . . , en) of b and (e1, . . . , en)

of n. In this appendix, we describe the matrixA(x) in the different exceptional cases.
In Figs. 1 and 2, we give the matrix A(x) in types G2 and F4, respectively. For

clarity, the zero coefficients are replaced by dots. In type F4, we write the matrix in

Fig. 1 The matrix A(x) in
type G2



Orbital Varieties in Extremal Nilpotent Orbits 325

Fig. 2 The blocks A1,1, A2,1, A2,2 of the matrix A(x) in type F4

the form A(x) =
(
A1,1 0
A2,1 A2,2

)
where A1,1, A2,1, and A2,2 are the 12× 14 matrices

described in Fig. 2.
In typeE8, instead of drawing the matrixA(x), we give the list of the roots αj , for

j = 1, . . . , 120. For each root αj , we indicate its coordinates [εj,1, . . . , εj,8] in the
basis (α1, . . . , α8) and the couples (a, b) such that ej = +[ea, eb] = −[eb, ea]. This
information is sufficient for characterizing the matrix A(x): the row of the matrix
corresponding to ej contains the coefficient xj εj,i in the column corresponding to
λi for all i ∈ {1, . . . , 8}, and for each one of the listed couples (a, b) it contains xb
in the column corresponding to ea and −xa in the column corresponding to eb, and
these are all the nonzero coefficients in the j -th row of the matrix.

In type E6 (resp. E7) the matrix A(x) is obtained from the matrix A(x) of
type E8 by deleting the columns corresponding to λ7 and λ8 (resp., the column
corresponding to λ8) and by deleting the rows and the columns corresponding to ej
whenever (εj,7, εj,8) �= (0, 0) (resp., whenever εj,8 �= 0).



326 L. Fresse

α1 = [1, 0, 0, 0, 0, 0, 0, 0].
α2 = [0, 1, 0, 0, 0, 0, 0, 0].
α3 = [0, 0, 1, 0, 0, 0, 0, 0].
α4 = [0, 0, 0, 1, 0, 0, 0, 0].
α5 = [0, 0, 0, 0, 1, 0, 0, 0].
α6 = [0, 0, 0, 0, 0, 1, 0, 0].
α7 = [0, 0, 0, 0, 0, 0, 1, 0].
α8 = [0, 0, 0, 0, 0, 0, 0, 1].
α9 = [1, 0, 1, 0, 0, 0, 0, 0]: (1, 3).
α10 = [0, 1, 0, 1, 0, 0, 0, 0]: (2, 4).
α11 = [0, 0, 1, 1, 0, 0, 0, 0]: (3, 4).
α12 = [0, 0, 0, 1, 1, 0, 0, 0]: (4, 5).
α13 = [0, 0, 0, 0, 1, 1, 0, 0]: (5, 6).
α14 = [0, 0, 0, 0, 0, 1, 1, 0]: (6, 7).
α15 = [0, 0, 0, 0, 0, 0, 1, 1]: (7, 8).

α16 = [1, 0, 1, 1, 0, 0, 0, 0]: (1, 11), (9, 4).

α17 = [0, 1, 1, 1, 0, 0, 0, 0]: (2, 11), (3, 10).

α18 = [0, 1, 0, 1, 1, 0, 0, 0]: (2, 12), (10, 5).

α19 = [0, 0, 1, 1, 1, 0, 0, 0]: (3, 12), (11, 5).

α20 = [0, 0, 0, 1, 1, 1, 0, 0]: (4, 13), (12, 6).

α21 = [0, 0, 0, 0, 1, 1, 1, 0]: (5, 14), (13, 7).

α22 = [0, 0, 0, 0, 0, 1, 1, 1]: (6, 15), (14, 8).

α23 = [1, 1, 1, 1, 0, 0, 0, 0]: (1, 17), (2, 16), (9, 10).

α24 = [1, 0, 1, 1, 1, 0, 0, 0]: (1, 19), (9, 12), (16, 5).

α25 = [0, 1, 1, 1, 1, 0, 0, 0]: (2, 19), (3, 18), (17, 5).

α26 = [0, 1, 0, 1, 1, 1, 0, 0]: (2, 20), (10, 13), (18, 6).

α27 = [0, 0, 1, 1, 1, 1, 0, 0]: (3, 20), (11, 13), (19, 6).

α28 = [0, 0, 0, 1, 1, 1, 1, 0]: (4, 21), (12, 14), (20, 7).

α29 = [0, 0, 0, 0, 1, 1, 1, 1]: (5, 22), (13, 15), (21, 8).

α30 = [1, 1, 1, 1, 1, 0, 0, 0]: (1, 25), (2, 24), (9, 18), (23, 5).

α31 = [1, 0, 1, 1, 1, 1, 0, 0]: (1, 27), (9, 20), (16, 13), (24, 6).

α32 = [0, 1, 1, 2, 1, 0, 0, 0]: (4, 25), (17, 12), (18, 11), (19, 10).

α33 = [0, 1, 1, 1, 1, 1, 0, 0]: (2, 27), (3, 26), (17, 13), (25, 6).

α34 = [0, 1, 0, 1, 1, 1, 1, 0]: (2, 28), (10, 21), (18, 14), (26, 7).

α35 = [0, 0, 1, 1, 1, 1, 1, 0]: (3, 28), (11, 21), (19, 14), (27, 7).

α36 = [0, 0, 0, 1, 1, 1, 1, 1]: (4, 29), (12, 22), (20, 15), (28, 8).

α37 = [1, 1, 1, 2, 1, 0, 0, 0]: (1, 32), (4, 30), (18, 16), (23, 12), (24, 10).

α38 = [1, 1, 1, 1, 1, 1, 0, 0]: (1, 33), (2, 31), (9, 26), (23, 13), (30, 6).

α39 = [1, 0, 1, 1, 1, 1, 1, 0]: (1, 35), (9, 28), (16, 21), (24, 14), (31, 7).

α40 = [0, 1, 1, 2, 1, 1, 0, 0]: (4, 33), (17, 20), (26, 11), (27, 10), (32, 6).

α41 = [0, 1, 1, 1, 1, 1, 1, 0]: (2, 35), (3, 34), (17, 21), (25, 14), (33, 7).

α42 = [0, 1, 0, 1, 1, 1, 1, 1]: (2, 36), (10, 29), (18, 22), (26, 15), (34, 8).

α43 = [0, 0, 1, 1, 1, 1, 1, 1]: (3, 36), (11, 29), (19, 22), (27, 15), (35, 8).

α44 = [1, 1, 2, 2, 1, 0, 0, 0]: (3, 37), (11, 30), (23, 19), (24, 17), (25, 16), (32, 9).

α45 = [1, 1, 1, 2, 1, 1, 0, 0]: (1, 40), (4, 38), (23, 20), (26, 16), (31, 10), (37, 6).

α46 = [1, 1, 1, 1, 1, 1, 1, 0]: (1, 41), (2, 39), (9, 34), (23, 21), (30, 14), (38, 7).

α47 = [1, 0, 1, 1, 1, 1, 1, 1]: (1, 43), (9, 36), (16, 29), (24, 22), (31, 15), (39, 8).

α48 = [0, 1, 1, 2, 2, 1, 0, 0]: (5, 40), (18, 27), (19, 26), (20, 25), (32, 13), (33, 12).

α49 = [0, 1, 1, 2, 1, 1, 1, 0]: (4, 41), (17, 28), (32, 14), (34, 11), (35, 10), (40, 7).

α50 = [0, 1, 1, 1, 1, 1, 1, 1]: (2, 43), (3, 42), (17, 29), (25, 22), (33, 15), (41, 8).

α51 = [1, 1, 2, 2, 1, 1, 0, 0]: (3, 45), (11, 38), (23, 27), (31, 17), (33, 16), (40, 9), (44, 6).

α52 = [1, 1, 1, 2, 2, 1, 0, 0]: (1, 48), (5, 45), (18, 31), (20, 30), (24, 26), (37, 13), (38, 12).

α53 = [1, 1, 1, 2, 1, 1, 1, 0]: (1, 49), (4, 46), (23, 28), (34, 16), (37, 14), (39, 10), (45, 7).

α54 = [1, 1, 1, 1, 1, 1, 1, 1]: (1, 50), (2, 47), (9, 42), (23, 29), (30, 22), (38, 15), (46, 8).

α55 = [0, 1, 1, 2, 2, 1, 1, 0]: (5, 49), (18, 35), (19, 34), (28, 25), (32, 21), (41, 12), (48, 7).

α56 = [0, 1, 1, 2, 1, 1, 1, 1]: (4, 50), (17, 36), (32, 22), (40, 15), (42, 11), (43, 10), (49, 8).

α57 = [1, 1, 2, 2, 2, 1, 0, 0]: (3, 52), (5, 51), (24, 33), (25, 31), (27, 30), (38, 19), (44, 13), (48, 9).

α58 = [1, 1, 2, 2, 1, 1, 1, 0]: (3, 53), (11, 46), (23, 35), (39, 17), (41, 16), (44, 14), (49, 9), (51, 7).

α59 = [1, 1, 1, 2, 2, 1, 1, 0]: (1, 55), (5, 53), (18, 39), (24, 34), (28, 30), (37, 21), (46, 12), (52, 7).

α60 = [1, 1, 1, 2, 1, 1, 1, 1]: (1, 56), (4, 54), (23, 36), (37, 22), (42, 16), (45, 15), (47, 10), (53, 8).

α61 = [0, 1, 1, 2, 2, 2, 1, 0]: (6, 55), (20, 41), (21, 40), (33, 28), (34, 27), (35, 26), (48, 14), (49, 13).

α62 = [0, 1, 1, 2, 2, 1, 1, 1]: (5, 56), (18, 43), (19, 42), (32, 29), (36, 25), (48, 15), (50, 12), (55, 8).

α63 = [1, 1, 2, 3, 2, 1, 0, 0]: (4, 57), (12, 51), (16, 48), (24, 40), (27, 37), (32, 31), (44, 20), (45, 19), (52, 11).

α64 = [1, 1, 2, 2, 2, 1, 1, 0]: (3, 59), (5, 58), (24, 41), (25, 39), (35, 30), (44, 21), (46, 19), (55, 9), (57, 7).
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α65 = [1, 1, 2, 2, 1, 1, 1, 1]: (3, 60), (11, 54), (23, 43), (44, 22), (47, 17), (50, 16), (51, 15), (56, 9), (58, 8).

α66 = [1, 1, 1, 2, 2, 2, 1, 0]: (1, 61), (6, 59), (20, 46), (21, 45), (34, 31), (38, 28), (39, 26), (52, 14), (53, 13).

α67 = [1, 1, 1, 2, 2, 1, 1, 1]: (1, 62), (5, 60), (18, 47), (24, 42), (36, 30), (37, 29), (52, 15), (54, 12), (59, 8).

α68 = [0, 1, 1, 2, 2, 2, 1, 1]: (6, 62), (20, 50), (29, 40), (33, 36), (42, 27), (43, 26), (48, 22), (56, 13), (61, 8).

α69 = [1, 2, 2, 3, 2, 1, 0, 0]: (2, 63), (10, 57), (18, 51), (23, 48), (30, 40), (32, 38), (33, 37), (44, 26), (45, 25), (52, 17).

α70 = [1, 1, 2, 3, 2, 1, 1, 0]: (4, 64), (12, 58), (16, 55), (24, 49), (32, 39), (35, 37), (44, 28), (53, 19), (59, 11), (63, 7).

α71 = [1, 1, 2, 2, 2, 2, 1, 0]: (3, 66), (6, 64), (21, 51), (27, 46), (38, 35), (39, 33), (41, 31), (57, 14), (58, 13), (61, 9).

α72 = [1, 1, 2, 2, 2, 1, 1, 1]: (3, 67), (5, 65), (24, 50), (25, 47), (43, 30), (44, 29), (54, 19), (57, 15), (62, 9), (64, 8).

α73 = [1, 1, 1, 2, 2, 2, 1, 1]: (1, 68), (6, 67), (20, 54), (29, 45), (38, 36), (42, 31), (47, 26), (52, 22), (60, 13), (66, 8).

α74 = [0, 1, 1, 2, 2, 2, 2, 1]: (7, 68), (21, 56), (22, 55), (34, 43), (35, 42), (36, 41), (49, 29), (50, 28), (61, 15), (62, 14).

α75 = [1, 2, 2, 3, 2, 1, 1, 0]: (2, 70), (10, 64), (18, 58), (23, 55), (30, 49), (32, 46), (41, 37), (44, 34), (53, 25), (59, 17),

(69, 7).

α76 = [1, 1, 2, 3, 2, 2, 1, 0]: (4, 71), (6, 70), (16, 61), (27, 53), (28, 51), (39, 40), (45, 35), (49, 31), (58, 20), (63, 14),

(66, 11).

α77 = [1, 1, 2, 3, 2, 1, 1, 1]: (4, 72), (12, 65), (16, 62), (24, 56), (32, 47), (43, 37), (44, 36), (60, 19), (63, 15), (67, 11),

(70, 8).

α78 = [1, 1, 2, 2, 2, 2, 1, 1]: (3, 73), (6, 72), (27, 54), (29, 51), (38, 43), (47, 33), (50, 31), (57, 22), (65, 13), (68, 9),

(71, 8).

α79 = [1, 1, 1, 2, 2, 2, 2, 1]: (1, 74), (7, 73), (21, 60), (22, 59), (34, 47), (36, 46), (39, 42), (53, 29), (54, 28), (66, 15),

(67, 14).

α80 = [1, 2, 2, 3, 2, 2, 1, 0]: (2, 76), (6, 75), (10, 71), (23, 61), (33, 53), (34, 51), (45, 41), (46, 40), (49, 38), (58, 26),

(66, 17), (69, 14).

α81 = [1, 2, 2, 3, 2, 1, 1, 1]: (2, 77), (10, 72), (18, 65), (23, 62), (30, 56), (32, 54), (44, 42), (50, 37), (60, 25), (67, 17),

(69, 15), (75, 8).

α82 = [1, 1, 2, 3, 3, 2, 1, 0]: (5, 76), (13, 70), (19, 66), (27, 59), (28, 57), (39, 48), (52, 35), (55, 31), (61, 24), (63, 21),

(64, 20), (71, 12).

α83 = [1, 1, 2, 3, 2, 2, 1, 1]: (4, 78), (6, 77), (16, 68), (27, 60), (36, 51), (45, 43), (47, 40), (56, 31), (63, 22), (65, 20),

(73, 11), (76, 8).

α84 = [1, 1, 2, 2, 2, 2, 2, 1]: (3, 79), (7, 78), (21, 65), (22, 64), (39, 50), (41, 47), (43, 46), (54, 35), (58, 29), (71, 15),

(72, 14), (74, 9).

α85 = [1, 2, 2, 3, 3, 2, 1, 0]: (2, 82), (5, 80), (13, 75), (25, 66), (33, 59), (34, 57), (46, 48), (52, 41), (55, 38), (61, 30),

(64, 26), (69, 21), (71, 18).

α86 = [1, 2, 2, 3, 2, 2, 1, 1]: (2, 83), (6, 81), (10, 78), (23, 68), (33, 60), (42, 51), (45, 50), (54, 40), (56, 38), (65, 26),

(69, 22), (73, 17), (80, 8).

α87 = [1, 1, 2, 3, 3, 2, 1, 1]: (5, 83), (13, 77), (19, 73), (27, 67), (36, 57), (47, 48), (52, 43), (62, 31), (63, 29), (68, 24),

(72, 20), (78, 12), (82, 8).

α88 = [1, 1, 2, 3, 2, 2, 2, 1]: (4, 84), (7, 83), (16, 74), (22, 70), (28, 65), (39, 56), (43, 53), (49, 47), (58, 36), (60, 35),

(76, 15), (77, 14), (79, 11).

α89 = [1, 2, 2, 4, 3, 2, 1, 0]: (4, 85), (12, 80), (20, 75), (32, 66), (34, 63), (40, 59), (52, 49), (53, 48), (55, 45), (61, 37),

(69, 28), (70, 26), (76, 18), (82, 10).

α90 = [1, 2, 2, 3, 3, 2, 1, 1]: (2, 87), (5, 86), (13, 81), (25, 73), (33, 67), (42, 57), (52, 50), (54, 48), (62, 38), (68, 30),

(69, 29), (72, 26), (78, 18), (85, 8).

α91 = [1, 2, 2, 3, 2, 2, 2, 1]: (2, 88), (7, 86), (10, 84), (22, 75), (23, 74), (34, 65), (46, 56), (49, 54), (50, 53), (58, 42),

(60, 41), (79, 17), (80, 15), (81, 14).

α92 = [1, 1, 2, 3, 3, 2, 2, 1]: (5, 88), (7, 87), (19, 79), (28, 72), (29, 70), (39, 62), (43, 59), (55, 47), (64, 36), (67, 35),

(74, 24), (77, 21), (82, 15), (84, 12).

α93 = [1, 2, 3, 4, 3, 2, 1, 0]: (3, 89), (11, 85), (19, 80), (27, 75), (32, 71), (40, 64), (41, 63), (55, 51), (57, 49), (58, 48),

(61, 44), (69, 35), (70, 33), (76, 25), (82, 17).



328 L. Fresse

α94 = [1, 2, 2, 4, 3, 2, 1, 1]: (4, 90), (12, 86), (20, 81), (32, 73), (40, 67), (42, 63), (52, 56), (60, 48), (62, 45), (68, 37),

(69, 36), (77, 26), (83, 18), (87, 10), (89, 8).

α95 = [1, 2, 2, 3, 3, 2, 2, 1]: (2, 92), (5, 91), (7, 90), (25, 79), (29, 75), (34, 72), (46, 62), (50, 59), (55, 54), (64, 42),

(67, 41), (74, 30), (81, 21), (84, 18), (85, 15).

α96 = [1, 1, 2, 3, 3, 3, 2, 1]: (6, 92), (14, 87), (20, 84), (28, 78), (29, 76), (31, 74), (39, 68), (43, 66), (61, 47), (71, 36),

(73, 35), (79, 27), (82, 22), (83, 21), (88, 13).

α97 = [2, 2, 3, 4, 3, 2, 1, 0]: (1, 93), (9, 89), (16, 85), (24, 80), (31, 75), (37, 71), (45, 64), (46, 63), (57, 53), (58, 52),

(59, 51), (66, 44), (69, 39), (70, 38), (76, 30), (82, 23).

α98 = [1, 2, 3, 4, 3, 2, 1, 1]: (3, 94), (11, 90), (19, 86), (27, 81), (32, 78), (40, 72), (50, 63), (57, 56), (62, 51), (65, 48),

(68, 44), (69, 43), (77, 33), (83, 25), (87, 17), (93, 8).

α99 = [1, 2, 2, 4, 3, 2, 2, 1]: (4, 95), (7, 94), (12, 91), (32, 79), (34, 77), (36, 75), (53, 62), (55, 60), (56, 59), (67, 49),

(70, 42), (74, 37), (81, 28), (88, 18), (89, 15), (92, 10).

α100 = [1, 2, 2, 3, 3, 3, 2, 1]: (2, 96), (6, 95), (14, 90), (26, 84), (29, 80), (34, 78), (38, 74), (46, 68), (50, 66), (61, 54),

(71, 42), (73, 41), (79, 33), (85, 22), (86, 21), (91, 13).

α101 = [2, 2, 3, 4, 3, 2, 1, 1]: (1, 98), (9, 94), (16, 90), (24, 86), (31, 81), (37, 78), (45, 72), (54, 63), (57, 60), (65, 52),

(67, 51), (69, 47), (73, 44), (77, 38), (83, 30), (87, 23), (97, 8).

α102 = [1, 2, 3, 4, 3, 2, 2, 1]: (3, 99), (7, 98), (11, 95), (19, 91), (32, 84), (41, 77), (43, 75), (55, 65), (56, 64), (58, 62),

(70, 50), (72, 49), (74, 44), (81, 35), (88, 25), (92, 17), (93, 15).

α103 = [1, 2, 2, 4, 3, 3, 2, 1]: (4, 100), (6, 99), (14, 94), (26, 88), (34, 83), (36, 80), (45, 74), (53, 68), (56, 66), (61, 60),

(73, 49), (76, 42), (79, 40), (86, 28), (89, 22), (91, 20), (96, 10).

α104 = [2, 2, 3, 4, 3, 2, 2, 1]: (1, 102), (7, 101), (9, 99), (16, 95), (24, 91), (37, 84), (46, 77), (47, 75), (58, 67), (59, 65),

(60, 64), (70, 54), (72, 53), (79, 44), (81, 39), (88, 30), (92, 23), (97, 15).

α105 = [1, 2, 3, 4, 3, 3, 2, 1]: (3, 103), (6, 102), (11, 100), (14, 98), (33, 88), (41, 83), (43, 80), (51, 74), (56, 71),

(58, 68), (61, 65), (76, 50), (78, 49), (84, 40), (86, 35), (91, 27), (93, 22), (96, 17).

α106 = [1, 2, 2, 4, 4, 3, 2, 1]: (5, 103), (13, 99), (18, 96), (21, 94), (26, 92), (34, 87), (36, 85), (52, 74), (59, 68), (61, 67),

(62, 66), (73, 55), (79, 48), (82, 42), (89, 29), (90, 28), (95, 20), (100, 12).

α107 = [2, 2, 3, 4, 3, 3, 2, 1]: (1, 105), (6, 104), (9, 103), (14, 101), (16, 100), (38, 88), (46, 83), (47, 80), (51, 79),

(58, 73), (60, 71), (66, 65), (76, 54), (78, 53), (84, 45), (86, 39), (91, 31), (96, 23), (97, 22).

α108 = [1, 2, 3, 4, 4, 3, 2, 1]: (3, 106), (5, 105), (13, 102), (21, 98), (25, 96), (33, 92), (41, 87), (43, 85), (57, 74),

(61, 72), (62, 71), (64, 68), (78, 55), (82, 50), (84, 48), (90, 35), (93, 29), (95, 27), (100, 19).

α109 = [2, 2, 3, 4, 4, 3, 2, 1]: (1, 108), (5, 107), (9, 106), (13, 104), (21, 101), (30, 96), (38, 92), (46, 87), (47, 85),

(57, 79), (64, 73), (66, 72), (67, 71), (78, 59), (82, 54), (84, 52), (90, 39), (95, 31), (97, 29), (100, 24).

α110 = [1, 2, 3, 5, 4, 3, 2, 1]: (4, 108), (12, 105), (20, 102), (28, 98), (32, 96), (40, 92), (43, 89), (49, 87), (61, 77),

(62, 76), (63, 74), (70, 68), (82, 56), (83, 55), (88, 48), (93, 36), (94, 35), (99, 27), (103, 19), (106, 11).

α111 = [2, 2, 3, 5, 4, 3, 2, 1]: (1, 110), (4, 109), (12, 107), (20, 104), (28, 101), (37, 96), (45, 92), (47, 89), (53, 87),

(63, 79), (66, 77), (67, 76), (70, 73), (82, 60), (83, 59), (88, 52), (94, 39), (97, 36), (99, 31), (103, 24), (106, 16).

α112 = [1, 3, 3, 5, 4, 3, 2, 1]: (2, 110), (10, 108), (18, 105), (26, 102), (32, 100), (34, 98), (40, 95), (49, 90), (50, 89),

(61, 81), (62, 80), (69, 74), (75, 68), (85, 56), (86, 55), (91, 48), (93, 42), (94, 41), (99, 33), (103, 25), (106, 17).

α113 = [2, 3, 3, 5, 4, 3, 2, 1]: (1, 112), (2, 111), (10, 109), (18, 107), (26, 104), (34, 101), (37, 100), (45, 95), (53, 90),

(54, 89), (66, 81), (67, 80), (69, 79), (75, 73), (85, 60), (86, 59), (91, 52), (94, 46), (97, 42), (99, 38), (103, 30), (106, 23).

α114 = [2, 2, 4, 5, 4, 3, 2, 1]: (3, 111), (11, 109), (19, 107), (27, 104), (35, 101), (44, 96), (47, 93), (51, 92), (58, 87),

(63, 84), (70, 78), (71, 77), (72, 76), (82, 65), (83, 64), (88, 57), (97, 43), (98, 39), (102, 31), (105, 24), (108, 16),

(110, 9).

α115 = [2, 3, 4, 5, 4, 3, 2, 1]: (2, 114), (3, 113), (17, 109), (25, 107), (33, 104), (41, 101), (44, 100), (51, 95), (54, 93),

(58, 90), (69, 84), (71, 81), (72, 80), (75, 78), (85, 65), (86, 64), (91, 57), (97, 50), (98, 46), (102, 38), (105, 30),

(108, 23), (112, 9).
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α116 = [2, 3, 4, 6, 4, 3, 2, 1]: (4, 115), (16, 112), (17, 111), (32, 107), (40, 104), (44, 103), (49, 101), (51, 99), (58, 94),

(60, 93), (69, 88), (75, 83), (76, 81), (77, 80), (86, 70), (89, 65), (91, 63), (97, 56), (98, 53), (102, 45), (105, 37),

(110, 23), (113, 11), (114, 10).

α117 = [2, 3, 4, 6, 5, 3, 2, 1]: (5, 116), (18, 114), (19, 113), (30, 110), (32, 109), (44, 106), (48, 104), (55, 101), (57, 99),

(64, 94), (67, 93), (69, 92), (75, 87), (77, 85), (82, 81), (89, 72), (90, 70), (95, 63), (97, 62), (98, 59), (102, 52), (108, 37),

(111, 25), (112, 24), (115, 12).

α118 = [2, 3, 4, 6, 5, 4, 2, 1]: (6, 117), (20, 115), (31, 112), (33, 111), (45, 108), (48, 107), (57, 103), (61, 101), (69, 96),

(71, 94), (73, 93), (80, 87), (82, 86), (83, 85), (89, 78), (90, 76), (97, 68), (98, 66), (100, 63), (105, 52), (106, 51),

(109, 40), (110, 38), (113, 27), (114, 26), (116, 13).

α119 = [2, 3, 4, 6, 5, 4, 3, 1]: (7, 118), (21, 116), (34, 114), (35, 113), (46, 110), (49, 109), (58, 106), (59, 105),

(61, 104), (70, 100), (71, 99), (79, 93), (80, 92), (82, 91), (88, 85), (89, 84), (95, 76), (96, 75), (97, 74), (102, 66),

(103, 64), (107, 55), (108, 53), (111, 41), (112, 39), (115, 28), (117, 14).

α120 = [2, 3, 4, 6, 5, 4, 3, 2]: (8, 119), (22, 117), (36, 115), (47, 112), (50, 111), (60, 108), (62, 107), (72, 103),

(73, 102), (74, 101), (81, 96), (83, 95), (84, 94), (90, 88), (91, 87), (92, 86), (98, 79), (99, 78), (100, 77), (104, 68),

(105, 67), (106, 65), (109, 56), (110, 54), (113, 43), (114, 42), (116, 29), (118, 15).
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On Involutions in the Weyl Group and
B-Orbit Closures in the Orthogonal Case

Mikhail V. Ignatyev

To Anthony Joseph in the occasion of his 75th birthday

Abstract We study coadjoint B-orbits on n∗, where B is a Borel subgroup of a
complex orthogonal group G, and n is the Lie algebra of the unipotent radical of B.
To each basis involution w in the Weyl groupW of G one can assign the associated
B-orbit �w. We prove that, given basis involutions σ , τ in W , if the orbit �σ is
contained in the closure of the orbit�τ then σ is less than or equal to τ with respect
to the Bruhat order onW . For a basis involution w, we also compute the dimension
of �w and present a conjectural description of the closure of �w.

AMS Subject Classification: 17B22, 17B08, 17B30, 20F55

1 Introduction, Definitions and the Main Result

1.1 Let G be a complex reductive algebraic group, B a Borel subgroup of G, �
the root system of G and W = W(�) the Weyl group of �. It is well-known that
the Bruhat order onW encodes the cell decomposition of the flag varietyG/B (see,
e.g., [2]). Denote by I(�) the poset of involutions inW (i.e., elements ofW of order
2). In [19], Richardson and Springer showed that I(A2n) encodes the incidences
among the closed B-orbits on the symmetric variety SL2n+1(C)/SO2n+1(C). In [1],
Bagno and Chernavsky presented a geometrical interpretation of the poset I(An),
considering the action of the Borel subgroup of GLn(C) on symmetric matrices
by congruence. Incitti studied the poset I(�) from a purely combinatorial point of
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view for the case of classical root system � (see [10–12]). In particular, he proved
that this poset is graded, calculated the rank function and described the covering
relation.

In [7], we presented another geometrical interpretation of I(An−1) in terms of
coadjoint B-orbits. Precisely, let U be the unipotent radical of B, and Let n be the
Lie algebra of U . Since B acts on n via the adjoint action, one can consider the dual
action of B on n∗, which is called coadjoint. To each involution σ ∈ I(An−1) one
can assign the B-orbit �σ ⊆ n∗ (see Sects. 1.2, 1.3 for precise definitions). By [7,
Theorem 1.1], for G = GLn(C), �σ is contained in the Zariski closure �τ of �τ
if and only if σ is less or equal to τ with respect to the Bruhat order ≤B . In [8],
completely similar results were obtained for G = Sp2n(C) (i.e., for I(Cn)), see [8,
Theorem 1.1]. In some sense, these results are “dual” to Melnikov’s results [15–17].

In this paper, we establish similar results for the cases � = Bn and � = Dn.
Namely, let G be the orthogonal group of rank n, i.e., G = O2n+1(C) or O2n(C)

(respectively, � = Bn or Dn). In general, �σ ⊆ �τ is not equivalent to σ ≤B τ ,
see Examples 2.3 and 2.8 below. On the other hand, we believe that these conditions
are equivalent if we restrict ourselves to the case of the so-called basis involutions.
An involution σ is called basis if there are no i such that σ(i) = −i. (Here W is
standardly identified with certain subgroup of the symmetric group S±n on the 2n
letters 1, . . . , n, −n, . . . , −1, see Sect. 1.2 for the precise definition). The main
result of the paper is as follows.

Theorem 1.1 Let σ , τ be basis involutions in the Weyl group W of type Bn or Dn.
If the orbit �σ is contained in the Zariski closure of the orbit �τ , then σ is less or
equal to τ with respect to the Bruhat order on the groupW .

The paper is organized as follows. In the rest of this section we briefly recall
basic facts about classical groups and collect our previous results about I(An−1) and
I(Cn), see Sect. 1.2. Then, we give precise definitions for the orthogonal case and
formulate some Incitti’s results about involutions needed in the sequel, see Sect. 1.3.

Section 2 is devoted to the proof of Theorem 1.1. Precisely, in Sect. 2.1 we prove
it for Bn, see Theorem 2.2. Next, in Sect. 2.2 we prove this theorem for Dn (this
requires some additional work due to the fact that the Bruhat order in this case has
more complicated description than for Bn). In Sect. 2.3 we discuss the equivalence
of the conditions�σ ⊆ �τ and σ ≤B τ for basis involutions. Namely, using Incitti’s
results, we present a conjectural way how to prove that if σ ≤B τ then �σ is
contained in the closure of �τ .

Finally, in Sect. 3 we discuss some related facts and conjectures. In Sect. 3.1, we
obtain a formula for the dimension of the orbit � (see Theorem 3.1). In Sect. 3.2, a
conjectural approach to orbits associated with involutions in terms of tangent cones
to Schubert subvarieties of the flag variety G/B is presented.
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1.2 From now on and to the end of the paper G denotes one of the classical
complex algebraic groups GLn(C), O2n+1(C), Sp2n(C) or O2n(C). The group
O2n+1(C) (respectively, Sp2n(C), O2n(C)) is realized as the subgroup of GL2n+1(C)

(respectively, of GL2n(C)) consisting of all invertible matrices g such that

β(gu, gv) = β(u, v)

for all u, v in C
2n+1 (respectively, in C

2n), where β is the bilinear form on C
2n+1

(respectively, on C
2n) defined as follows:

β(u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u0v0 +
n∑
i=1
(uiv−i + u−ivi) for O2n+1(C),

n∑
i=1
(uiv−i − u−ivi) for Sp2n(C),

n∑
i=1
(uiv−i + u−ivi) for O2n(C).

Here for O2n+1(C) (respectively, for Sp2n(C) and O2n(C)) we denote by
e1, . . . , en, e−n, . . . , e−1 (respectively, by e1, . . . , en, e0, e−n, . . . , e−1 and
e1, . . . , en, e−n, . . . , e−1) the standard basis of C2n+1 (respectively, of C2n), and by
xi the coordinate of a vector x corresponding to ei .

The set of all diagonal matrices from G is a maximal torus in G; we denote it by
H . Let � be the root system of G with respect to H . Note that � is of type An−1
(respectively, Bn, Cn andDn) for GLn(C) (respectively, for O2n+1(C), Sp2n(C) and
O2n(C)). The set of all upper-triangular matrices from G is a Borel subgroup of G
containing H ; we denote it by B. Let �+ be the set of positive roots with respect
to B. As usual, we identify �+ with the following subset of the n-dimensional
Euclidean space R

n with the standard inner product (see, e.g., [4]):

A+n−1 = {εi − εj , 1 ≤ i < j ≤ n},
B+n = {εi − εj , 1 ≤ i < j ≤ n}

∪ {εi + εj , 1 ≤ i < j ≤ n} ∪ {εi, 1 ≤ i ≤ n},
C+n = {εi − εj , 1 ≤ i < j ≤ n}

∪ {εi + εj , 1 ≤ i < j ≤ n} ∪ {2εi, 1 ≤ i ≤ n},
D+n = {εi − εj , 1 ≤ i < j ≤ n}

∪ {εi + εj , 1 ≤ i < j ≤ n}.

Here {εi}ni=1 is the standard basis of Rn.
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Denote by U the group of all strictly upper-triangular matrices from G with 1’s
on the diagonal, then U is the unipotent radical of B. Let g, h, b, n be the Lie
algebras of G, H , B, U , respectively. Then n has a basis consisting of root vectors
eα , α ∈ �+, where

eεi =
√

2(e0,i − e−i,0), e2εi = ei,−i ,

eεi−εj =
{
ei,j for An−1,

ei,j − e−j,−i for Bn, Cn and Dn,

eεi+εj =
{
ei,−j − ej,−i for Bn and Dn,

ei,−j + ej,−i for Cn,

and ei,j are the usual elementary matrices. For O2n+1(C) (respectively, for Sp2n(C)

and O2n(C)) we index the rows (from left to right) and the columns (from top to
bottom) of matrices by the numbers 1, . . . , n, 0, −n, . . . , −1 (respectively, by
the numbers 1, . . . , n, −n, . . . , −1). Note that

g = h⊕ n⊕ n−,

where n− = 〈e−α, α ∈ �+〉C, and, by definition, e−α = eTα . (The superscript T
always indicates matrix transposition.)

Since {eα, α ∈ �∗} is a basis of n, one can consider the dual basis {e∗α, α ∈ �+}
of the dual space n∗. The group B acts on n by the adjoint action (actually, by
conjugation), so there exists the dual (coadjoint) action of B on n∗. We will denote
the result of this action by g.λ for g ∈ B, λ ∈ n∗. By definition,

〈g.λ, x〉 = 〈λ, g−1xg〉, g ∈ B, x ∈ n, λ ∈ n∗.

Orbits of the coadjoint action play the crucial role in representation theory of the
groups B and U , see, e.g., [13, 14].

It is very convenient to identify n∗ with the space n− via

〈λ, x〉 = tr λx, λ ∈ n−, x ∈ n.

For this reason, we will denote n− by n∗ and interpret it as the dual space of n.
Under this identification,

e∗α =

⎧
⎪⎪⎨

⎪⎪⎩

eTα if � = An−1, or � = Cn and α = 2εi,

eTα /4 if � = Bn and α = εi,
eTα /2 otherwise.
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Note that if g ∈ B, λ ∈ n∗, then g.λ = (gλg−1)low, where Alow denotes the strictly
lower-triangular part of a matrix A, i.e.,

(Alow)i,j =
{
Ai,j for i > j,

0 for i ≤ j.

For a given λ ∈ n∗, let �λ and 6λ denote its B-orbit and U -orbit under the
coadjoint action, respectively. A subsetD ⊂ �+ is called orthogonal if it consists of
pairwise orthogonal roots. To each orthogonal subset D and each map ξ : D→ C

×
one can assign the linear forms

fD =
∑

α∈D
e∗α ∈ n∗, fD,ξ =

∑

α∈D
ξ(α)e∗α ∈ n∗.

(Obviously, fD = fD,ξ1 , where ξ1(α) = 1 for all α ∈ D.) Given an orthogonal
subset D ⊆ �+, we say that the orbits �D = �fD and 6D,ξ = 6fD,ξ are
associated with D. Note that U -orbits associated with orthogonal subsets and their
generalizations were studied, in particular, in [5, 6, 9, 18].

Now, let W be the Weyl group of �. We denote by sα the reflection in W
corresponding to a root α, and say that sα is a simple reflection if α is a simple
root. For � = An−1,W ∼= Sn is isomorphic to the symmetric group on the n letters
1, . . . , n via the isomorphism sεi−εj 	→ (i, j), where (i, j) is the transposition
interchanging i and j . For other classical root systems, denote by S±n the symmetric
group on the 2n letters 1, . . . , n, −n, . . . , −1 and consider the monomorphism
fromW to S±n defined by the formulas

sεi−εj 	→ (i, j)(−j,−i),
sεi+εj 	→ (i,−j)(j,−i),
sεi 	→ (i,−i), s2εi 	→ (i,−i).

ForBn andCn, the image of this monomorphism coincides with the hyperoctahedral
group, that is, the subgroup of S±n consisting of all permutations w from S±n such
that w(−i) = −w(i) for each 1 ≤ i ≤ n. For Dn, the image of this monomorphism
coincides with the even-signed hyperoctahedral group, that is, the subgroup of S±n
consisting of all w ∈ S±n such that w(−i) = −w(i) for each 1 ≤ i ≤ n and the
number |{i > 0 | w(i) < 0}| is even. We will identify W with its image under the
above monomorphism.
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Remark 1.2

(i) Note that every w ∈ W is completely determined by its restriction to the subset
{1, . . . , n}. This allows us to use the usual two-line notation: if w(i) = wi for
1 ≤ i ≤ n, then we will write

w =
(

1 2 . . . n

w1 w2 . . . wn

)
.

For instance, if � = D5, then

sε1+ε5sε2+ε4sε2−ε4 =
(

1 2 3 4 5
−5 −2 3 −4 −1

)
.

(ii) Note also that the set of simple roots has the following form:� = {α1, . . . , αn},
where

α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, and

αn =

⎧
⎪⎪⎨

⎪⎪⎩

εn for Bn,

2εn for Cn,

εn−1 + εn+1 for Dn.

Recall that a reduced decomposition of an element w ∈ W is an expression of w
as a product of simple reflections of minimal possible length. Given v, w ∈ W , we
say that v is less or equal to w with respect to the Bruhat order, written v ≤B w, if
some reduced decomposition for v is a subword of some reduced decomposition for
w. It is well-known that this order plays the crucial role in many geometric aspects
of theory of algebraic groups. For instance, the Bruhat order encodes the incidences
among Schubert varieties

From now on and to the end of this subsection, letG = GLn(C) or Sp2n(C), i.e.,
� = An−1 or Cn, respectively. There exists a nice combinatorial description of the
Bruhat order onW . First, consider the case An−1. Given w ∈ W , denote by Xw the
n× n matrix defined by

(Xw)i,j =
{

1, if w(j) = i,
0 otherwise.

It is called the 0–1 matrix, permutation matrix or rook placement for w. Define the
matrix Rw by putting its (i, j)th element to be equal to the rank of the lower left
(n− i+1)× j submatrix ofXw. In other words, (Rw)i,j is just the number or rooks
located non-strictly to the South-West from (i, j).
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Example 1.3 Let n = 6,

w = sε1−ε4sε3−ε5 =
(

1 2 3 4 5 6
4 2 5 1 3 6

)
.

Here we draw the matrices Xw and Rw (rooks are marked by ⊗):

Xw =

1

1

2 3 4

⊗
5 6

2 ⊗
3 ⊗
4 ⊗
5 ⊗
6 ⊗

, Rw =

1

1 1

2

2

3

3

4

4

5

5

6

6

2 1 2 2 3 4 5

3 1 1 2 2 3 4

4 1 1 2 2 2 3

5 0 0 1 1 1 2

6 0 0 0 0 0 1

.

Given two arbitrary matrices X, Y of the same size with integer entries, we will
write X ≤ Y if Xi,j ≤ Yi,j for all i, j . It turns out that, for � = An−1 and v,
w ∈ W , v ≤B w if and only if Rv ≤ Rw, see, e.g., [3, Theorem 2.1.5].

For Cn, the description of the Bruhat order is very similar. Precisely, to each
w ∈ W one can assign the matrices Xw and Rw exactly by the same rule. (Here
Xw and Rw are 2n × 2n matrices, which rows and columns are indexed by the
numbers 1, . . . , n, −n, . . . , −1.) According to [3, Theorem 8.1.1], for � = Cn
and v, w ∈ W , v ≤B w if and only if Rv ≤ Rw, as above. In other words, the
Bruhat order onW is nothing but the restriction of the Bruhat order on S±n toW .

LetG = GLn(C) or Sp2n(C), andw be an involution inW , i.e.,w ∈ I(�). Then
w can be expressed as a product of pairwise commuting reflections. In other words,
there exists an orthogonal subset D ⊆ �+ such that w =∏α∈D sα . For An−1, such
an expression is clearly unique. ForCn, such an expression is unique if we requireD
to be strongly orthogonal, which means that, given α, β ∈ D, neither α + β ∈ �+
nor α−β ∈ �+. Thus, in both cases, the subsetD is uniquely determined by w. We
call the subset D the support of the involution w and denote it by D = Supp(w).
For instance, if � = C6 and

w =
(

1 2 3 4 5 6
3 −6 1 −4 −5 −2

)
= sε1−ε3sε2+ε6s2ε4s2ε5

= sε1−ε3sε2+ε6sε4−ε5sε4+ε5 ,

then Supp(w) = {ε1 − ε3, ε2 + ε6, 2ε4, 2ε5}.
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Definition 1.4 Let w ∈ I(�), and ξ : D → C
× be a map, where D = Supp(w).

Denote

fw = fD, fw,ξ = fD,ξ , �w = �D, 6w,ξ = 6D,ξ .

We say that the orbits �w and 6w,ξ are associated with the involution w. Note that,
thanks to [7, Lemma 2.1] and [8, Lemma 1.8],

�w =
⋃

ξ

6w,ξ .

To formulate the description of the incidences among B-orbits associated with
involutions, we need one more partial order on I(�). Namely, given w ∈ W , we
put R∗w = (Rw)low and write v ≤∗ w for v, w ∈ I(�) ifR∗v ≤ R∗w. Then, according
to [7, Theorem 1.1] and [8, Theorem 1.1], we have the following result.

Theorem 1.5 Let � = An−1 or Cn, and v, w ∈ I(�). Then the following
conditions are equivalent:

(i) �v ⊆ �w;
(ii) v ≤∗ w;
(iii) v ≤B w.

1.3 Suppose now that G = O2n+1(C) or O2n(C), i.e., � = Bn or Dn, respectively.
Since the Weyl group of Bn is isomorphic to the Weyl group of Cn, the Bruhat order
on W for Bn can be described completely similarly to the case � = Cn: given
v, w ∈ W , one has v ≤B w if and only if Rv ≤ Rw, where Rv , Rw are the 2n× 2n
defined in the previous subsection.

For Dn, the description of the Bruhat order is quite more complicated. Let w ∈
W . Given numbers a, b ∈ {1, 2, . . . , n}, we say that [−a, a] × [−b, b] is an empty
rectangle for w, if

{i ∈ [±n] | |i| ≥ b and |w(i)| ≥ a} = ∅.

Here [±n] = {1, . . . , n,−n, . . . ,−1}. For instance, let n = 4 and w =(
1 2 3 4
−2 4 1 −3

)
, then
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Xw =

1

1

2 3

⊗
4 −4 −3 −2 −1

2 ⊗
3 ⊗
4 ⊗
−4 ⊗
−3 ⊗
−2 ⊗
−1 ⊗

,

and [−4, 4] × [−3, 3], [−4, 4] × [−4, 4] are empty rectangles for w.
It turns out [3, Theorem 8.2.8] that, given v, w ∈ W , v ≤ w if and only if

(i) Rv ≤ Rw;
(ii) for all a, b ∈ {1, . . . , n}, if [−a, a] × [−b, b] is an empty rectangle

for both v and w and (Rv)−(a−1),b−1 = (Rw)−(a−1),b−1,

then (Rv)−(a−1),n ≡ (Rw)−(a−1),n (mod 2).

(1)

Definition 1.6 Let � = Bn or Dn, and w ∈ I(�). The involution w is called basis
if |{i ∈ {1, . . . , n} | w(i) = −i}| = 0.

We will denote the set of all basis involutions in W by B(�). It is clear that if w
is a basis involution then there exists the unique orthogonal subset D ⊆ �+ such
that

w =
∏

α∈D
sα.

As above, we call D the support of w and denote D = Supp(w). For example, for
� = B5,

w =
(

1 2 3 4 5
−5 2 4 3 −1

)
,

we have Supp(w) = {ε1 + ε5, ε3 − ε4}. Now, given w ∈ B(�) and a map
ξ : D = Supp(w) → C

×, we define the linear forms fw, fw,ξ and the orbits �w
and 6w,ξ exactly as in Definition 1.4. As for An and Cn, we say that �w and 6w,ξ
are associated with w. The goal of the paper is to prove that, given σ, τ ∈ B(�),
�σ ⊆ �τ implies σ ≤B τ . Note that this is clearly not true for arbitrary involutions
inW , as it is shown in Examples 2.3, 2.8 below.
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2 Proof of the Main Theorem

2.1 In this subsection, we will check that, given σ, τ ∈ B(Bn), �σ ⊆ �τ
implies that σ ≤B τ . To do this, we need the following simple observation (cf.
[15, Subsection 3.3], [7, Lemma 2.1], [8, Lemma 1.8], [9, Lemma 1.3]).

Lemma 2.1 Let � = Bn or Dn, w ∈ B(�) and D = Supp(w). Then �w =⋃
6w,ξ , where the union is taken over all maps ξ : D→ C

×.

Proof It is well-known that the map

exp : n→ U, x 	→
∑

k≥0

xk

k!

is well-defined and is an isomorphism of affine varieties. For given α ∈ �+, s ∈ C
×,

put

xα(s) = exp(seα), x−α(s) = xα(s)T ,
wα(s) = xα(s)x−α(−s−1)xα(s), hα(s) = wα(s)wα(1)−1.

Then hα(s) is a diagonal matrix from H . Furthermore, the group H is generated by
hα(s), α ∈ �+, s ∈ C, and B = U �H .

Let ξ : D→ C
× be a map. To check that6w,ξ ⊆ �w, it is enough to find h ∈ H

such that h.fw,ξ = fw. One can easily see that if α ∈ D then

hα(t).fw,ξ =
∑

β∈D, β �=α
ξ(β)e∗β + t−2ξ(α)e∗α.

Thus, h.fw,ξ = fw, where h = ∏α∈D hα(
√
ξ(α)). (Here, given s ∈ C, we denote

by
√
s a complex number such that (

√
s)2 = s.)

On the other hand, let h ∈ H . We claim that h.fw,ξ = fw,ξ ′ for some ξ ′. Indeed,
since H is generated by hα(s)’s, α ∈ �+, s ∈ C

×, we can assume without loss of
generality that h = hα(s) for some α and s. But in this case the statement follows
immediately from the above. Since the group B is isomorphic as an algebraic group
to the semi-direct product U � H , for a given g ∈ B, there exist unique u ∈ U ,
h ∈ H such that g = uh. If ξ : D → C

× is the map such that h.fw = fw,ξ , then
g.fw = u.fw,ξ ∈ 6w,ξ . This concludes the proof. ��

Now, if � = Bn or Dn, and x ∈ g, then, given i, j ∈ [±n], denote

πi,j (x) =
⎛

⎜⎝
xi,1 . . . xi,j
...

. . .
...

x−1,1 . . . x−1,j

⎞

⎟⎠ .
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It is easy to see that if w ∈ B(�) then rkπi,j (λ) = (R∗w)i,j for all λ ∈ �w and
all lower-triangular entries (i, j) of λ (cf. [7, Lemma 2.2], [8, Lemma 2.4], [9,
Theorem 1.5]). Indeed, by definition ofR∗w, (R∗w)i,j = rkπi,j (fw). Let ξ : D→ C

×
be a map. Since

rkπi,j (fw,ξ ) = rkπi,j (fw) = (R∗w)i,j ,

it suffices to check that rkπi,j (λ) = rkπi,j (u.λ) for u ∈ U , λ ∈ n∗. This follows
immediately from the proof of [7, Lemma 2.2], because u is an upper-triangular
matrix with 1’s on the diagonal and λ is a lower-triangular matrix with zeroes on
the diagonal. Now we are ready to prove the main result of this subsection, cf. [7,
Proposition 2.3], [8, Proposition 2.5], [9, Theorem 1.5].

Theorem 2.2 Let σ, τ ∈ B(Bn). If �σ ⊆ �τ , then σ ≤B τ .

Proof Suppose that σ 	B τ . According to Theorem 1.5, this means that there exist
i, j such that (R∗σ )i,j > (R∗τ )i,j . Denote

Z = {f ∈ n∗ | rkπr,s(f ) ≤ (R∗τ )r,s for all r, s}.

Clearly, Z is closed with respect to the Zariski topology. It follows from the above
that �τ ⊆ Z, so �τ ⊆ Z. But fσ /∈ Z, hence �σ 
 Z, a contradiction. ��
Example 2.3 If involution σ is not basis then, in general, its support (and, conse-
quently, the associatedB-orbit�σ ) is not well-defined, because, in general, there are
several different ways to represent σ as a product of pairwise commuting reflections.
For example, let n = 4, then

σ =
(

1 2 3 4
1 −2 −3 4

)
= sε2sε3 = sε2−ε3sε2+ε3 .

Assume for a moment that we set

Dσ = {ε2, ε3}

to be the support of σ . Then, of course, we have to say that Dτ = {ε1, ε4} is the
support of the involution

τ =
(

1 2 3 4
−1 2 3 −4

)
= sε1sε4 = sε1−ε4sε1+ε4 ,

and Theorem 2.2 fails immediately. Indeed, it follows from [5, Proposition 2.1] that
�σ = �sε2

and �τ = �sε1
, and once can easily check that �sε2 ⊆ �sε1

(and so

�σ ⊆ �τ ): if

g = xε1−ε2(−t−1)hε1−ε2(t−1),
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then g.fε1 → fε2 as t → 0 (it is well-known that the Zariski closure of a
constructive set coincides with its closure in the complex topology). At the same
time, Theorem 1.5 claims that σ 	B τ .

On the other hand, we may set {ε2 − ε3, ε2 + ε3} to be the support of σ .
(According to [20], this choice is “more canonical” than the previous one.) If we
define the support of an involution in such a way, we neither have counterexamples
to Theorem 2.2 nor can prove it in general.

2.2 In this subsection, we check that if σ, τ ∈ B(Dn), then �σ is contained in the
closure of �τ . First, applying Lemma 2.1, one can repeat the proof of Theorem 2.2
literally to show that (R∗σ )i,j ≤ (R∗τ )i,j for all i, j . According to Theorem 1.5,
this means that (Rσ )i,j ≤ (Rτ )i,j for all i, j . Hence it remains to prove that the
basis involutions σ and τ satisfy the second condition in (1). To do this, we need to
introduce some more notation.

Let� = Dn and x ∈ g. Given r ≤ n and two ordered r-tuples P = {p1, . . . , pr }
and Q = {q1, . . . , qr }, where 1 ≤ qi ≤ n and pi ∈ [±n] for 1 ≤ i ≤ r , we denote
by �QP (x) = �q1,...,qr

p1,...,pr (x) the minor of the matrix x with the set of rows P and the
set of columnsQ, i.e.,

�
Q
P (x) =

∣∣∣∣∣∣∣

xp1,q1 . . . xa1,qr
...

. . .
...

xpr ,q1 . . . xpr ,qr

∣∣∣∣∣∣∣
.

Given ordered tuples I = {i1, . . . , ir }, J = {j1, . . . , js}, we denote by I ∪ J its
concatenation, i.e., I ∪ J = {i1, . . . , ir , j1, . . . , js}.

If P = {p1, . . . , pr } is an r-tuple and 1 ≤ i < j ≤ r , then define the r-tuples
P+[pi, pj ] and P−[pi, pj ] by the formula

P+[pi, pj ] = {p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pr , pi,−pi},
P−[pi, pj ] = {p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pr , pj ,−pj }.

Next, if P = {p1, . . . , pr } is an r-tuple, pi ∈ [±n] for 1 ≤ i ≤ r , and P ′ =
{pi1 , . . . , pi2s } is a tuple of even cardinality such that all pij are distinct and belong
to P , we define the set SP,P ′ of r-tuples by the following rule. If P ′ = ∅, then
SP,P ′ = {P }. For s ≥ 1, we put

SP,P ′ =
⋃

P0∈SP,P ′′
{P+0 [pi2s−1 , pi2s ], P−0 [pi2s−1 , pi2s ]},
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where, by definition, P ′′ = {pi1, . . . , pi2s−2}. For example, if
P = {1, 2,−3,−4}, P ′ = {1,−3, 2,−4}, then SP,P ′ consists of four tuples:
{1,−1, 2,−2}, {1,−1,−4, 4}, {−3, 3, 2,−2}, and {−3, 3,−4, 4}. Finally, if P ,
Q are r-tuples and P ′ is as above, we define the polynomial

D
Q

P,P ′(x) =
∑

P0∈SP,P ′
�
Q
P0
(x).

The following technical (but important) proposition is the key step in the proof of
the main result of this subsection. Assume that w ∈ B(Dn) and [a,−a] × [b,−b],
a ≥ b, is an empty rectangle for w. Let P = {p1, . . . , pr }, Q = {q1, . . . , qs} be
r-tuples, 1 ≤ qi ≤ b − 1, pi ∈ [±n] for all i, where r = (R∗w)a,b−1. Assume that
P = I ∪ J ∪ K , where each element of I (respectively, of J and K) is from a to
n (respectively, from −n to −a and from −a + 1 to −1). Suppose that |I ∪ J | <
n− a + 1 or

#{εi − εj ∈ Supp(w) | a ≤ j ≤ n} �≡ |I | (mod 2),

#{εi + εj ∈ Supp(w) | a ≤ j ≤ n} �≡ |J | (mod 2).

(For |I ∪ J | = n− a + 1, these two conditions are in fact equivalent.)

Proposition 2.4 Let P ′ = {pi1, pi2 , . . .} be a tuple of even cardinality with distinct

elements containing in I ∪ J . Then DQ
P,P ′(λ) = 0 for all λ ∈ �w.

Proof Pick λ ∈ �w. According to Lemma 2.1, λ = u.fw,ξ for certain u ∈ U ,
ξ : D → C

×, where D = Supp(w). Since U is generated by xα(s), α ∈ �+, s ∈
C
×, there exist α1, . . . , αk ∈ �+, s1, . . . , sk ∈ C

× such that u = xα1(s1) . . . xαk (sk).
The proof is by induction on k. The base k = 0 is trivial. Thus, we must prove the
following fact: if f ∈ n∗, α ∈ �+, s ∈ C

×, and all possible DQ0
P0,P

′
0
(f ) are zero,

then DQ
P,P ′(xα(s).f ) = 0.

Given i, j ∈ [±n], s ∈ C, consider the elementary transformations rsi,j and csi,j ,
where, for f ∈ n∗,

(rsi,j (f ))p,q =
{
fi,q + sfi,j if p = i > q,
fp,q otherwise,

(csi,j (f ))p,q =
{
fp,j + sfq,j if p > q = j,
fp,q otherwise.

Note that

xεi−εj (s).f = rsi,j (r−s−j,−i (csj,i (c−s−i,−j (f )))),
xεi+εj (s).f = rsi,−j (r−sj,−i (cs−i,j (c−s−j,i (f )))).
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Hence it is enough to prove that if all possibleDQ0
P0,P

′
0
(f ) are zero thenDQ

P,P ′(f
′) =

0, where f ′ = rsi,j (r−s−j,−i (f )), rsi,−j (r−sj,−i (f )), csj,i (c−s−i,−j (f )) or cs−i,j (c
−s
−j,i (f ))

for certain i < j , s ∈ C
×. We will consider this cases subsequently.

First, let f ′ = rsi,j (r
−s
−j,−i (f )). Given a tuple T = {t1, t2, . . .} with distinct

elements and numbers ti ∈ T , t , we denote by T [t → ti] the tuple T [t →
ti] = {t1, . . . , ti−1, t, ti+1, . . .}. If ±i, ±j /∈ P (or −i ∈ K , ±j /∈ P , or j ∈ I ,
j /∈ P ′, ±i /∈ P , or −i ∈ J , −i /∈ P ′, ±j /∈ P , or −i ∈ K , j ∈ I , j /∈ P ′),
then, obviously, DQ

P,P ′(f
′) = D

Q

P,P ′(f ) = 0. If i ∈ I , i /∈ P ′, ±j /∈ P , then
|I [j → i] ∪ J | = |I ∪ J | < n− a + 1, hence

D
Q

P,P ′(f
′) = DQ

P,P ′(f )+ sDQP [j→i],P ′(f ) = 0.

If ±i /∈ P , −j ∈ J , −j /∈ P ′ (respectively, ±i /∈ P , −j ∈ K), then

D
Q

P,P ′(f
′) = DQ

P,P ′(f )− sDQP [−i→−j ],P ′(f ) = 0,

because, clearly, |I ∪ J [−i → −j ]| < n − a + 1 (respectively, because P [−i →
j ] = I ∪ J ∪K[−i → j ]).

Suppose i ∈ I , i ∈ P ′, ±j /∈ P (the case −i ∈ J , −i ∈ P ′, ±j /∈ P is
similar). Given a tuple T = {t1, t2, . . .} with distinct elements and a number ti ∈ T ,
we denote by T \ {ti} the tuple T \ {ti} = {t1, . . . , ti−1, ti+1, . . .}. If ti , tj , . . . are
distinct elements of T , we define the tuple T \ {ti , tj , . . .} similarly. If i = pi2k−1 ∈
P ′ (respectively, i = pi2k ∈ P ′) for some k, then denote l = pi2k (respectively,
l = pi2k−1 ). One has

D
Q

P,P ′(f
′) = DQ

P,P ′(f )± sDQ(P [j→l])[−i→i],P ′\{i,l}(f ) = 0,

because |((I \ {i}) ∪ (J ∪ {−i}))[j → l]| = |I ∪ J | < n− a + 1.
Suppose now that−j ∈ J ,−j ∈ P ′,±i /∈ P . (The cases j ∈ I , j ∈ P ′,±i /∈ P

and −i ∈ J , −i ∈ P ′, ±j /∈ P are similar.) If −j = pi2k−1 ∈ P ′ (respectively,
−j = pi2k ∈ P ′) for some k, then denote l = pi2k (respectively, l = pi2k−1 ). Then

D
Q

P,P ′(f
′) = DQ

P,P ′(f )± sDQ(P [i→l])[j→−j ],P ′\{i,l}(f ).

If i ≥ a, then we can argue as in the previous paragraph. If i < a, then the last
summand is zero because

|(I ∪ (J \ {−j})) \ {l}| < |I ∪ J | ≤ n− a + 1.
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If i, j ∈ I , i, j /∈ P ′, then one has

D
Q

P,P ′(f
′) = DQ

P,P ′(f )+ s
∑

P0∈SP,P ′
�
Q
P0[j→i](f ) = 0,

because each minor in the last summand contains two same rows. The cases
−i, −j ∈ J , −i, −j /∈ P ′, and −i ∈ J , −i ∈ P ′, j ∈ I , j /∈ P ′, and −i ∈ J ,
−i /∈ P ′, j ∈ I , j ∈ P ′, and i, j ∈ I , i ∈ P ′, j /∈ P ′, and −i, −j ∈ P ′, −i /∈ P ′,
−j ∈ P ′, and −i ∈ K , j ∈ I , j ∈ P ′, and −i ∈ K , −j ∈ J , −j ∈ P ′, and
−i ∈ K , −j ∈ J , −j /∈ P ′, and −i, −j ∈ K are similar to this case.

Assume that i, j ∈ I , i /∈ P ′, j ∈ P ′. (The cases i ∈ I , i ∈ P ′, −j ∈ J ,
−j /∈ P ′, and i ∈ I , −j ∈ J , i /∈ P ′, −j ∈ P ′, and −i, −j ∈ J , −i ∈ P ′, j /∈ P ′
are similar.) We see that

D
Q

P,P ′(f
′) = DQ

P,P ′(f )+ s
∑

P0∈SP,P ′ ,j∈P0

�
Q
P0[j→i](f )

+ s
∑

P0∈SP,P ′ ,j /∈P0

�
Q
P0[j→i](f )

− s
∑

P0∈SP,P ′ ,j∈P0

�
Q
P0[−i→−j ](f )

− s2
∑

P0∈SP,P ′ ,j∈P0

�
Q
(P0[j→i])[−i→−j ](f ).

Each minor in the second and the last summands contains two same rows. Thus,

D
Q

P,P ′(f
′) = s

∑

P0∈SP,P ′ ,j /∈P0

�
Q
P0[j→i](f )− s

∑

P0∈SP,P ′ ,j∈P0

�
Q
P0[−i→−j ](f )

= ±sDQ
P,P ′[j→i](f ) = 0.

Assume now that i, j ∈ I , i , j ∈ P ′. (The cases −i ,−j ∈ J , −i, −j ∈ P ′
and i ∈ I , −j ∈ J , i, −j ∈ P ′, and −i ∈ J , j ∈ I , −i, j ∈ P ′ are similar.) If
i = pi2k−1 and j = pi2k , or i = pi2k and j = pi2k−1 for certain k, then

D
Q

P,P ′(f
′) = DQ

P,P ′(f )+ s
∑

P0∈SP,P ′ ,i∈P0

�
Q
P0[j→i](f )

− s
∑

P0∈SP,P ′ ,j∈P0

�
Q
P0[−i→−j ](f )

= ±sDQ
P [−i→i],P ′\{i,j}(f )∓ sDQP [−i→i],P ′\{i,j}(f ) = 0.



346 M. V. Ignatyev

On the other hand, suppose that such a number k does not exist. If i = pi2k−1

(respectively, i = pi2k ) for certain k, then denote i′ = pi2k (respectively, i′ =
pi2k−1 ); define the number j ′ in a similar way using j instead of i. Then

D
Q

P,P ′(f
′) = DQ

P,P ′(f )+ s
∑

P0∈SP,P ′ ,i,j∈P0

�
Q
P0[j→i](f )

− s
∑

P0∈SP,P ′ ,i,j∈P0

�
Q
P0[−i→−j ](f )

+ s
∑

P0∈SP,P ′ ,i,j ′∈P0

�
Q
P0[j→i](f )

− s
∑

P0∈SP,P ′ ,i′,j∈P0

�
Q
P0[−i→−j ](f )

− s2
∑

P0∈SP,P ′ ,i,j∈P
�
Q
P0([j→i])(−i→−j)(f ).

The second, the third and the last summands are zero, because each minor in these
summands contains two same rows. Thus,

D
Q

P,P ′(f
′) = s

∑

P0∈SP,P ′ ,i,j ′∈P0

�
Q
P0[j→i](f )− s

∑

P0∈SP,P ′ ,i′,j∈P0

�
Q
P0[−i→−j ](f )

= ±sDQ
P̃ ,P̃ ′(f ) = 0,

where P̃ = (P [−i → i])[−j ′ → j ′], P̃ ′ = P ′ \ {i, j}, because P̃ satisfies all
required conditions.

One of the most interesting cases is i ∈ I , −j ∈ J , i, −j /∈ P ′. Here

D
Q

P,P ′(f
′) = DQ

P,P ′(f )+ s
∑

P0∈SP,P ′
�
Q
P0[j→i](f )

− s
∑

P0∈SP,P ′
�
Q
P0[−i→−j ](f )

− s2
∑

P0∈SP,P ′
�
Q
(P0[j→i])[−i→−j ](f ).

The last summand equals ±s2D
Q

(P [j→i])[−i→−j ],P ′(f ) = 0. Hence

D
Q

P,P ′(f
′) = s

∑

P0∈SP,P ′
�
Q
P0[j→i](f )− s

∑

P0∈SP,P ′
�
Q
P0[−i→−j ](f )

= ±sDQ
P,P ′∪{i,−j}(f ) = 0.
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The case −i ∈ J , j ∈ I , −i, j /∈ P ′ is completely similar.
The cases i ∈ I , i /∈ P ′, −j ∈ K , and i ∈ I , i /∈ P ′, −j ∈ K , and −i ∈ J , −i /∈

P ′, −j ∈ K , and −i ∈ I , i ∈ P ′, −j ∈ K cannot occur because of the definition of
I , J , K . Thus, we have considered all possible cases for f ′ = rsi,j (r−s−j,−i (f )).

Second, let f ′ = rsi,−j (r
−s
j,−i (f )). The proof in this case is similar to the proof

for f ′ = rsi,j (r−s−j,−i (f )), so we skip the details. Next, let f ′ = csj,i (c−s−i,−j (f )). If
j /∈ Q then, clearly,

D
Q

P,P ′(f
′) = DQ

P,P ′(f ) = 0.

If j ∈ Q, i /∈ Q, then

D
Q

P,P ′(f
′) = DQ

P,P ′(f )+ sDQ[i→j ]P,P ′ (f ) = 0.

If i, j ∈ Q, then

D
Q

P,P ′(f
′) = DQ

P,P ′(f )+ s
∑

P0∈SP,P ′
�
Q[i→j ]
P0

(f ) = 0,

because each minor in the last summand contains two same columns. Finally, let
f ′ = cs−i,j (c−s−j,i (f )), thenDQ

P,P ′(f
′) = DQ

P,P ′(f ) = 0. The proof is complete. ��
Now we can prove the main result of this subsection.

Theorem 2.5 Let σ, τ ∈ B(Dn). If �σ ⊆ �τ , then σ ≤B τ .

Proof Assume that σ 	B τ . If there exist i, j such that (R∗σ )i,j > (R∗τ )i,j , then,
using Lemma 2.1 and arguing as in the proof of Theorem 2.2, one can check that
�σ �⊆ �τ . Hence R∗σ ≤ R∗τ , and, by Theorem 1.5, Rσ ≤ Rτ . Thus, according
to (1), there exist a, b such that [a,−a] × [b,−b] is an empty rectangle for σ and
τ , (Rσ )−(a−1),b−1 = (Rτ )−(a−1),b−1, but (Rσ )−(a−1),n �≡ (Rτ )−(a−1),n (mod 2).
Since σ and τ are involutions, we may assume without loss of generality that a ≥ b.

Recall the notion of Xw for w ∈ W from Sect. 1.3. Given an arbitrary element
w ∈ W , −n ≤ p ≤ q ≤ −1 and 1 ≤ r ≤ s ≤ n, denote

wr,sp,q = #{(i, j) | p ≤ i ≤ q, r ≤ j ≤ s and (Xw)i,j = 1}.

In other words, wr,sp,q is the number of rooks in Xw which rows (respectively,
columns) are between p and q (respectively, between r and s). By definition of
Rw,

(Rw)−(a−1),−n = w1,b−1
−(b−1),−1 + w1,b−1

−(a−1),−b + wb,a−1
−(b−1),−1

+ wb,a−1
−(a−1),−b + wa,n−(b−1),−1 + wa,n−(a−1),−b.
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If w is an involution in the Weyl group W , then w1,b−1
−n,−a = w

a,n
−(b−1),−1, while the

numbers w1,b−1
−(b−1),−1 and wb,a−1

−(a−1),−b are even. Furthermore, in this case,

w
1,b−1
−(a−1),−1 = w1,b−1

−(b−1),−1 + w1,b−1
−(a−1),−b

= w1,a−1
−(b−1),−1 = w1,b−1

−(b−1),−1 + wb,a−1
−(b−1),−1,

sow1,b−1
−(a−1),−b = wb,a−1

−(b−1),−1. If, in addition, [−a, a]×[−b, b] is an empty rectangle
for w, then wa,n−(a−1),−b = 0, thus,

(Rw)−(a−1),b−1 ≡ w1,b−1
−n,−a (mod 2).

By our assumptions, (Rσ )−(a−1),n �≡ (Rτ )−(a−1),n (mod 2), hence σ 1,b−1
−n,−a �≡

τ
1,b−1
−n,−a (mod 2) (this is the key observation in the proof). Denote P = I ∪ J ∪K ,
Q = {1. . . . , b − 1}, where

I = {i ∈ {a, . . . , n} | σ(i) ∈ Q},
J = {j ∈ {−n, . . . ,−a} | σ(j) ∈ Q},
K = {k ∈ {−(a − 1), . . . ,−1} | σ(k) ∈ Q}.

Note that |K| = (Rσ )−(a−1),b−1 = (Rτ )−(a−1),b−1, while |I |+|J | = n−a+1 (the
latter equality follows from the fact that [−a, a]× [−b, b] is an empty rectangle for
σ ). Moreover, it follows from σ 1,b−1

−n,−a �≡ τ 1,b−1
−n,−a (mod 2) that #{εi−εj ∈ Supp(τ ) |

a ≤ j ≤ n} �≡ |I | (mod 2) (or, equivalently, #{εi + εj ∈ Supp(w) | a ≤ j ≤ n} �≡
|J | (mod 2)). Hence, according to Proposition 2.4, DQ

P,P ′(λ) = 0 for all λ ∈ �τ
and all subsets P ′ ⊂ P of even cardinality. In particular,

D
Q
P,∅(λ) = �QP (λ) = 0

for all λ ∈ �τ (and, consequently, for all λ ∈ �τ .) But �QP (fσ ) = ±1 by definition
of fσ . Thus, �σ /∈ �τ . This concludes the proof. ��
2.3 In this subsection we present a conjectural way how to prove that if σ, τ ∈
B(�) and σ ≤B τ then �σ ⊆ �τ . (For simplicity, we consider only the case
� = Bn and give some additional remarks for Dn at the end of the subsection.)
To do this, we need to describe the covering relation on B(�) with respect to the
Bruhat order. The covering relation on I(�)was described by Incitti in [12]. We will
state a corollary of his description for Cn in appropriate terms. To each involution
w ∈ I(Cn) we assign the number

d(σ ) = |{i ∈ {1, . . . , n} | 2εi ∈ Supp(σ )}|.
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Let σ, τ ∈ I(Cn), and Dσ = Supp(σ ), Dτ = Supp(τ ). (In fact, we will apply this
corollary to Bn, but it is more convenient to formulate it for Cn, because we will use
the notion of the support of an arbitrary involution.) In the tables below we consider
certain special cases of “relative positions” of Dσ and Dτ in �+, which are needed
to formulate this corollary (Tables 1, 2, 3, 4).

Given involutions σ , τ ∈ I(Cn), we say that the pair (τ, σ ) is of type (or,
equivalently, belongs to case) a.b ifDσ = Supp(σ ) andDτ = Supp(τ ) are as in the
case b in Table a (for some i, k, j, l). We also say that (τ, σ ) is an admissible pair
if it is of type a.b for certain a, b. From [10, Chapter 6] (see also [12, p. 76–91])
one can immediately deduce the following

Table 1 Case d(σ ) = d(τ), first part

Dσ \Dτ Dτ \Dσ Dσ \Dτ Dτ \Dσ
1 εi + εj , εi + εk 2 εk − εj , εi + εj ,

i < k < j εi + εl , εk − εl
i < k < j < l

3 εi − εj , εi − εl , 4 εi − εj , εi + εj
εk + εl , εk + εj i < j

i < k < j < l

5 εi + εj , εi + εk , 6 εi + εj , εi + εk ,
εk + εl , εj + εl εk − εl , εj − εl
i < k < j < l i < k < j < l

7 εi + εl , εi + εk 8 εk − εj , εi − εj
εk − εj , i < k < j

i < k < j < l

9 εk + εj , εi + εj 10 εi − εk , εi − εj
i < k < j i < k < j

11 εi − εk , εi − εj , 12 εi − εk , εi − εj ,

εj − εl , εk − εl εj + εl , εk + εl
i < k < j < l i < k < j < l

13 εi + εl , εi + εj , 14 εi − εj , εi − εl ,
εk + εj , εk + εl εk − εl , εk − εj
i < k < j < l i < k < j < l

15 εi − εl , εi + εj , 16 εi − εj , εi + εl ,
εk + εj , εk − εl εk + εl , εk − εj
i < k < j < l i < k < j < l

17 εi − εk , εi − εl 18 εi − εk , εi + εl
εj − εl , εj + εl ,
i < k < j < l i < k < j < l

19 ∅, εi − εj
i < j
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Table 2 Case d(σ ) = d(τ),
second part

Dσ \Dτ Dτ \Dσ Dσ \Dτ Dτ \Dσ
1 2εj , 2εi 2 εi + εj , 2εk , 2εi

i < j i < k < j εk + εj
3 εi − εj , 2εk , 2εi , 4 εi − εk , 2εj , 2εi

i < k < j εk − εj i < k < j

5 εi − εk , 2εj , εi − εj , 6 εi + εj , 2εk , εi + εk ,
i < k < j 2εk i < k < j 2εj

Table 3 Case d(σ ) < d(τ)

Dσ \Dτ Dτ \Dσ Dσ \Dτ Dτ \Dσ
1 ∅ 2εi 2 εi + εj , 2εi , 2εj

i < j

3 εi − εj , 2εi 4 εi + εj , 2εi , εk + εj ,

i < j εk − εl i < k < j < l

5 εi + εl , 2εi , εk + εl , 6 εi − εl , 2εi , εk − εl ,
εk − εj i < k < j < l εk − εj i < k < j < l

Table 4 Case d(σ ) > d(τ)

Dσ \Dτ Dτ \Dσ Dσ \Dτ Dτ \Dσ
1 εi − εj , 2εk , εi + εk 2 2εj εi + εj ,

i < k < j i < j

3 2εk, 2εj εi + εk , 4 εi − εk , 2εj , εi + εj
i < k < j i < k < j

5 εi − εk , εi − εl , 6 εi + εl , εi + εk ,
2εj , 2εl , εk + εj 2εk , 2εj , εj + εl
i < k < j < l i < k < j < l

7 εi − εl , εi + εk , 8 εi − εj , εi + εk
2εk , 2εj , εj − εl 2εk , 2εl ,

i < k < j < l i < k < j < l

9 εi − εk , εi + εj
2εj , 2εl ,

i < k < j < l

Corollary 2.6 Let σ, τ ∈ I(Cn) and σ <B τ . Then there exist σ1, . . . , σk ∈
I(Cn) such that σ1 = τ , σk = σ and (σi, σi+1) is an admissible pair for all 1 ≤
i ≤ k − 1.

Actually, this corollary does not describe the covering relation on I(Cn) (there
are some additional conditions on σ and τ ), but we will use only this part of the
Incitti’s description.

Since the Weyl groups of Bn and Cn coincide, we have the notion of a basis
involution inW(Cn); we denote the set of all basis involutions inW(Cn) by B(Cn).
We say that a pair (τ, σ ) of basis involutions from I(Cn) is basis-admissible if it is
of type 1.b for certain b.
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Conjecture 2.7 Let σ, τ ∈ B(Cn) and σ <B τ . Then there exist σ1, . . . , σk ∈
B(Cn) such that σ1 = τ , σk = σ and (σi, σi+1) is basis-admissible for all 1 ≤ i ≤
k − 1.

We checked that this conjecture is true for n ≤ 7. It is easy to see that if this
conjecture is true for all n that σ ≤B τ implies �σ ⊆ �τ . Indeed, we may assume
without loss of generality that (τ, σ ) is a basis-admissible pair. For basis-admissible
pairs, the proof is case-by-case. For example, suppose that (τ, σ ) is of type 1.12,
i.e.,

Supp(σ ) \ Supp(τ ) = {εi − εk, εj + εl},
Supp(τ ) \ Supp(σ ) = {εi − εj , εk + εj }

for some 1 ≤ i < k < j < l ≤ n. Put

g(s) = xεk−εj (t−2)hεi−εj (t−1)hεk+εl (−I t−1)

and f = g(s).fτ . (Here I is the usual imaginary unit.) One can easily check by
straightforward matrix calculations that, given α ∈ �+,

f (eα) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if either α = εi − εk or α = εj + εl,
t2, if α = εi − εj ,
−t2, if α = εk + εl,
fτ (eα) otherwise.

Thus, f → fσ as t → 0. All other cases can be considered similarly. (For� = Dn,
one should use [10, Chapter 7] instead of [10, Chapter 6] for the description of the
covering relation on I(Dn).)
Example 2.8 Note that σ ≤B τ does not imply �σ ⊆ �τ for non-basis involutions
in I(Bn). Indeed, let n = 4 and

σ =
(

1 2 3 4
−4 2 3 −1

)
= sε1+ε4 ,

τ =
(

1 2 3 4
−1 −3 −2 4

)
= sε1sε2+ε3 .
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Clearly, there is the only possibility to define the supports of these involutions,
precisely,

Supp(σ ) = {ε1 + ε4},
Supp(τ ) = {ε1, ε2 + ε3}.

One can immediately deduce from Theorem 1.5 that σ <B τ .
On the other hand, by definition of the coadjoint action, if x, y ∈ n, f ∈ n∗, then

((exp x).f )(y) = f (y)− f ([x, y])+ 1

2
f ([x, [x, y]])− . . .

= f (exp ad−x(y)),

where, as usual, adx(y) = [x, y]. This implies that, given α ∈ �+, if there are no
β ∈ �+ such that α ≤ β with respect to the natural order on � (i.e., β − α is zero
or a sum of positive roots), then λ(eα) = 0 for all λ ∈ 6f . Thus,

λ(eε1+ε4) = 0

for all λ ∈ �τ , but fσ (ε1 + ε4) �= 0, so �σ �⊂ �τ .

3 Concluding Remarks

3.1 Let w be an involution from B(�), where � = Bn or Dn. Being an orbit
of a connected unipotent group on an affine variety n∗, �w is a closed subvariety
of n∗. In this subsection, we present a formula for the dimension of �w (cf. [7,
Proposition 4.1], [8, Theorem 3.1]). Recall the definition of the length l(w) of an
element w ∈ W .

Theorem 3.1 Let � = Bn or Dn, and w ∈ B(�). One has

dim�w = l(w).

Proof Denote D = Supp(w). We claim that if ξ1 and ξ2 are two distinct maps from
the set D to C

×, then

6w,ξ1 �= 6w,ξ2 .

Indeed, for� = Bn (respectively, Dn) let Ũ be the group of all (2n+ 1)× (2n+ 1)
(respectively, 2n× 2n) upper-triangular matrices with 1’s on the diagonal. Since w
is an involution in S±n, [18, Theorem 1.4] implies that 6̃w,ξ1 �= 6̃w,ξ2 , where 6̃w,ξ1
and 6̃w,ξ2 denote the respective Ũ -orbits of fw,ξ1 and fw,ξ2 under the coadjoint
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action of Ũ on the space of all lower-triangular matrices with zeroes on the diagonal
(see Sect. 1.2 for the definitions). Since U ⊆ Ũ , one has 6w,ξ1 ⊆ 6̃w,ξ1 and
6w,ξ2 ⊆ 6̃w,ξ2 , hence 6w,ξ1 �= 6w,ξ2 , as required.

Let ZB = StabBfw be the stabilizer of fw in B. One has

dim�w = dimB − dimZB.

Recall that B ∼= U�H as algebraic groups. It was shown in the proof of Lemma 2.1
that if h ∈ H , then there exists ξ : D → C

× such that h.fw = fw,ξ . Hence if
g = uh ∈ ZB , then

fw = (uh).fw = u.fw,ξ ,
so fw ∈ 6w,ξ . In follows from the first paragraph of the proof that fw = fw,ξ . This
means that the map

ZU × ZH → ZB : (u, h) 	→ uh

is an isomorphism of algebraic varieties, whereZU = StabUfw (respectively,ZH =
StabHfw) is the stabilizer of fw in U (respectively, in H ). Hence

dimZB = dimZU + dimZH .

Let6w be theU -orbit of the linear form fw. Then, according to [5, Theorem 1.2],
dim6w = l(w)− |D|, so

dimZU = dimU − dim6w = dimU − l(w)+ |D|.

On the other hand, put X = ⋃ξ : D→C×{fw,ξ }. It follows from Lemma 2.1 and the
first paragraph of the proof that

X = {h.fw, h ∈ H }

is the H -orbit of fw. Consequently,

dimZH = dimH − dimX = dimH − |D|,

because X is isomorphic as affine variety to the product of |D| copies of C×. Thus,

dim�w = dimB − dimZB = (dimU + dimH)− (dimZU + dimZH)

= dimU + dimH − (dimU − l(w)− |D|)
− (dimH − |D|) = l(w).

The proof is complete. ��
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3.2 In the remainder of the paper, we briefly discuss a conjectural geometrical
approach to orbits associated with involutions in terms of tangent cones to Schubert
varieties. Recall that W is isomorphic to NG(H)/H , where NG(H) is the normal-
izer of H in G. The flag variety F = G/B can be decomposed into the union
F = ⋃

w∈W X ◦w, where X ◦w = BẇB/B is called the Schubert cell corresponding
to w. (Here ẇ is a representative of w in NG(H).) By definition, the Schubert
variety Xw is the closure of X ◦w in F with respect to Zariski topology. Note that
p = Xid = B/B is contained in Xw for all w ∈ W . One has Xw ⊆ Xw′ if and only
if w ≤B w′. Let Tw be the tangent space and Cw the tangent cone to Xw at the point
p (see [2] for detailed constructions); by definition, Cw ⊆ Tw, and if p is a regular
point of Xw, then Cw = Tw. Of course, if w ≤B w′, then Cw ⊆ Cw′ .

Let T = TpF be the tangent space to F at p. It can be naturally identified with
n∗ by the following way: since F = G/B, T is isomorphic to the factor g/b ∼= n∗.
Next, B acts on F by conjugation. Since p is invariant under this action, the action
on T = n∗ is induced. One can check that this action coincides with the action of
B on n∗ defined above. The tangent cone Cw ⊆ Tw ⊆ T = n∗ is B-invariant, so it
splits into a union of B-orbits. Furthermore, �σ ⊆ Cσ for all σ ∈ I(Cn).

It is well-known that Cw is a subvariety of Tw of dimension dimCw = l(w) [2,
Chapter 2, Section 2.6]. Let w ∈ B(�) for � = Bn or Dn. Since �w is irreducible,
�w is irreducible, too. Theorem 3.1 implies dim�w = dim�w = l(σ ), so �w is
an irreducible component of Cw of maximal dimension.

Conjecture 3.2 Let � = Bn or Dn, and w ∈ B(�). Then the closure of the B-
orbit�w coincides with the tangent cone Cw to the Schubert variety Xw at the point
p = B/B.

Note that this conjecture implies that if σ ≤B τ , then�σ ⊆ �τ for σ, τ ∈ B(�).
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Proper Self-Similar Triangle Tiling and
Representing Weight Diagrams in the
Plane

Anthony Joseph

In memory of Bar Sagi

I just want to get it over and done
I want to see tomorrow’s setting sun
I want that hateful memory
To turn into the fears of yesterday.

An excerpt from “Choice”, by Bar Sagi [11, XXI].

Abstract Let P(π) denote the weight lattice of a simple Lie algebra g. A weight
diagram D is a finite subset of P(π) describing the weights of a simple finite
dimensional representation of g. In (Joseph, Adv Math 22(1), 522–585, 2011; 2.8)
it was noted that there exists a Z linear map ψ of P(π) into R

2. The resulting
presentation of weight diagrams in the plane leads naturally to “proper self-similar
triangle tilings.” In (Joseph, Transform. Groups 14(3), 557–612, 2009) self-similar
triangle tilings were constructed. Here this is refined by requiring the tiling to be
proper. In addition a uniqueness theorem is proved.

In (Joseph, Transform. Groups, 14(3), 557–612 (2009); 8.3,10.5) it was deter-
mined exactly when ψ is injective in simple Lie algebras of types A,B. Here it is
shown that ψ is injective if and only if the exponents of g are prime to its Coxeter
number. The possibility of representing ψ(D) as the vertices coming from a proper
triangle tiling is discussed.
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1 Motivation

This work was started 11 years ago out of my frustration in trying to understand
the Kashiwara B(∞) crystal. In this I hoped to make use of a simple trick to
draw the weight diagram of a simple Lie algebra in the plane. The result [4] was
a construction of self-similar tiling with respect to triangles obtained by joining any
three vertices of a regular n-gon generalizing a well-known construction for the
case n = 5. I hoped at that time it would at least amuse my grand-daughter Bar who
was 6 years old at the time. Later I found a more substantial application [5] of the
above trick to constructing Weierstrass sections for the co-adjoint action of a Borel
subalgebra.

About 7 years later I realized that the tiling rule in [4] had a not so satisfying
iteration. To avoid this difficulty more complex patterns are needed and these are
rather pleasing. I thought at that time to submit the result to an exhibition in Zefat
aimed at combining mathematics and art, but I could not find a pleasing colouring
of the triangles.

I put one pattern on my home page http://www.weizmann.ac.il/math/joseph/.
Regrettably a pleasing colouring was also not achieved. Nevertheless the pattern
adorned the conference posters of which the present volume are the proceedings.
This paper gives a general rule how such patterns can be obtained and the self-
similarity which results. In the second part it describes the condition under which
the weight lattice is faithfully represented in the plane by the above trick and the
resulting possible presentation of a weight diagram as the vertices of triangle tiling.

It turned out that the diagram in my home page had two errors. One barely
noticeable, but which made it difficult to understand how the pattern had been
constructed. (It took me an entire day.) The second was that my general rule given
in Sect. 3.9 was not precisely followed. One may anticipate that if this rule is not
followed then difficulties can occur with subsequent iterations.

In Plates 1, 2, 3, 4, 5, 6, 7, and 8 several examples of self-similar tiling are given
following rule given in Sect. 3.9. All diagrams can be two-coloured except those in
Plates 3, 4, 5, 9, and 10 which can just be three-coloured.

Plate 1 gives a tiling corresponding to p2
1T {2, 2, 1} in the notation of Sects. 3.2.1

and 3.2.2. Plate 2 gives an example from a regular hexagon and Plate 3 an example
from a regular heptagon both corresponding to a two-fold iteration. Plate 4 gives
a corrected version of the diagram in my home page. Plate 5 indicates why
this tiling corresponds in the notation of Sects. 3.2.1 and 3.2.2, to the triangle
p1p2p1T {4, 2, 2}, that is to say a three-fold iteration using red, blue, and black lines
to indicate successive refinements. Plate 6 gives an example from a regular nonagon
again for a two-fold iteration. Plate 7 gives an example from a regular decagon
for a two-fold iteration which cannot be two-coloured. In Plate 8, it is shown in
this example how one uses Sect. 3.9 to obtain a three-fold iteration, specifically

http://www.weizmann.ac.il/math/joseph/
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Plate 1 © Anthony Joseph

Plate 2 © Anthony Joseph

to construct p3p2p1T {3, 3, 4} again using a different colour for each successive
refinement. A poster exhibits this last example—see Sect. 3.10.3. We remark that the
result would have been different had the pi factors been taken in a different order. Of
course we can start with any n-gon, any triangle inscribed therein and any product
of side lengths taken in any order. By any measure this gives a dazzling variety of
different patterns. Of course one has to realize that to reproduce such patterns even
if only three iterations are undertaken needs very high precision and attempting
to present graphically even more iterations would be a definitive prescription for
insanity.
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Plate 3 © Anthony Joseph

Plate 4 © Anthony Joseph
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Plate 5 © Anthony Joseph

Plate 6 © Anthony Joseph
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Plate 7 © Anthony Joseph

Plate 8 © Anthony Joseph
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2 A Very Brief Survey of Tiling

2.1 Tilings

Tiling the plane goes back to ancient times and apart from practical purposes has
been a source of great inspiration for art and design especially in cultures for which
a representation of the human form is forbidden. There can be a rich mathematical
theory behind such tilings though this might not have been immediately realized.
For example, tiling the plane using the 19 possible crystallographic groups defined
on the plane was illustrated on the walls of Alhambra palace, long before Western
mathematicians had formulated the concept of a crystallographic group.

In [3] the authors describe a staggering variety of tilings and notably remark
in the introduction that “We thought, naively as it turned out, that two millenia of
development of plane geometry would leave little room for new ideas.” Indeed this
book was in time for aperiodic tiling to which a whole chapter is devoted, but too
early for self-similarity which appeared, at least in its full glory [7], only 5 years
after the publication of [3].

2.2 Aperiodic Tilings

The most familiar tiling is by squares, but it is also possible to use equilateral
triangles. Actually the plane may be tiled by any triangle. Indeed just consider the
pattern formed by three infinite sets of parallel lines.

All such tilings are periodic, the pattern being unchanged by a discrete translation
subgroup with compact quotient. Actually it is easy to introduce aperiodicity. Just
consider a tiling by bisected squares in which diagonals are chosen randomly.
However, this tiling by right angled isosceles triangles is not essentially aperiodic in
that the tiles can also be arranged by periodicity.

Essentially aperiodicity means that one or possibly a finite set S of shapes can
only tile aperiodically. A first proposal used 3600 tiles. After much work Penrose
[10] reduced this to just two. It is still an open question to know if just one suffices.

2.3 The Golden Pair

Penrose aperiodic tiling was based on the Golden Section g. It considered a pair
of isosceles triangles T1, T2 whose side lengths were 1 and g. We call T1, T2 the
Golden Pair. To avoid periodicity Penrose joined two copies of T1 (resp. T2) to form
a dart (resp. kite). Adding some markings which have to be matched, achieves the
required goal [10].
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2.4 Self-Similarity

The periodic triangle tiling described in the first paragraph of Sect. 2.3 has the
property of being self-similar, that is the basic triangle T is reproduced by a factor
(called a dilation factor) which can be any positive integer t by stacking t2 triangles.
However, this is not particularly interesting.

Thurston around 1992 considered which dilation factors could be achieved using
a finite set S of shapes. To be precise for some positive real number g and some
S ∈ S one must find a tiling by the elements of S of gS. In this case we say
that S admits a self-similar tiling with respect to g. Of course this process can be
repeated and then the dilation factor becomes a power of g. An example given was
the Golden Pair with dilation factor being the Golden Section. This last result was
illustrated on the notice board at the University of Geneva where I was a guest about
12 years ago. It was a motivation for the present paper, but unfortunately I did not
note down the details nor check its origins.

By a simple argument based on areas Thurston noted that the dilation factor must
be an algebraic integer which is the largest real solution of its minimal polynomial
(a Perron number). He further asserted that every such dilation factor could be
achieved. Kenyon [7] later verified his claim. In this, some rather exotic tiles seem
to be needed—see [7, Fig. 1].

2.5 Self-Similarity Using Triangles

One can ask what dilation factors are possible if all tiles are restricted to be triangles.
Moreover here we can be a little more demanding. Indeed fix the minimal side length
to be 1 and then demand that every side length appears as a dilation factor.

Let n be an integer ≥ 3 and Tn be the set of triangles obtained by joining any
three vertices of a regular n-gon of side length 1 by line segments which do not
cross. Let Ln be the set of all their side lengths and Ln the monoid they generate.
In [4, 8.8] it was shown that Tn is self-similar with respect to all dilations factor
from Ln. In this case we say that Tn admits a self-similar triangle tiling.

By repeating this process the dilation factors become not just a power of any
side length but a product of any of them with any multiplicities, that is to say any
element of Ln. However, if one does this just using the construction of [4, 8.8], one
finds that on the second iteration triangles may “overlap,” a “bad” feature which was
absent at the first iteration.

Thus let us consider a further requirement. Namely if two triangles share two
common points, then they must share their entire sides defined by these two points.
We call this a proper joining and we call such a pair, neighbours. Then (trivially!)
the neighbour of a triangle is uniquely determined by the edge they share. In
this any internal point must be the vertex of at least three triangles (or more
generally elements of S ). This can fail for arbitrary triangle tiling see [4, Fig.
10]. This condition makes less sense for the tilings considered by Kenyon-Thurston
[7, Fig. 1].
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In Sect. 3, we show that the result noted above still holds when proper joining is
imposed and we say that Tn admits a proper self-similar triangle tiling. However,
the patterns become more complex and so more interesting. In particular the tiling
cannot be two-coloured (in the usual sense that every pair of adjacent triangles is of a
different colour). We do not know if it can be three-coloured, though this appears to
be the case. The choice of colours to get an aesthetically pleasing arrangement is one
where the mathematician must humbly yield to the artist. Thus I could only produce
a rather unappealing result which became even worse on photographic reproduction.
As a consequence I made no attempt to present the tiling in Zefat, back in 2011.

In the case of a triangle tiling of any shape S in the plane the vertices of the
triangles which form S will be called the marked points of S.

2.6 Uniqueness

We call a proper self-similar triangle tiling, a tiling by a set T of triangles which are
properly joined and in which the dilation factor p is any element of the monoid L
generated by the set L of side lengths of elements of T , normalized to contain p0 :=
1 as its smallest element. In this it is immediate that the set NL is multiplicatively
closed, and so the elements of L are algebraic integers. Not all algebraic integers
occur but one does have infinitely many choices.

By the remark in the first paragraph of Sect. 2.3 there is a self-similar triangle
tiling with dilation factor p being any positive integer. However, these are rather
trivial and we exclude them by the condition that p > 1 and not integer. Then
one may ask if necessarily there exists n ≥ 3 such that T = Tn and L = Ln
defined above. This is shown in Sect. 4, under some rather natural supplementary
conditions. In this condition (H5) is not too elegant and probably superfluous; but
we were unable to avoid it.

2.7 Weight Diagrams

Let g be a complex simple Lie algebra, h a Cartan subalgebra, W the Weyl group
relative to the pair (g, h) and P(π) the weight lattice. In [5, 2.7] it was shown that
there exists a ZC linear map ψ of P(π) into R

2. Here C is the subgroup of W
generated by the pair {σ1, σ2}, where σ := σ1σ2 is a bipartite Coxeter element
(see Sect. 2.8). It is isomorphic to the dihehral group D2c, where c is the order of σ
that is to say the Coxeter number of g.

Let P+(π) denote the set of dominant weights relative to a choice of simple roots
π . Recall that to each λ ∈ P+(π) there exists a unique up to isomorphism simple
highest weight simple g module V (λ) of highest weight λ. Let D(λ) denote the set
of weights of V (λ). It is a finite subset of P(π). Set d(λ) = ψ(D(λ)). We call d(λ),
a planar weight diagram.
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Our interest in tiling was to whether a plane weight diagram can be represented
as the set of marked points of a proper triangle tiling with triangles from Tc,
where we recall that c is the Coxeter number of g. Examples of the root diagram
in A4, A6, B4, B5 for the adjoint representation as a set of marked points can be
found in [4, Figs. 1,3,12,13]. In this a natural first question is whether the map ψ is
injective.

Recall that after Chevalley the invariant algebra S(h)W is polynomial on � =
dim h generators which can be assumed to be homogeneous of degrees mj + 1 :
j = 1, 2, . . . , �. The mj : j = 1, 2, . . . , � are known as the exponents of g.
After Coleman [2] the eigenvalues of σ on h are exactly the exp 2πimj/c : j =
1, 2, . . . , �. From the list of exponents which result, we show in Sect. 5 that ψ is
injective if and only if c is prime to the exponents of g. No doubt the proof could be
made more direct. In the case of sl(n) the exponents form the set {1, 2, . . . , n− 1},
and so the condition is that n must be prime.

In Sect. 6, we briefly address the question of whether a planar weight diagram
can be represented by the set of marked points of a proper triangle tiling.

2.8 Weierstrass Sections

Because the Dynkin diagram of g has no loops, a general result allows one to
construct a “bipartite” Coxeter element σ = σ1σ2 where the simple reflections in
the factors σ1, σ2 commute [1, Chap. V, Sect. 4]. If the Coxeter number c is even,
then σc/2 is the unique longest element w0 and the resulting expression is a reduced
decomposition ofw0 [5, Lemma 2.8] (a result also noted in Bourbaki [1]). We call it
a bipartite reduced decomposition of w0. (As noted in [1, Chap. V, Sect. 4] one may
also show that all Coxeter elements are conjugate, but unless w0 = −1 this does not
mean that σc/2 = w0 for all Coxeter elements σ . Even then the bipartite case has
some useful extra properties.

In [5] we used a bipartite Coxeter element in construction of Weierstrass sections
(called an algebraic slice in loc cit) for the action of a Borel subalgebra on its dual,
particularly in the absence of an “adapted pair.” The constructed failed only in types
C,B2m, F4.

2.9 The Combinatorics of B(∞)

Bipartite reduced decompositions of w0 have been of interest in combinatorics.
Recently we have shown [6, Thm. 6.3] that they are of particular interest in the
description of the Kashiwara crystal B(∞), at least for g classical. This brings us
around in a full circle back to B(∞).
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2.10 Recreation

Self-similar triangle tiling leads to many beautiful patterns which can be obtained
with little effort or technical means. They do not have to satisfy proper joining
(cf Sect. 2.6) even at the first iteration, for example, see [4, Fig. 10].

Proper self-similar triangle tiling is a little more subtle. In this all the triangles
used can be inscribed in circles of fixed radius. Then the marked points of the tiling
can be represented as intersection points of the circles and the triangles dispensed
with. (We were a little too lazy to attempt to illustrate this.)

Self-similar triangle tiling can provide an amusing puzzle for children with the
triangles (accurately!) cut from coloured paper backed by a magnetic sheet of the
type used in placing advertising labels on the refrigerator door (usually supplied for
free!). Such tiles can be easily manipulated whilst Mother (or perhaps Father!) is
busy cooking. However, some of the triangles are rather thin (see Sect. 4.6.3) and
could easily be swallowed by small children. Again the question of self-similarity
is a little too subtle to be appreciated for those wanting to solve “finite” puzzles
avoiding any venture into “general” solutions. In any case neither Bar nor her mother
were particularly enamoured by the game and for me it was rather humbling to
discover on the other hand that other tiling puzzles were eminently popular.

Personally I found it challenging to construct the triangle on my home page from
the 82 triangles of seven different types, even when I knew the general rule described
in Sect. 3.9. Lately I found it even harder to deconstruct this triangle tiling and
determine which element of p ∈ L it involves. That is why I now describe in detail
its construction in Plate 5.

Again by joining the two copies of the triangle on my home page, one may fill
a square by the seven different triangles cut from a regular octagon using a total of
164 triangles. This would certainly make an eye-catching floor pattern for the living
room if one could get a carpenter to fabricate the triangles and tiler to lay them.

Penrose tiling adorned bed covers in California (followed by a law suit). Maybe
they induce sweet dreams. About 20 years ago Penrose tiles could be bought in
Oxford (where Penrose was Savilian Professor of Geometry). Now a well-known
global delivery firm sells a magnetic Penrose tiling pack.

One could argue that Penrose tiling formed the mathematical basis for quasi-
crystals, eventually leading to D. Shechtman being awarded the Nobel prize.
Although quasi-crystals live in three dimensions whilst Penrose tiling lives in two,
both share an almost unnatural ubiquity of the Golden Section. Of course it was
understood from early antiquity that the Golden Section appears in nature, for
example, in the Vitruvian Man, exploited by Leonardo da Vinci to square the circle.
My favourite consequence is the ratio of a mile to a kilometre, the former [9,
mile] being 1000 paces (of a properly fed British soldier, rather than a poorly fed
Roman soldier) and the latter (despite what the Paris Academy of Sciences may try
to pretend) is just 1000 times the distance from the furthermost finger tips of an
outstretched hand to the opposite shoulder in the same well fed soldier.
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3 A Simple Construction

3.1 Integral Truncation

Fix a positive integer n. As a subscript it will sometimes be omitted. If k is a non-
negative rational number, we let [k] denote the largest integer ≤ k.

3.1.1 The Basic Set and Its Dilations

Let Sn denote the regular n-gon of side length 1. Let Ln denote the set of lengths of
lines joining the vertices of Sn and Ln the monoid generated by Ln.

As in Sect. 2.6, let Tn be the set of triangles obtained by joining any three vertices
of Sn by line segments which do not cross. Observe that Ln is just the set of side
lengths of elements of Tn.

We call Tn the basic set.
Let S be a polygon (or “shape”) and p ≥ 1 a real number. By pS we mean the

shape obtained on dilating S by p.
Our goal is to construct for all p ∈ Ln and T ∈ Tn, an element of pT by

properly joining elements of Tn. Let us first spell out what this entails.
Let S be a polygon and T a triangle. Suppose that they possess a side s of

common length. Then we shall denote by S ∗ T the polygon obtained by joining
them along s, assuming that no overlapping of their interiors results. We remark
that this notation is not entirely adequate as the pair S, T may possess several sides
of common length, nor does it take account of the two possible orientations at the
join. For example, if T is the smaller (resp. larger) element of the Golden Pair, then
T ∗ T could be a parallelogram or a Penrose kite (resp. dart).

Of course we may wish to repeat the above procedure. In this we shall always
start from elements of Tn.

The points in the polygon so obtained which are vertices of triangles (from T )
are called its marked points. More particularly the set of marked points on its sides
are called its side markings.

Then if we wish to join two such polygons to obtain a larger polygon which
could have been obtained from just the basic set by proper joinings, we must not
only require that the joined sides have the same length and there be no common
interior but also that the markings on the joined sides match up.

Typically the above situation will arise in an inductive construction. Here one
assumes for some p ∈ Ln that {pT |T ∈ Tn} has been constructed and view the
latter as the new basic set T ′. Then for p′ ∈ Ln, we construct p′T ′ for T ′ ∈ T ′
by joining elements of T ′. Thus we must not only solve this joining problem when
T ′ is our original basic set but also describe the markings on the joined sides that
the elements of T ′ acquire and show that in our construction these side marking are
matched. In this it will also be important to take the factors in p to be in the same
order for each T ∈ T ′, as the resulting markings in pT will depend on this choice.
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To summarize the above, let < Tn > denote the set of all polygons which can
be obtained from Tn by repeated proper joinings. Given S ∈< Tn > we may write
S in the form T1 ∗ T2 ∗ . . . ∗ Tn with T1, T2, . . . , Tn ∈ T .

Definition 1 A marked point of S is a vertex of some Ti . A marking of S is the set
M(S) of marked points of S.

3.1.2 Composite Triangles

It is clearly necessary that the distance between any two adjacent marked points on a
side of S ∈< Tn > belong to Ln. However, it is rather easy to give examples when
this condition is not sufficient. Consider, for example, the case of the Golden Pair
T1, T2. Taking the area of T1 to be 1, then the area of T2 must the Golden Section
g—see Sect. 2.5. Consider S = g2T1. Its long side has length g3 = 2g + 1 and its
short length has side g2 = g + 1. This already puts some constraints on possible
markings. Again g2T1 has area g4 = 3g+ 2 and consequently equals all joinings of
two copies of T1 and three copies of T2. Let v1 denote a vertex of g2T1 for which the
sides s2, s3 form an angle of π/5. One cannot have a marking with points on s2, s3
at a distance 1 from v1, since there is no triangle in T5 to fit into this corner.

In Fig. 1 we give a possible presentation of g2T1 obtained by proper joining of
elements T5. One may check that the remaining presentations may be obtained
by flipping triangles or trapezia. One observes that all markings are side markings
(which of course is exceptional). All possible side markings compatible with the
above two constraints occur. A given side marking can give rise to more than one
proper joining except that in this case they are related by flipping a trapezium.

Definition 2 A triangle T ∈< T > is said to be a composed or composite triangle.

3.2 Parametrization of the Basic Set

3.2.1 Angle Sets

There are two natural ways to designate the elements of Tn. The first is to label
the vertices of Sn in a clockwise manner by the integers 0, 1, . . . , n − 1, that is
the natural set of representatives of Z/Zn. Let Ti,j,k be the triangle with vertex set
0 ≤ i < j < k ≤ n− 1. Obviously we would not want to distinguish two triangles
obtained by rotation, that is by adding a fixed integer to each element of the vertex
set or by cyclic permutation of indices. However, it is convenient to distinguish Ti,j,k
from Tj,i,k for scalene triangles, that is those with no equal sides. (This is required if
one needs to tile the living room floor, since normally the tiles used have one shiny
smooth side and one rough side.) We shall say that these two triangles are related
by a parity transformation.
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The set An of angles between the sides of elements of Tn takes the form

An = {iπ/n : i = 1, 2, . . . , n− 2}.

From now on we shall generally ignore the factor π/n. Then going in a clockwise
direction the angle lying between the vertices with labels i, j is just j − i, if j > i
and n+ j − i if j < i.

We call Ti,j,k defined above, a labelling of an element of T by its vertex set. We
may also label this element as T {j − i, k − j, n+ k − i}, that is to say by its angle
set. Any two angle sets define the same triangle in Tn if and only if they are related
by a cyclic permutation.

3.2.2 Line Sets

Let pi : i = 0, 1, 2, . . . , n − 2, be the length of the line segment of Sn joining
the vertex 0 to the vertex i + 1. By definition of Sn one has p0 = 1 = pn−2 and
Ln = {pi}n−2

i=0 . It is clear at least geometrically that the pi : i = 0, 1, . . . , p[ n−2
2 ] are

strictly increasing. We call this the increasing property.
Consider the triangle bordered by the two adjacent sides of Sn (which by

definition have length 1) and the third side of length p1. In this the angle which
subtends to a side of length 1 is just π/n.

Thus g := p1 = 2 cosπ/n.
By symmetry we also have

pn−2−i = pi,∀i = 0, 1, . . . n− 2. (1)

This rule may be extended to all i ∈ Z by setting pi = 0 for i < 0 and i >
n−2. We call it the symmetry property. On account of the increasing and symmetry
properties, it follows that the set {pi}i∈Z consists of exactly [n2 ] distinct elements,

namely the elements of the set L′n := {pi}[
n−2

2 ]
i=0 .

One may check that

p1pi−1 = pi + pi−2,∀i ∈ Z. (2)

Of course this is well-known but we remark that a particularly simple geometric
proof in the spirit of proper joinings can be found in [4, 8.7].

Up to a scaling by 2 in its argument, the ith Chebyshev polynomial Pi of the
second kind may be defined through the recurrence relation

Pi+1 = xPi − Pi−1 : ∀i ∈ N, (3)

together with the initial conditions P−1 = 0, P0 = 1.
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With this scaling Pi : i ∈ N is monic and one may check that

(sin θ)Pi(2 cos θ) = sin(i + 1)θ,∀i ∈ N.

Hence pi = Pi(g). This also follows from (2).
By (1) it follows that g is a root of the equation Pn−1 = 0 and hence an algebraic

integer. Then by (2), pi is an algebraic integer for all i ∈ Z.
The roots of Pn−1 = 0 are the 2 cos tπ/n : t = 1, 2, . . . , n − 1, so these are

also algebraic integers. Thus p1 is the largest real root of the equation Pn−1 = 0
and so by definition a Perron number. Yet the set of Perron numbers is closed under
addition and multiplication [8] and hence by (2) every pi : i = 1, 2, . . . , n− 2 is a
Perron number and so is any p ∈ Ln.

Curiously p−1
i is an algebraic integer if n is odd, but this fails otherwise.

The following is well-known but we give a proof for completeness.

Lemma The elements of L′n are linearly independent over Q if and only if n is
prime or a power of 2.

Proof It follows from (3) that the elements of L′n form a free basis of Z[x].
Suppose that n is odd, say n = 2m+ 1. Then m = [n−1

2 ]. Following say [4, 7.3],
define the polynomials Qi(x) = Pi(x) − Pi−1(x) of degree i. (The first few are
listed in [4, 7.3].) Then the relation pm−1 = pm becomes Qm(g) = 0 and so Z[g]
identifies with the quotient ring Z[x]/ < Qm >, which is prime if and only if Qm
is irreducible. Yet by Joseph [4, Lemma 7.4], Qm is irreducible over Q if and only
if n = 2m+ 1 is prime.

By the first observation of the lemma, if the elements of L′n are not linearly
independent over Q, then the {gi}m−1

i=0 are not linearly independent over Z. Then g
satisfies a polynomial equation R(g) = 0 with degR < m − 1, contradicting the
primeness of Z[x]/ < Qm >. Conversely if Qm is not irreducible, then there is a
proper factor of R of Qm such that R(g) = 0 implying that the elements of L′n are
linearly dependent over Q.

Suppose n is even, n = 2m and define polynomials Si(x) = Pi(x)− Pi−2(x) of
degree i. The relation pm = pm−2 becomes Sm(g) = 0. By Joseph [4, 10.2(iii)], Sm
is irreducible over Q if and only if m is a power of 2. Hence the assertion follows as
in the previous case. ��
Examples If n = 4, then g = √

2 which is irrational. If n = 5, then g is just
the Golden Section which is irrational. If n = 6, then g = √

3 and satisfies a
polynomial equation over Q of degree [n−2

2 ] = 2. We have linear independence for
n = 4, 5, 7, 8 but not for n = 6, 9.

3.2.3 Determining |Tn|

Notice that the length of the line segment in T {i, j, k} opposite to its angle of size i
is just pi−1 irrespective of the values of j, k.
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In particular by the symmetry and increasing property, two elements of T can
be properly joined along a side if and only if the angles subtending to that side are
either equal or sum to π . Of course this is just a special case of a result in Euclidean
geometry for triangles inscribed in a fixed circle.

One may further conclude from the above that any element of T is uniquely
determined (up to parity for scalene triangles) by its angle set. Thus up to parity,
Tn is in a natural bijection with the set of partitions of n into exactly three parts.
Then the scalene triangles in Tn are in bijection with the set of partitions into three
distinct parts.

Example There are just 5 partitions of 8 into three parts with two having distinct
parts. Thus |T8| = 7. A similar computation shows that |T10| = 12.

3.3 Two Triangle Joins

The first attempt at extending the tiling by the Golden Pair is to consider joining
just two triangles at one time. The following result is just [4, Lemma 8.8], when one
replaces the presentation of an element T ∈ T by its angle set rather than by its
vertex set.

Lemma Fix 0 < i < j < n. Then for all t with 0 < t < i one has

pj−i+t−1T {i, j−i, n−j} = pj−1T {t, j−i, n−(j−i)−t}∗pj−i−1T {i−t, j−(i−t), n−j}.

In the above the angle of size n− (j− i)− t in the first triangle is placed together
with that of size j − (i − t) to form a straight line. The common sides have length
pj−1pj−i−1.

3.4 Insufficiency of Two Triangle Joins

Unlike the Golden Pair it is not sufficient for our basic theorem to just consider
two triangle joins even when one ignores markings. Indeed let us consider what
T = T {i, j − i, n−j} can be. Since parity respects proper joinings we may identify
for this purpose T ∈ T with its parity transpose.

After this identification a triangle T ∈ T is independent of the ordering of its
angle set; we can assume that 0 < j − i ≤ n− j ≤ i < n and 0 < t < i.

Lemma Consider s := j − i + t − 1, with i, j fixed and satisfying 0 < j − i ≤
n − j ≤ i < n. Consider t taking integer values from 1 to i − 1. Then under the
above constraints, s takes integer values from j − i to [n−2

2 ].
Proof Obviously s takes integer values from j − i to j −2. Yet 2j > i+ j ≥ n and
so j > [n2 ]. Thus j − 2 ≥ [n−2

2 ], as required. ��
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3.5 Multiple Triangle Joins

Replace s = j − i + t − 1 by t and then j − i, n − j by j, k in Sect. 3.3.
Then we conclude that ptT {i, j, k} ∈ Tn as long as [n−2

2 ] ≥ t ≥ min{i, j, k}.
Since (1) allows us to assume that t ≤ [n−2

2 ], the upper bound on t causes
no problem. However, the lower bound is problematic and in general one cannot
express ptT {i, j, k} as a join of just two triangles in T if t < min{i, j, k}.

To overcome this difficulty we used multiple triangle joins. Thus [4, Prop. 8.13]
used the proper joining of (t + 1)2 triangles in Tn to show that ptT {i, j, k} ∈ Tn
given t < min{i, j, k}. Combined with [4, 8.8, 8.9] we were able to eliminate the
above restriction on t resulting in [4, Theorem 8.14].

However, this only works for the first iteration. In the second iteration side
markings are introduced on the elements ptT {i, j, k} and these must be matched.
This is quite a non-trivial problem as already indicated by the solution. Indeed as
we shall see at the first step the tiling admits a 2-colouring but this can fail at the
second step.

Here we shall even modify our first iteration. Thus we use our earlier result [4,
Prop. 8.13] but by noting that the solution presented there has another form obtained
by reversing “orientations.” Then we show that the condition t < min{i, j, k} in
[4, Prop. 8.13] can be avoided by a process of elimination of undesirable triangles
(some with non-positive angles) which we shall call ablation. One may note that this
eliminates the need for Sect. 3.3 thereby making the analysis of [4] more uniform.

Ablation will also prove useful in subsequent iterations when matching of
marked points must be effected.

3.6 Rigid Stacks

3.6.1 Stacks of Equilateral Triangles

Let t be an integer ≥ 0. Let T be an equilateral triangle of side length 1. Then
we may write (t + 1)T = T ∗ T ∗ . . . ∗ T , noting that there is only one possible
interpretation of the right hand side which would give this equality.

The above expresses the easy well-known fact that there is just one way to “stack”
(t+1)2 equilateral triangles of side length 1 to form a composite equilateral triangle
T ′ of side length t + 1. In this

(i) Triangles of the stack are properly joined.
(ii) If S, T share a common side in the stack, then the angles opposite to the shared

sides of S and T above are equal (and not just sum to π—cf Sect. 3.2.3).
(iii) An internal marking is at the crossing of three straight lines.
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3.6.2 T -Stacks

We call a T -stack (of order t + 1) an arrangement T obtained by replacing the
equilateral triangles above by triangles in T so that (i) and (ii) above hold with of
course no gaps or overlapping. A T -stack is said to be rigid if (iii) also holds. One
may check that a T-stack of order 2 or 3 is always rigid, but rigidity may fail at
order 4.

Eventually we may want to “ablate” some of the triangles in the stack if some
angle value becomes equal to zero—see Sect. 3.7.

Let i, j, k be positive integers which sum to n. Let t be a positive integer <
min{i, j, k}. A rigid T -stack T t+1 of order t + 1 for ptT {i, j, k} was constructed
in [4, 8.13], though rather abstractly. It was illustrated in [4, Figure 9], for the case
t = 3 from which one can easily guess the general solution. A description for all
t < min{i, j, k} is given [4, Proposition 8.13]. Notice that the upper bound on t is
needed to make all angles positive. In the sequel we shall identify a T-stack with
the marked triangle it defines.

3.6.3 Angle Sums

Take t, i, j, k as Sect. 3.6.2. In particular t < min{i, j, k} an assumption which will
be retained until the end of Sect. 3.6.

Let us describe T t+1 more concretely. In this we shall show that T t+1 is a rigid
T -stack and a realization of ptT {i, j, k} in Tn.

To follow the analysis the reader may conveniently use [4, Figs. 8,9] which
illustrates the cases t = 2, 3.

View i, j, k as being fixed and being the angle values at the corners of T t+1.
Then we denote by vi the corner of T t+1 at which the angle has value i (in units of
π/n). The directed edge going from vi to vj is denoted by si,j .

The stack of (t + 1)2 equilateral triangles described in Sect. 3.6.1 is formed by
three sets of t + 1 (straight) lines parallel to the external sides of T t+1.

To obtain T t+1 from the stack of (t +1)2 equilateral triangles we just modify the
angles at each vertex (to the values described below—see for example [4, Fig. 9]).

This automatically ensures that (i) holds.
If (iii) holds then there are three straight lines going through each internal vertex.
These come as (three sets) of straight lines, but unlike the equilateral triangle

case, the lines of a given set are not necessarily parallel to a given side of T .
Nevertheless these lines can be identified with those of the equilateral triangle

stack, so we may conveniently refer them as straight lines being parallel to the
respective sides of our composite triangle T t+1.

The angles in each of the triangles making up T t+1 will take the form {i +
u, j + v, k +w} where u, v,w are integers which sum to 0 changing in the manner
described below as we pass through T t+1.

By continuing the lines beyond the boundary of T t+1 and adding a line at each
external vertex, we may assume that each vertex meets six triangles whose angles
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are i + u, j + v, k + w, i + u, j + v, k + w starting at the top and going counter-
clockwise. This property assures that (iii) holds. Adopt this convention.

Following the special case t = 3 in [4, Figure 9], we require u to decrease in
units of 1 as we pass vertices along and in the direction of a line parallel to the
directed edge si,j or as we pass vertices along and in the direction of a line parallel
to the directed edge sk,i , whilst we require u to increase in units of 2 as we pass
vertices along and in the direction of a line parallel to the directed edge sj,k . This
variation and the above assignments at each vertex ensure that on going around the
three sides of composite triangle we reach the same value for a given angle—simply
because 1+ 1 = 2. It also ensures that (ii) holds.

The behaviour of v,w can be deduced from that of u by just rotating the
composite triangle, that is by cyclic permutation. One checks that the result is
compatible with the above assignment of angles at each vertex, again because
1+ 1 = 2.

This completely defines the stack T t+1 and shows it to be a rigid T -stack.

3.6.4 Line Sums

Recall the first sentence of Sect. 3.2.3.
Reading T t+1 in a clockwise manner the vertices appear in the order vi, vj , vk .

Moreover passing from vi to vj the distances between marked points form the
sequence pk−1−t , pk−1−(t−2), . . . , pk−1+t . (Notice by (1), (2) that these lengths
strictly increase, rise to a maximum value which may be repeated once and then
strictly decrease.) By Joseph [4, Lemma 8.12], this sum of distances from vi to vj
is just ptpk−1. Through a similar result for the sides defined by the two other pairs
of vertices, we conclude that T t+1 is a realization of ptT {i, j, k} in < Tn >.

3.6.5 Orientation

We claim that the markings on the sides of T t+1 give it a natural clockwise
orientation.

In this case when indices on the lengths pt between adjacent marked points
increase along a directed edge si,j we say that it has a positive orientation, and that
sj,i has a negative orientation. If si,j , sj,k, sk,i all have a positive (resp. negative)
orientation, we say that T t+1 has a clockwise (resp. anticlockwise) orientation.

In virtue of the symmetry condition (1), a side (or parts of a side) can be
assigned to both orientations simultaneously. Thus as we can always take 1 ≤
i < j ≤ n − 2, and if j − i is even, then the indices of the pi, pi+2, . . . , pj
increase. On the other hand by the symmetry condition this is also the sequence
pn−i−2, pn−i−4, . . . , pn−j−2, where the indices decrease. This phenomenon will
play an important role when it comes to discussing ablation in Sect. 3.7 and in
matching marked points in Sect. 3.8.
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We show in the next section that there is a second rigid T-stack St+1 of order
t+1 for ptT {i, j, k} with the opposite orientation. If T {i, j, k} is scalene, this stack
is not obtained by simply taking the mirror image because that would be a stack for
T {i, k, j}. Rather it is obtained by interchanging “increase” and “decrease” in the
penultimate paragraph of Sect. 3.6.3.

3.6.6 Uniqueness

One can ask if there are any other rigid T-stacks of order t + 1 for ptT {i, j, k}. To
answer this one must study the solutions to the equation

t∑

s=0

pk−1+(t−2s) =
t∑

s=0

pk−1+a(t−2s), (4)

with a ∈ Z. Obvious solutions are a = ±1. These correspond to the stacks described
in Sect. 3.6.3 and the last paragraph of Sect. 3.6.5.

Let us show the case when n is prime or a power of two that the only solutions
of (4) are a = ±1.

Under the above hypothesis it follows from Sect. 3.2.2 that the pi : i =
0, 1, . . . , [n−2

2 ] are linearly independent over Q. In this case the only way that (4)
can hold is for pi on the left to cancel with pn−2−i on the right via the symmetry
property (1). Taking respectively s = 0 and s = t we obtain 2(k − 1)+ (a − 1)t =
n− 2 = 2(k − 1)− (a − 1)t , which for t > 0 has only the solution a = 1. This is
the solution we already obtained.

Let n, i, j, k be as in Sect. 3.6.2 and t < min{i, j, k}.
Lemma Suppose n is prime or a power of 2. Then there are exactly two rigid T
stacks of order t + 1.

Proof Let T be a rigid T stacks of order t + 1. Recall that T is triangulated with
angle sets given by the rules (iii) and (ii) of Sect. 3.6.1.

If we only require T to just satisfy the condition on the angle sets described
above and not the condition on side lengths, then for each a ∈ Q, we obtain a rigid
T stack of order t + 1 by replacing {u, v,w} by {au, av, aw} in the construction
of Sect. 3.6.3. Of course a must be such that all angles have positive values, but
apart from this we obtain a one-parameter family of rigid T stacks of order t + 1.
In this we may remark that T t+1 (resp. St+1) is recovered by setting a = 1 (resp.
a = −1).

The angle conditions (iii) and (ii) of Sect. 3.6.1 are linear relations involving the
fixed values i, j, k with their number depending on t . Thus to show that there are
no other rigid T stacks of order t + 1 we have to show that for each value of t
that there is exactly a one parameter family of solutions, equivalently fixing just one
further angle value fixes all the others. Though this is an elementary exercise it is
not necessarily easy because the linear relations may be over-determined.
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Start from the value i of the angle at the vertex vi of T . The vertex v opposite
to vi has angle value i by (ii). If v is an internal vertex then by (iii) it possesses a
second angle of value i. Proceeding in this manner until one reaches the side si,j
gives t + 1 internal angles with value i. A similar result holds for vj , vk .

If t + 1 �= 0 mod 3 then there is a “central triangle” in T with angle set {i, j, k}
standing as (resp. inverted relative to) T if t = 1 mod 3 (resp. t = 2 mod 3). If
t = 0 mod 3, then there is a “central vertex” in T with angle set being two copies
of {i, j, k}.

Now take t = u + 3n > 0 with u = 1, 2, 3 and n ∈ N. The proof that just one
additional angle value determines all others is by induction on n and is similar in
the three cases.

The case n = 0 is a finite computation and sets the tone for the induction proof.
The most convenient one we found is the following.

Recall that i is the internal angle value of a triangle in T with vertex vi .
Descending down the stack along the side si,j , assign i − a to the top vertex of
the succeeding triangle, that is to say we place i − a where i − 1 stands on an
edge vertex of [4, Figure 9]—this is case t = u = 2. Then either u = 1 or by (ii)
of Sect. 3.6.1 the opposite vertex also gains the value i− a. Combined with our first
assignment on angles, this determines a pair of angle values out of three which sum
to n. In this manner all angle values are determined.

The general case proceeds by induction on n. In this we obtain a rigid T stack
Tn of order u + 3n + 1, satisfying the angle relations (ii) and (iii) of Sect. 3.6.1
which we view as being embedded as the “composed central triangle” in the rigid
T stack Tn+1 of order u + 3(n + 1) + 1. Notice that by (iii) all six angles at the
non-corner vertices of Tn are determined. Then through (ii) we obtain the values of
two out of three angles of every triangle neighbour to a triangle of Tn and hence all
their angle values. Repeating this procedure we obtain all the angle values on the
triangles neighbour to one of these new triangles. Repeating the procedure again we
obtain all angle values of Tn+1. This completes the induction.

Recall that the markings on the edge si,j in T and in T t+1 (in which a is
specialized to 1). These have t + 1 markings which subdivides its length ptpk−1
into t parts. Consider the angles which subtend onto these parts. In the latter case
we already noted that they take the form k + (t − 2s) : s = 0, 1, . . . , t . Thus in the
former case they must take the form k+(t−2s)a : s = 0, 1, . . . , t . Then si,j in T t+1

has the correct length by [4, Lemma 8.12], as we already observed in Sect. 3.6.4. For
si,j in T to have the correct length we required (4) to hold. Through the hypothesis
of the lemma and the remarks proceeding it, we obtain a = ±1. ��
Remark Even under the hypothesis of the lemma, uniqueness can fail if t is not
strictly less than min{i, j, k}. Indeed the positively orientated p1T {2, 2, 1} is given
in the right hand side of Fig. 2, whilst since T {2, 2, 1} is isosceles the negatively
oriented p1T {2, 2, 1} is just its mirror image. However, it also possible to present
p1T {2, 2, 1} as two copies of T {2, 2, 1} with T {1, 3, 1} sandwiched between them.
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3.6.7 Orientation Revisited

In order to construct a stack with triangles oriented by their markings we need that
triangles which share a common side, that is to say are neighbours, to have the
opposite orientation. The simplest example is illustrated in Plate 1.

This is possible in T t+1 because in a stack the number of triangles which share a
common internal vertex is even (namely 6). (This fact also enables a two colouring
of the stack and in any case is a special case of a standard fact in algebraic topology
concerning the orientation of simplexes.)

Sometimes a tiling with an incorrect orientation can be obtained by accident if
not enough sides are presented to the internal faces. This would cause difficulties
for further iterations.

This is what happened when I carelessly presented the tiling in my home page
http://www.weizmann.ac.il/math/joseph/. The arrangement of the three triangles in
the upper right hand corner differs from that given in Plate 4, which follows the
recipe of Sect. 3.9. Actually this phenomenon already occurs for n = 5 and one can
give tilings of the p2

1T {2, 2, 1} other than that given in Plate 1. This is illustrated in
Fig. 9.

3.7 Ablation

3.7.1 Cutting Off a Single Corner

The above analysis suffices when t < min{i, j, k}. The general case is handled
by analyzing what happens to our stack when this strict inequality fails. We retain
the same rules for assigning angles in a stack given in Sect. 3.6.3. Yet this can
result in some angles acquiring non-positive values. These as well as some of their
neighbours will be removed by a process we call ablation.

The resulting arrangement will be called an ablated stack.
To define ablation more precisely recall the description of the stack T t+1 given

in Sect. 3.6.
Now suppose that t ≥ i. Then there is a marked point v1

i on si,j for which
u = −i, forcing the corresponding angle to be zero. Let v2

i denote the marked point
on sj,k where the line parallel to sk,i passing through v1

i meets sj,k . We call this
the ith ablation line. Removal of the composite triangle whose vertices consist of
v1
i , vj , v

2
i is called the ith ablation (see Fig. 2), and the resulting triangle an ablated

triangle. Such a triangle is itself a stack. It has one external vertex with angle j ,
one vertex with angle 0 and a third vertex with angle n − j . The combination of
the ith, j th, kth ablations is called ablation. (All three can occur simultaneously but
can be taken in any order, because they are just the cutting off corners of the stack.
Ablation lines may meet on a side of the stack or cross in the interior or not at all.)
One may check that ith ablation line meets (resp. crosses) j th ablation line exactly

http://www.weizmann.ac.il/math/joseph/
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when t − i + 1 ≥ j (resp. t − i + 1 > j ). Since we can assume t ≤ [n−2
2 ], the

three ablations lines cannot all meet or cross, though some may, for example, in
p3T {2, 1, 5}.
Proposition After the ith ablation, the following four properties hold.

(i) The marked point v1
i on si,j lies on a straight line segment.

(ii) In all triangles, the angles i + u are positive.
(iii) The marked point v2

i on sj,k subtends an angle of size j .
(iv) The new side joining v1

i to v2
j is oriented, having the same orientation as si,j .

Proof Of course (i) is immediate since the angle sum of the three triangles meeting
the marked point v1

i on si,j was constructed in [4, 8.13] to be n, whilst by assumption
one of these triangles has a vertex with angle i + u = 0. Notice that there are now
just two triangles whose vertices form this marked point.

For (ii) we note that values of u increase along a line L parallel to si,k . Thus
they take their minimal when the corresponding marked point meets si,j . Ablation
removes those on si,j where i + u ≤ 0. Since the ith ablation removes all the
triangles to the right of L (in the sense of its perpendicular), it removes all triangles
in which i + u ≤ 0. Hence the assertion.

By (i) the ith ablated stack forms a triangle with vertices vk, vi, v2
i . The first two

vertices have angle values k, i respectively, so the third must have angle value j , as
required. Hence (iii).

We note that j is the sum of the angle values calculated as follows.
The marked point v1

i is exactly the ith marked point on si,j counting downwards
from vi viewed as the zeroth marked point. Thus it is the (t + 1− i)th marked point
on si,j counting upwards from vj viewed as the zeroth marked point. Through the
arrangement of triangles in a stack, it follows that v2

i is the (t + 1 − i)th marked
point on sj,k counting leftwards from vj viewed as the zeroth marked point. Thus
the angle value in the leftmost triangle meeting v2

i has value j − (t + 1− i), so that
in the second (rightmost) triangle meeting v2

i , it must be t + 1− i. The first can be
negative, that is if j ≤ (t +1− i). In this case it will be removed by the j th ablation
(in virtue of (ii) applied to the j th ablation). If equality holds in the above the ith
and j th ablation lines meet on sj,k at v2

i , whilst if the inequality is strict they cross
at a marked point vi,j in the interior of the stack.

(iv) is more delicate. Indeed in terms of angle values, the orientation on the side
joining vi to the marked point v1

i on si,j has necessarily the opposite orientation
to its continuation from v1

i to v2
i . This follows by considering the orientation of the

removed composite triangle. Indeed on the common side the angle values subtended
on the successive intervals defined by the marked points on the line going from v2

i to
vi1 must increase in units of 2 from j− (t− i) to j+ t− i. By (ii) of Sect. 3.6.1 these
values are the same and change in the same way on remaining composite triangle.

Fortuitously this seemingly bad phenomenon is compensated by the symmetry
property.
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Indeed the values in the lengths of the line intervals (which is all that counts for
matching) are the same if we replace an angle value � by n − 2 − �. Then if the
former decrease by 2 on going from v1

i to v2
i , the latter increase on going from v1

i to
v2
i .

Yet we still have to check matching on the composite line obtained by joining
the sides svi ,v1

i
and sv1

i ,v
2
i
. This means that we have to show that if pr is the distance

between the marked points on si,j consisting of v1
i and its predecessor, then pr+2 is

the distance between the marked points consisting of v1
i and its successor on the ith

ablation line joining v1
i to v2

i .
Now the first triangle above has three angle values firstly k+w which equals r+1

by definition of pr—see Sect. 3.2.2, secondly j +v which equals j + t+1− i since
v1
i is the (t + 1 − i)th marked point on si,j counting upwards from vj and thirdly
i+u which equals 1 since the predecessor of v1

i is the (i−1)th marked point on si,j
counting downwards from vi . Thus r = n− (j + t+1− i)−1−1 = k+2i− t−3.

On the other hand by the first paragraph of the proof of (iv), the second distance is
pj+t−i−1. Yet (n−2)−(j+t−i−1) = (i+j+k−2)−(j+t−i−1) = k+2i−t−1,
so (iv) follows by the symmetry property pi = pn−2−i . ��

3.7.2 Cutting Off Several Corners

After the j th ablation we similarly obtain a triangle with vertices vi, vj , v2
j with

angle set i, j, k. When we apply both ablations in either order we obtain a triangle
with vertices vi, v2

i , v
2
j or vi, vi,j , v2

j . By the first observation the angle subtended
by the second vertex must be j .

Finally when we apply all three ablations the second of the resulting vertices
is v2

j or vi,j which we already know possesses an angle of size j . The remaining
two obtained by cyclic permutation of indices and so possess the angles of k, i
respectively. Of course their sides are subsets of those obtained by individual
ablations and therefore must be correctly oriented.

3.7.3 Positivity of Angles

From the above we obtain the

Corollary

(i) All the angles in the triangles which make up the ablated stack are positive.
(ii) The ablated stack constructs the triangle ptT {i, j, k} with a clockwise orienta-

tion.
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3.7.4 Reversing Orientation

An ablated stack giving the required triangle ptT {i, j, k} with an anticlockwise
orientation is similarly obtained by starting from St+1.

3.7.5 Two-Colouring at First Iteration

In an ablated stack (in contrast to a stack) some angles at the vertices may be
bisected by the sides of joined triangles. Nevertheless an ablated stack can be two-
coloured because it is obtained by removing corners from a stack which can be
two-coloured.

From now on a “stack” will also mean an ablated stack.
On the other hand when ablated stacks are joined through the induction proce-

dure, it may no longer be true that the number of triangles having a common vertex
at an interior point is even. Thus in general a join of ablated stacks cannot be two-
coloured. An example occurs in Plate 3. We do not know if they can be always
three-coloured—probably. In all our examples (see plates) a three colouring can be
given.

3.7.6 Failure of Two-Colouring at Subsequent Iterations

When the ablated stacks are joined through the induction procedure, property (ii)
of Sect. 3.6.1 may fail. This is because we need the symmetry property to ensure
correct orientation. Examples appear in Plate 3.

3.7.7 Failure of Uniqueness of Degenerate Stacks

Even when n is prime or a power of two the uniqueness property described
in Sect. 3.6.6 can fail and in particular not all stacks need be obtained by ablating
those described by Sect. 3.6.6. For example take n = 5. Then the stack for
gT2 obtained by ablation is either that given by the right hand side of Fig. 2 or
(accidentally—see Sect. 3.6.5) its mirror image (which has the opposite orientation).
Both have a pair neighbours of type T2. However, one can flip a T1, T2 pair so that
this fails. This composed triangle has neither a positive nor a negative orientation.

3.7.8 A Property of Ablated Triangles

Recall Sect. 3.7.1 and recall the notion of an ablated triangle T ∈< Tn >. It may
be realized as a stack ptT {i, j, k} with vertices u, v,w in a clockwise labelling,
starting with the angle at u being i. In the construction of Sect. 3.7.1 we ablate T if
one angle of T , say at vertex u, is zero, that is to say i = 0.
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Lemma The distances between marked points u = u1
w, u

2
w, . . . , u

t+1
w = w

going from u to w coincide with the distances between marked points u =
u1
v, u

2
v, . . . , u

t+1
v = v those going from u to v.

Proof We have only to show that for all i ∈ {1, 2, . . . , t} the subtended angle to
the line with end-points uiw, u

i+1
w added to the subtended angle to the line with

end-points uiv, u
i+1
v equals n. This a straightforward exercise using the variation of

angles in a stack (of either orientation) given in Sect. 3.6.3 and that j+k = n−i = n.
��

Remark This is really the same result as that given in Sect. 3.7.1(iv). Both points of
view play key roles in Sect. 3.9.

3.8 Matching Marked Points

The T stack T t+1 (resp. St+1) of order t+1 constructing ptT {i, j, k}with clockwise
(resp. anticlockwise) orientation constructed above is canonical in the sense that
it be determined by the quadruple i, j, k, t both with respect to the triangles they
contain and in their arrangement. This has the disadvantage that we are not going to
obtain all possible markings on ptT {i, j, k}, nor are we likely to obtain all possible
ptT {i, j, k} with a given marking. However, it has the advantage that markings can
be correctly aligned in the next induction step.

The formula in (2) of Sect. 3.2 iterates to give

ptpi−1 =
t∑

j=0

pi−1+t−2j , (5)

valid for all positive integer i > 0, non-negative integer t with t ≤ i − 1 and
t + i − 1 ≤ n − 2. This means that the distance between the marked points on the
side subtended by angle iπ/n in ptT {i, j, k} (with positive orientation) gives the
sequence pr, pr+2, . . . , ps where r = i − 1− t, s = i − 1+ t

Recall that pn−1 = p−1 = 0. Thus this sequence has a cut-off when r = n− 1,
that is when t = n− i. Replacing n− i by i this matches the cut-off when s = −1,
that is when t = i.

In the description of ptT {i, j, k}, these cut-offs result from ablation.
The above sequence comes in the reverse order if ptT {i, j, k} has an anticlock-

wise orientation.
In particular the sequence of indices (and hence of distances) is determined by (5)

and comes in reverse order when the orientation is reversed.
We conclude that marked triangles (with markings coming from the vertices of

triangles in a stack) can be joined (with a matching of markings) by a common side
of length pi−1 = pn−i−1 as long as they have opposite orientation and the angles
opposite to this side are either equal or sum to π .
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Combined with Sect. 3.6.7, this means that we may construct pt ′ptT ∈< Tn >,
by viewing T ′ := ptT as an element of Tn and using the construction of pt ′T ′ as
a rigid T stack of order t ′ + 1 in which neighbours (which are themselves T stacks
of order t + 1) have oppositive orientation. Examples obtain from Plates 1, 2, 3, 6,
7, and 8.

3.9 The Self-Similarity Theorem

The main theorem of this section extends [4, Thm. 8.14] by taking care of the
matching of marked points to ensure proper joining of triangles at each induction
step.

Take n ≥ 3 and let < Tn > denote the set of polygons which may be generated
from Tn via ∗, as described in Sect. 3.1.1.

Theorem The set {pT, p ∈ Ln, T ∈ Tn} is contained in < Tn >.

Proof The proof is by induction on the number of factors in p. If p = pt : t =
0, 1, . . . n−2, the assertion results from the construction in Sects. 3.5–3.7 and indeed
was already obtained as one of the main results of [4]. If p = pt ′pt , then the
assertion results from the last paragraph of Sects. 3.8. The main point being that
there is a reversal of sequences of indices (and hence) of lengths between marked
points when orientation is reversed.

However, this procedure does not extend on passing from the first iteration to the
second iteration, because unlike the tiling in the first iteration which may be two-
coloured, the tiling in already the second iteration need not admit a two-colouring
(see Plate 3). This means that neighbouring triangles need not acquire opposite
orientations. Yet we claim that paradoxically one may still match marked points
if orientations are properly chosen.

The proof of our claim is based on Sect. 3.7.8. Moreover it is appropriate to
subdivide elements of the basic set obtained from (k−1)th step (Procedure 1) rather
than join composed triangles obtained from (k − 1)th step which would necessitate
matching a multitude of side markings (Procedure 2). In Procedure 1 we only need
apply Sects. 3.7.1(iv) and 3.7.8 to stacks composed of triangles from the basic set
which themselves replace elements of the basic step, in the proposed subdivision.

In addition to the above let us further observe that we do not need to keep track
of the ablated triangles removed at each induction step but only the orientation they
induce on the elements of the basic set. Moreover it is immediate that the orientation
on the triangles of the basic set obtained by the kth subdivision must be given as
follows.

Take the orientation induced by elements of the basic set obtained after the
(k − 1)th subdivision. At the kth subdivision, each such triangle T is replaced by a
stack. Assign to the triangle at the apex of the resulting stack the same orientation
as T (regardless of whether angles become non-positive). This defines a unique
orientation to each triangle in the stack.
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In this each triangle which shares a common edge with the original triangle will
acquire the same orientation as that at the apex. If there is an ablated triangle (in the
sense of Sect. 3.7.1) in the stack, then by our construction this will be a composed
triangle which at its apex (denoted by v1

i in Sect. 3.7.1) carries an element of the
basic set, shares a common edge with the original triangle (on the line v1

i − vj in
the notation of Sect. 3.7.1)and has the zero angle at the vertex v1

i . By the above its
orientation will be that of T .

It is to this ablated triangle to which Sects. 3.7.1(iv) and 3.7.8 are applied. They
ensure that marked points on the ablated stack define the same orientation as that
of T and that they are matched on neighbouring stacks (consisting of composed
triangles) which replace the elements of the basic set obtained from the (k − 1)th
subdivision.

This extends our construction from the (k − 1)th subdivision to the kth subdivi-
sion and concludes the proof of the theorem.

A posteriori we can further deduce that side markings must also match up in
Procedure 2 and that we obtain the same result as in Procedure 1 except that the
order of the dilation factors is reversed.

��

3.10 Examples

3.10.1 Tiling by Triangles Obtained from the Regular Octagon

A three-fold iteration of this process described above is given in Plates 4 and 5
representing the triangle p1p2p1T {4, 2, 2}. However, since the tiling obtained from
the second iteration is very nearly two-colourable, the construction of this example
was not so demanding.

3.10.2 Tiling by Triangles Obtained from the Regular Decagon

For Plate 7 we used the construction of Sect. 3.9 to describe the composite triangle
p3p2T {4, 3, 3}. Here we may use either procedure noting only that the evaluations
must be carried out in the reverse order for Procedure 2 if we are to obtain the same
result as in Procedure 1.

One may note that a practical advantage of Procedure 1 is that one fixes the
overall size of the diagram from the start. This has the advantage of ensuring that
the resulting diagram will fit on the office wall. Of course in this elements of the
basic set get smaller at each iteration but then of course can be scaled up. One may
note that in this there are several internal vertices which are at the meet of an odd
number (in fact 5) of triangles and so the resulting diagram cannot be two-coloured.
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We then considered a further p1 dilation again carried out on the individ-
ual triangles which make up the composite triangle p3p2T {4, 3, 3} to obtain
p3p2p1T {4, 3, 3}.

To illustrate how Procedure 1 works, it is only necessary to do this in the
neighbourhood of one internal vertex meeting 5 triangles. We chose that lying most
towards the top-left hand corner of Plate 8. Now p3T {4, 3, 3} is tiled by 14 triangles
with the vertex in question lying on the common side of T {1, 4, 5} given a negative
orientation and T {3, 5, 2} given a positive orientation.

In turn p2T {1, 4, 5} is tiled by 4 triangles with that at its apex T {1, 2, 7} given
the orientation of T {1, 4, 5}, which is negative. On the other hand p2T {3, 5, 2} is
tiled by 9 triangles counting the one at its apex T {0, 6, 4} given the orientation of
T {3, 5, 2} which is positive. This triangle must be ablated. Its unique neighbour
T {1, 3, 6} has hence a negative orientation and this is the one that shares a common
edge with T {1, 2, 7} obtained above and also given a negative orientation. By
Sect. 3.7.8 the marked points of this common edge must match and this is indeed
verified in Plate 8. In particular side markings on these neighbouring triangles with
the same orientation are matched. This may seem surprising!

To help identify the 5 triangles being subdivided in Plate 7, we have also
indicated in Plates 7 and 8, angles given in multiples of π/10 by the numbers in
the corner of each triangle. The angles in the triangles in Plate 7 then appear as
being subdivided in Plate 8.

3.10.3 A Poster

In a poster we give the resulting tiling of p3p2p1T {4, 3, 3}. It involves some roughly
300 triangles. In this the reader may not realize that this was a proper tiling from the
fixed set T10 of twelve triangles (eight of which are non-congruent). Indeed it has
the appearance of a random triangulation. To avoid this we use coloured lines in our
poster to indicate the successive induction steps. Via Sect. 3.6.3 these are straight
lines within the boundaries defined by lines of an earlier induction step.

An alternative is to assign a different colour to each of the different triangles,
though in doing this some neighbours may acquire the same colour.

Achieving this with an ascetically pleasing result we leave to a reader with artistic
skills. Here we remark that the poster file may be downloaded from my home page
http://www.weizmann.ac.il/math/joseph/ and coloured using Paint 3D.

http://www.weizmann.ac.il/math/joseph/
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4 The Uniqueness of Tn

4.1 The Goal

Assume that T admits a proper self-similar triangle tiling. Let L = {1 = p0 <

p1 < . . . < pr} be their side lengths, L the monoid generated by L and A the angle
set of T .

Given pi, pj ∈ L, choose T ∈ T having side length pj . Then piT has a side
length of side pipj , so the condition that piT ∈< T > implies that there exist
non-negative integers mki,j such that

pipj =
r∑

k=1

mki,jpk. (6)

In particular the pi : i = 1, 2, . . . , r are algebraic integers. For the reasons
explained in Sect. 2.7 we exclude the case where p1 is integer.

One can ask if there exists an integer n ≥ 3 such that T = Tn.
Two scalene triangles are similar (in the sense of Euclidean geometry) if they

have the same angle set. They can be scaled so that they become congruent.
However, congruence does not imply that they can be rotated into one another,
except after a parity flip and this is inappropriate for tiling (the floor!). It is not
clear if the condition that T admits a proper self-similar tiling implies that T is
parity invariant which is of course a necessary condition for it to equal to some Tn.

To avoid this question we assume that T is parity invariant from the start.

4.2 Simple Numerology

We know of no examples of proper self-similar triangle tiling besides Tn : n ≥ 3,
(except for some special subsets of Tn and the “degenerate case” when all side
lengths are integer). Indeed even in the highly structured case of Tn it was already
quite difficult to guess how to establish self-similarity, though ultimately the proof is
quite easy. Nevertheless we argue below that other quite different solutions should
exist. Thus a positive answer to the uniqueness question posed in Sect. 4.1 would
seem highly optimistic unless we impose some additional conditions.

Choose p ∈ L, T ∈ T . By hypotheses we can write pT as a composed
triangle, that is as a product with respect to ∗ of Sect. 3.1.1, by say k elements of
T . Discounting the three vertices of pT , let u (resp. v) denote the number of side
markings (resp. interior marked points) of pT . Comparing the two ways to compute
the total number of angles we obtain

1+ u+ 2v = k. (7)
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The k triangles making up pT have 3k sides of which u + 3 form the sides of
pT . Thus the number m of line segments joining interior points is given by

m = 3k − u− 3

2
. (8)

In the k triangles, there are 2k angles to be determined. On the other hand from
the given angles of T and the sum conditions at the u+ v edge markings, we obtain
u + v + 2 linear equations for these unknowns. This number of equations is larger
than 2k by exactlym. Of course self-similarity will impose further relations on sums
of lengths of the u+3 line segments on the sides of pT , but this will still not make up
the required number of equations. Thus we may anticipate many solutions besides
those provided by the sets Tn.

4.3 Refining the Proper Joining Condition

Let s be a common side of two properly joined triangles in < T >. Let a, b be the
angles subtending to s.

Definition The angle condition of proper joining at s is that either a = b or a+b =
π .

We may recall (cf Sect. 3.2) that this is satisfied for Tn.
It is clear that the angle condition for proper joining introduces a furtherm linear

equations (albeit each with two possible solutions) and one checks from (7), (8)
of Sect. 4.2 that this gives a total of 2k linear equations for the 2k unknown angles.

Even if we impose the further condition that angles subtending to a common side
are equal (that is excluding the alternative that they add to π ), the above system of
equations has considerable degeneracy particularly for a stack. A fortiori without
the angle condition many more solutions will be possible.

The angle condition may be more precisely formulated in the following manner.

(H1) There is a function f : [0, π ] → R such that for all T ∈ T the length of
the side subtended by an angle in T of size a equals f (a). In addition f (a) =
f (b)⇔ a = b, or a + b = π .

This holds for Tn.

4.4 Completeness

A second condition which naturally complements the first is the completeness
hypothesis.

(H2) Every triangle T ∈< T > is similar to an element of T .
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This holds for Tn. This is because all possible angle sets appear.
If we drop (H2), then certain subsets of Tn can give rise to a proper self-similar

triangle tiling (see Sect. 4.8).

4.5 Connectedness

A pair of triangles T , T ′ ∈ T are said to be connected if they share a common
side length. A subset T ′ of T is said to be connected if any two elements T ′, T ′′
lie in a chain consisting of connected pairs. Obviously T can be decomposed into
its connected components. Again the proper joining condition implies that if T ′, T ′′
form part of some element of < T >, then T ′, T ′′ belong to the same connected
component of T . Thus we can assume without loss of generality that

(H3) T is connected.

4.6 Consequences of (H1 − H3)

4.6.1 Elementary Euclidean Geometry and Trigonometry

Recall (H1) and the notation given there. From Euclidean geometry we know that
every triangle can be inscribed in a unique circle. In this a given side s of the triangle
must a chord of the circle. From Trigonometry the radius of this circle must be
r = f (a)/2 sin a. Notice that the latter also equals f (a)/2 sin(π − a) and since sin
is strictly increases in [0, π/2]we conclude that f (a) = f (a′)⇔ a = a′ or a+a′ =
π .

Thus the angle condition of proper joining is satisfied for triangles inscribed in
a fixed circle. The origin of this result is very old and the proof does not need
trigonometry. For the special case a = π/2, it is attributed to Thales of Miletus
who lived 300 years before Euclid.1

Conversely if two triangles are joined by a common edge then the angle condition
means that they can be inscribed in the same circle. (Indeed if a = a′ (resp. a+a′ =
π ) then the second triangle is laid on top of (resp. opposite to) the first. Thus we
obtain.

Lemma Assume (H1) and (H3) hold. Then the triangles in T are amongst those
whose vertices lie on the circumference of a fixed circle. In particular if T ∈ T and
p ∈ R

+ \ {1}, then pT /∈ T .

1It is believed that Thales threw a-4 day celebration (read: orgy) in honour of his discovery, though
some dismiss this as myth. Certainly nowadays mathematicians have less fun.
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Remark Yet it can happen (see Sect. 4.8) that a non-trivially composite triangle can
lie in T .

4.6.2 Inequalities

Recall the function f defined in (H1).

Corollary Assume (H1) and (H3) hold. The function f is strictly increasing in
[0, π/2] and strictly decreasing in [π/2, π ].

4.6.3 A Thin Triangle

Since T is assumed finite, so is A. We write it as i0 < i1 < . . . < ik . Then by
definition i0 be the unique smallest element of A. Observe that

If i > π − 2i0, then i /∈ A. (9)

Indeed otherwise the remaining angles of the triangle containing i would have to
sum to < 2i0 and at least one would have value < i0.

Set pj = f (ij ). By Sect. 4.6.2 one has pj > p0 given that i0 < ij < π − i0 and
thus by (9) for all ij ∈ A \ {i0}, one has i0 < ij ≤ π − 2i0.

Obviously i0 ≤ π/3, the case of equality being when T = T3.
Assume from now on that i0 < π/3. By Sect. 4.6.2 it follows that L \ {p0} is

non-empty.
We adopt the convention that p0 = 1. One has p1 > p0 and we assume it is not

integer. This is the case when T = Tn : n ≥ 4.
Choose T ∈ T to possess the angle of smallest possible size i0.

Lemma Assume (H1–H3) hold. In the above notation take p0 = 1 and assume
p1 non-integer. Then there exists a composed triangle T1 ∈< T > with angle set
{i0, i0, π − 2i0}.
Proof Let {i0, j, k} be the angle set of T and consider p1T . Let S denote the subset
of T from which T may be composed.

To prove the lemma it is enough to find T1, T2 ∈ S with angle sets {i0, j1, j2},
{i0, π − j1, π − j2−2i0} respectively. Indeed by (H1) the line subtended by i0 will
be the same for both triangles, which can then be joined along this line of common
length to provide the required composed triangle.

Let v be a vertex in p1T having angle value i0. By minimality, this angle cannot
be subdivided by one or more common sides of joined triangles in T . Thus there
exists a unique triangle T1 ∈ S sharing the vertex v with angle set {i0, j1, j2}. By
Sect. 4.6.1 it follows that T1 �= p1T , so T1 is properly contained in p1T .

Let s be the side of T1 subtended by the angle at v. By (9), there is no triangle
T2 ∈ T with angle value π − i0. Then (H1) implies that there is a triangle T2 ∈ S
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properly joined to T1 across s with a vertex v′ angle value i0 subtending to s. Then
either T2 is the required partner to T1, or T1 and T2 form a quadrilateral with angle
values i�, ir ∈]0, π [ at the remaining vertices v�, vr of T1. Moreover ir + i� =
2(π − i0).

Consider the second possibility above. In this we can assume that i� ≥ π − i0
without loss of generality.

Two of the sides of T1 form part of two of the sides of p1T , whilst p1T cannot
admit i� as an angle value by (9). It follows that the side of pT1 passing through v�
must continue strictly beyond T1. Then by the minimality of i0 as an angle value we
conclude that i� = π − i0, forcing ir = π − i0 also. Thus T1 ∗ T2 is a parallelogram
P with T1, T2 being congruent and the side of pT1 passing through vr must also
continue strictly beyond T1.

Now the only triangles which we can adjoin to P and can fit between the sides
of p1T are those having an angle of size i0. Consider the triangle T3 ∈ S properly
joined to T2 at the side s′ to which its angle of size j1 subtends. By proper joining
the angle of T3 subtending to s′ equals j1 or π − j1. In the former case T2, T3 are
congruent. In the latter case T2, T3 provide the required pair. A similar conclusion
holds for the side in T2 to which the angle of size k1 subtends giving a fourth triangle
T4 congruent to the other three. These together form a stack of four properly joined
triangles congruent to T1 to form a composed triangle 2T1 contained in p1T . (see
Fig. 3). Notice this forces p1 ≥ 2.

Since p1 is not integer, this inclusion is strict. Then by proper joining and the
minimality of p0 we obtain a triangle T5 (resp. T6) properly joined to T3 (resp. T4) a
quadrilateral with two additional angle values k1, k2 (resp. k3, k4). Let �1, �2, �3 be
the angle values between the left hand side of p1T , the two quadrilaterals and the
right hand side of p1T . (See Fig. 3).

One checks that �1 + �2 + �3 = 3i0. If neither quadrilateral is a triangle (and
hence the required composed triangle) we obtain �1, �3 > 0.

Suppose �2 = 0. Then T5, T6 form a composed triangle with one angle value
equal to 2i0. By (H2) there is a triangle in T with one angle value equal to 2i0.
Then p1 ≤ f (2i0) = r sin 2i0 = 2r sin i0 cos ı0 < 2r sin i0 = 2p0 = 2, which is a
contradiction.

Suppose �2 �= 0, then by minimality of i0 we must have �1 = �2 = �3 = i0. This
implies that the quadrilaterals are parallelograms and that all triangles are congruent
to T1. As in the case of P , it follows that either the required pair exists or we obtain
a stack of nine triangles forming the composed triangle 3T1.

Continuing on in this manner we obtain the required result. ��

4.7 A Small Triangle

Assume that (H1)–(H3) hold.
By applying (H2) to the conclusion of Sect. 4.6.3, we conclude that there exists a

triangle T1 ∈ T with angle set {i0, i0, π − 2i0}. By Sect. 4.6.2 the smallest element
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p0 of L is f (i0) which we have set equal to 1. Then p := f (π − 2i0) = f (2i0) is
an element of L and satisfies 1 < p < 2, by the triangle inequality. More precisely
as noted above p = 2 cos i0.

Lemma

(i) There exists a triangle T2 ∈ T with angle set {i0, 2i0, π − 3i0},
(ii) p2 = 1+ f (3i0).

(iii) i0 ≤ π/4.
(iv) If i ∈ A \ {i0}, then i, π − i ≥ 2i0.

Proof Consider pT1. By Sect. 4.6.1, it cannot lie in T and hence must be a non-
trivially composed triangle. Let vπ−2i0 denote its vertex with angle value π − 2i0
and v�i0 (resp. vri0 ) its vertex with angle value i0 lying to the left (resp. right).

Let S denote the subset of T of which pT1 is composed.
Let s be the side of pT1 subtended by its angle of size π − 2i0.
By minimality, the angles of size i0 in pT1 cannot be subdivided by sides of

triangles in S . Since p < 2, the left and right sides s�, sr of pT1 of length p cannot
admit marked points. Thus T admits a leftmost (resp. rightmost) marked point v�

(resp. vr ) on the interior of s.
Since s� has no marked points there is a continuous piecewise linear leftmost

(resp. rightmost) path s� (resp sr ) in pT1 from v� (resp. vr ) to vπ−2i0 . The
region bounded by s�, s, s� cannot have marked points in its interior, nor can it
be subdivided by a line starting at v�. Hence it must itself be triangular. Thus s�

must be a straight line with no marked points in its interior and its length must be
f (i0) = 1. Similarly sr is a straight line with no marked points in its interior of
length 1. Repeating this argument and using the fact that 1 is shortest length of an
element of L, we conclude that s� = sr .

Thus pT1 is composed of just two elements of T ′, T ′′ of T sharing a common
side s� = sr of length 1 passing from v := vπ−2i0 to v′ := v� = vr (See Fig. 4). By
the angle condition, the angle value of T ′ (resp. T ′′) at v′ must be 2i0 (resp. π−2i0)
or vice-versa. This gives (i).

(ii) obtains by computing the length of s in pT in the two possible ways. Indeed
the side subtended by the angle value π − 2i0 has length in T and hence has length
p2 in pT . On the other hand the contribution to the length of s coming from T ′
(resp. T ′′) is f (π − 3i0) = f (3i0) (resp. 1) or vice-versa.

Since by hypothesis i0 < π/3, we conclude from (i) and the minimality of i0 that
π − 3i0 ≥ i0. Hence (iii).

Let i′0 ∈ A be minimal with the property that i′0 > i0.
Suppose i′0 ≤ 2i0. Since by (ii), 2i0 ≤ π/2, we conclude from Sect. 4.6.2 that

p1 := f (i′0) ≤ p < 2.
Repeating the argument of (i) for the composed triangle p1T1 we conclude that

there is a triangle T ′′′ ∈ T with angle set π − i′0, i0, i′0 − i0. Then by minimality of
i0 we conclude that i′0 ≥ 2i0. This and (9) gives (iv).
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Remark 1 Note that T2 is scalene, but the above argument is not enough to prove
that both it and its parity transform appear in T . This is why we assume that T is
parity invariant.

Remark 2 If i0 = π/4, then 3i0 = π − i0, so (ii) gives p1 =
√

2 which is
hypotenuse of an isosceles right angled triangle with second side length 1. This
proves Pythagoras’ theorem for isosceles triangles by just triangle tiling. (As is well-
known there is a simple proof of Pythagoras’ theorem by tiling a square using four
congruent right angled triangles enclosing a smaller square, but this is too easy for
properly disciplining schoolchildren.) If i0 = π/5, then 3i0 = π − 2i0 and so
f (3i0) = f (2i0) = p1 and we obtain p2

1 = 1 + p1, which is the equation for the
Golden Section.

��

4.8 An Independence Hypothesis

The proof of Sect. 4.7 not only uses the minimality of i0 but also that the sides of
length p in the composed triangle pT1 cannot possess markings on their interior
if p < 2. This fails in general even for Ln. For example take n = 6. Then L =
{1,√3, 2}. Thus we may either write p2T1 as T2 ∗ T ′2, that is by joining T2 :=
T {2, 3, 1} and its parity translate T ′2 := T {3, 2, 1} along their shortest side in which
case the short sides of p2T1 have no internal markings or as T1 ∗ T1 ∗ T1 ∗ T1, that
as a stack of four triangles T1 := T (1, 4, 1), in which they do.

To avoid the above coincidence we introduce the further hypothesis.

(H4) The elements of L are linearly independent over Z.

By Sect. 3.2.2, this is holds for Ln if and only if either n is prime or a power of
2. Thus (H4) is not altogether satisfactory, since it is not satisfied by Tn for all n.

One may remark that if i0 = π/6, then already T ⊃ T6 by Sects. 4.6.3 and 4.7
and the parity hypothesis, so as a consequence (H4) is not needed in this case.

On the other hand (H4)means that the left-hand side of (5) determines the terms
appearing on its right hand side (restricted to being elements of Ln) and not just
their sum. This already fails for n = 6, since in this case p2 = p0 + p4.

Suppose T ∈ T is a composite of more than one triangle in T such that the only
marked points which are not vertices, must be in the interior of T . Then for any
tiling using T the condition of proper joining is not affected by replacing T as a
composed triangle of elements in T .

More specifically let T ∈ T be a composed triangle with angle set {a1, a2, a3}
(reading counter-clockwise) having just four marked points, its three vertices
v1, v2, v3 corresponding to these angles and one marked point in its interior. Thus T
is the proper join of exactly three elements T1, T2, T3 ∈ T sharing a common vertex
in the interior of T . (See Fig. 5.)
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Applying (H1) to T1, T2, T3, one deduces that for all i = 1, 2, 3, the angle
subtending to the same edge as the angle with value ai at v1, must have value
π − a1 at the interior vertex of T . Such a tiling can occur with these three triangles
belonging to T whenever a1 can be subdivided in A into parts b1, b2 such that
b3 := a2 − b2 = a3 − b1 ∈ A—see Fig. 6.

An example of the above occurs in T8. This may be expressed by

T {2, 3, 3} = T {1, 5, 2} ∗ T {1, 6, 1} ∗ T {1, 2, 5}.

It follows that T8 \ {T {2, 3, 3}} gives a self-similar triangle tiling satisfying (H1),
(H3), (H4), (H5) of Sect. 4.10 below, but not (H2).

4.9 Computation of the Angle Set

Recall the angle set A defined in Sect. 4.5.

Proposition Assume (H1)–(H4) hold.

(i) For all positive integers m with (m+ 1)i0 < π there exists a triangle Tm ∈ T
with angle set {i0,mi0, π − (m+ 1)i0}. Moreover

p1f (mi0) = f ((m− 1)i0)+ f ((m+ 1)i0). (10)

(ii) There exists n ∈ N : n ≥ 3 such that i0 = π/n.
(iii) A = {mπ/n : m = 1, 2, . . . , n− 2} = An.

Proof T1 is just the triangle constructed in Sect. 4.6. Moreover by Sect. 4.7 (iv), one
has i1 = 2i0 and so p1 = f (2i0) which gives (10) for m = 1.

Fix p ∈ L\{p0} and let s be the side of pT1 subtended by its angle of size π−2i0.
The remaining sides of pT1 have length p, so by (H4) cannot be subdivided, and
so on these sides there are no interior marked points. Thus the only side of pT1 with
interior marked points is s.

It follows that we are in the same situation described in the proof of Sect. 4.7.
Thus we conclude pT1 = T ′ ∗ T ′′ for some T ′, T ′′ ∈ T . Moreover these triangles
both have sides of length p0 = 1 and p.

We establish (i) by induction on m. The case m = 1 is just the triangle described
in Sect. 4.6.

Assume the assertion proved form− 1. Then f (π −mi0) = f (mi0) ∈ L, by the
conclusion of the first part of (i) and Sect. 4.6.1.

If f (mi0) �= p0, we set p = f (mi0). It belongs to L\{1}, so we may use it in the
description of pT1 as above. In view of (H1) the angle in T ′ (resp. T ”) subtending
to its side of length f (mi0) has size mi0 (resp. π −mi0) or vise-versa. Then we can
assume T ′′ = Tm−1 and we conclude that T ′ = Tm. This proves the first part of (i).
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The second part follows by computing the length of s in the two possible ways as in
the proof of Sect. 4.7(ii).

Notice that T ′ is a non-empty triangle lying in T , because the interior of s has
exactly one marked point. Consequently π − (m+ 1)i0 > 0. Of course this cannot
hold indefinitely and so we are forced to conclude that eventually f (mi0) = p0. By
Sect. 4.6.1 this forces mi0 = π − i0. This proves (ii) with n = m+ 1.

By (i) and (ii) we conclude that A ⊃ {mπ/n : m = 1, 2, . . . , n − 2} = An.
Suppose that this inclusion is strict and take j ∈ A \ An.

Repeating the above argument with p = f (j), we conclude that j + i0 ∈ A\An.
Yet this cannot continue indefinitely and the contradiction that results gives (iii). ��

4.10 Orientation

Assume (H1)–(H4).
By Sect. 4.9 there exists n ∈ N with n ≥ 3 such the angle set of T is An.
Again we can write L = {pm−1 := f (mi0) : m = 1, 2, . . . , n − 1}. Then (10)

becomes

p1pm−1 = pm−2 + pm, (11)

in the conventions of Sect. 3.2. Together with the relation pn−1 = p0, this implies
that pm is the mth Chebyshev polynomial Pm of the second kind evaluated at
2 cosπ/n (in our convention for Pm). In other words L = Ln also.

In view of Sect. 4.6.1 an element T ∈ T is completely determined by its angle
set which takes the form {iπ/n, jπ/n, kπ/n}, with (i, j, k) being a partition of n
into exactly three parts. As in Sect. 3 we write T = T {i, j, k}. We have still to show
that all possible choices can be made for elements of T . That is we have shown

T ⊂ Tn, for some n ∈ N, (12)

but we have yet to prove equality.
Fix n as in the conclusion of Sect. 4.9(ii). Then by its conclusion T :=

T {1, j, k} ∈ T for any choices of j, k ∈ N
+ such that 1 + j + k = n. We would

like to show by induction on i′ ∈ {1, 2, . . . , n − 2} that T ′ := T {i′, j ′, k′} ∈ T for
any choices of j ′, k′ ∈ N

+ such that i′ + j ′ + k′ = n.
In the induction hypothesis we can assume that i′ + 1 ≤ n − 2. Then we can

assume that j ′+k = n since this only constrains j, k′ to satisfy j+k′ = n−i′−1 ≥
2. Now we would like to join T to T ′ through the side subtended by the angle value
j in T to the side subtended by the angle value k′ in T ′, with the angle having value
k in T to the angle having value j ′ in T ′. This would give a triangle with angle
values 1 + i′, j, k′ lying in < T >. Then the required conclusion obtains through
(H2).
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The only trouble with this construction is that the sides matched may not have the
same lengths. Indeed that of T has length pj−1 which that of T ′ has length pk′−1.

The above difficulty can be avoided by forming pk′−1T ∗ pj−1T
′ since now the

shared side has length pk′−1pj−1.
However, in the latter construction the difficulty is that the marked points on

these sides need not match up. Let us review this issue.
Take T = T {i, j, k} ∈ T and pt ∈ L. By the assumed property of being a self-

similar triangle tiling one has ptT ∈< T >. Let si denote the side of T subtended
by its angle of size iπ/n. By (H4) the marked points on si break it into line segments
whose lengths are those occurring in the right hand side of (5). However, we do not
know that they occur in any particular order.

Recall the notion of orientation from Sect. 3.6.5.

(H5) Given T = T {i, j, k} ∈ T and pt ∈ L then ptT with both clockwise and
anticlockwise orientation belong to < T >.

One may remark that even for the Golden Pair one can obtain a tiling of gT2
which has neither orientation by flipping the pair T1, T2 in the right hand side of
Fig. 2. This is even a case with n prime. This also holds for n = 8 as may be noted
by viewing the top right hand composite triangle p1T {5, 2, 1} in my home page.
(This composite triangle should not have been used, a slip corrected by Plate 5, as it
would cause problems if further iterations were required.)

Now by (H5) we may construct pk′−1T with the clockwise orientation (relative
to the sequence i, j, k and pj−1T

′ with the anti-clockwise orientation relative to the
sequence i′, j ′, k′. Then we can form pk′−1T ∗ pj−1T

′ as needed above since now
marked points on the common edge match up.

We have thus proved the following

Theorem Let T be a finite parity invariant set of triangles which admits a proper
self-similar triangle tiling. Assume that T satisfies (H1)–(H5). Then there exists
n ∈ N with n ≥ 3 such that T = Tn.

Remark It is plausible that (H5) is not needed. It can be avoided by strengthening
(H2) by not requiring proper joining in the definition of < T >.

5 Injectivity of ψ

5.1 A Coxeter Subgroup

Let us first recall the motivation for this work outlined briefly in Sect. 2.8.
Define g and h as in Sect. 2.8 and let � ⊂ h∗ its set of non-zero roots

defined relative to the pair (g, h) with π ⊂ � a choice of simple roots. We write
π = {αi}�i=1. Let α∨ be the coroot corresponding to α ∈ � and sα the simple
reflection defined by sαλ = λ − α∨(λ)α, for all λ ∈ h∗. View the Weyl group
W as the Coxeter group with generating set S = {sα : α ∈ π}. It is convenient to
assume that card π > 1.
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There is just one way to write S as a disjoint union of two subsets Sa,Sb

each consisting of commuting reflections. Let π = πa � πb be the corresponding
decomposition of the set of simple roots. Let ra (resp. rb) denote the product of the
elements of S1 (resp. S2). Set C =< ra, rb >. Observe that r := rarb is a Coxeter
element ofW , though not every Coxeter element can be put into this form. Of course
as is well-known [1, Chap. V, Sect. 6, Lemma 1] all Coxeter elements are conjugate
and hence conjugate to r.

5.2 The Basic Map

Let A denote the � × � matrix obtained as the negative of the Cartan matrix with
diagonal entries set equal to zero. By definition its off-diagonal entries are given by
Ai,j = −α∨j (αi).

In [5, 2.6] we studied the eigenvalue equation

Ag = xg : g = (g1, g2, . . . , g�). (13)

In [5, 2.6–2.8] we found a solution to (13) with x = 2 cosπ/c and the gi : i =
1, 2, . . . , � positive real numbers expressed as polynomials in x. These polynomials
will be computed and to emphasize that the gi are the values of polynomials at x we
shall often write them as gi(x). Eventually they will satisfy a (polynomial) identity
which will determine x.

The significance of this solution to (13) is described below (cf. [5, 2.7]).
First we recover the set-up described in [5, 2.5].
Let A be a 2 × 2 Cartan matrix with 2 on the diagonal and −x as off-diagonal

entries with x = 2 cosπ/n.
Define a pair of roots (a, b) and coroots (a∨, b∨) with a∨(b) = b∨(a) = −x.

Define reflections ra, rb in R
2 in the usual way by

raμ = μ− a∨(μ)a, rbμ = μ− b∨(μ)b.

Let C denote the group they generate. Recall [5, Lemma 2.7].

Lemma There is a group homomorphism ψ : C → C defined by ψ(ra) =
ra, ψ(rb) = rb and a CZ linear map ψ of Zπ into Z[x]a + Z[x]b defined by

ψ(αi) =
{
gi(x)a : αi ∈ πa,
gi(x)b : αi ∈ πb.
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5.3 A Planar Reflection Group

Through the above lemma, one may view C as a reflection group on the plane with
ra, rb as its generating reflections. Indeed it is isomorphic to the dihedral group of
order 2c where c is the order of r, that is to say the Coxeter number of g. Define the
polynomials Pn as in Sect. 3.2.2 taking n = c.

We may realize the pair (a, b) as unit vectors in R
2, where b is obtained from

a by counter-clockwise rotation through an angle of π − π/c. Set πc = {a, b} and
�c = Cπc.

The pair �c,C admits some of, though not all, the properties of a root system.
As noted in [5, Lemma 2.8], one has Cπ = � and consists of � orbits of r each of
cardinality c.

Set r = rarb. It is an image of the Coxeter element r which has finite order.
The computation for the gi(x) of the above lemma (that is [5, Lemma 2.7]) is

partly repeated below. In this we find a solution for an unknown variable x as a
solution to a polynomial equation. It is not the only solution but it is the one we use
in this lemma. This choice is necessary to make ψ a homomorphism of C modules.

5.4 Injectivity of ψ on �

Our goal is to determine when ψ extends linearly into an injection from Zπ to
Z[x]a+Z[x]b. Obviously this must fail if already the restriction to π is not injective.
In particular we show that the latter is the case for types A2n+1, B3,D,E6.

On the other hand it is clear that ψ is injective if and only if the gi(x) : αi ∈ πa
and the gi(x) : αi ∈ πb are separately linearly independent over Q.

We shall need to recall the analysis of [5, Lemma 2.6]. Take an end root α1 of the
Dynkin diagram, so that αj : j = 1, 2, . . . , t is a chain of maximal length of type
At . Set g1 = 1. Then by (13) one obtains

gj (x) = Pj−1(x), j = 1, 2, . . . , t. (14)

5.5 The Classical Case

In type A� there is one additional relation, namely xg�(x) = g�−1(x) yielding
P�(x) = 0. This has as a solution x = 2 cosπ/(� + 1), which is the one we take
(cf. Sect. 5.3).

Notice in the above, by disjointness of the decomposition πa �πb with respect to
the above labelling, that ψ(αi) = gi(x)a for i odd and ψ(αi) = gi(x)b for i even
or vice-versa. We can just consider the first case.
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Suppose � is odd. Then by the symmetry property (1) we obtain ψ(α1) = g1a =
g�a = ψ(α�). This establishes the assertion of Sect. 5.4 for type A2n+1 : n > 0.

Suppose � is even. One checks using the symmetry property that the set
{gi(x)}αi∈πa = {gi(x)}αi∈πb = {Pi−1(x)}�/2i=1. By Sect. 3.2.2 these elements are
linearly independent over Q if and only if �+ 1 is prime.

Summarizing the above:

For A�, the map ψ is injective if and only if �+ 1 is prime.

In types B� (resp. C�), we obtain gi(x) = Pi−1(x) : i < � with the additional
relations xg�−1(x) = g�−2(x) + 2g�(x), xg�(x) = g�−1(x) (resp. xg�−1(x) =
g�−2(x)+g�(x), xg�(x)(x) = 2g�−1(x)). Through (3) both give P�(x) = P�−2(x).
Taking n = 2�, i = � in [4, Lemma 2.5] gives a solution x = 2cos π2� , which is the
one we take. Then by Sect. 3.2.2 and using the symmetry property as in type A, we
obtain

In types B�,C�, the map ψ is injective if and only if � is a power of 2.

It might seem that types B,C are identical. However, from the above relations
one finds for B3 (resp. C3) that g3 = g1 = 1 (resp. g3 = 2g1 = 2). Thus it is only
in type B3 that the restriction of ψ to π fails to be injective. This also obtains from
the first line of [4, 10.7]. (In this y = cosπ/6 and the first line should have read
T3(y) = y2 − 3 = 0.)

In typeD�, we obtain three additional relations xg�−2(x) = g�−3(x)+g�−1(x)+
g�(x) and xg�−1(x) = g�−2(x) = xg�(x). Since gi(x) = Pi−1(x) : i ≤ �− 2, this
gives by (3) that P�−2(x) = g�−1(x) + g�(x) and then that xP�−2(x) = P�−3(x)

which again by (3) gives P�−1(x) = P�−3(x). Taking n = 2(� − 1), i = � − 1 in
[5, Lemma 2.5] gives a solution x = 2cos π

2(�−1) , which is the one we take. (This
corrects the computation in [5, Lemma 2.6] though the final result was correct.) We
conclude in particular that g�−1(x) = g�(x), establishing the assertion of Sect. 5.4
for type D. It particular

In types D� : � ≥ 4, the map ψ is not injective.

5.6 The Exceptional Case

In type E�, we can take t = �−3 in (14). Then there are several additional relations.
The first is xg�−3(x) = g�−4(x) + g�−2(x) + g�−1(x), which yields P�−3(x) =
g�−2(x) + g�−1(x). Secondly we have xg�−2(x) = g�−3(x), xg�−1(x) = g�(x) +
g�−3(x), for a suitable labelling. This gives

g�(x) = P�−2(x)− P�−4(x). (15)

Finally we have xg�(x) = g�−1(x). Substitution in the previous equation gives

g�−1(x) = P�−1(x)− P�−5(x). (16)
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Then

g�−2(x) = P�−3(x)− P�−1(x)+ P�−5(x). (17)

Multiplying by x, using (3) and xg�−2(x) = g�−3(x) gives

g�−3(x) = 2P�−4(x)+ P�−6(x)− P�(x). (18)

Substituting from (14) results in

P�(x) = P�−4(x)+ P�−6(x). (19)

(This makes explicit the proof of [5, 2.6(∗∗)].)
In type F4 a similar computation (see [5, 2.6]) gives

gi(x) = Pi−1(x) : i ≤ 2, 2g3(x) = P2(x), 2g4(x) = P3(x)− P1(x), (20)

and then that

Q4(x) := P4(x)− P2(x)− P0(x) = 0. (21)

In thisQ4 is a polynomial of degree 4. Multiplying by x2 on both sides and using (3)
gives (19) for � = 6. Multiplying the latter again by x2 and using (5) eventually
gives P8(x) = P2(x) which by [5, Lemma 2.5] has as a solution x = 2 cos π

12 ,
which is the one we take.

Notice that in type E6 we have g6 = P4(x) − P2(x) = 1 = g1. This proves the
last claim of first paragraph of Sect. 5.4. We conclude that

In type E6, the map ψ is not injective.

In type E7 we set Q6(x) = 1
x
Q7(x) (with Q7(x) = P7(x) − P3(x) − P1(x))

which is a polynomial of degree 6 by say [4, 2.2]. In type E8, we set Q8(x) =
P8(x)− P4(x)− P2(x), which is a polynomial of degree 8.

Recall (15) and the computation for F4 below it. Let us just use Q to denote the
appropriate polynomial Q4,Q6,Q8. Then in type E� and F4, the equation Q(x) =
0 has as a solution x = 2 cosπ/c, where c is the Coxeter number [5, 2.7, Remark].
It is the solution we took in [5, Lemma 2.7].

If g is simple with Coxeter number c, set M(g) = {i ∈ {1, 2, . . . , c} coprime
to c}.

Lemma The roots of Q are the 2 cosm/c, where c is the Coxeter number and m ∈
M(g). In particularQ is irreducible over Q.

Proof This follows as in the proof of [4, Lemma 7.4(iii)]. In more detail set z = eiθ
with θ = π/c and define Q̂ by Q̂(x) = Q(2x).
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We already know that cos θ which is the real part of z is a root of Q̂. Now z is
a (2c)th primitive root of unity and so the images z under the Galois group of Q[z]
over Q, form the set of (2c)th primitive roots of unity, which is {zm}m∈M . Taking
real parts it follows that images of cos θ under the Galois group of Q[cos θ ] over Q
form the set R := {cosmθ}m∈M(g) of roots of Q̂.

On the other hand taking c = 12, 18, 30 respectively one checks that in all cases
|M(g)| = deg Q̂. Hence R is exactly the set of roots of Q̂, which is therefore
irreducible. ��

5.7 Remaining Conclusions in the Exceptional Cases

It remains to ascertain the possible injectivity of ψ in types E7, E8, F4,G2.
Injectivity is trivial in rank 2. For injectivity in the remaining three cases, we remark
that this fails if the polynomials we computed for the gi(x) are not even linearly
independent over Q[x]. (For example we already saw that this fails in type E6.)

In type E7, there are seven polynomials {gi(x)}71=1 which satisfy an equation of
degree 6, namely Q6(x) = 0. Notice this is a polynomial equation in x2 of degree
3.

One may remark that Pi(−x) = (−1)iPi(x). From Eqs. (14)–(18) it follows that
gi(−x) = gi(x) for αi ∈ πa whilst gi(−x) = −gi(x) for αi ∈ πb, or vice-versa.
We can suppose the first holds. Then gi(x) : αi ∈ πa are four polynomials of degree
≤ 3 in x2. Hence their values must be linearly dependent over Q, when x satisfies
Q(x) = 0. Thus we obtain

In type E7, the map ψ is not injective.

On the other hand inspection of the Eqs. (14)–(17), (20) for the gi in typesE8, F4
shows that the polynomials expressing them are linearly independent over Q[x]. In
view of Sect. 5.6, their values at x must be linearly independent over Q. Hence

In types E8, F4, the map ψ is injective.

5.8 We may summarize the above results in the following general

Theorem Let g be a simple Lie algebra. The map ψ of Sect. 5.2 is injective if and
only the exponents of g are coprime to its Coxeter number c.

Proof The exponents of g are given in [1, Planches I-X]. Thus one only has to check
that the exponents of g are coprime to c exactly when ψ is injective as given in the
above list.

Alternatively one may check that the set M(g) lies in the set of exponents of g,
which is rather easy. Plausibly it has a known general proof. Then one notes that
x as occurring in Sect. 5.2 is the root of a polynomial Q with rational coefficients
which we can assume to be irreducible. Moreover x = 2 cosπ/c. Thus as in the
proof of Sect. 5.6 the remaining roots ofQ take the form 2 cosmπ/c : m ∈ M(g).
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Consequently degQ ≤ rank g with equality if and only ifM(g) is exactly the set
of exponents of g.

Thus the exponents of g are coprime to its Coxeter number if and only if degQ =
rank g.

Of course this is not quite the end of the story and a little more spadework is
necessary. We still have to know that the gi defined by (13) are given as polynomials
evaluated at x = 2 cosπ/c and are “properly distributed”.

The first point above was verified in [5, Lemma 2.7] being indeed part of the
proof of that lemma. It was repeated in a little more detail here.

The second point is resolved if the {gi(x)} are linearly independent over Q[x]
(andQ is irreducible). However, this is rather rare, though it does hold for example
in types F4, E8. Otherwise one must check linear independence (or its failure)
individually for the two sets {gi}αi∈πa and {gi}αi∈πb . Of course this point was
already examined in detail in Sects. 5.4–5.8 above. ��
Remark Perhaps one can directly deduce that the ψ(αi) are linearly independent
over Q if and only if degQ = rank g from say the Galois group of the extension
being < σ >.

6 Realizing Weight Diagrams in the Plane

6.1 The Planar Weight Diagram

Fix a simple Lie algebra g and retain the notation of Sect. 5.2. For all i = 1, 2, . . . , �,
let*i be the fundamental weight correspond to αi . If ψ is injective the lattice of all
weights P(π) = ⊕�i=1Z*i can be viewed as lying in the plane. Of course this is
only an image of the weight lattice if ψ is not injective.

Recall that for each λ ∈ P+(π) there is a finite dimensional simple highest
weight g module V (λ) with highest weight λ. Let D(λ) denote its weight diagram
which we view as a finite set of points in the weight lattice, each point being the
weight of a non-zero weight subspace of V (λ). Set d(λ) = ψ(D(λ)), viewed
as a subset of points on the plane of the plane. In this we shall generally ignore
multiplicities.

If ψ is injective, then d(λ) faithfully realizes the weight diagram of V (λ). This
can also happen “accidentally”, particularly for small λ, even if ψ is not injective.

Take g of type A3, withD(λ) its root diagram. One easily checks that d(λ) is the
root diagram of type B2, so this is not a faithful realization of D(λ).

By contrast if D(λ) is the weight diagram for the fundamental module (of
dimension n + 1) in type An, then d(λ) above is the regular (n + 1)-gon and so
is a faithful realization of D(λ). For n = 3, it is also the weight diagram for the
fundamental module of dimension 4 in type B2.
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6.2 The Role of Tiling in Planar Weight Diagrams

The problem we pose is the following.

Does there exist a proper triangle tiling from elements in Tc whose marked points
form d(λ)?

For example in the case of the fundamental representation of sl(n) one may take
the zig-zag triangularization of the regular n-gon (cf [4, Figure 2]).

Further examples are obtained for the root diagrams in types A4, A6, B4 in [5,
Figs. 1,3,12]. These were not self-similar tilings because d(λ) is invariant under
the Coxeter group C. However, if one removes this symmetry by considering only
fundamental chamber with respect to C one observes from [4, Figure 1], that a
proper self-similar triangle tiling of the gT2 results, with g is the Golden Section
and T2 the second triangle of the Golden Pair.

Answering our question is not as easy as it may first seem. Thus a natural
solution might have been obtained by joining the elements of d(λ) by line segments
corresponding to the action of the roots vectors. Here one may remark that the length
of any such line segment is an element of Lc, as required. However, such lines may
cross (or appear to cross) at points which not images of weights. This can happen
even if ψ is injective and no such lines cross inD(λ). This is because the eye cannot
distinguish between a point in Q

2[x] with x = 2 cosπ/c and a point in R
2.

Another difficulty already raised in [4, Example 2] is that as λ becomes large the
points of d(λ) bunch together. This has the consequence that one has little hope of
being able to describe d(λ) as the marked points of Tc using just one regular c-
gon. In general several c-gons of different sizes are needed. A first example occurs
for the representation of sl(5) with λ = α1 + 2α2 + 2α3 + α4. This is illustrated
in Fig. 7. Thus writing T1 = T {1, 1, 3}, T2 = T {1, 2, 2} which is the Golden pair,
to describe d(λ) we need to use {T1, T2, gT1, gT2, g

2T1}, where g is the Golden
Section. Of course we can express the last three in terms of the first two but this
would introduce too many marked points. We summarize the above in the following

Conjecture Let g be a simple Lie algebra and c its Coxeter number. For all λ ∈
P+(π) there exists a finite subset Fλ ⊂ Lc such that d(λ) is the set of marked points
of a proper triangle tiling using triangles from the set {pT : p ∈ Fλ, T ∈ Tc}.

6.3 Ending on a Light Note

Take n = 4 and retain the notation of Sect. 6.2. In particular let g be the Golden
Section.

It is interesting to compute the action of the full Weyl group on the image under
ψ of the fundamental alcove. Of course this action cannot be expected to be length
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preserving. In [4, 9.8] we indicated how it may convert a regular pentagon into one
which has been shrunk by a factor2 of g.

Let us spell out the details as illustrated in Fig. 8.
Set xi = ψ(*i) : i = 1, 2, 3, 4. They lie on two semi-infinite lines starting at the

origin {0} and forming an angle of π/5. Here x1, x4 can be taken to be of distance 1
from {0} and then x3, x2 are at a distance g from {0}. Set x0 = x5 = 0. one checks
that the distance between xi, xi+1 : i = 0, 1, 2, 3, 4 is always 1. In particular the
{xi}41=0 form the marked points of T2 written as T1 ∗ g−1T2 in either of the two
possible ways.

One checks that the action of s2s3s2 which of course leaves the points {0, x1, x4}
fixed, simultaneously translates {x2, x3} by −(α2 + α3). These two new points
together with those which are fixed form a regular pentagon of side length 1. On the
other hand s1s4 leaves the points {0, x2, x3} fixed and translates {x1, x4} to the pair
{x1 − α1, x4 − α4}. These two new points together with those which are fixed form
a regular pentagon of side length g, sharing the origin and parts of two sides with
the smaller pentagon. Through just s1 or s4 applied to the large pentagon we obtain
a trapezium with one marked point in its interior. The latter can also be described
by triangle tiling.

These operations may be described through paper folding using a cut-out of
Fig. 8. Start from a large pentagon with vertices 0, s1x1, x2, x3, s4x4. To apply s1
(resp. s4) fold the paper along the lines 0, x2 (resp. 0, x3). This gives the marked
triangle. To apply s2s3s2 fold the triangle along the line x1, x4. This gives the smaller
pentagon (Fig. 9).

This example amused the audience of my lecture in Manchester.
It might also have amused Bar, may she be of blessed memory.

7 Figures

Fig. 1 A proper tiling of
g2T1. All other proper tilings
are obtained by flipping
triangles and trapezia
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large fortune, now happily no longer true of the start-up nation.
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Fig. 2 An ablated stack for t = 2, i = 1, j = k = 2. Removing the lower right hand triangle in
the left hand figure gives the right hand figure describing gT2 with T1, T2 the Golden Pair and g
the Golden Section

Fig. 3 From the stack of 4
copies of T1, one computes
angles to obtain
�1 + �2 + �3 = 3i0
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v

s� s� sr sr

T ′ T ′′

π − 2i0 i02i0i0

s
v� = v′ = vr

Fig. 4 The sides s� and sr must coincide and the points v�, vr coalesce to a single point v′. The
triangles T ′, T ′′ result

Fig. 5 Applying the angle
condition

Fig. 6 In the example
b1 = b2 = π/8, b3 = π/4
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Fig. 7 The weight diagram for V (λ) : λ = α1 + 2α2 + 2α3 + α4 in type A4 in the fundamental
domain with respect to C as the marked points of a proper triangle tiling. In terms of Sects. 5.2 and
5.3, the length of a relative to the length of β5 is 1/

√
2(1− cosπ/6) ≈ 3.87, whilst α1 = a, α2 =

gb, α3 = ga, α4 = b, where b is obtained from a by counter-clockwise rotation by 5
6π . Legend.

β1 = α1 + α2 − α4 = a + g−1b. β2 = α3 + α4 = ga + b. β3 = α1 + α2 + α3 = g2a + gb.
β4 = α1 + α2 + 2α3 + α4 = g3a + g2b. β5 = α1 + α4 = a + b. β6 = α2 + α3 = g(a + b).
β7 = α1+α2+α3+α4 = g2(a+b). β8 = α1+2α2+2α3+α4 = g3(a+b). β9 = α2+2α3+α4 =
2ga + (1+ g)b
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Fig. 8 Here xi = ψ(*i)
with [*i}4i=1 the fundamental
weights in type A4. The
fundamental alcove is the
marked triangle, with marked
points 0, x1, x2, x3, x4. The
action of s1 (resp. s4) on the
fundamental alcove gives the
parallelogram with an internal
marking at x4 (resp. x1). The
action of s1s4 on the
fundamental alcove gives the
large pentagon and finally the
action of s2s3s2 on the
fundamental alcove gives the
small pentagon. Thus the
action of s2s3s2s1s4 converts
the large pentagon into the
small pentagon as promised
in Sect. 6.3 of the text.
Legend. x′1 = s1x1, x2 =
s2s3s2x2, x

′
3 =

s2s3s2x3, x
′
4 = s4x4
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Fig. 9 A proper tiling of
p2

1T {2, 2, 1} not following
the procedure of Sect. 3.9.
This should be compared to
Plate 1 in which this
procedure is followed
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8 Index of Notation

Symbols appearing frequently are given below in the paragraph they are first
defined. We remark that π on its own is sometimes used as the ratio of the
circumference to the diameter of a circle and very occasionally (in fact just
in Sects. 5.1–5.4) as a choice of a set of simple roots for g.

In this n is positive integer and if fixed (that is understood) may be omitted as a
subscript.

Section 2.5. Tn.
Section 2.7. g, h,W, P (π), c, P+(π),D(λ).
Section 3.1. [k].
Section 3.1.1. Sn, Ln,Ln,Tn, T ∗ T ,M(S).
Section 3.2.1. Ti,j,k, An, T {i, j, k}.
Section 3.2.2. pi, g, L

′
n.Pi .

Section 3.6.3. T t+1, vi, si,j .
Section 4.3. f .
Section 5.1. �,π, α∨, sα, ra, rb,C, r.
Section 5.2. A, g, ψ, ra, rb, C.
Section 5.6. M(g).
Section 6.1. *i, d(λ).
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Closures of On-Orbits in the Flag Variety
for GLn

William M. McGovern

To Tony Joseph on his 75th birthday

Abstract We give a pattern avoidance criterion for the conjugates of the bottom
vertex of the Bruhat graph attached to an On orbit O in the flag variety of GLn to
have degree equal to the rank of this graph as a poset. This condition is known to
be necessary for rational smoothness of O; we conjecture that it is also sufficient,
proving that this holds for n even.
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1 Introduction

Let G be a complex reductive group with Borel subgroup B and let K = Gθ

be the fixed point subgroup of an involution of G. In this paper we develop the
program begun in [6] and continued in [7, 8], seeking to characterize the K-orbits
in G/B with rationally smooth closure via a combinatorial criterion. Here we
treat the case G = GLnC,K = OnC and give a necessary pattern avoidance
criterion, conjecturing that it is also sufficient, and proving this for n even. We
focus on the order ideal of orbits with closures contained in a fixed one Ō; this
is an interval inside the poset of all K-orbits in G/B, ordered by containment
of closures. Richardson and Springer have defined an action of the braid monoid
corresponding to the Weyl group W of G on this poset [9], which we use to make
it and its order ideals into graphs. Our starting point is a necessary graph-theoretic
criterion for rational smoothness inspired by the work of Carrell and Peterson on
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Schubert varieties [3]. This criterion has been generalized by Hultman to a necessary
and sufficient criterion for rational smoothness for G = GL2nC,K = Sp2nC [4]; it
is not in general sufficient in our situation.

I would like to warmly thank Axel Hultman for suggesting the approach used in
this paper.

2 Preliminaries

Set G = GLnC,K = OnC. Let B be the subgroup of upper triangular matrices
in G. The quotient G/B may be identified with the variety of complete flags V0 ⊂
V1 ⊂ · · · ⊂ Vn in C

n. The group K acts on this variety with finitely many orbits;
these are parameterized by the set In of involutions in the symmetric group Sn[5,
9]. In more detail, let (·, ·) be the standard symmetric bilinear form on C

n, with
isometry group K . Then a flag V0 ⊂ · · · ⊂ Vn lies in the orbit Oπ corresponding to
the involution π if and only if the rank rij of (·, ·) on Vi × Vj equals the cardinality
πij := #{k : 1 ≤ k ≤ i, π(k) ≤ j} for all 1 ≤ i, j ≤ n.

We use the same definition of pattern avoidance for permutations as in [8],
decreeing that π = π1 . . . πn (in one-line notation) includes the pattern μ =
μ1 . . . μr if there are indices i1 < i2 < · · · < ir permuted by π such that πij > πik
if and only if μj > μk . We say that π avoids μ if it does not include μ. (The more
classical definition of pattern inclusion of Billey and others [1] would not require
that π permute the indices ij . Thus by our definition the involution 65872143 does
not include the pattern 2143, even though the indices 2, 1, 4, 3 occur in that order
in the involution, since they are not permuted by it. We will say more about the
classical definition later.)

There are well-known poset- and graph-theoretic criteria for rational smoothness
of complex Schubert varieties due to Carrell and Peterson. The poset criterion does
not extend to our setting but the graph one does. To state it we first recall that the
partial order on In corresponding to inclusion of orbit closures is the reverse Bruhat
order [9]. Then In is graded via the rank function

r(π) = 7n2/48 −
∑

i<π(i)

(π(i)− i − #{k ∈ N : i < k < π(i), π(k) < i})

where 7n2/48 denotes the greatest integer to n2/4 and r(π) equals the difference
in dimension between Oπ and Oc, the unique closed orbit, corresponding to the
involution w0 = n . . . 1 [9]. Let Iπ be the interval consisting of all π ′ ≤ π in the
reverse Bruhat order. We make Iπ into a graph by decreeing that the vertices μ and
ν in it are adjacent if and only if either ν = tμt �= μ for some transposition t in
Sn, or ν = tμ for some transposition t in Sn with tμt = μ and m is even; write
ν = t · μ if either of these conditions holds. We similarly make the full poset In
into a graph as well. Then a necessary condition for Ōπ to be rationally smooth is
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that the degree of w0 in Iπ must be r(π); in fact, all vertices w−1w0w conjugate to
w0 in W and lying in Iπ must have this degree [2, 2.5]. We conjecture that this last
condition is also sufficient; this has been checked for n ≤ 9.

3 The Bad Patterns

We recast the necessary pattern avoidance condition above for rational smoothness
in terms of pattern avoidance.

Theorem 1 With notation as above, the orbit Oπ has rationally singu-
lar closure whenever π contains one of the twenty-four bad patterns
14325, 21543, 32154, 154326, 124356, 351624, 132546, 426153, 153624, 351426,
1243576, 2135467, 2137654, 4321576, 5276143, 5472163, 1657324, 4651327,
57681324, 65872143, 13247856, 34125768, 34127856, 64827153. The same holds
if π contains the pattern 2143, provided that there are an even number of fixed
indices of π between 21 and 43 (e.g., π = 21354687, where the 43 occurs in the
last two indices of π ).

Proof One checks first that the degree of w0 in Iπ is greater than r(π) for any
π in the list above, except for 2137654 and 4321576. The closures of the orbits
corresponding to these two permutations are also rationally singular, as follows by
computing that the degree of a suitable conjugate of w0 (indexed by 7643521 in the
first case and 7635421 in the second) is greater than r(π). If π is obtained from one
of the bad patterns above other than 2143 by adding one or more fixed points, then
one computes that the degree of w0 is again more than r(π), except for 2134765,
3214576, 2137564, and 4231576, and in these cases again the degree at a suitable
conjugate of w0 is too large. Moreover, any involution π ′ obtained from one of the
above ones by adding one fixed point has the degree of w0 bigger than r(π ′). The
same holds if π is obtained from 2143 by adding two or more fixed points, with an
even number of them lying between 21 and 43. If π is obtained from 2143 by adding
just one fixed point not lying between 21 and 43, then the unique vertex conjugate to
w0 having this fixed point has degree larger than r(π). Finally, if π is obtained from
one of the bad patterns by adding fixed points as above and then pairs of flipped
indices, then one argues as in the proof of the Lemma in [8] that some vertex in Iπ
has degree greater than r(π). Hence in all cases Ōπ is rationally singular. ��

We specialize to the even case n = 2m in our next result.

Theorem 2 Assume that n = 2m is even. The orbit Oπ has rationally smooth
closure if and only if the degree of w0 in Iπ is r(π).

Proof Set O = Oπ . We have already noted that the degree condition is necessary, so
suppose that it is satisfied. We begin by constructing a slice of Ō to Oc at a particular
flag, as follows. Fix a basis (ei) of C2m such that (ei, ej ) = 1 if i + j = 2m + 1
and (ei, ej ) = 0 otherwise, where as above (·, ·) is the symmetric form. Let (aij )
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be a family of complex parameters indexed by ordered pairs (i, j) satisfying either
i ≤ m < j or m < i < j . We assume that aij = a2m+1−j,2m+1−i if i ≤ m < j but
otherwise put no restrictions on the aij . Define a basis (bi) of C2m via

bi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ei +
2m∑

j=m+1

aij ej if i ≤ m

ei +
2m∑

j=i+1

aij ej otherwise

Then the Gram matrix G := (gij = (bi, bj )) of the bi relative to the form satisfies

gij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ai,2m+1−j if i ≤ j ≤ m
gji if j < i ≤ m
aj,2m+1−i if i < m < j < 2m+ 1− i
1 if i ≤ m < j = 2m+ 1− i
gji if j ≤ m < i
0 otherwise

Thus the matrix G is symmetric and has zeroes below the antidiagonal from lower
left to upper right. The antidiagonal entries are all 1. Now one checks that the set
S ′ of all flags V0 ⊂ . . . ⊂ V2m where (bi) runs through all bases obtained as above
from the aij and Vi is the span of b1, . . . bi is a slice of G/B to Oc at the flag fc
corresponding to the basis (ei), which in turn corresponds to the point P where all
aij = 0 [2, 2.1]. Intersecting S ′ with Ō we get a slice S of Ō to Oc at P in the sense
of Brion [2, 2.1], defined by the vanishing of certain minors in the Gram matrix G.
It is known ([2]) that S is rationally smooth (resp. smooth) at P if and only if it is
rationally smooth (resp. smooth) everywhere, or if and only if Ō is rationally smooth
(resp. smooth) everywhere. (This construction works with minor modifications for
odd n as well).

We now show that S is rationally smooth at P by verifying the conditions of [2,
1.4]. Actually we construct a rationally smooth slice S ′′ for a variety V containing
Ōπ , with no hypothesis on the degree of w0 in Iπ ; if this hypothesis holds, then
V coincides with Ōπ and we may take S ′′ = S . For each conjugate v = t · w0
of w0 by a transposition t with v �≤ π , write v as v1 . . . v2m in one-line notation.
Let i be the smallest index such that if π1 . . . πi is rearranged in ascending order as
π ′1 . . . π ′i and similarly v1 . . . vi is rearranged as v′1 . . . v′i , then π ′j > v′j for some
j ≤ i. Then there is some k such that there are more indices � ≤ i (say nk of them)
with v� ≤ k than indices m ≤ i with πm ≤ k. Let j be the smallest index with
vj �= 2n+ 1− j . Set r := 2n+ 1− k + nk − 2. If there are fewer than nk indices
less than or equal to k among π1 . . . πr , then the minor of G consisting of those
entries in rows j, r − (nk − 2), . . . , r − 1, r and columns min(vj + 1, k− (nk − 1)),
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k−(nk−2), . . . , k−1, k vanishes on Ōπ ; one variable in this minor occurs to the first
power and is not multiplied by any other variable. Otherwise the minor consisting
of those entries in rows j, k−(nk−2), . . . , k and columns j, k−(nk−2), . . . , k (or
just row and column k, if nk = 1) vanishes on Ōπ and may involve certain variables
quadratically. Define the slice S ′′ by the simultaneous vanishing of these minors and
let V be the corresponding subvariety of G/B, which contains Ōπ .

Define an action of the m-torus T = T
m on the matrix G by multiplying the

first m rows and columns by t1, . . . , tm, respectively, while multiplying the last m
rows and columns by t−1

m , . . . , t−1
1 , respectively; this action preserves the 1s on the

antidiagonal and the vanishing of the minors that define the slice S ′′. (T is just a
maximal torus of K .) Then the weights of T occurring in the tangent space at P of
the big slice S ′ are those of the form 2ei, ei+ej , or ei−ej for some 1 ≤ i < j ≤ m
and all occur with multiplicity one. They all lie on one side of a hyperplane and P
is an attractive fixed point of both S ′′ and S ′. The subtori T ′ of T of codimension
one such that the fixed point subvariety (S ′′)T ′ of the slice S ′′ under the T ′-action
contains more than one point correspond exactly to the conjugates t · w0 of w0 not
lying below π . Hence conditions [2, 1.4(ii), (iii)] are satisfied for S ′′ and V . As
for [2, 1.4(i)], we find that by repeatedly slicing the slice S ′′ at nonzero values of
variables occurring in it, we are led to a product of varieties defined by quadratic
equations in its variables, which is easily seen to be rationally smooth away from
the origin. (Here is where the evenness of n is crucial; the varieties in question
are not rationally smooth away from the origin if n is odd.) Thus S ′′ and V are both
rationally smooth. If the degree condition holds onw0, then by counting dimensions
we see that V coincides with Ōπ , so it too is rationally smooth. ��

4 Main Result

Theorem 3 If π avoids the bad patterns of Theorem 1, then all conjugates of w0 in
Iπ have degree r(π), so that Ōπ has rationally smooth closure if n is even.

Proof Suppose first that n is even. We first show that w0 has degree r(π). We have
seen that the neighbors ν adjacent to any μ ∈ In (adjacent to μ) take the form either
ν = tμt or ν = tμ, for some transposition t ; accordingly we say that v is of type 1
(resp. type 2) if it takes the first (resp. the second) form. Now recall that the poset
I ′n of fixed-point-free involutions in Sn with the reverse Bruhat order parameterizes
the poset of Sp2m-orbits in G/B, ordered by inclusion of closures; moreover, the
rank functions for In and I ′n coincide. In [8] we characterized the fixed-point-free
involutions π such that the degree of w0 in the order ideal I ′π of I ′n equals r(π).
We first claim that there is a unique minimal fixed-point-free involution f (π) lying
above π in the usual Bruhat order (so below it in the reverse one). Indeed, if π is
fixed-point-free, then f (π) = π ; otherwise, let the indices fixed by π be i1, . . . , i2k
in increasing order, so that π does not fix any index between ij and ij+1 for any
j ≤ 2k − 1. Now for every j look at the pairs of indices both lying between i2j−1
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and i2j and flipped by π . We say that such a pair (i, �) with i < � encapsulates
another one (j, k) if i < j < k < �. Let (�j1, �

′
j1), . . . , (�jm, �

′
jm) enumerate all

such pairs not encapsulating other ones, labelled so that �ji < �′j i for all i and �′j i <
�′j (i+1) for i ≤ m − 1. Replace i2j−1, �

′
j1, . . . , �

′
jm in the one-line notation of π

by �j1′, . . . , �′jm, i2j , respectively, replace �j1, . . . , �jm, i2j by i2j−1, �j1, . . . , �jm,
respectively, and leave all other indices unchanged. This gives the one-line notation
of f (π). Thus, for example, if π = 16754238, then f (π) = 56781234. Now the
type 1 neighbors(=adjacent vertices) of w0 lying in Iπ are the same as those lying
in If (π). We can read off the number t (π) of type 2 neighbors of w0 lying in Iπ
from the one-line notation of π , as follows. Let i1 be the smallest index such that
π(i1) ≤ ii and let i2 be the smallest index such that π(n+1− i2) ≥ 2n+1− i2. Let
i be the maximum of i1 and i2; then t (π) = m+1− i. Now let π be an involution of
even length 2m that either appears in the above list or is obtained from an involution
in this list by adding one fixed point. One checks in all cases that either the rank
difference r(π)− r(f (π)) is less than t (π) or f (π) contains a bad pattern for I ′2m
(i.e., as a fixed-point-free involution, so that the degree of w0 in I ′f (π) is already too
large). Table 1 lists the possibilities for π , making a representative choice among
these possibilities if π is obtained from a bad pattern of odd length by adding one
fixed point. We give first π , then its rank r(π), then f (π), then its rank r(f (π)) the
number t (π) of type 2 neighbors of π , and finally the difference between r(f (π))
and the degree of w0 in I ′2m whenever this difference is nonzero.

Given an arbitrary involution π for which the degree dw0 of w0 in Iπ is too
large, either the degree of w0 in I ′f (π) must already be too large (forcing f (π) to
contain one of the seventeen bad patterns of [8]) or t (π)must be larger than the rank
difference r(π)− r(f (π)) (or both). The value of t (π) is determined by the indices
i1, i2 attached to π above. Bearing in mind the recipe for computing f (π) from π

and the list of bad patterns in [8] (none of which has length larger than eight) we
see that we can replace any π for which dw0 is too large by an involution it includes
of length at most eight with the same property (including the indices i1 and i2, two
fixed points of π with a pair of flipped indices lying between them, and that pair of
indices). But the above patterns capture all instances where this happens for m = 4
(as one sees by examining all the possibilities, using, for example, the computation
of the Kazhdan-Lusztig-Vogan polynomials introduced in [10] for GL8R provided
by the ATLAS software, available at www.liegroups.org). Thus any such π includes
a pattern in the above list, as desired.

Now we show that all conjugates of w0 in Iπ also have degree r(π). By [8,
Theorem 2] the number of type 1 neighbors of any conjugate of w0 lying below
f (π) in Iπ is no greater than r(f (π)), provided this holds for w0. One checks from
the above formula for the number of type 2 neighbors of w0 not lying below π

that this number can only increase if w0 is replaced by a conjugate of itself (i.e., by
another fixed-point-free involution), so the degree of a conjugate of w0 is bounded
above by r(π) whenever the degree of w0 is, as desired.

www.liegroups.org
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Table 1 Bad patterns

π r(π) f (π) r(f (π)) t (π) Difference

2143 2 2143 2 1

143256 7 341265 5 3

215436 6 215634 5 2

321546 6 351624 4 2 1

154326 5 456123 3 3

124356 8 214365 6 3

351624 4 351624 4 1 1

132546 7 351624 4 3 1

426153 4 456123 3 2

153624 5 351624 4 1 1

351426 5 351624 4 1 1

12435768 14 21437856 11 4

21354678 14 21563478 11 3 1

21376548 11 21678345 9 3

43215768 11 43218765 8 2 2

52761438 8 56781234 6 3

54721638 8 54721836 7 1 1

16573248 9 56781234 6 4

46513278 9 46513287 8 1 1

57681324 5 57681324 5 0 1

65872143 4 65872134 4 0 1

34127856 10 34127856 10 2 1

64827153 5 64827153 5 1 1

13247856 12 34127856 10 2 1

34125768 12 34127856 10 2 1

If instead n = 2m + 1 is odd, then a similar but more complicated argument
works. Recall first that the neighbors of μ ∈ Iπ all take the form ν = tμt for
some transposition t not commuting with μ (transpositions t commuting with μ no
longer give rise to adjacent vertices in this case). We say that ν is of type 1 if the
transposition t does not involve the middle index m + 1 and of type 2 if it does
involve this index. Now given π ∈ In there is a unique smallest f (π) lying above
π in the Bruhat order among involutions fixing the index m + 1 but no other. To
construct f (π), assume first that π already fixes m + 1; then we just apply the
above recipe for f to π restricted to the other indices 1 . . . , m,m+ 2, . . . , 2m+ 1,
decreeing at the end that f (π) also fix m+ 1. Now assume that π(m+ 1) < m+ 1;
if this is not the case, conjugate π by w0 to make this hold, apply the following
recipe, and then conjugate by w0 again. Denote by i1, i2 the largest fixed point of π
less than m+ 1 (if there is one) and the smallest fixed point of π larger than m+ 1
(if there is one). Enumerate the pairs of indices flipped by π not encapsulating other
pairs for which the larger index is greater than or equal to m+ 1 and less than i2 (if
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it exists) as (�1, �
′
1), . . . , (�m, �

′
m) with �i < �′i and the �′i . in increasing order, as

in the previous recipe. If i2 exists, let T consist of the set of �′i together with i2; if
i2 does not exist, let T consist of the �′i together with �m. Likewise let S consist of
the �i together with i1 if it exists. Define a new involution π ′ by declaring that it fix
the smallest index m + 1 in T , flip the next smallest index of T with the smallest
one in S, and so on, finally flipping the largest index in S with that in T (if i2 does
not exist), or fixing the largest index in S (if i1 and i2 both exist). Other indices
have the same image under π ′ as under π . Then π ′ fixes m + 1 and lies above
π . Applying the above recipe to π ′, we get f (π ′) = f (π). Thus, for example, if
π = 13245, then S consists of the indices 1 and 2, while T consists of 3 and 4; here,
i1 = 1, i2 = 4. Then π ′ fixes 3, flips 1 and 4, and fixes 2, whence π ′ = 42315;
finally, f (π ′) = f (π) = 45312.

We also have an analogous formula to the one above for the number t (π) of
type 2 neighbors of w0 in Iπ . Let i1 be the smallest index such that π(i1) ≤ i1 and
π(j) ≥ m+ 1 for some j ≥ n+ 1− i1); similarly let i2 be the smallest index such
that π(n+1− i2) ≥ n+1− i2 and π(j) ≤ m+1 for some j ≤ i2. Then the number
t (π) = n + 1 − i1 − i2. A similar argument to the one above shows that avoiding
the above list of bad patterns is sufficient to guarantee that the degree of w0 in Iπ is
r(π); similarly any conjugate of w0 in Iπ fixing m+ 1 has degree r(π).

We now consider vertices in Iπ fixing a single index other than m + 1. For 1 ≤
i ≤ n, denote by w(i)0 the unique involution whose one-line notation has i in the

ith position and the other indices listed in decreasing order. Then either w(i)0 lies in
Iπ , or else no vertex in Iπ fixes i and no other index. In the former case there is a
unique smallest vertex f (i)(π) lying above π in the usual Bruhat order, constructed
as above by replacing the index m + 1 throughout by i. We construct it as above,
replacing the index m+ 1 throughout by i, except that if i is not the smallest index
in the set T , then w(i)0 does not lie above π , so that no involution fixing i alone lies
above π and f (i)(π) is undefined. We argue as above that avoiding the bad patterns
of Theorem 1 implies that w(i)0 has degree r(π) whenever it lies in Iπ and that all
conjugates of it fixing only the index i have this degree as well. ��

The condition that w0 alone have degree r(π) is not sufficient for rational
smoothness if n is odd, as the examples π = 2137654 (cited above) and π = 21435
show. However we have

Conjecture 4 For n odd, the orbit closure Ōπ is rationally smooth if and only if all
conjugates of w0 in the order ideal Iπ have degree r(π), or if and only if π avoids
all bad patterns.

We also have

Conjecture 5 Avoiding all of the above patterns in the sense of this paper is
equivalent to avoiding the same patterns in the classical sense

For example, we observed above that the involution 65872143 avoids the bad
pattern 2143 in the sense of this paper, but it is itself another bad pattern, so does
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not correspond to an orbit with rationally smooth closure. Probably this conjecture
can be checked by a computer without too much trouble.

Finally, we note that in our setting, unlike that of [4] and [8] smoothness
and rational smoothness of orbit closures are not equivalent. The orbit closure
corresponding to the involution 1324 is rationally smooth but not smooth. We hope
to study smoothness of orbit closures in a future paper.
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The Spin Calogero-Sutherland Model
at Infinity

Maxim Nazarov

To Professor Anthony Joseph on the occasion of his 75th
birthday

Abstract For N = 1, 2, . . . we consider an action of the Yangian Y(gln) on N th
symmetric power of the space of polynomials in one variable with coefficients in
C
n . This action is given by the Heckman operators (1991) via the Drinfeld functor

(1986). We describe the limit of this action at N → ∞ . This provides another
solution to the problem already considered by Khoroshkin, Matushko and Sklyanin
(2017).

1 Introduction

This quantum Calogero-Sutherland model describes a system ofN bosonic particles
on a circle R/π Z with the Hamiltonian [3, 19]

− 1

2

∑

j

∂ 2

∂ q 2
j

+
∑

i<j

β (β − 1)

sin2(qi − qj )
(1.1)

where 0 � q1, . . . , qN < π . After conjugating by the vacuum factor

∣∣∣
∏

i<j

sin(qi − qj )
∣∣∣β

and passing to the exponential variables xj = exp(2iqj ) and the parameter α =
β−1 the Hamiltonian (1.1) becomes
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2

α
H + N

3 −N
6α 2

where

H = α
∑

i

(xi ∂i )
2 +

∑

i<j

xi + xj
xi − xj (xi ∂i − xj ∂j ) . (1.2)

Here ∂j denotes the derivation with respect to the variable xj . The operator H acts
on the symmetric polynomials in x1, . . . , xN . It can be included into a quantum
integrable hierarchy, that is into a ring of commuting differential operators with
N generators of orders 1, . . . , N . The joint eigenfunctions of these commuting
differential operators are Jack symmetric polynomials [10].

Two different constructions of generators of this operator ring are known. The
first set of generators consists of the coefficients of a certain polynomial of degree
N in an auxiliary variable called the Sekiguchi-Debiard determinant [5, 16]. The
second set consists of the power sums of degrees 1, . . . , N of the Heckman operators
[9], see our Sect. 3 for their definition. These operators act on all the polynomials
in x1, . . . , xN and do not commute, yet their power sums preserve the space of
symmetric polynomials. The commuting versions of the Heckman operators were
found by Cherednik [4].

It is fascinating to study the limit of the Calogero-Sutherland model when the
number N of particles tends to infinity. The limit of the Hamiltonian (1.2) has been
known for a long time [18], but explicit description of the limit of the quantum
integrable hierarchy was not available until recently. In [14] we described the
limits of the generators yielded by the Sekiguchi-Debiard determinant. In [15] we
described the limits of the power sums of the Heckman operators, and also identified
the resulting integrable hierarchy as that of the quantum counterpart of the classical
Benjamin–Ono equation. This equation describes internal waves in fluids of great
depth. In [17] the same hierarchy as in [15] was obtained by another approach,
namely by describing the limits of the Heckman operators themselves.

The Calogero-Sutherland model has a generalization [8] which describes N
bosonic particles on a circle, each particle now having n internal degrees of freedom.
Here n is any positive integer. The space of symmetric polynomials used above
generalizes now to the subspace in the tensor product

(Cn)⊗N ⊗ C[x1, . . . , xN ] (1.3)

consisting of the invariants under the simultaneous permutations of the N tensor
factors C

n and of the variables x1, . . . , xN . Remarkably, this subspace comes [2]
with an action of the Yangian Y(gln) . Using either the Cherednik or the Heckman
operators on C[x1, . . . , xN ] this action can be obtained as a particular case of a
general construction due to Drinfeld [6], see our Sect. 4. The eigenstates of this
model have been studied in [20].
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In the present article we consider the limit of this generalization of the Calogero-
Sutherland model. This limit was already studied in [1]. Following that work, we
identify the limit at N →∞ of the above-mentioned subspace of invariants in (1.3)
with the bosonic Fock space F defined in our Sect. 2. Using the approach of [17], in
Sect. 3 for any given n we describe the limits at N →∞ of the Heckman operators
now acting on (1.3). This description determines the limiting action of the Yangian
Y(gln) on F , see our Sect. 4. This limiting action has been already studied in [11].
However our result has a different form, see the end of Sect. 4 for an explanation of
the difference.

2 Fock Space

Fix a positive integer n . Let F be the commutative algebra over the complex field
C with free generators pck where c = 1, . . . , n and k = 0, 1, 2, . . . . We shall refer
to F as to the Fock space with n spin degrees of freedom, see [1].

Now take the vector space Cn with the standard basis vectors e1, . . . , en . Turn C
n

into a commutative ring by setting ea eb = δab ea for a, b = 1, . . . , n and extending
this definition of multiplication on C

n by linearity. The element

e = e1 + . . .+ en
is a unit of this ring, that is e g = g for all g ∈ C

n . The vector space V = C
n[v]

of all polynomials in the variable v with coefficients in C
n then also becomes a

commutative ring. The element e is a unit of the latter ring as well.
For N = 1, 2, . . . take the tensor product V ⊗N of N copies of the ring V . This

tensor product can be naturally identified with (1.3). The symmetric group SN acts
on V ⊗N by permuting the N tensor factors. Consider the subring (V ⊗N)SN ⊂
V ⊗N consisting of the elements invariant under this action. Denote by 'N this
subring. Define a ring homomorphism

F → 'N (2.1)

by mapping the identity element 1 ∈ F to e⊗N and also mapping the free generators
pck ∈ F to the sums

N∑

i=1

e⊗(i−1) ⊗ ec vk ⊗ e⊗(N−i ) ∈ 'N (2.2)
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respectively. Then the sum

n∑

c=1

pc0 ∈ F (2.3)

gets mapped to Ne⊗N . Our homomorphism (2.1) is surjective due to the next

Proposition 2.1 The ring 'N is generated by the sums (2.2).

Proof Let g1, . . . , gN ∈ C
n while k1, . . . , kN = 0, 1, 2, . . . . The vector space 'N

is spanned by the sums of the tensor products

h1 v
l1 ⊗ . . .⊗ hN v lN

where the summation is over all N ! permutations (h1, l1), . . . , (hN , lN ) of a given
sequence of pairs (g1, k1), . . . , (gN , kN) . LetM be the number of pairs in the latter
sequence which are different from (e, 0) . We will prove by induction on M =
0, 1, . . . , N that the sum corresponding to the (g1, k1), . . . , (gN , kN) belongs to the
image of the homomorphism (2.1). Denote by S this sum. Let

'
(M)
N ⊂ 'N

be the subspace spanned by all the sums S with the given numberM .
If M = 0 then S = N ! e⊗N , that is N ! times the image of the identity element

1 ∈ F under (2.1). Now suppose that M > 0 . Because the sum S does not change
when the sequence (g1, k1), . . . , (gN , kN) is reordered, we will assume that it is the
first M pairs (g1, k1), . . . , (gM, kM) of the sequence that differ from (e, 0) . Then
consider the product over j = 1, . . . ,M of the sums

N∑

i=1

e⊗(i−1) ⊗ gj vkj ⊗ e⊗(N−i ) ∈ 'N . (2.4)

The difference between this product and S/(N −M)! belongs to the subspace

'
(0)
N + . . .+'(M−1)

N ⊂ 'N .

Since (2.4) is a linear combination of the images (2.2) of the elements pck ∈ F with
c = 1, . . . , n and k = kj , we have now made the induction step. ��
Proposition 2.2 The kernels of all homomorphisms (2.1) with N = 1, 2, . . . have
the zero intersection.

Proof Consider the set of all free generators pck of the commutative ring F . In this
set of free generators we can replace pn0 by the sum (2.3), which will be denoted
here simply by q . Take any finite linear combination of unordered monomials in the
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new generators of F . Suppose that it gets mapped to zero by every homomorphism
(2.1). Consider the terms in this linear combination which have the maximal total
degree in all the new generators but q . Let S be the sum of these terms. Let M be
their degree. If M = 0 then our linear combination is just a polynomial in q with
complex coefficients, which for all N vanishes when mapping q 	→ Ne⊗N . Hence
our linear combination is zero.

Suppose M > 0 . For any N � M apply to S the homomorphism (2.1). Then
apply to the resulting image of S in the subspace 'N ⊂ V ⊗N the linear map
V ⊗N → V ⊗M projecting onto the tensor product of the first M tensor factors
V of V ⊗N . Arguments similar to those of the proof of Proposition 2.1 show that
the image of S in V ⊗M must be zero. By letting the number N vary like in the case
M = 0 one can show that S = 0 then. But the equality S = 0 contradicts to the
assumption thatM > 0 . ��

We will regard the Fock space F as the limit at N → ∞ of the ring 'N by
using the homomorphism (2.1). The complex general linear Lie algebra gln acts on
the vector space V , and diagonally on the tensor product V ⊗N . The latter action
commutes with the action of the group SN . Hence the action of gln on V ⊗N
preserves the subspace 'N . In this section we will describe the corresponding
action of the Lie algebra gln on the vector space F . Namely, for any standard matrix
unit Eab ∈ gln we will describe its action on F which makes commutative the
following diagram:

F F

ΛN ΛN

Eab

Eab

Here the vertical arrows indicate the homomorphism (2.1). It is easy to verify

Lemma 2.3 The action of Eab on V is a ring endomorphism.

Note that the endomorphism Eab does not preserve the element e ∈ V unless
a = b . We will describe the action of Eab on F using the method of [17]. We will
first consider the ring V ⊗ F . It contains F via the embedding

ι : F → V ⊗ F : f 	→ e ⊗ f (2.5)

for all f ∈ F . The ring V ⊗ F is generated by the elements ec vk ⊗ 1 and the
elements e ⊗ pck . Let us extend (2.1) to the ring homomorphism

πN : V ⊗ F → V ⊗'N−1
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by mapping

ec v
k ⊗ 1 	→ ec v

k ⊗ e⊗(N−1) . (2.6)

We have

'N ⊂ V ⊗'N−1 (2.7)

and our πN by definition maps the element e ⊗ pck ∈ V ⊗ F to the sum (2.2). We
will describe an operator Fab on V ⊗ F making commutative the diagram

V ⊗ F V ⊗ F

V ⊗ ΛN−1 V ⊗ ΛN−1

Fab

πN πN

Eab⊗id

(2.8)

To this end we will introduce another ring homomorphism

π ′N : V ⊗ F → V ⊗'N−1

such that π ′N will map the element e ⊗ pck ∈ V ⊗ F to the sum

N∑

i=2

e⊗(i−1) ⊗ ec vk ⊗ e⊗(N−i ) (2.9)

instead of (2.2). The homomorphism π ′N will still map (2.6) as πN does. So

πN (e ⊗ pck ) = π ′N (e ⊗ pck )+ ec vk ⊗ e⊗(N−1)

= π ′N (e ⊗ pck + ec vk ⊗ 1) (2.10)

and

π ′N (e ⊗ pck ) = πN (e ⊗ pck − ec vk ⊗ 1) . (2.11)

By the definition of π ′N we immediately obtain commutativity of the diagram

V ⊗ F V ⊗ F

V ⊗ ΛN−1 V ⊗ ΛN−1

Eab⊗id

π ′
N π ′

N

Eab⊗id
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In other words, the limit at N →∞ of the operator Eab⊗ id on V ⊗'N−1 relative
to the homomorphism π ′N is just the operator Eab ⊗ id on V ⊗ F .

Let us now turn to the homomorphism πN . By Lemma 2.3 the operator Eab⊗ id
on V ⊗'N−1 is a ring endomorphism. Therefore our Fab will be an endomorphism
of the ring V ⊗ F . Setting

Fab (ec v
k ⊗ 1) = Eab (ec vk ) = δbc ea vk ⊗ 1 (2.12)

will make the compositions πN Fab and (Eab ⊗ id) πN coincide on the element
ec v

k ⊗ 1 ∈ V ⊗ F , see (2.6) and (2.8). Again according to (2.8) we also need

πN Fab (e ⊗ pck) = (Eab ⊗ id) πN (e ⊗ pck) .

By (2.10) and (2.11) the right-hand side of the above displayed relations equals

(Eab ⊗ id) π ′N (e ⊗ pck + ec vk ⊗ 1) =
π ′N (Eab ⊗ id) (e ⊗ pck + ec vk ⊗ 1) =

π ′N (ea ⊗ pck + δbc ea vk ⊗ 1) = π ′N ((ea ⊗ 1) (e ⊗ pck)+ δbc ea vk ⊗ 1) =
πN ((ea ⊗ 1) (e ⊗ pck − ec vk ⊗ 1)+ δbc ea vk ⊗ 1) =

πN (ea ⊗ pck − δac ea vk ⊗ 1+ δbc ea vk ⊗ 1) .

Hence

Fab (e ⊗ pck) = ea ⊗ pck + (δbc − δac) ea vk ⊗ 1 . (2.13)

So the actions of Fab and Eab ⊗ id on e ⊗ pck differ unless δac = δbc . We get

Proposition 2.4 The endomorphism Fab of the ring V ⊗ F defined by (2.12) and
(2.13) makes commutative the diagram (2.8).

To describe the action of Eab on F let us now consider the linear map

θ : V ⊗ F → F : ec vk ⊗ f 	→ pck f . (2.14)

This is not a ring homomorphism, but is F-linear relative to the embedding ι : F →
V ⊗ F defined earlier. Moreover it makes commutative the diagram

V ⊗ F F

V ⊗ ΛN−1 ΛN

θ

πN

θN

(2.15)
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where the rightmost vertical arrow indicates the homomorphism (2.1), while θN
denotes the restriction of the action of the element

1 +
N∑

i=2

(1i ) ∈ CSN

to the subspace V ⊗ 'N−1 ⊂ V ⊗N . Here (1i ) ∈ SN is the transposition of 1
and i . To prove the commutativity of (2.15) observe that πN by definition maps the
subring F ⊂ V ⊗F to the subring (2.7), while θN is'N -linear. Hence it suffices to
chase the element ec vk ⊗ 1 ∈ V ⊗ F the two ways offered by the diagram (2.15).
But both ways yield the same result, the sum (2.2).

Let us now place two more commutative diagrams on the left of (2.15):

F V ⊗ F V ⊗ F F

ΛN V ⊗ ΛN−1 V ⊗ ΛN−1 ΛN

ι Fab

πN

θ

πN

Eab⊗id θN

Here we have the diagram (2.8) in the middle. The leftmost vertical arrow is the
homomorphism (2.1), the leftmost bottom arrow is the embedding (2.7).

Theorem 2.5 The element Eab ∈ gln acts on F as the composition θ Fab ι .

Proof The composition θN (Eab ⊗ id) acts on the subspace (2.7) as the sum

N∑

i=1

id⊗(i−1)⊗Eab ⊗ id⊗(N−i ) .

Hence the theorem follows from the commutativity of the latter diagram. ��
Now consider the particular case when a = b . By (2.13) for c = 1, . . . , n and

k = 0, 1, 2, . . . we have Faa (e ⊗ pck ) = ea ⊗ pck . More generally, for any f ∈ F
we have Faa (e⊗f ) = ea⊗f because Faa is an endomorphism of the ring V ⊗F .
By Theorem 2.5 and by definition of θ we get Eaa(f ) = pa0 f .

3 Heckman Operators

Let α be a complex parameter. For i = 1, . . . , N consider the Dunkl operator

Yi = α ∂i +
∑

j �=i

1

xi − xj (1− σij )
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acting on the ring of all polynomials in the variables x1, . . . , xN with complex
coefficients. Here ∂i is the derivation in this ring relative to the variable xi , while
σij is the operator on this ring exchanging the variables xi and xj . Note that for any
permutation σ of the variables x1, . . . , xN we have the relation

σ −1Yi σ = Yσ(i) . (3.1)

The operators Yi with i = 1, . . . , N pairwise commute. This fact is well known,
and goes back to the work [7]. Next consider the Heckman operator [9]

Zi = xi Yi = α xi ∂i +
∑

j �=i

xi

xi − xj (1− σij ) .

The operators Zi with i = 1, . . . , N preserve the polynomial degree, but they do
not commute if N > 1 . However, they satisfy the commutation relations

[Zi , Zj ] = σij (Zi − Zj ) . (3.2)

Similarly to (3.1), for any permutation σ of the N variables we have

σ −1Zi σ = Zσ(i) . (3.3)

Therefore for every m = 1, 2, . . . the operator sum

Hm = Zm1 + . . .+ ZmN (3.4)

commutes with σ . Hence it preserves the space of symmetric polynomials in
x1, . . . , xN . The joint eigenvectors of operators (3.4) restricted to the latter space
are the Jack polynomials [10] corresponding to the parameter α .

Let us now regard V as the tensor product Cn ⊗ C[v] of rings. Then we can
identify the ring V ⊗N with the tensor product of (Cn)⊗N by the ring of polynomials
in N variables with complex coefficients. The Heckman operators act on the latter
ring, and we can now extend them to V ⊗N so that they act on (Cn)⊗N trivially.
More explicitly, then xi and ∂i in Zi become the operators

ec v
k 	→ ec v

k+1 and ec v
k 	→ k ec v

k−1 (3.5)

respectively in the i th tensor factor of V ⊗N . Note that then σij in Zi acts only on
the variables v in the i th and j th tensor factors of V ⊗N . This action differs from
the permutational action of the transposition (i j ) ∈ SN on the tensor product V ⊗N
unless n = 1 .

However, when regarded as an operator on V ⊗N , every sum (3.4) still commutes
with the permutational action of the group SN . So the action of this sum on V ⊗N
preserves the subspace 'N . In this section we will describe the limit of the action
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of the sum (3.4) on 'N at N →∞ . This limit will be an operator Im on the vector
space F making commutative the square diagram

F F

ΛN ΛN

Im

Hm

(3.6)

Note that the operator Z1 on V ⊗N preserves the subspace V ⊗'N−1 . We will
first describe the limit of the action of Z1 on this subspace. That will be an operator
Z on the vector space V ⊗ F making commutative the diagram

V ⊗ F V ⊗ F

V ⊗ ΛN−1 V ⊗ ΛN−1

Z

πN πN

Z1

(3.7)

In the case n = 1 the operator Z was determined in [17]. We will extend this result
to any n . Let D1 andW1 be the operators on V ⊗N corresponding to

x1∂ 1 and
∑

j �=1

x1

x1 − xj (1− σ1j ) (3.8)

respectively. The latter two operators act on the polynomials in the variables
x1, . . . , xN with complex coefficients. Then Z1 = α D1 + W1 as an operator on
V ⊗N . Note that both D1 andW1 preserve the subspace V ⊗'N−1 .

Now introduce an operator on the vector space V ⊗ F

D = v ∂ ⊗ id +
n∑

d=1

∞∑

l=1

ed v
l ⊗ p⊥dl (3.9)

where v and ∂ are the operators (3.5) on V , respectively, while p⊥dl denotes the
product of l by the derivation in the free commutative ring F relative to pdl .
We claim that commutative is the diagram obtained by replacing Z and Z1 in
(3.7) by D and D1, respectively. To prove this claim, observe that the operator



Calogero-Sutherland Model 431

v ∂ is a derivation of the ring V . So it suffices to show that the compositions
πND and D1πN coincide on any generator of the ring V ⊗ F :

ec vk ⊗ 1 k ec vk ⊗ 1 k ec vk ⊗ e⊗(N−1) ,
D πN

ec vk ⊗ 1 ec vk ⊗ e⊗(N−1) k ec vk ⊗ e⊗(N−1) ;
πN D1

e ⊗ pck k ec vk ⊗ 1 k ec vk ⊗ e⊗(N−1) ,
D πN

e ⊗ pck

N∑

i=1

e⊗(i−1) ⊗ ec vk ⊗ e⊗(N−i) k ec vk ⊗ e⊗(N−1) .
πN D1

Consider W1 . For j �= 1 let Uj be the operator on V ⊗N corresponding to the
summand in (3.8) with index j . Then W1 = U2 + . . . + UN . Observe that the
restriction of the operatorW1 to the subspace V ⊗'N−1 coincides with that of the
composition (id⊗ θN−1 ) U2 . This is because for j = 3, . . . , N the conjugation of
U2 by the action of (2j ) ∈ SN on V ⊗ 'N−1 yields the operator Uj , while the
action of (2j ) on this subspace is trivial.

Now consider the ring V ⊗ V ⊗ F . It contains V ⊗ F as a subring via the
embedding id⊗ ι . In particular, it contains F via the natural mapping f 	→ e⊗e⊗f
for every f ∈ F . Let us extend (2.1) to a homomorphism

ρN : V ⊗ V ⊗ F → V ⊗ V ⊗'N−2

similarly to πN . Namely, our ρN maps

ec v
k ⊗ ed v l ⊗ 1 	→ ec v

k ⊗ ed v l ⊗ e⊗(N−2) (3.10)

and also maps e ⊗ e ⊗ pck to the sum (2.2). We get a commutative diagram

V ⊗ F V ⊗ V ⊗ F

V ⊗ ΛN−1 V ⊗ V ⊗ ΛN−2

id⊗ ι

πN ρN (3.11)

where the bottom horizontal arrow represents the natural embedding.
Further let

ω : V ⊗ V ⊗ F → V ⊗ F



432 M. Nazarov

be a linear map defined by the assignment

ec v
k ⊗ ed v l ⊗ f 	→ (ec v

k ⊗ f ) (e ⊗ pdl − ed v l ⊗ 1)

for every f ∈ F . The map ω is different from the more straightforward map

id⊗ θ : V ⊗ V ⊗ F → V ⊗ F .

Under the latter

ec v
k ⊗ ed v l ⊗ f 	→ ec v

k ⊗ pdl f .

Later on we will also use the map id⊗ θ due to the equalizing property below.

Lemma 3.1 The action of ω and id⊗ θ is the same on any element of the ring
V ⊗ V ⊗ F divisible by ec ⊗ e ⊗ 1− e ⊗ ec ⊗ 1 for some index c .

Proof Any element of V ⊗V ⊗F is a linear combination of tensor products ea v r⊗
eb v

s ⊗ f where a, b = 1, . . . , n and r, s = 0, 1, 2, . . . and f ∈ F . Take

(ec ⊗ e ⊗ 1− e ⊗ ec ⊗ 1) (ea v
r ⊗ eb v s ⊗ f ) =

δac ea v
r ⊗ eb v s ⊗ f − ea v r ⊗ δbc eb v s ⊗ f .

By applying the difference of maps id⊗ θ − ω to the last displayed line we get

δab δac v
r+s ⊗ f − δab δbc ea v r+s ⊗ f = 0 .

However, it is the map ω that makes commutative the diagram

V ⊗ V ⊗ F V ⊗ F

V ⊗ V ⊗ ΛN−2 V ⊗ ΛN−1

ω

ρN πN

id⊗ θN−1

(3.12)

To prove the commutativity of (3.12) observe that πN and ρN map F , as a subring
of, respectively, V ⊗F and V ⊗V ⊗F , to the ring'N . But the map ω is F-linear,
while the map id⊗ θN−1 is 'N -linear. The maps at all four sides of the diagram
(3.12) also commute with multiplication by the elements of V in the first tensor
factor of their source and target vector spaces. So it suffices to chase the element
e⊗ ec vk ⊗ 1 ∈ V ⊗V ⊗F the two ways offered by the diagram (3.12). Both ways
yield the same result, which is the sum (2.9).
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We will employ the operator U on the vector space V ⊗ V ⊗ F making
commutative the diagram

V ⊗ V ⊗ F V ⊗ V ⊗ F

V ⊗ V ⊗ ΛN−2 V ⊗ V ⊗ ΛN−2

U

ρN ρN

U2

(3.13)

Namely, we will set

W = ω U ( id⊗ ι) . (3.14)

Then commutative will be the diagram, obtained by replacing Z and Z1 in (3.7) by
W andW1, respectively. To prove this claim, it suffices to place the diagrams (3.11)
and (3.12), respectively on the left and on the right of (3.13). It will then follow that
Z = α D +W makes commutative the diagram (3.7).

Similarly to π ′N let us introduce another ring homomorphism

ρ ′N : V ⊗ V ⊗ F → V ⊗ V ⊗'N−2

such that ρ ′N will map the element e ⊗ e ⊗ pck ∈ V ⊗ V ⊗ F to the sum

N∑

i=3

e⊗(i−1) ⊗ ec vk ⊗ e⊗(N−i )

instead of (2.2). The homomorphism ρ ′N will still map (3.10) as ρN does. So

ρN (e ⊗ e ⊗ pck ) = ρ ′N (e ⊗ e ⊗ pck + ec vk ⊗ e ⊗ 1+ e ⊗ ec vk ⊗ 1) ,

ρ ′N (e ⊗ e ⊗ pck ) = ρN (e ⊗ e ⊗ pck − ec vk ⊗ e ⊗ 1− e ⊗ ec vk ⊗ 1) .

For short let x and y denote the operators of multiplication by v, respectively, in the
first and the second tensor factors of V ⊗ V ⊗F . Let τ be operator on V ⊗ V ⊗F
exchanging the variables v in these two tensor factors. By the definition of ρ ′N we
immediately obtain commutativity of the diagram

V ⊗ V ⊗ F V ⊗ V ⊗ F

V ⊗ V ⊗ ΛN−2 V ⊗ V ⊗ ΛN−2

x

x − y
(1 − τ)

ρ ′
N ρ ′

N

U2

(3.15)
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For the purpose of determining the operatorW on V ⊗F via (3.14) it suffices to
find the action of U on the image of id⊗ ι , that is on the subspace

V ⊗ e ⊗ F ⊂ V ⊗ V ⊗ F .

Furthermore, the maps ρN and U2 commute with multiplication by elements of the
subspace C

n ⊂ V in the first tensor factors of their source and target vector spaces.
Hence the operator U will have the same commuting property. Therefore it suffices
to find for l = 0, 1, 2, . . . the action of U on the elements

e v l ⊗ e ⊗
∏

(c,k)∈P
pck = x l

∏

(c,k)∈P
(e ⊗ e ⊗ pck ) (3.16)

where P is any finite collection of pairs of c = 1, . . . , n and k = 0, 1, 2, . . . .
This collection is unordered, but may contain same pairs with multiplicity. By the
commutativity of the diagrams (3.13) and (3.15) we have

ρN U
(
x l
∏

(c,k)∈P
(e ⊗ e ⊗ pck )

)
= U2 ρN

(
x l
∏

(c,k)∈P
(e ⊗ e ⊗ pck )

)
=

U2 ρ
′
N

(
x l
∏

(c,k)∈P
(e ⊗ e ⊗ pck + ec vk ⊗ e ⊗ 1+ e ⊗ ec vk ⊗ 1)

)
=

ρ ′N
( x

x − y
(
x l
∏

(c,k)∈P
(e ⊗ e ⊗ pck + ec vk ⊗ e ⊗ 1+ e ⊗ ec vk ⊗ 1)

− y l
∏

(c,k)∈P
(e ⊗ e ⊗ pck + ec ⊗ e vk ⊗ 1+ e vk ⊗ ec ⊗ 1)

))
=

ρN

( x

x − y
(
x l
∏

(c,k)∈P
(e ⊗ e ⊗ pck ) − y l

∏

(c,k)∈P
(e ⊗ e ⊗ pck +

ec ⊗ e vk ⊗ 1+ e vk ⊗ ec ⊗ 1− ec vk ⊗ e ⊗ 1− e ⊗ ec vk ⊗ 1)
))
=

ρN

( x

x − y
(
x l
∏

(c,k)∈P
(e ⊗ e ⊗ pck ) − y l

∏

(c,k)∈P
(e ⊗ e ⊗ pck +

(y k − x k ) (ec ⊗ e ⊗ 1− e ⊗ ec ⊗ 1 ))
))
.

This calculation shows that the operator U maps the element (3.16) to

x

x − y
(
x l
∏

(c,k)∈P
(e ⊗ e ⊗ pck ) − y l

∏

(c,k)∈P
(e ⊗ e ⊗ pck +

(y k − x k ) (ec ⊗ e ⊗ 1− e ⊗ ec ⊗ 1 ))
)
. (3.17)
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Let us apply ω to the latter element. By applying the difference id⊗ θ − ω to

x

x − y
(
x l
∏

(c,k)∈P
(e ⊗ e ⊗ pck ) − y l

∏

(c,k)∈P
(e ⊗ e ⊗ pck )

)
=

x (x l − y l )
x − y

∏

(c,k)∈P
(e ⊗ e ⊗ pck )

we get the element

e v l ⊗
∏

(c,k)∈P
pck ∈ V ⊗ F (3.18)

multiplied by l . This multiplication by l amounts to applying to (3.18) the operator
v ∂ ⊗ id . The element (3.16) is just the image of (3.18) under id⊗ ι . Now by
repeatedly using Lemma 3.1 we get the operator equality on V ⊗ F

ω U ( id⊗ ι) = ( id⊗ θ )U ( id⊗ ι)− v ∂ ⊗ id . (3.19)

Here we also used the fact that the map ω commutes with multiplication by elements
of the subspace C

n ⊂ V in the first tensor factor of its source and target vector
spaces, like the operator U does.

Now let p ∗dl = α p⊥dl , that is the product of α l by the derivation in F relative
to the generator pdl . Then we can recall that our Z = α D + W and combine
(3.9),(3.14) and (3.19) to get the following principal result.

Theorem 3.2 The diagram (3.7) is made commutative by the operator

Z = (α − 1) v ∂ ⊗ id +
n∑

d=1

∞∑

l=1

ed v
l ⊗ p ∗dl + ( id⊗ θ )U ( id⊗ ι)

where ι and θ are defined by (2.5) and (2.14). The operator U on V ⊗ V ⊗ F
commutes with multiplication by elements of the subspace Cn ⊂ V in the first tensor
factor, and maps (3.16) to the element displayed in two lines (3.17).

Corollary 3.3 For m = 1, 2, . . . the diagram (3.6) is made commutative by

Im = θ Zm ι .

Proof For any i = 2, . . . , N the conjugation of the operator Zm1 by the action of
(1i ) ∈ SN on V ⊗N yields the operator Zmi . Therefore the composition θN Zm1 acts
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on the subspace 'N ⊂ V ⊗N as the operator sum (3.4). Now the required statement
follows from the commutativity of the composite diagram

F V ⊗ F V ⊗ F F

ΛN V ⊗ ΛN−1 V ⊗ ΛN−1 ΛN

ι Zm

πN

θ

πN

Zm
1 θN

Here we use the commutativity of the diagrams (2.15) and (3.7). ��

4 Yangian Action

Consider the Yangian Y(gln) . This is a complex unital associative algebra with an
infinite family of generators T (1)ab , T

(2)
ab , . . . where a, b = 1, . . . , n . Now let u be

another variable. Introduce the formal power series in u−1

Tab(u) = δab + T (1)ab u
−1 + T (2)ab u

−2 + . . . (4.1)

with the coefficients in Y(gln) . Using both the variables u and v , the defining
relations in the algebra Y(gln) can be written as

(u− v) [ Tab(u), Tcd(v) ] = Tcb(u)Tad(v)− Tcb(v)Tad(u) . (4.2)

If n = 1 then the algebra Y(gln) is commutative by this definition. The next
proposition is a particular case of a general construction due to Drinfeld [6].

Proposition 4.1 The algebra Y(gln) acts on vector space 'N so that T (m+1)
ab with

m = 0, 1, 2, . . . acts as the operator sum

N∑

i=1

id⊗(i−1)⊗Eab ⊗ id⊗(N−i) · (−Zi )m . (4.3)

Note that the operator Zi on V ⊗N by its definition commutes with the action of
the Lie algebra gln on any of the N tensor factors V . Further, due to the relations
(3.3) the operator (4.3) commutes with the permutational action of the group SN on
V ⊗N . So the operator (4.3) preserves the subspace 'N . To prove Proposition 4.1
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it now remains to verify that the restrictions of these operators to 'N satisfy the
relations (4.2). To this end one employs the series

δab +
∞∑

m=0

N∑

i=1

id⊗(i−1)⊗Eab ⊗ id⊗(N−i) · (−Zi )m u−m−1 =

δab +
N∑

i=1

id⊗(i−1)⊗Eab ⊗ id⊗(N−i) · (u+ Zi)−1

with operator coefficients (4.3) and applies the commutation relations (3.2). For the
details of the verification of (4.2) see [12, Section 1].

Note that for any fixed m = 0, 1, 2, . . . the operator (3.4) on V ⊗N equals (−1)m

times the sum of operators (4.3) over a = b = 1, . . . , n . By using the results of
the previous sections, we can now describe the limit of the action of Y(gln) on 'N
defined in Proposition 4.1 at N →∞ . This limit is an action of the algebra Y(gln)
on the Fock space F determined by the next theorem.

Theorem 4.2 The algebra Y(gln) acts on the vector space F so that T (m+1)
ab with

m = 0, 1, 2, . . . acts as the composition θ (−Z)m Fab ι .
Proof The composition θN (Eab ⊗ id) (−Z1 )

m acts on the subspace (2.7) as the
operator sum (4.3). Hence the theorem follows from Proposition 4.1 by using the
commutativity of the diagrams (2.8), (2.15) and (3.7). ��

Other limits at N → ∞ of the operators Eab ⊗ id and Z1 on V ⊗ 'N−1 were
computed in [11]. Comparing our Theorems 2.5 and 3.2 with the results of [11]
shows that these limits were defined by the homomorphism π ′N instead of πN used
in (3.7). This however entails changing our ι to the homomorphism

ι ′ : F → V ⊗ F : pck 	→ e ⊗ pck + ec vk ⊗ 1 .

Further, once πN is changed to π ′N in (2.15), our linear map θ also needs to be
changed, to keep the latter diagram commutative. The changed linear map

θ ′ : (ed v l ⊗ 1)
∏

(c,k)∈P
(e ⊗ pck + ec vk ⊗ 1) 	→ pdl

∏

(c,k)∈P
pck

for any pair (d, l) and for any collection P of pairs (c, k) as in (3.16) above.
Indeed, after receiving a preliminary version of the present article which included

the above remark, Sergey Khoroshkin verified that the counterparts from [11] of our
operators Fab and Z on V ⊗ F can be rewritten as

F ′ab = ε Fab ε−1 and Z ′ = ε Z ε−1
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where ε is the ring automorphism of V ⊗ F identical on V ⊗ 1 such that

ε : e ⊗ pck 	→ e ⊗ pck + ec vk ⊗ 1 .

Since ι ′ = ε ι and θ ′ = θ ε−1 by the definition of the automorphism ε , then for
any m = 0, 1, 2, . . . we get the equalities of operators on F

θ ′ (Z ′ )m ι ′ = θ Zm ι

and

θ ′ (Z ′ )mF ′ab ι ′ = θ ZmFab ι .

By Corollary 3.3 and by Theorem 4.2, these equalities show that the limits at N →
∞ of the operators Hm on 'N , and of the action of the algebra Y(gln) on 'N ,
are the same in [11] as in the present article. This should be the case, because the
mapping (2.1) which defined the limits in [11] is the same as ours.
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Semi-Direct Products Involving Sp2n

or Spinn with Free Algebras of
Symmetric Invariants

Dmitri I. Panyushev and Oksana S. Yakimova

Dedicated to A. Joseph on the occasion of his 75th birthday

Abstract This is a part of an ongoing project, the goal of which is to classify all
semi-direct products s = g�V such that g is a simple Lie algebra, V is a g-module,
and s has a free algebra of symmetric invariants. In this paper, we obtain such a
classification for the representations of the orthogonal and symplectic algebras.

MSC: 17B63, 14L30, 17B20, 22E46

1 Introduction

Let k be a field with char k = 0. Let S be an algebraic group defined over k with
s = Lie S. The invariants of S in the symmetric algebra S(s) = k[s∗] of s (= the
symmetric invariants of s or of S) are denoted by k[s∗]S or S(s)S . If S is connected,
then we also write k[s∗]s or S(s)s for them.

Let g be a reductive Lie algebra. Symmetric invariants of g over k̄ belong to
the classical area of Representation Theory and Invariant Theory, where the most
striking and influential results were obtained by Chevalley and Kostant in the
1950s and 1960s. Then pioneering insights of Kostant and Joseph revealed that
the symmetric invariants of certain non-reductive subalgebras of g can explicitly
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be described and that they are very helpful for understanding representations of g
itself, see [5, 7, 9]. This has opened a brave new world, full of adventures and hidden
treasures. Hopefully, we have found (and presented here) some of them.

Although the study of S(s)S is hopeless in general, there are several classes of
non-reductive algebras that are still tractable. One of them is obtained via a semi-
direct product construction from finite-dimensional representations of reductive
groups, which is the main topic of this article, see Sect. 3 below. Another interesting
class of non-reductive algebras consists of truncated biparabolic subalgebras [6],
see also [3] and the references therein. Yet another class consists of the centralisers
of nilpotent elements of g, see [12]. Remarkably, some truncated bi-parabolic
subalgebras or centralisers occur also as semi-direct products.

In [22], the following problem has been proposed:
To classify the representations V of simple algebraic groups G with LieG = g

such that the ring of symmetric invariants of the semi-direct product s = g � V is
polynomial.

It is easily seen that if s has this property, then k[V ∗]G is also a polynomial ring.
(But not vice versa!) Therefore, the suitable representations (G, V ) are contained in
the list of “coregular representations” of simple algebraic groups, see [1, 17]. If a
generic stabiliser for (G, V ) is trivial, then k[s∗]S ) k[V ∗]G. Therefore, it suffices
to handle only “coregular representations” with non-trivial generic stabilisers. The
latter can be determined with the help of Elashvili’s tables [2]. As it should have
been expected, type A is the most difficult case. The solution for just one particular
item, V = m(Cn)∗⊕kCn for G = SLn, occupies the whole paper [23]. This
certainly means that obtaining classification in the SLn-case requires considerable
effort. Although the results of [23] are formulated over C, we notice that they are
actually valid over an arbitrary field of characteristic zero. The case of exceptional
groups G bas been considered in [14]. The next logical step is to look at the
symplectic and orthogonal groups G, which is done in this paper. To a great extent,
our classification results rely on the theory developed by the second author in [22].

Let us give a brief outline of the paper. In Sect. 2, we gather some properties of
the arbitrary coadjoint representations, whereas in Sect. 3, we stick to the coadjoint
representations of semi-direct products and describe our classification techniques.
After a brief interlude in Sect. 4 devoted to an example in type A, we dwell upon
the classification of the suitable representations V of the orthogonal (Sect. 5) and
symplectic (Sect. 6) groups. Our results are summarised in Theorem 3.13 and
Tables 1, 2. We are taking a somewhat unusual approach towards a classification and
trying to present the essential ideas for all pairs (G, V ) under consideration. Many
pairs can be handled using general theorems presented in Sect. 3, but some others
require lengthy elaborated ad hoc considerations, see e.g. Theorem 5.13. It appears
a posteriori that, for all representations V of G = Sp2n with polynomial ring
k[V ∗]Sp2n , the algebra of symmetric invariants S(s)S is also polynomial. In most
of the sp2n-cases, we explicitly describe the basic invariants. There is an interesting
connection with the invariants of certain centralisers. In particular, if V = k

2n is
the standard (defining) representations of Sp2n, then there is a kind of matryoshka-
like structure between the invariants of the semi-direct product and the symmetric
invariants of the centraliser of the minimal nilpotent orbit in sp2n−2.
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Notation Let an algebraic group Q act on an irreducible affine variety X. Then
k[X]Q stands for the algebra of Q-invariant regular functions on X and k(X)Q

is the field of Q-invariant rational functions. If k[X]Q is finitely generated, then
X//Q := Spec k[X]Q. Whenever k[X]Q is a graded polynomial ring, the elements
of any set of algebraically independent homogeneous generators will be referred to
as basic invariants. If V is a Q-module and v ∈ V , then qv = {ξ ∈ q | ξ ·v = 0} is
the stabiliser of v in q andQv = {g ∈ Q | g·v = v} is the isotropy group of v inQ.

LetX be an irreducible variety (e.g. a vector space). We say that a property holds
for “generic x ∈ X” if that property holds for all points of an open subset of X. An
open subset is said to be big, if its complement does not contain divisors.

Write heisn, n � 0, for the Heisenberg Lie algebra of dimension 2n+1.

2 Preliminaries on the Coadjoint Representations

LetQ be a connected algebraic group and q = LieQ. The index of q is

ind q = min
γ∈q∗ dim qγ ,

where qγ is the stabiliser of γ in q. In view of Rosenlicht’s theorem [20, § 2.3],
ind q = tr.deg k(q∗)Q. If ind q = 0, then k[q∗]Q = k. For a reductive g, one has
ind g = rk g. In this case, (dim g + rk g)/2 is the dimension of a Borel subalgebra
of g. For an arbitrary q, set b(q) := (ind q+ dim q)/2.

One defines the singular set q∗sing of q∗ by

q∗sing = {γ ∈ q∗ | dim qγ > ind q}.

Set also q∗reg := q∗ \ q∗sing. Further, q is said to have the “codim–2” property (= to
satisfy the “codim–2” condition), if dim q∗sing � dim q − 2. We say that q satisfies

the Kostant regularity criterion (= KRC) if the following properties hold for S(q)Q

and ξ ∈ g∗:

• S(q)Q = k[f1, . . . , fl] is a graded polynomial ring (with basic invariants
f1, . . . , fl);

• ξ ∈ q∗reg if and only if (df1)ξ , . . . , (dfl)ξ are linearly independent.

Every reductive Lie algebra has the “codim–2” property and satisfies KRC.
Observe that (df )ξ ∈ qξ for each f ∈ k[q∗]Q.

Theorem 2.1 (cf. [11, Theorem 1.2]) If q has the “codim–2” property,
tr.deg S(q)Q = ind q = l, and there are algebraically independent f1, . . . , fl ∈
S(q)Q such that

l∑
i=1

deg fi = b(q), then f1, . . . , fl freely generate S(q)Q and the

KRC holds for q.
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Suppose that Q acts on an affine variety X. Then f ∈ k[X] is a semi-invariant
of Q if g·f ∈ kf for each g ∈ Q. A semi-invariant is said to be proper if it is not
an invariant. IfQ has no non-trivial characters (all 1-dimensional representations of
Q are trivial), then it has no proper semi-invariants. In particular, if Q is a semi-
direct product of a semisimple and a unipotent group, then all its semi-invariants are
invariants. We record a well-known observation:

• if Q has no proper semi-invariants in S(q), then k(q∗)Q = Quot (k[q∗]Q) and
hence tr.deg k[q∗]Q = ind q.

Theorem 2.2 (cf. [8, Prop. 5.2]) Suppose that Q has no proper semi-invariants in
S(q) and S(q)Q is freely generated by f1, . . . , fl . Then the differentials df1, . . . , dfl
are linearly independent on a big open subset of q∗.

For any Lie algebra q defined over k, set q
k
:= q⊗kk. Then S(q

k
)qk =

S(q)q⊗kk. If we extend the field, then a set of the generating invariants over k

is again a set of the generating invariants over k. In the other direction, having a
minimal set M of homogeneous generators over k, any k-basis of 〈M〉

k
∩ S(q)

is a minimal set of generators over k. The properties like “being a polynomial
ring” do not change under field extensions. The results in this paper are valid over
fields that are not algebraically closed, but in the proofs we may safely assume that
k = k.

3 On the Coadjoint Representations of a Semi-Direct
Product

For semi-direct products, there are some specific approaches to the symmetric
invariants. Our convention is that G is always a connected reductive group and
g = LieG, whereas a group Q is not necessarily reductive and q = LieQ. In
this section, either s = g�V or s = q�V , where V is a finite-dimensional G- or
Q-module. Then S is a connected algebraic group with Lie S = s. For instance,
S = Q� exp(V ).

The vector space decomposition s = q⊕V leads to s∗ = q∗⊕V ∗. For q = g,
we identify g with g∗. Each element x ∈ V ∗ is considered as a point of s∗ that is
zero on q. We have exp(V )·x = ad∗(V )·x + x, where each element of ad∗(V )·x
is zero on V . Note that ad∗(V )·x ⊂ Ann (qx) ⊂ q∗ and dim(ad∗(V )·x) is equal to
dim(ad∗(q)·x) = dim q− dim qx . Therefore ad∗(V )·x = Ann (qx).

There is a general formula [16] for the index of s = q�V :

ind s = dimV − (dim q− dim qx)+ ind qx with x ∈ V ∗generic. (1)

The decomposition s = q⊕V defines the bi-grading on S(s) and it appears that
S(s)S is a bi-homogeneous subalgebra, cf. [11, Theorem 2.3(i)].
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For any x ∈ V ∗, the affine space q∗+x is exp(V )-stable and Qx-stable. Further,
there is the restriction homomorphism

ψx : k[s∗]S → k[q∗+x]Qx� exp(V ) ) S(qx)
Qx .

The existence of the isomorphism k[q∗+x]exp(V ) ) S(qx) is proven in [22].
If we choose x as the origin in q∗+x, then actually ψx(H) ∈ S(qx) for each
H ∈ k[s∗]exp(V ), see [22, Prop. 2.7].

Suppose thatQ� Q̃ and there is an action of Q̃ on V that extends theQ-action.
Set s̃ = q̃�V , S̃ = Q̃� exp(V ).

Lemma 3.1 We have S(s)S̃ ⊂ S(s)S and H ∈ S(s̃)S̃ lies in S(s) if and only if the
restriction of H to q̃∗+x lies in S(qx) for a generic x ∈ V ∗.
Proof The inclusion S(s)S̃ ⊂ S(s)S is obvious. Now let m be a vector space
complement of q in q̃. Then S(s̃) = S(q) ⊗ S(m) ⊗ S(V ). If H does not lie in
S(q) ⊗ S(V ), then H |q̃∗+x does not lie in S(q) for any x from a non-empty open
subset of V ∗.

Finally, suppose that H ∈ S(s)exp(V ). Then H |q̃∗+x lies in S(q̃x) by [22,
Prop. 2.7]. Clearly, S(q) ∩ S(q̃x) = S(qx). ��
Proposition 3.2 (Prop. 3.11 in [22]) LetQ be a connected algebraic group acting
on a finite-dimensional vector space V . Set s = q�V . Suppose thatQ has no proper
semi-invariants in k[s∗]exp(V ) and k[s∗]S is a polynomial ring in ind s variables. For
generic x ∈ V ∗, we then have

• the restriction map ψ : k[s∗]S → k[q∗+x]Qx� exp(V ) ) S(qx)
Qx is onto;

• S(qx)
Qx coincides with S(qx)

qx ;
• S(qx)

Qx is a polynomial ring in ind qx variables.

Note that Q is not assumed to be reductive and Qx is not assumed to be connected
in the above proposition!

Let now V be a G-module. By a classical result of Richardson, there is a non-
empty open subset Ω ⊂ V ∗ such that the stabilisers Gx are conjugate in G for
all x ∈ Ω , see, e.g., [20, Theorem 7.2]. In this situation (any representative of the
conjugacy class of) Gx is called a generic isotropy group, denoted g.i.g.(G : V ∗),
and gx = LieGx is a generic stabiliser for the G-action on V ∗.

If G is semisimple and V is a reducible G-module, say V = V1 ⊕ V2, then
there is a trick that allows us to relate the polynomiality property for the symmetric
invariants of s = g � V to a smaller semi-direct product. The precise statement is
as follows.

Proposition 3.3 (cf. [14, Prop. 3.5]) With s = g � (V1 ⊕ V2) as above, let H be
a generic isotropy group for (G : V ∗1 ). If k[s∗]S is a polynomial ring, then so is

k[q̃∗]Q̃, where Q̃ = H� exp(V2) or H ◦� exp(V2).

The above passage from s to q̃, i.e., from (G, V1 ⊕ V2) to (H ◦, V2) is called
a reduction, and we denote it by (G, V1 ⊕ V2) −→ (H ◦, V2) in the diagrams
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below. This proposition is going to be used as a tool for proving that k[s∗]S is not
polynomial.

In what follows, the irreducible representations of simple groups are often
identified with their highest weights, using the Vinberg–Onishchik numbering of the
fundamental weights [19]. For instance, if ϕ1, . . . , ϕn are the fundamental weights
of a simple algebraic groupG, then V = ϕi + 2ϕj stands for the direct sum of three
simple G-modules, with highest weights ϕi (once) and ϕj (twice). A full notation
is V = Vϕi + 2Vϕi . Note that adding a trivial 1-dimensional G-module k to V does
not affect the polynomiality property for s.

Example 3.4 There is a diagram (tree) of reductions:

For instance, the first horizontal arrow means that for G = Spin11 and V1 = 2ϕ1,
we have g.i.g.(G, V1) = Spin9 and the restriction of V2 = ϕ5 to H = Spin9 is
the H -module 2ϕ4. The terminal item (in the box) does not have the polynomiality
property by [23]. Therefore all the items here do not have the polynomiality property
by Proposition 3.3.

The action (G : V ) is said to be stable if the union of closed G-orbits is dense in
V . Then g.i.g.(G : V ) is necessarily reductive.

We mention the following good situation. Suppose that G is semisimple. If a
generic stabiliser for the G-action on V ∗ is reductive, then the action (G : V ∗)
is stable [20, § 7]. Moreover, S has only trivial characters and no proper semi-
invariants.

Example 3.5 (cf. [22, Example 3.6]) If G is semisimple, gx = sl2 for x ∈ V ∗
generic, and k[V ∗]G is a polynomial ring, then S(s)s is a polynomial ring.

We say that dimV//G is the rank of the pair (G, V ). For (G, V ∗) of rank one,
we have two general results.

Consider the following assumptions on G and V :

(♦) the action (G : V ∗) is stable, k[V ∗]G is a polynomial ring, k[g∗ξ ]Gξ is a
polynomial ring for generic ξ ∈ V ∗, and G has no proper semi-invariants in
k[V ∗].

Theorem 3.6 ([14, Theorem 2.3]) Suppose thatG and V satisfy condition (♦) and
V ∗//G = A

1, i.e., k[V ∗]G = k[F ] for some homogeneous F . Let L be a generic
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isotropy group for (G : V ∗). Assume further that D = {x ∈ V ∗ | F(x) = 0}
contains an openG-orbit, sayG·y, ind gy = ind l =: �, and S(gy)

Gy is a polynomial
ring in � variables with the same degrees of generators as S(l)L. Then k[s∗]S is a
polynomial ring in ind s = �+ 1 variables.

Lemma 3.7 Suppose that G is semisimple, k[V ∗]G = k[F ] and a generic isotropy
group for (G : V ∗), say L, is connected and is either of type B2 or G2. Then
s = g� V has the polynomiality property.

Proof Let x ∈ V ∗ be generic andGx = L, hence gx = l. By [22, Lemma 3.5], there
are irreducible bi-homogeneous S-invariants H1 and H2 such that their restrictions
to g+ x = g∗ + x yield the basic symmetric invariants of l under the isomorphism
k[g∗+x]Gx� exp(V ) ) S(gx)

Gx . Furthermore, k[s∗]S = k[F,H1,H2] if and only
if H1 and H2 are algebraically independent over k[D]G = k on g × D, where D
is the zero set of F . W.l.o.g., we may assume that deggH1 = 2 and deggH2 =
4 (if L = B2) or deggH2 = 6 (if L = G2). We may also assume that a non-
trivial relation among H1|g×D , H2|g×D is homogeneous w.r.t. g and therefore boils

down to
Hα1
H2

≡ a mod (F ) for α ∈ {2, 3}, depending on L, and a ∈ k. Such a
relation means that H2 is chosen wrongly and has to be replaced by a polynomial
(H2 − aHα1 )/F r with the largest possible r � 1. This modification decreases the
total degree of H2 and hence it cannot be performed infinitely many times. ��

The following result holds for actions of arbitrary rank.

Lemma 3.8 Suppose that G is semisimple, k[V ∗]G is a polynomial ring and a
generic isotropy group for (G : V ∗) is a connected group of type A2. Assume
further that, for any G-stable divisor D ⊂ V ∗ and a generic point y ∈ D, we
have dim S2(gy)

Gy = dim S3(gy)
Gy = 1 and that these unique (up to a scalar)

invariants are algebraically independent. Then s = g � V has the polynomiality
property.

Proof The statement readily follows from [22, Lemma 3.5]. ��

3.1 Yet Another Case of a Surjective Restriction

By Proposition 3.2, if x ∈ V ∗ is generic, then the restriction homomorphism
ψx : k[s∗]S → k[q∗+x]Qx� exp(V ) is surjective, whenever k[s∗]S is a polynomial
ring and Q has no proper semi-invariants in k[s∗]exp(V ). On the other hand, ψx is
surjective for generic x ∈ V ∗ if Q = G is reductive and the G-action on V ∗ is
stable [22, Theorem 2.8]. It is likely that the surjectivity holds for a wider class of
semi-direct products.

Suppose that k is algebraically closed. Take Q and V such that dim(Q·ξ) =
dimV − 1 for generic ξ ∈ V ∗. Assume that k[V ∗]Q �= k. Then k[V ∗]Q = k[F ],
where F is a homogeneous polynomial of degree N � 1, k(V ∗)Q = k(F ), and
F separates generic Q-orbits on V ∗. Hence kξ ∩ Q·ξ = {ax | a ∈ k, aN = 1}
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for generic ξ ∈ V ∗. Let NQ(kξ) be the normaliser of the line kξ . Then NQ(kξ) =
CN×Qξ , where CN ⊂ k

×
is a cyclic group of order N . Let CN act on V faithfully,

then Q̃ := CN×Q acts on V and Q̃ξ ) CN×Qξ . If H ∈ k[s∗]Q is homogeneous
in V , then ψξ (H) is an eigenvector of CN ⊂ Q̃ξ and the corresponding eigenvalue
depends only on degV H .

Theorem 3.9 (Generalised Surjectivity or the “Rank-One Argument”) Let Q
be a connected algebraic group with LieQ = q. Suppose that V is a Q-module
such that Q has no proper semi-invariants in k[V ∗] and k[V ∗]Q = k[F ] with
F �∈ k. Set s = q�V , S = Q� exp(V ). Then the natural homomorphism

ψξ : k[s∗]S → k[q∗ + ξ ]Qξ� exp(V ) ) S(qξ )
Qξ

is onto for generic ξ ∈ V ∗. Moreover, if h ∈ k[q∗+ξ ]Qξ� exp(V ) is a semi-
invariant of NQ(kξ), then there is a homogeneous in V polynomial H ∈ k[s∗]S
with ψξ (H) = h.

Proof Let S act on an irreducible variety X. A classical result of Rosenlicht [20,
§ 2.3] implies that the functions f1, . . . , fm ∈ k(X)S generate k(X)S if and only
if they separate generic S-orbits on X. Let U ⊂ s∗ be a non-empty open subset
such that for every two different orbits S·u, S·u′ ⊂ U , there is f ∈ k(s∗)S
separating them, meaning that f takes finite values at u, u′ and f(u) �= f(u′). Then
U ∩ (q∗+ξ) �= ∅ for generic ξ ∈ V ∗ and hence generic Qξ� exp(V )-orbits on
q∗+ξ are separated by rational S-invariants for any such ξ . In other words, for every
h ∈ k(q∗+ξ)Qξ� exp(V ) there is r̃ ∈ k(s∗)S such that ψξ (r̃) := r̃|q∗+ξ = h.

The same principle applies to the group k
××S, where k

×
acts on V by t ·v = tv

for all t ∈ k
×
, v ∈ V . A rational invariant of (k

××Q)ξ� exp(V ) on q∗+ξ extends to
a rational (k

××S)-invariant on s∗.
The absence of proper semi-invariants implies that k(V ∗)Q = k(F ). Hence a

generic Q-orbit on V ∗ is of dimension dimV−1. Assume that F is homogeneous
and set N := degF .

Choose a generic point ξ ∈ V ∗ with F(ξ) �= 0 and with dim(Q·ξ) = dimV−1.
Then NQ(kξ) = CN×Qξ . As above, set Q̃ := CN×Q and also S̃ := CN×S. We
regard Q̃ as a subgroup of k

××Q. Now Q̃ξ = (k××Q)ξ .
The groupCN ⊂ Q̃ξ acts on k[q∗+ξ ]Qξ� exp(V ) and this action is diagonalisable.

Suppose that h ∈ k[q∗ + ξ ]Qξ� exp(V ) is an eigenvector of CN . First we show that
there is r ∈ k(s∗)S such that ψξ (r) is an eigenvector of CN ⊂ Q̃ξ with the same
weight as h.

Recall that h extends to a rational S-invariant r̃ ∈ k(s∗)S . The group CN is finite,
hence r̃ is contained in a finite-dimensional CN -stable vector space and thereby r̃

is a sum of rational S-invariant CN -eigenvectors. Since a copy of CN sitting in Q̃
stabilises ξ , we can replace r̃ with a suitable CN -semi-invariant component. By
a standard argument, this new r̃ is a ratio of two regular S̃-semi-invariants, say
r̃ = q/f now. Each bi-homogenous w.r.t. s = q⊕V component of q (or f ) is again
a semi-invariant of S̃ of the same weight as q (or f ). Let us replace f (and q) with
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any of its non-zero bi-homogenous components. The resulting rational function r
has the same weight as r̃ . In particular, r is an S-invariant. Thus, we have found
the required rational function. Since r is a semi-invariant of k

×
, it is defined on

a non-empty open subset of q∗×Q·x for each x ∈ V ∗ such that F(x) �= 0 and
dim(Q·x) = dimV−1.

Set r̄ := ψξ (r) ∈ k(q∗+ξ). Then h/r̄ ⊂ k(q∗+ξ)Q̃ξ� exp(V ) and therefore
extends to a rational (k

××S)-invariant on s∗. Multiplying the extension by r , we
obtain a rational S-invariant R, which is also an eigenvector of k

×
. Let R = H/P ,

where H,P ∈ k[s∗] are relatively prime. Then both H and P are homogenous
in V . Note that R is defined on q∗+ξ , therefore also on q∗×Q·ξ and finally on
q × k

×
(Q·ξ), because R(η+aξ) = akR(η+ξ) for some k ∈ Z and for all a ∈ k

×
,

η ∈ q∗. Hence P is a polynomial in F , more explicitly, P = Fd fore some d � 0.

Multiplying R by Fd

F(ξ)d
yields the required pre-image H . ��

Remark 3.10 Since k[V ∗]Q = k[F ] and there are no proper Q-semi-invariants in
k[V ∗], q∗×Q·ξ is a big open subset of

Yα = {q∗+x | F(x) = F(ξ)} = {γ ∈ s∗ | F(γ ) = α},

where α = F(ξ). For a reductive group G, one knows that any regular G-invariant
on a closed G-stable subset Y ⊂ X of an affine G-variety X extends to a regular
G-invariant on X. Assuming that the image of Q in GL(V ∗) is reductive, we could
present a different proof of Theorem 3.9, similar to the proof of Theorem 2.8 in [22].

3.2 Tables and Classification Tools

Our goal is to classify the pairs (G, V ) such that G is either Spinn or Sp2n and the
semi-direct product s = g � V has a Free Algebra of symmetric invariants, (FA)
for short. We also say that (G, V ) is a positive (resp. negative) case, if the property
(FA) is (resp. is not) satisfied for s.

Example 3.11 If G is arbitrary semisimple, then g � gab, where gab is an Abelian
ideal isomorphic to g as a g-module, always has (FA) [18]. Therefore we exclude
the adjoint representations from our further consideration.

• If k[s∗]S is a polynomial ring, then so is k[V ∗]G [11, Section 2 (A)] (cf. [22,
Section 3]). For this reason, we only have to examine all representations of G
with polynomial rings of invariants.

• Since the algebras k[V ]G and k[V ∗]G (as well as S(g � V )G�V and S(g �

V ∗)G�V ∗ ) are isomorphic, it suffices to keep track of either V or V ∗. The same
principle applies to the two half-spin representations in type D2m.
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Example 3.12 If a generic stabiliser for (G:V ∗) is trivial, then k[s∗]S )
k[V ∗]G [10, Theorem 6.4] (cf. [22, Example 3.1]). Therefore all such semi-direct
products have (FA).

We are lucky that there is a classification of the representations of the simple
algebraic groups with non-trivial generic stabilisers obtained by Elashvili [2].
In addition, the two independent classifications in [1, 17] provide the list of
representations of simple algebraic groups with polynomial rings of invariants.
Combining them, we obtain the representations in Tables 1 and 2.

Explanations to the Tables As in [1, 2, 13, 14, 22], we use the Vinberg–Onishchik
numbering of fundamental weights, see [19, Table 1]. In both tables, h is a generic
stabiliser for (G : V ) and the last column indicates whether (FA) is satisfied for s or
not. Naturally, the positive cases are marked with ‘+′. This last column represents
the main results of the article. The ring k[V ∗]G is always a polynomial ring in
dimV//G variables. If the expression for dimV//G is bulky, then it is not included
in Table 1. However, one always has dimV//G = dimV − dimG + dim h. If s
has (FA), then ind s = dimV//G + ind h is the total number of the basic invariants
in k[s∗]S . The symbol Un in Table 2 stands for a commutative Lie subalgebra of
dimension n that consists of nilpotent elements.

Our classification is summarised in the following

Theorem 3.13 Let G be either Spinn or Sp2n, V a finite-dimensional rational G-
module, and s = g � V . Then k[s∗]S is a free algebra if and only if one of the
following conditions is satisfied:

(i) V = g;
(ii) V or V ∗ occurs in Tables 1 and 2, and the last column is marked with ‘+’.

It is also possible to permute ϕ5 and ϕ6 for D6, and take any permutation of
ϕ1, ϕ3, ϕ4 for D4.

(iii) k[V ]G is a free algebra and g.i.g.(G : V ) is finite, i.e., (G, V ) is contained in
the lists of [1, 17], but is not contained in the tables of [2].

• Generic stabilisers for the representations in the tables are taken from [2]. To
verify that the generic isotropy groups are connected, we use Proposition 4.10
and Remark 4.11 in [17]. In case of reducible representations, this can be
combined with the group analogue of [2, Lemma 2].

• Apart from a generic isotropy group for (G : V ∗), we often have to compute the
isotropy group Gy , where y is a generic point of a G-stable divisor D ⊂ V ∗,
cf. Theorem 3.6. Mostly this is done by ad hoc methods. Also the following
observation is very helpful. Any divisor D ⊂ V1 ⊕ V2 projects dominantly to
at least one factor Vi . Hence it contains a subset of the form {xi} × Di′ , where
xi ∈ Vi is generic, Di′ ⊂ Vi′ is a divisor, and {i, i′} = {1, 2}.

• Another major ingredient in obtaining the classification is (the presence of) the
“codim–2” property for s. Some methods for checking the “codim–2” condition
are presented in [13, Sect. 4]. Similarly to the Raïs formula, see Eq. (1), we also
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Table 1 The representations of the orthogonal groups with polynomial ring k[V ]G and non-
trivial generic stabilisers

� G V dimV dimV//G h ind s (FA)

1 SOn mϕ1, m<n−1 mn
m(m+1)

2 son−m
(
m+1

2

)+[ n−m2 ] +
2a B3 ϕ3 8 1 G2 3 +

2b
mϕ1+m′ϕ3

2�m+m′�3

m′>0

7m+8m′ A4−m−m′ −, if (1, 1)

3a B4 ϕ4 16 1 B3 4 +
3b ϕ1+ϕ4 25 3 G2 5 +
3c 2ϕ1+ϕ4 34 6 A2 8 +
3d 3ϕ1+ϕ4 43 10 A1 11 +
3e 2ϕ4 32 4 A2 6 −
3f ϕ1+2ϕ4 41 8 A1 9 +
4 B5

mϕ1+ϕ5,

0�m�3
32+11m 1+m+m2 A4−m 5+m2 +, if m = 0,3

−, if m = 1,2

5a B6 ϕ6 64 2 A2+A2 6 +
5b ϕ1+ϕ6 77 5 A1+A1 7 +
6a D4 ϕ1+ϕ3 16 2 G2 4 +
6b mϕ1+ϕ3,m=2,3 8(m+1) A4−m +, if m=3

6c
mϕ1+ϕ3+ϕ4

m=1, 2
8(m+2) A3−m +

7a D5 ϕ4 16 0 so7�Vϕ3 3 +
7b ϕ1+ϕ4 26 2 B3 5 +
7c 2ϕ1+ϕ4 36 5 G2 7 +
7d mϕ1+ϕ4,m=3,4 16+10m A5−m +
7e 2ϕ4 32 1 G2 3 +
7f mϕ1+2ϕ4,m=1,2 32+10m A3−m +, if m=2

7g 3ϕ4 or 2ϕ4+ϕ5 48 6 A1 7 +
7h

mϕ1+ϕ4+ϕ5

0�m�2
32+10m 2+2m+m2 A3−m 5+m+m2 −, if m�1

+, if m=2

8a D6
mϕ1+ϕ5

0�m�4
32+12m 1+m2 A5−m 6−m+m2 +, if m = 0,4

−, if 1�m�3

8b 2ϕ5 64 7 3A1 10 +
8c ϕ5+ϕ6 64 4 2A1 6 +
9a D7 ϕ6 64 1 2G2 5 +
9b mϕ1+ϕ6,m=1,2 64+14m 2A3−m +

have

dim sγ+y = dim(gy)γ̄ + (dimV − dim(G·y)),
where y ∈ V ∗, γ ∈ g, and γ̄ = γ |gy , cf. [22, Eq. (3·1)]. Therefore, s has the
“codim–2” property if and only if
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Table 2 The representations of the symplectic group with polynomial ring k[V ]G and non-trivial
generic stabilisers

� G V dimV dimV//G h ind s (FA)

1 Cn
mϕ1,

m�2n−1
2mn

(
m
2

) Cn−l , m = 2l

Cn−l�heisn−l , m = 2l−1

(
m
2

)+n−[m2 ] +
2 Cn ϕ2 2n2−n−1 n− 1 nA1 2n−1 +
3 Cn ϕ1+ϕ2 2n2+n−1 n− 1 Un 2n−1 +
4 C3 ϕ3 14 1 A2 3 +
5 ϕ1+ϕ3 20 2 A1 3 +
6 2ϕ2 28 8 t1 9 +

(i) gx with x ∈ V ∗ generic has the “codim–2” property and
(ii) for any divisor D ⊂ V , ind gy + (dimV − dim(G·y)) = ind s holds for all

points y of a non-empty open subset U ⊂ D, cf. [22, Eq. (3·2)].

• Finally, we recall an important class of semi-direct products. Let g = g0 ⊕ g1 be
a Z2-grading of g, i.e., (g, g0) is a symmetric pair. Then the semi-direct product
s = g0�gab

1 , where [gab
1 , g

ab
1 ] = 0, is called the Z2-contraction of g related

to the symmetric pair (g, g0). Set l = rk g and let H1, . . . , Hl be a set of the
basic symmetric invariants of g. Let H •i denote the bi-homogeneous component
of Hi that has the highest g1-degree. Then H •i is an s-invariant in S(s) [11]. We
say that a Z2-contraction s = g0�gab

1 is good if S(s)s is freely generated by
the polynomials H •1 , . . . , H •l for some well-chosen generators {Hi}. Note that
degHi = degH •i for the usual degree.

4 An Example in Type A

The example considered in this section will be needed below in our treatment of
G = SOn. It can also be regarded as a small step towards the classification in
type A.

Suppose that G = SLn ⊂ GLn = G̃ and V = ∧2
k
n⊕(∧2

k
n)∗. Then

s̃ = g̃�V is the Z2-contraction of so2n related to the symmetric pair (so2n, gln).
By [21, Theorem 4.5], this Z2-contraction is good and satisfies KRC. Our goal
is to describe S(s)s using the known description for s̃. Let us denote the basic
symmetric invariants of s̃ by H1, . . . , H�, F1, . . . , Fr , where degFi = 2i and
k[F1, . . . , Fr ] = k[V ∗]GLn . Then necessary � = [n+1

2 ], r = [n2 ].
Proposition 4.1 If n = 2r is even, then S(s)s is freely generated by
H1, . . . , Hr, F1, . . . , Fr−1, F ′r , Fr+1 with degF ′r = degFr+1 = r .

Proof Since n is even, the generic isotropy group of the GLn-action on V ∗ is
(SL2)

r and it lies in SLn. Therefore each Hi lies in S(s), see Lemma 3.1. The new
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generators F ′r , Fr+1 are the pfaffians on
∧2

k
n and (

∧2
k
n)∗, respectively. We have

⎛

⎝
r∑

i=1

degHi +
r−1∑

j=1

degFj

⎞

⎠+ 2r = dim s+ ind s

2
.

The generic isotropy groups of (G:∧2
k
n) and (G̃:∧2

k
n) are the same and s̃ has

the “codim-2” property by [11]. Therefore s has the “codim–2” property as well.
The polynomials F1, . . . , Fr−1, F

′
r , Fr+1 freely generate k[V ∗]G [1, 17] and the

other generators, H1, . . . , Hr , are algebraically independent over k[V ∗]. Therefore
Theorem 2.1 applies and provides the result. ��

The case of an odd n is much more difficult, because a generic stabiliser for
(G:V ) is not reductive. We conjecture that S(s)s is still a polynomial ring, but the
proof would require a subtle detailed analysis of the generators H1, . . . , H�. Since
that case is not used in this paper, we postpone the exploration. Note only that if
n = 3, then there is an isomorphism

∧2
k

3 ) (k3)∗. The pair (SL3,k
3⊕(k3)∗) was

considered in [23], where it is shown that the corresponding s has (FA).

5 The Classification for the Orthogonal Algebra

In this section, G = Spinn. We classify the finite-dimensional rational representa-
tions (G : V ) such that g.i.g.(G : V ) is infinite and the symmetric invariants of
s = g� V form a polynomial ring. The answer is given in Table 1.

5.1 The Negative Cases in Table 1

Most of the negative cases (i.e., those having ‘−’ in column (FA) in Table 1) are
justified by Proposition 3.3 and the reductions of Example 3.4. Another similar
diagram is presented below:

(2)

That is, our next step is to show that (Spin10, ϕ4 + ϕ5) does not have (FA). Once
this is done, we will know that all the cases in Diagram (2) are indeed negative.
Afterwards, only one negative case is left, namely (Spin12, ϕ1 + ϕ5).
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Theorem 5.1 The semi-direct product s = so10 � (ϕ4 + ϕ5) does not have (FA).

Proof HereG = Spin10 is a subgroup of Spin11 ⊂ GL(V ) and V ) V ∗ as a Spin11-
module. A generic isotropy group in Spin11 is SL5. A generic isotropy group in
Spin10 is SL4. There is a divisor D ⊂ V such that Gy is connected and gy =
sl3�heis3 for a generic point y ∈ D. The stabiliser gy is obtained as an intersection
of sl5 and a specially chosen so10 ⊂ so11.

Assume that s has (FA). Then S(s)s = k[H1,H2,H3, F1, F2], where k[V ∗]G =
k[F1, F2]. According to Proposition 3.2, the restrictions Hi |g+x are generators of
S(sl4)

SL4 for x ∈ V ∗ generic. Therefore we may assume that deggHi = i+1.
By Theorem 2.2, there is y ∈ D with Gy as above such that the differentials
dF1, dF2, dH1, dH2, dH3 are linearly independent on a non-empty open subset of
g+ y that is stable w.r.t. Gy� exp(V ).

Take ξ = γ+y with γ ∈ g generic. Replacing γ by another point in γ+ad∗(V )y
we may safely assume that γ is zero on Ann (gy). Let γ̄ stand for the restriction of
γ to gy . Then sξ = (gy)γ̄ ⊕ k

2 = (t2⊕kz)⊕ k
2, where kz is the centre of heis3, t2

is a Cartan subalgebra of sl3, and k
2 ⊂ V .

We have (dFi)ξ ∈ sξ ∩ V = k
2. At the same time (dHi)ξ = ηi + ui , where

ui ∈ V , ηi ∈ g, and ηi is the differential of Hi |g+y at γ . Since γ was chosen to
be generic, the elements η1, η2, η3 are linearly independent. Hence the restrictions
hi := Hi |g+y are algebraically independent.

It can be easily seen that ind gy = 3 and that gy satisfies the “codim–2” condition.
Since deg hi = i+1, we have S(gy)

Gy = k[h1,h2,h3] by Theorem 2.1. But z ∈
S(gy)

Gy and deg z = 1. A contradiction! ��
Theorem 5.2 The semi-direct product s = so12 � (ϕ1 + ϕ5) does not have (FA).

Proof HereG = Spin12 and a generic isotropy group for theG-action on Vϕ5 (resp.
Vϕ1 ⊕ Vϕ5 ) is SL6 (resp. SL5). Let f be a Spin12-invariant quadratic form on Vϕ1 )
V ∗ϕ1

. Then D = {f = 0} × V ∗ϕ5
is a G-stable divisor in V ∗. It can be verified that,

for a generic point y ∈ D, one has gy = sl4 � heis4 and Gy is connected. As in the
proof of Theorem 5.1, S(gy)Gy has an element of degree 1, i.e., it is not generated by
symmetric invariants of degrees 2, 3, 4, 5, but it would have been if s had (FA). ��

5.2 The Positive Cases in Table 1

We now proceed to the positive cases. Note first that all the instances, where h is of
type A1, are covered by Example 3.5.

Proposition 5.3 (Item 1) The semi-direct product s = son �mk
n with m < n has

(FA).

Proof We haveG�G̃with G̃ = SOn×SOm and s�s̃ for s̃ = g̃�V . The Lie algebra
s̃ is the Z2-contraction of son+m related to the symmetric subalgebra son⊕som.
Let x ∈ V ∗ be generic. Then G̃x = Gx = SOn−m. According to [11], k[s̃∗]s̃ =
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k[V ∗]G̃[H1, . . . , H�] is a polynomial ring, � = [n−m2 ]. By Lemma 3.1, Hi ∈ S(s)
for every i. Next, s has the “codim–2” property if m = 1 by [11], hence s always
has it. The polynomials Hi are algebraically independent over k(V ∗) and k[V ∗]G
has m(m+1)

2 generators of degree 2. Thereby we have ind s algebraically independent
homogeneous invariants with the total sum of degrees being equal to

m(m+1)+
�∑

i=1

degHi = m(m+1)+ b(s̃)−m(m+1) = b(s̃) = b(son+m) = b(s).

According to Theorem 2.1, k[s∗]S = k[V ∗]G[H1, . . . , H�]. ��
Theorem 5.4 (Item 9b) The semi-direct product s = so14 � (ϕ1 + ϕ6) has (FA).

Proof Here G = Spin14 and the pair (Spin14, V
∗
ϕ6
) is of rank one. Let v ∈ V ∗ϕ6

be a
generic point. Then Gv = L × L, where L is the connected group of type G2. By
Theorem 3.9, the restriction homomorphism

ψv : k[s∗]S → k[g∗ ⊕ V ∗ϕ1
+ v]Gv�exp(V ) ) k[g∗v ⊕ V ∗ϕ1

]Gv�exp(Vϕ1 )

is surjective. Furthermore, Vϕ1 ) k
14 = k

7 ⊕ k
7 as an L × L-module, where each

k
7 is a simplest irreducible G2-module. Hence Gv� exp(Vϕ1) = Q × Q, where
Q = L � exp(k7). The group Q has a free algebra of symmetric invariants and
ind q = 3 [14].

There are irreducible tri-homogeneous polynomials H1, . . . , H6 ∈ k[s∗]S such
that, for a generic point v ∈ V ∗ϕ6

, their images hi = ψv(Hi) generate S(q×q)Q×Q.
Let f be a basic G-invariant in k[V ∗ϕ6

].
Although the group G� exp(k14) is not reductive, we can argue in the spirit

of [22, Section 2] and conclude that k[s∗]S[ 1
f
] = k[H1, . . . , H6, f,

1
f
]. Then the

equality

k[s∗]S = k[H1, . . . , H6, f ]

holds if and only if the restrictions of the polynomials {Hi} to V ∗ϕ1
× D are

algebraically independent, where D = {f = 0} ⊂ V ∗ϕ6
.

Let G·y ⊂ D be the dense open orbit. Then Gy is connected and gy = l� lab is
the Takiff Lie algebra in type G2, l = LieL. There is only one possible embedding
of gy into so14. Under the non-Abelian l the space k

14 decomposes as a sum of
two 7-dimensional simple modules. The Abelian ideal lab takes one copy of k7 into
another. In other words, gy � k

14 = q � qab. By [15, Example 4.1], Theorem 2.2
of the same paper [15] applies to q and guarantees us that the symmetric invariants
of q�qab form a polynomial ring in 6 generators, where the degrees of the basic
invariants are the same as in the case of q⊕ q.
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It remains to observe that the proof of [14, Theorem 2.3] can be repeated for the
semi-direct product (G� exp(Vϕ1))� exp(Vϕ6) producing a suitable modification of
the elements H1, . . . , H6, cf. Theorem 3.6. ��
Corollary 5.5 (Item 5a) The reduction

(Spin14, ϕ1 + ϕ6) −→ (Spin13, ϕ6)

shows that also (Spin13, ϕ6) has (FA), see Proposition 3.3.

Theorem 5.6 The semi-direct product s = so14 � (2ϕ1 + ϕ6) has (FA).

Proof Here G = Spin14 and the proof follows the same lines as the proof of
Theorem 5.4. We split the group S as (G� exp(2Vϕ1))� exp(Vϕ6). Now Q =
L� exp(2k7) and again Gv� exp(2Vϕ1) = Q × Q. By [14], q has (FA) and the
“codim–2” property. Here ind q = 4 and we have eight polynomials Hi ∈ k[s∗]S
such that their restrictions to g ⊕ (2V ∗ϕ1

) + v generate S(q ⊕ q)Q×Q. These
polynomials are tri-homogeneous w.r.t. the decomposition s = g ⊕ 2Vϕ1 ⊕ Vϕ6 .
Again gv � (Vϕ1 ⊕ Vϕ1) = q � qab, [15, Theorem 2.2] applies to q and
assures that the symmetric invariants of q�qab form a polynomial ring in 8
generators, where the degrees of the basic invariants are the same as in the case of
q⊕ q. ��
Corollary 5.7 The reductions

(Spin14, 2ϕ1 + ϕ6) −→ (Spin13, ϕ1 + ϕ6 + k) −→ (Spin12, ϕ5 + ϕ6 + k)

show that the pairs (Spin13, ϕ1 + ϕ6) and (Spin12, ϕ5 + ϕ6) also have (FA), see
Proposition 3.3.

Many representations in types D4, B4, and B3 are covered by reductions from
D5. Among the type D5 cases, the following one is easy to handle.

Example 5.8 (Item7a) The pair (D5, ϕ4) is of rank zero and therefore the open
Spin10-orbit in k

10 is big. The existence of the isomorphism k[g + x]Gx� exp(V ) )
S(gx)

Gx [22] shows that S(s)s ) S(h)H , where H is the isotropy group of an
element in the open orbit and h = LieH . In order to be more explicit, H is
connected and h = so7�k

8, where so7 acts on k
8 via the spin-representation.

The algebra S(h)h is free by [22, Example 3.8]. By a coincidence, the semi-direct
product encoded by (D5, ϕ4) is also a truncated maximal parabolic subalgebra p
of E6. The symmetric invariants of p are studied in [3] and by a computer aided
calculation it is shown there that S(p)p is a polynomial ring with three generators of
degrees 6, 8, and 18.
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Below we list the ‘top’ pairs that have to be treated individually. They are divided
into two classes, in the first class dimV//G = 1 and in the second dimV//G > 1.

{
Rank one pairs: (B5, ϕ5), (D5, 2ϕ4), (D6, ϕ5), (D7, ϕ6);
higher rank pairs: (D5, ϕ1 + ϕ4), (D5, 2ϕ1 + ϕ4), (D5, 3ϕ1 + ϕ4), (D6, 2ϕ5).

(3)

Theorem 5.9 The rank one pairs listed in (3) have (FA).

Proof In case of (D5, 2ϕ4) a generic stabiliser is of type G2. This pair is covered
by Lemma 3.7. For the other three pairs, many conditions of Theorem 3.6 are
satisfied. For each pair, there is an open orbit G·y ⊂ D, where D stands for the
zero set of the generator F ∈ k[V ∗]G. It remains to inspect the symmetric invariants
of Gy .

A generic isotropy group for (B5, ϕ5) is SL5, Gy is connected, and gy is a Z2-
contraction of sl5, the semi-direct product so5�Vϕ2

1
, which is a good Z2-contraction

[11].
A generic isotropy group for (D6, ϕ5) is SL6, Gy is connected, and gy is a Z2-

contraction of sl6, the semi-direct product sp6�Vϕ2 , which is a good Z2-contraction
[21, Theorem 4.5].

A generic isotropy group for (D7, ϕ6) is L× L, where L is the connected group
of type G2, Gy is connected, and gy is the Takiff algebra l�lab, where l = LieL.
The basic symmetric invariants of gy have the same degrees as in the case of
l⊕ l [18].

��
Example 5.10 (Item 7d) For the pair (D5, 3ϕ1 + ϕ4), a generic isotropy group is
connected and is of type A2. Let D ⊂ V ∗ be a G-invariant divisor. Then there are
at least two copies of k10 in V ∗ such that the projection of D on each of them is
surjective. For a generic y ∈ D, Gy = (Spin8)ỹ , where ỹ is a generic point of a
Spin8-invariant divisor D̃ ⊂ Vϕ1 ⊕ Vϕ3 ⊕ Vϕ4 (here highest weights of Spin8 are
meant). Continuing the computation one obtains that Gy = Lv , where L is the
connected group of type G2 and v is a highest weight vector in k

7. The group Lv
has a free algebra of symmetric invariants generated in degrees 2 and 3, see [14,
Lemma 3.9]. Therefore Lemma 3.8 applies.

The remaining three higher rank pairs listed in (3) require elaborate arguments.
For all of them, Theorem 3.9 will be the starting point. Note that the pair (SOn,kn)
is of rank one. We let ( . , . ) denote a non-degenerate SOn-invariant scalar product
on k

n.

Theorem 5.11 (Item 7b) The semi-direct product s = so10 � (ϕ1 + ϕ4) has (FA).

Proof Here G = Spin10 and we use the reduction

(Spin10, ϕ1+ϕ4)→ (Spin9, ϕ4) (4)
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in the increasing direction, starting from the smaller representation and its invari-
ants. By Theorem 3.9, the restriction homomorphism

ψv : k[s∗]s → k[g∗ ⊕ V ∗ϕ4
+ v]Gv�exp(V ) ) k[g∗v ⊕ V ∗ϕ4

]Gv�exp(Vϕ4 )

is surjective for generic v ∈ V ∗ϕ1
. HereGv = Spin9. The groupQ = Gv � exp(Vϕ4)

has a free algebra of symmetric invariants [11, Theorem 4.7]. More explicitly, S(q)Q

is generated by ( . , . ) on k
16 and three bi-homogeneous polynomials h1, h2, h3 of

bi-degrees (2, 4), (4, 4), (6, 6). Note that each generator is unique up to a non-zero
scalar. Whenever (ξ, ξ) �= 0 for ξ ∈ V ∗ϕ4

, we have hi |so9+ξ = Δ2i , where each Δ2i
is a basic symmetric invariant of so7 = (so9)ξ . The generators Δ2i are now fixed
and they do not depend on the choice of ξ .

Take Hi ∈ k[s∗]s with ψv(Hi) = hi . Without loss of generality, we may assume
that Hi is homogeneous w.r.t. to g and Vϕ4 . The uniqueness of the basic symmetric
q-invariants, allows us to take a suitable tri-homogeneous component of each Hi ,
see Theorem 3.9. Now assume that each Hi is irreducible. Whenever (ξ, ξ) �= 0 for
ξ ∈ k

16 and (η, η) �= 0 for η ∈ k
10, we have Hi |g+x = axΔ2i , where x = η + ξ

and ax ∈ k
×
.

According to [22, Lemma 3.5(ii)], we have S(s)s = k[V ∗]G[H1,H2,H3] if and
only if the restrictions Hi |g×D are algebraically independent over k[D]G for each
G-invariant divisor D ⊂ V ∗.

If D contains a point av + ξ with ξ ∈ k
16 and a �= 0, a relation among Hi |g×D

leads to a relation among the restrictions of hi to so9×D̃ for some Spin9-invariant
divisor D̃ ⊂ k

16. Moreover, this new relation is over k[{v}×D]Gv = k. Since
the polynomials hi freely generate S(q)q over k[V ∗ϕ4

]Spin9 , nothing of this sort can
happen. Therefore there is a unique suspicious divisor, namely, the divisor D =
D̃ × k

16, where D̃ = {u ∈ k
10 | (u, u) = 0}.

Since eachHi is irreducible, it is non-zero on g×D. Therefore there is a point ξ ∈
k

16 such that (ξ, ξ) �= 0 and Hi |g×D̃×{ξ} �= 0 for all i. Here Gξ = Spin7� exp(k8)

and k
10 ⊂ V ∗ decomposes as k ⊕ k

8 ⊕ k under Gξ . The Abelian ideal k8 of gξ
takes k to k

8 and then k
8 to another copy of k. Note that the vectors in each copy of

k are isotropic. Take u �= 0 in the first copy and u′ �= 0 in the second copy of k. Set
ηt = u+tu′, xt = ηt+ξ for t ∈ k, y = u+ξ . Then Gxt = Gy ) Spin7.

We have (ηt , ηt ) �= 0 for t �= 0 and hence Hi |g+xt = atΔ2i �= 0, whenever
t �= 0. Here atΔ2i ∈ S(gxt ) = S(gy). Clearly Hi |g×{y} = lim

t→0
atΔ2i and it is either

zero or a non-zero scalar multiple of Δ2i . If the second possibility takes place for
all i, when the restrictions of Hi to g×D are algebraically independent over k[D].
Thus, it remains to prove that Hi |g×{y} �= 0 for all i.

Assume that Hi |g×{y} = 0. Then Hi vanishes on g×Gξ ·u×{ξ} and also on
g×Gξ ·ku×{ξ}, since Hi is tri-homogeneous. The subset Gξ ·ku is dense in D̃ (it
equals D̃ \ {0}), hence Hi vanishes on g×D̃×{ξ}, too. However, this contradicts the
choice of ξ . ��
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Theorem 5.12 (Item 7c) If s is given by (D5, 2ϕ1 + ϕ4), then k[s∗]S =
k[V ∗]G[H2,H6] is a polynomial ring and the multi-degrees of Hi are (2, 2, 2, 4),
(6, 4, 4, 8).

Proof For this pair, the chain of reductions is

(Spin10, 2ϕ1+ϕ4)→ (Spin9, ϕ1+ϕ4+k)→ (Spin8, ϕ3+ϕ4+k)→ (Spin7, ϕ3+k)
(5)

and again we are tracing the chain from the smaller groups to the larger.
By [22, Prop. 3.10], the symmetric invariants of Spin7 � exp(Vϕ3) are freely

generated by the following three polynomials: the scalar product ( . , . ) on Vϕ3 ) k
8,

h2, and h6. Here the bi-degrees of the last two are (2, 2), (6, 4). We are lucky that
all three generators are unique (up to a scalar) and so7 � Vϕ3 has the “codim–2”
property. One can easily deduce that all items in (5) have the “codim–2” property.
A generic isotropy group for (Spin7 : Vϕ3), say L, is the connected simple group of
type G2. Take u ∈ Vϕ3 with (u, u) �= 0. Then (so7)u = l = LieL. Let h2, h6 ∈
S((so7)u) be the restrictions of h2, h6 to so7+u. Then h2 and h6 generate S(l)L. We
have dim S2(l)L = 1, the generator of degree 2 is unique (up to a non-zero scalar).
In the space S6(l)L = kh3

2 ⊕ kh6, the generator h6 is characterised by the property
that it is the restriction of an invariant of Spin7 � exp(Vϕ3) of bi-degree (6, 4). This
property does not depend on the choice of u.

Consider next s2 := so8�(V1⊕V2), where V1 = Vϕ3 , V2 = Vϕ4 . Choose
v ∈ V ∗1 with (v, v) �= 0. By Theorem 3.9, there are ĥ2, ĥ6 ∈ S(s2)

s2 such that
ĥi |so8⊕V ∗2 +v = hi . One can safely replace ĥ2 by its component of degrees 2 in so8,

2 in V2 and replace ĥ6 by its component of degrees 6 in so8, 4 in V1. The uniqueness
of generators in the case of Spin7 � exp(Vϕ3) allows also to take tri-homogeneous
components. Suppose now that each ĥi is irreducible. Set ai = degV2

ĥi . Choose

v2 ∈ V ∗2 with (v2, v2) �= 0. The restriction ĥ2|so8⊕V2+v2 is an invariant of bi-
degree (2, a2) and either a2 = 2 or this restriction is divisible by the invariant
of bi-degree (0, 2). In the last case, ĥ2 is divisible by a generator of k[V2]SO8 . A
contradiction. Since ĥ6|so8+v+v2 = h6 and since in addition ĥ6 is irreducible, the
restriction ĥ6|so8⊕V ∗1 +v2 is an invariant of bi-degree (6, 4), i.e., a6 = 4. Making use

of Theorem 2.1, we conclude that k[s∗2]s2 = k[V ∗1 ⊕V ∗2 ]Spin8 [ĥ2, ĥ6].
The Spin9-actions on Vϕ1 = k

9 and Vϕ4 = k
16 are of rank one. By [2],

g.i.g.(Spin9:Vϕ4) = Spin7, and k
9|Spin7

is the Spin7-module Vϕ3⊕k. The restriction
homomorphism k[V ∗ϕ1

⊕ V ∗ϕ4
]Spin9 → k[V ∗ϕ3

⊕ k]Spin7 is onto. Using Theorem 3.9
and the reductions

(6)
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we prove that there are algebraically independent over k[V ∗ϕ1
⊕V ∗ϕ4

] symmetric
invariants of tri-degrees (2, 2, 4), (6, 4, 8) w.r.t. so9 ⊕ k

9 ⊕ k
16. They generate the

ring of symmetric invariants related to (Spin9, ϕ1+ϕ4) over k[V ∗ϕ1
⊕V ∗ϕ9

]Spin9 by
Theorem 2.1.

One can make a reduction step from s to (Spin9, Vϕ1⊕Vϕ9) using either of
the two copies of Vϕ1 . This allows one to find algebraically independent over
k[V ∗] polynomials H2,H6 ∈ k[s∗]s of multi-degrees (2, 2, 2, 4) and (6, 4, 4, 8),
respectively. The basic invariants on V ∗ are of degrees 2, 2, 2, 3, 3. Thus, the total
sum of degrees is

10+ 22+ 12 = 44 and dim s+ ind s = 45+ 20+ 16+ 7 = 88.

Therefore, by Theorem 2.1, we have k[s∗]S = k[V ∗]G[H2,H6]. ��
The case of (D6, 2ϕ5) is very complicated. We begin by introducing some

notation and stating a few facts related to this pair. First, Vϕ5 ) V ∗ϕ5
as a G-

module. Second, the representation ofG on Vϕ5 is of rank one and k[V ∗ϕ5
]G = k[F ],

where F is a homogeneous polynomial of degree 4. It would be convenient to
write V = V1 ⊕ V2, where each Vi is a copy of Vϕ5 and let F stand for the
generator of k[V ∗1 ]G. Further, there is a natural action of SL2 on V . We suppose

that

(
0 0
1 0

)
·V2 = 0 and that

(
0 0
1 0

)
·V1 = V2 for

(
0 0
1 0

)
∈ sl2. The ring k[V ∗]G

has 7 generators:

F = F(4,0), F(3,1), F(2,2), F(1,3), F(0,4), F(1,1), F(3,3).

Here F(α,β) stands for a particular G-invariant in Sα(V1)S
β(V2). It is assumed that

the first five polynomials build an irreducible SL2-module and that the last two are
SL2-invariants.

We let SL2 act on g trivially and thus obtain an action of SL2 on k[s∗]S . Note

that if H ∈ k[s∗] and degV1
H > degV2

H , then

(
0 0
1 0

)
·H �= 0.

Let v ∈ V ∗1 be a generic point and

ψv : k[s∗]S → k[g⊕V ∗2 +v]Gv� exp(V ) ) S(gv�V2)
Gv� exp(V2)

be the corresponding restriction homomorphism. Here Gv = SL6 and

V2 =∧2
k

6 ⊕ (∧2
k

6)∗ ⊕ 2k

as aGv-module. Set q = gv�V2. By Proposition 4.1, S(q)q is a polynomial ring and
k[q∗]q = k[V ∗2 ]SL6[h1,h2,h3], where the generators hi are of bi-degrees (2, 4),
(2, 6), (2, 8).
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Let NG(kv) be the normaliser of the line kv. Then NG(kv) = C4×Gv , where
C4 = 〈ζ 〉 is a cyclic group of order 4. It is not difficult to see that Ad (ζ )A = −At
for each A ∈ gv and that ζ ·hk = (−1)khk for each k ∈ {1, 2, 3}. The element ζ 2

multiplies ψv(F(1,3)) and ψv(F(1,1)) by −1, the product ψv(F(1,3))ψv(F(1,1)) is a
C4-invariant.

There is a cyclic group of order 4 in NG(kv) × GL(V ∗1 ) that stabilisers v. This
means that if H ∈ k[s∗]S is homogeneous in V1, then ψv(H) is an eigenvector of
C4 ⊂ NG(kv) and the corresponding eigenvalue depends only on degV1

H .

Theorem 5.13 (Item 8b) If s is given by the pair (D6, 2ϕ5), then k[s∗]S =
k[V ∗]G[H1,H2,H3] is a polynomial ring and the tri-degrees of Hi are (2, 4, 4),
(2, 6, 6), (2, 8, 8).

Proof According to Theorem 3.9, there are homogeneous in V1 elements
H1,H2,H3 ∈ S(s)s such that ψv(Hi) = hi . There is no harm in assuming that
these polynomials are tri-homogeneous. Suppose that bi = degV1

Hi is the minimal
possible. Set ai = degV2

Hi . Then a1 = 4, a2 = 6, a3 = 8. The eigenvalues of ζ on
hi indicate that ai ≡ bi (mod 4) for each i.

Suppose for the moment that ai = bi for all i. It is not difficult to see
that s satisfies the “codim–2” condition. The elements h1,h2,h3 are algebraically
independent over k(V2), hence H1,H2,H3 are algebraically independent over
k(V ∗). Thus, we have ten algebraically independent homogeneous invariants. The
total sum of their degrees is

2+ 6+ 20+ 10+ 14+ 18 = 70 and dim s+ ind s = 66+ 64+ 10 = 140.

Thereby k[s∗]S = k[V ∗]G[H1,H2,H3] by Theorem 2.1. It remains to show that
the assumption is correct.

For a generic v′ ∈ V ∗2 , gv′�V1 ) q and each Hi |g⊕V ∗1 +v′ is a symmetric
invariant of gv′�V1 of degree 2 in gv′ . Since the restrictions Hi |g+v+v′ are the basic
symmetric invariants of Gv+v′ = (SL2)

3, the restrictions of Hi to g⊕V ∗1 +v′ are
algebraically independent over k[V ∗1 ]. Thereby

∑
bi � 18 and bi � 4 for each i.

Moreover, if b1 = 4, then b2 � 6.

Set H̃i :=
(

0 0
1 0

)
·Hi . If bi > ai , then H̃i �= 0. We have ψv(H̃i) ∈ S(q)q and

deggv ψv(H̃i) = 2. Therefore ψv(H̃i) is a linear combination of hj with coefficients
from k[V ∗2 ]SL6 . Moreover, each coefficient is an eigenvector of ζ . The first element,
H1, can be handled easily.

Assume that H̃1 �= 0. Then ψv(H̃1) = f h1 with non-zero f ∈ VGv2 and this f is
an eigenvector of ζ . Since degV1

H̃1 ≡ 3 (mod 4), f = ψv(F(3,1)) (up to a non-zero

scalar). Since ψav(
H̃1
F3,1
) = ab1−4h1 for each a ∈ k

×
and since F(3,1) and F are

coprime, we have H̃1
F3,1

∈ k[s∗]S . Also ψv(
H̃1
F3,1
) = h1. Clearly degV1

H̃1
F3,1

= b1−4 <

b1. A contradiction with the choice of H1. We have established that ψv(H̃1) = 0.
Hence b1 = 4 and H1 is an SL2-invariant.
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Certain further precautions are needed. It may happen that H2 (or H3) does not
lie in a simple SL2-module. In that case we replace H2 (or H3) by a suitable (and
suitably normalised) component of the same tri-degree, which lies in a simple SL2-
module and which restricts to h2 + p with p ∈ S2(V2)h1 (or to h3 + p with p ∈
S4(V2)h1⊕S2(V2)h2) on g⊕V ∗2 +v. One may say that h2 was (or h2 and h3 were)
changed as well, so that the conditions ψv(Hi) = hi are not violated. We also
normalise F in such a way that F(v) = 1. Some other normalisations are done
below without mentioning.

Assume that H̃2 �= 0 and that ψv(H̃2) ∈ S3(V1)h1. Then H̃2 ∈ k(V ∗)H1 and so

doesH2, which is equal to

(
0 1
0 0

)
·H̃2 up to a non-zero scalar. A contradiction, here

ψv(H2) �= h2. Knowing that H2 is an SL2-invariant, we can use a similar argument
in order to prove that ψv(H̃3) �∈ S5(V1)h1⊕S3(V1)h2 in case H̃3 �= 0.

We will see below that if bi > ai , then H̃i = Hi + F(3,1)Hi
F

, where H2 ∈
k(V ∗)GH1 and H3 ∈ k(V ∗)GH1⊕k(V ∗)GH2. Recall that F and F(3,1) are coprime.
In case Hi ∈ k[s∗], we can replace Hi with Hi

F
∈ k[s∗] decreasing degV1

Hi by 4.
The main difficulties lie with non-regular Hi .

Modification for H2 Assume that b2 > 6. Then ψv(H̃2) = f3h1 + f(3,1)h2 with
f3 ∈ S3(V2)

Gv , f(3,1) ∈ VGv2 and f(3,1) �= 0. Both coefficients are eigenvectors of ζ .
We have f(3,1) = ψv(F(3,1)) and f3 is the image of

c1F(1,3) + F ′(5,3) + c2F
3
(3,1),

where c1, c2 ∈ k and F ′(5,3) is someG-invariant in S5(V1)S
3(V2). Set δ := b2−6

4 and

H2 := (c1F
δF(1,3) + Fδ−1F ′(5,3) + c2F

δ−2F 3
(3,1))H1.

Then ψav(H̃2 − H2) = ab2−1f(3,1)h2 for all a ∈ k
×
. If H2 �∈ k[s∗], then δ = 1 and

c2 �= 0. Here

H̃2 − c1FF(1,3)H1 − F ′(5,3)H1 − c2
F 3
(3,1)H1

F
= F(3,1)H2

F

and

F(3,1)H2 + c2F
3
(3,1)H1

F
∈ k[s∗].

Since F and F(3,1) are coprime, we have

Ĥ2 =
H2 + c2F

2
(3,1)H1

F
∈ k[s∗].
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In this case we replace h2 with h2+c2f2
(3,1)h1 andH2 with Ĥ2. This does not violate

the property ζ 2·h2 = −h2. Now degV1
H2 = degV2

H2 = 6. If

(
0 1
0 0

)
·H2 �= 0,

then this is an invariant of tri-degree (2, 7, 5) and hence lies in k(V ∗)H1. But then
also H2 ∈ k(V ∗)H1. This new contradiction shows that H2 is an SL2-invariant.

Modification for H3 Now we know that b2 = 6 and therefore b3 � 8. Assume that
b3 > 8. Then

ψv(H̃3) = f′5h1 + f′3h2 + f(3,1)h3

with f′k ∈ Sk(V2)
Gv , f(3,1) ∈ V

Gv
2 . All three coefficients are eigenvectors of ζ .

Studying the eigenvalues one concludes that f(3,1) = ψv(F(3,1)), f′3 is the image of
s1F(1,3) + F ′(5,3) + s2F 3

(3,1), where F ′(5,3) ∈ S5(V1)S
3(V2), si ∈ k, and finally f′5 is

the image of a rather complicated expression
3∑
j=0

F ′(4j+3,5). Set ν := b3−8
4 and

H3 := (
3∑

j=0

F ′(4j+3,5)F
ν−j )H1 + (s1F(1,3)F ν + F ′(5,3)F ν−1 + s2F 3

(3,1)F
ν−2)H2.

As above, H̃3 −H3 = F(3,1)H3
F

. If H3 �∈ k[s∗], then ν = 2 or ν = 1.
Suppose that ν = 2 and that F ′(15,5) �= 0. Then F ′(15,5) = F 5

(3,1) (up to a non-zero
scalar) and

F(3,1)H3

F
+ F

5
(3,1)H1

F
∈ k[s∗] leading to

H3 + F 4
(3,1)H1

F
∈ k[s∗].

Modifying h3 and H3 accordingly, we obtain a new H3 with degV1
H3 � 12.

Suppose now that ν = 1. If F ′(15,5) �= 0, then we obtain
F 5
(3,1)H1

F
∈ k[s∗], which

cannot be the case. Thereby F ′(15,5) = 0 and

F(3,1)H3

F
+ F

′
(11,5)H1

F
+ s2

F 3
(3,1)H2

F
∈ k[s∗].

Since 2×5 = 10 < 11 and since ψv(F(4,0)) = 1, the polynomial F ′(11,5) is divisible
by F(3,1), say F ′(11,5) = F(3,1)F. Now

H3 + FH1 + s2F 2
(3,1)H2

F
∈ k[s∗].
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This allows us to replace H3, modifying h3 at the same time, by a polynomial of
tri-degree (2, 8, 8) keeping the property ψv(H3) = h3. ��
Corollary 5.14 Suppose that s̃ = g̃�V is given by the pair

(Spin12×SL2, Vϕ5⊗k2). Then s̃ has (FA) and k[s̃∗]s̃ = k[V ∗]G̃[H1,H2,H3],
where the bi-degrees of Hi are (2, 8), (2, 12), (2, 16).

Proof Let s = g�V and k[s∗]S = k[V ∗]G[H1,H2,H3] be as in Theorem 5.13.
Then g̃x = gx for generic x ∈ V ∗. Hence k[s̃∗]S̃ ⊂ k[s∗] by Lemma 3.1. According
to the proof of Theorem 5.13, H1 and H2 are SL2-invariants, i.e., they are S̃-
invariants, and also H̃3 �∈ S8(V )H1 ⊕ S4(V )H2 if H̃3 �= 0. At the same time the
tri-degree of H̃3 is (2, 7, 9) if H̃3 �= 0. Combining these two observations, we see
that H̃3 = 0, H3 is an SL2-invariant, and k[s̃∗]s̃ = k[V ∗]G̃[H1,H2,H3]. Since
k[V ∗]G̃ is a polynomial ring, the result follows. ��
Proposition 5.15 All the remaining cases marked with ‘+’ in Table 1 are indeed
positive.

Proof Making further use of Proposition 3.3, we see that all the remaining cases are
covered by reductions from G of type D5, see Diagrams (4), (5), and also

where the initial pair is positive by Example 5.10. ��

6 The Classification for the Symplectic Algebra

In this section, G = Sp2n. We classify the finite-dimensional rational representa-
tions (G : V ) such that g.i.g.(G : V ) is infinite and the symmetric invariants of
s = g� V form a polynomial ring. The answer is given in Table 2. Surprisingly, all
the possible candidates for s = g� V do have (FA).

Let e ∈ g be a nilpotent element and ge ⊂ g its centraliser. Then ge has (FA) by
[12]. This does not seem to be relevant to our current task, but it is.

The nilpotent element e can be included into an sl2-triple {e, h, f } ⊂ g and this
gives rise to the decomposition g = kf⊕e⊥, where e⊥ is the subspace orthogonal to
e w.r.t. the Killing form of g. LetΔk ∈ S(sp2n) be the sum of the principal k-minors.
We write the highest f -component of Δk as eΔkf d . Then {eΔk | k even, 2 � k �
2n} is a set of the basic symmetric invariants of ge [12, Theorem 4.4].

Let now e be a minimal nilpotent element. Then ge = sp2n−2�heisn−1.
Restricting H ∈ S(ge)

ge to the hyperplane in g∗e , where e = 0, we obtain a
symmetric invariant of s := sp2n−2�k

2n−2.



Semi-Direct Products with Free Algebras of Symmetric Invariants 465

Let Hi be the restriction of eΔ2i+2 to the hyperplane e = 0.

Lemma 6.1 The algebra of symmetric invariants of s = sp2n−2�k
2n−2 is freely

generated by the polynomials Hi as above with 1 � i � n−1.

Proof Set n′ = n−1. The group G′ = Sp2n′ acts on V ∗ ) V = k
2n′ with an open

orbit, which consists of all non-zero vectors of V ∗. Therefore S(s)s ) S(h)H , where

H = (Sp2n′)v = Sp2n′−2� exp(heisn′−1)

and v ∈ V is non-zero. By a coincidence, h = g′
e′ , where e′ ∈ g′ is a minimal

nilpotent element. We have to show that ψv(Hi) form a set of the basic symmetric
invariants of h for the usual restrictionψv : k[s]s → k[(g′)∗+v]G′� exp(V ) ) S(h)h.

Note that the f -degree of each Δk with even k is one, see [12] and the matrix
description of elements of f+ge presented in Fig. 1. Further, eΔ2i+2 is a sum eΔ′2i+
Hi , whereΔ′2i ∈ S(g′). Choosing v = (1, 0, . . . , 0)t , one readily sees thatψv(Hi) =
e′Δ′2i . This concludes the proof. ��

Remark 6.2 We have a nice matryoshka-like structure. Starting from ge with g =
sp2n+2 and restricting the symmetric invariants to the hyperplane e = 0 one obtains
the symmetric invariants of the semi-direct product sp2n�k

2n. By passing to the
stabiliser of a generic point x ∈ V ∗ with V = k

2n, one comes back to (sp2n′)e′ with
n′ = n−1. And so on.

Suppose now that e ∈ g is given by the partition (2m, 12n), g = sp2m+2n. Then
ge = (som⊕sp2n)�(k

m⊗k2n ⊕ S2
k
m) and the nilpotent radical of ge is two-step

nilpotent. Suppose that m is odd. Set Y := Ann (S2
k
m) ⊂ g∗e and let H̃i be the

restriction to Y of eΔk with k = 3m+2i−1.

Lemma 6.3 For 1 � i �
(
n− m−1

2

)
, we have H̃i ∈ S(s)s, where s = sp2n�mk

2n.

Fig. 1 Elements of f + ge
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Fig. 2 Elements of
f + ge ⊂ sp2m+2n

Proof By the construction, each H̃i is ge-invariant. Note that ge acts on Y as the
semi-direct product (som⊕sp2n)�k

m⊗k2n. For each even k with k � 2m, the f -
degree of Δk is m [12]. For the corresponding H̃i , this means that H̃i ∈ S(s), see
also Fig. 2, where C ∈ S2

k
m. ��

Theorem 6.4 All semi-direct products associated with pairs listed in Table 2 have
(FA).

Proof We begin with Item 1.
Suppose that m is even. Set G̃ := Sp2n×Spm and S̃ := G̃� exp(V ).

Then G � G̃ and S � S̃. The Lie algebra s̃ = Lie S̃ is the Z2-contraction of
sp2n+m related to the symmetric pair (sp2n+m, sp2n⊕spm). Let Δk ∈ S(sp2n+m)
be the sum of the principal k-minors and let Δ•k be the highest V -component of
Δk . The elements Δ•k with even k, 2m < k � 2n+m, belong to a set of the
algebraically independent generators of S(s̃)s̃, see [21, Theorem 4.5]. For a generic
point x ∈ V ∗, their restrictions Δ•k|g̃+x form a generating set for the symmetric
invariants of (sp2n)x = sp2n−m. Hence Δ•k ∈ S(s)S by Lemma 3.1. According to
[22, Lemma 3.5(ii)], these elements Δ•k (freely) generate S(s)s over k[V ∗]G if and
only if their restrictions to g×D are algebraically independent over k[D]G for any
G-invariant divisor D ⊂ V ∗.

In case Spm·D is open in V ∗, the restrictions of the elements Δ•k to g + y are
algebraically independent for a generic point y ∈ D. If Spm·D is not open in
V ∗, then D is G̃-invariant and the restrictions of Δ•k to g × D are algebraically

independent over k[D]G̃ by [22, Lemma 3.5(ii)] applied to s̃. If there is a non-
trivial relation among these restrictions and not all the coefficients are G̃-invariant,
then one can apply an element of G̃ to the relation and by taking a suitable linear
combination obtain a smaller non-trivial one. Thus, a minimal non-trivial relation
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among the restrictions must have G̃-invariant coefficients. Hence the restrictions of
Δ•k to g×D are also algebraically independent over k[D]G.

Suppose now that m is odd. Consider the standard embedding sl2n ⊂ sl2n ×
slm ⊂ sl2n+m. The defining representation of Sp2n on k

2n is self-dual. Therefore
we can embed V ) V ∗ into mk2n ⊕ m(k2n)∗ diagonally. This gives rise to s∗ =
g⊕ V ⊂ sl2n+m. Let Δk ∈ S(sl2n+m) be the sum of the principal k-minors and Δ•k
the highest V -component of the restriction Δk|s∗ . Note that in case m = 1, we have
Δ•k = −Hi , whereHi is the same as in Lemma 6.1 and k = 2i+1. Form � 3,Δ•k is
equal to ±H̃i , where H̃i is the same as in Lemma 6.3 and k = 2m+2i−1. Suppose
that m � 3.

Fix a G-stable decomposition V = V1⊕V2 with V1 = k
2n. Then there is the

corresponding decomposition V ∗ = V ∗1 ⊕ V ∗2 . Choose a generic v ∈ V ∗2 and
consider the usual restriction homomorphism

ψv : k[s∗]S → k[g⊕V ∗1 +v]Gv� exp(V ) ) S(gv�V1)
Gv� exp(V1).

Here Gv = Sp2n−m+1. Setting n′ := n− m−1
2 , we obtain gv�V1 = (sp2n′�k

2n′)⊕
k
m−1. If k = 2m+2i−1, then the restriction of Δ•k to g⊕V ∗1 + v is equal to cHi ,

where c ∈ k
×

andHi is the same symmetric invariant of sp2n′�k
2n′ as in Lemma 6.1.

The ring k[V ∗]G is freely generated by
(
m
2

)
polynomials Fj of degree 2. We

may (and will) assume that the first m−1 elements Fj lie in V1⊗V2 and that
the remaining ones (freely) generate k[V ∗2 ]G. Then ψv(Fj ) ∈ k for j � m and〈
ψv(Fj ) | 1 � j � m−1

〉
k

is the Abelian direct summand k
m−1 of gv�V1. We see

that F1, . . . , Fm−1,Δ
•
2m+1, . . . , Δ

•
2n+m are algebraically independent over k[V ∗2 ].

Hence
{
Fj | 1 � j �

(
m

2

)}
∪ {Δ•k | k odd, 2m < k � 2n+m}

is a set of algebraically independent homogeneous invariants. Our goal is to prove
that this is a generating set.

There is a big open subset U ⊂ V ∗ such that Gv is a generic isotropy group for
(G:V ∗) for each v ∈ U . Here Gv = (Sp2n′)e with 2n′ = 2n−m+1 and e ∈ sp2n′
being a minimal nilpotent element. The algebra gv has the “codim–2” property by
[12] and hence s has the “codim–2” property as well.

Finally we calculate the sum of the degrees of the proposed generators. There are(
m
2

)
invariants of degree 2, the minors Δ•k are of degrees 2m+1, 2m+3, . . . , m+2n.

Summing up

2

(
m

2

)
+ 1

2

(
n− m− 1

2

)
(2n+ 3m+ 1) = 1

2
ind s+n2+ n

2
+nm = ind s+ dim s

2
.

Applying Theorem 2.1, we can conclude that S(s)s is freely generated by the
polynomials Fj and Δ•k .
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Item 2 is a Z2-contraction of SL2n, and this contraction is good, see [21,
Theorem 4.5].

Item 4 can be covered by Theorem 3.6 (or Lemma 3.8), this pair (G, V ∗) is of
rank one. There is an open orbit G·y ⊂ D, where D stands for the zero set of
the generator F ∈ k[V ∗]G. A generic isotropy group for (G:V ∗) is SL3, Gy is
connected, and gy is equal to sl2 � S4

k
2, see [4]. This gy is a good Z2-contraction

of sl3 [11].
Item 5 is covered by Example 3.5.
Item 6 is treated in [13, Appendix A], there it is shown that this pair has (FA).
The final challenge is to describe the symmetric invariants for item 3. A certain

similarity with item 2 will help. Now V = V1⊕V2 with V1 = k
2n, V2 = Vϕ2 . Set

s2 := g�V2 (this is the semi-direct product in line 2). According to [21], k[s∗2]s2 =
k[V ∗2 ]G[h1, . . . ,hn], where each hi is bi-homogeneous and degg hi = 2. In other
words, hi ∈ (S2(g)⊗S(V2))

G. In S2(V1), there is a unique copy of g, which gives
rise to embeddings ι : S2(g)→ g⊗S2(V1) and

ι̃ : (S2(g)⊗S(V2))
G→ (g⊗S2(V1)⊗S(V2))

G.

Set Hi := ι̃(hi ).
Each Hi is a G-invariant by the construction. Next we check that it is also a

V -invariant. Take a generic point v ∈ V ∗2 . Then gv is a direct sum of n copies
of sl2 and under gv the space V1 decomposes into a direct sum of n copies of k2.
The restriction of hi to g + v is an element of S2(gv)

gv ⊂ S2(g) ⊂ g⊗g. If we
regard this restriction as a bi-linear function on g⊗g, then its value on (A,B) for
A,B ∈ g can be calculated as follows. From each matrix we cut the sl2 pieces
Aj ,Bj , 1 � j � n, corresponding to the sl2 summands of gv and take a linear
combination

∑
αi,j tr (AjBj ). With a slight abuse of notation we set hi (A, B, v) :=∑

αi,j tr (AjBj ).
The restriction ofHi to g⊕V ∗1 +v is an element of (g⊗S2(V1))

gv . Take ξ ∈ V ∗1 .
Let B(ξ) ∈ g be the projection of ξ2 to g ⊂ S2(V1). Then

Hi(A+ ξ + v) = hi (A, B(ξ), v).

Write ξ = ξ1 + . . . + ξn, where each ξj lies in its gv-stable copy of k
2. Then

ξj⊗ξk with j �= k is orthogonal to gv ⊂ g ⊂ S2(V1). Furthermore, tr (AjB(ξ)j ) =
det(ξj |Ajξj ). Therefore

Hi(A+ ξ + v) =
∑

αi,j det(ξj |Ajξj ).

We see that Hi |g⊕V ∗1 +v lies in S(gv�V1) and therefore is a V2-invariant [22].
Moreover, this restriction is a V1-invariant by [23]. Since these assertions hold for
a generic vector v ∈ V ∗2 , each Hi is a V -invariant. From the case of s2, we know
that the matrix (αi,j ) is non-degenerate. Hence the invariants Hi are algebraically
independent over k(V ∗2 ). Note that k[V ∗2 ]G = k[V ∗]G. Further, degHi = deg hi+1.
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If we sum over all (suggested) generators, then the result is (dim s2 + ind s2)/2+ n
and this is exactly (dim s+ ind s)/2.

In order to use Theorem 2.1, it remains to prove that s has the “codim–2”
property. Let D ⊂ V ∗2 be a G-invariant divisor and let y ∈ D be a generic
point. If Gy �= (SL2)

n, then Gy = (SL2)
n−2 × (SL2� exp(S2

k
2)). In particular,

dim(G·y) = dimV2 − (n−1). If q is the Lie algebra ofQ = SL2� exp(S2
k

2), then
q = sl2�sl ab

2 . We have

Gy� exp(V1) = (SL2� exp(k2))n−2 × (Q� exp(k4))

and q�k
4 = sl2�((k

2⊕S2
k

2) ⊕ k
2) with the unique non-zero commutator

[k2, S2
k

2] = k
2. An easy computation shows that ind (q�k

4) = 2. Thereby
ind (gy�V1) = n and hence g⊕V ∗1 ×D ∩ s∗reg �= ∅, cf. [22, Eq. (3·2)]. The Lie
algebra s does have the “codim–2” property. ��
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Primitive Ideals of U(sl(∞))
and the Robinson–Schensted Algorithm
at Infinity

Ivan Penkov and Alexey Petukhov

To Anthony Joseph on the occasion of his 75th birthday

Abstract We present an algorithm which computes the annihilator in U(sl(∞))
of any simple highest weight sl(∞)-module Lb(λ). This algorithm is based on an
infinite version of the Robinson–Schensted algorithm.

MSC 2010: 17B65, 05E10, 16D60

1 Background Results

The description of primitive ideals of the enveloping algebra U(sl(n)) for n ≥ 2
is nowadays a classical result. Duflo’s Theorem [8], applied to sl(n), claims that,
for every fixed Borel subalgebra b ⊂ sl(n), any primitive ideal of U(sl(n)) is
the annihilator of a simple b-highest weight sl(n)-module. Since (by a well-known
generalization of Schur’s Lemma) any primitive ideal intersects the centre Z(sl(n))
of U(sl(n)) in a maximal ideal of Z(sl(n)), and since there are only finitely many
nonisomorphic simple b-highest weight modules with fixed action of Z(sl(n)),
Duflo’s theorem reduces the problem of classifying primitive ideals to a finite
problem. Indeed, the Weyl group Sn of sl(n) surjects to the set of primitive ideals I
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with fixed intersection I ∩ Z(g), and the problem of describing the primitive ideals
of U(sl(n)) is equivalent to the problem of describing the fibres of this surjection.

It was Anthony Joseph who solved this latter problem by reducing it to the
Robinson–Schensted algorithm.

The purpose of our current paper is to establish a combinatorial counterpart of
Joseph’s result for the infinite-dimensional Lie algebra sl(∞). More precisely, we
provide an algorithm for computing the primitive ideal of any simple highest weight
sl(∞)-module. This algorithm is our proposed “Robinson–Schensted algorithm at
infinity”.

We start with a brief survey of previous results on the primitive ideals of U(g∞)
for direct limit Lie algebras g∞, putting in this way the current paper into context.

The Lie algebra sl(∞) is defined as the direct limit of an arbitrary chain of
embeddings

sl(2) ↪→ sl(3) ↪→ sl(4) ↪→ . . . .

More generally, one may consider an arbitrary chain of embeddings of simple Lie
algebras

g1 ↪→ g2 ↪→ . . . ↪→ gn ↪→ gn+1 ↪→ . . . (1)

and its direct limit g∞ = lim−→ gn.
An embedding gi ↪→ gi+1 as in (1) is diagonal if the branching rule for the

natural gi+1-modules (the nontrivial simple gi+1-modules of minimal dimension)
involves only natural and trivial modules over gi . The direct limits of chains of
diagonal embeddings are known as diagonal Lie algebras and are classified by
Baranov and Zhilinskii [1]. Furthermore, diagonal Lie algebras can be split into
nonfinitary diagonal Lie algebras and finitary Lie algebras, the latter being (up
to isomorphism) just three Lie algebras: sl(∞), o(∞), sp(∞). The finitary Lie
algebras g∞ are defined as the direct limits of chains (1) where gn = sl(n + 1),
o(n), sp(2n), respectively.

The classification problem for nondiagonal Lie algebras g∞ appears to be wild.
Nevertheless, one can make the following strong statement about primitive ideals in
U(g∞):

If g∞ is nondiagonal, i.e., there are infinitely many nondiagonal embeddings in
the chain (1), the only proper two-sided ideals in U(g∞) are the augmentation ideal
and the zero ideal.

This statement is known as Baranov’s conjecture and is proved in [14].
For nonfinitary diagonal Lie algebras g∞, a classification of two-sided ideals is

obtained by Zhilinskii [23]. Here there are two-sided ideals I different from the
augmentation ideal, however a characteristic feature of this case is that all quotients
U(g∞)/I are locally finite dimensional. By definition, this means that the quotients
U(gn)/(U(gn) ∩ I ) are finite dimensional. A similar result has been established
in the recent paper [18] also for the Witt Lie algebra (which is not a direct limit



Primitive Ideals of U(sl(∞)) and the RS-Algorithm at Infinity 473

of finite-dimensional Lie algebras), and this leads us to the thought that the above
results might extend to a larger class of infinite-dimensional Lie algebras. That could
be a subject of future research.

None of the above results apply to the three finitary Lie algebras
sl(∞), o(∞), sp(∞). The problem of classifying primitive ideals in the enveloping
algebras U(sl(∞)), U(o(∞)) and U(sp(∞)) has been open for some time, and
was recently solved in [17] for U(sl(∞)). Here is a brief history of the problem.
It was posed by A. Zalesskii, who saw it as a problem analogous to classifying
primitive (and two-sided) ideals in the group algebra of S∞. Indeed, the latter
problem admits a relatively straightforward combinatorial solution, and suggests
a method for constructing primitive ideals of U(sl(∞)). One considers coherent
local systems of simple sl(n)-modules: such coherent local systems, c.l.s. for short,
consist of nonempty sets of isomorphism classes [Lαn] of simple finite-dimensional
sl(n)-modules Lαn for each n ≥ 2, such that each sl(n)-module Lα0

n branches over
sl(n− 1) as a sum of sl(n− 1)-modules among Lαn−1, and every Lαn−1 arises from
a suitable Lα0

n . The joint annihilator in U(sl(∞)) of such a c.l.s. (i.e. the union
over n of all joint annihilators ∩αAnnU(sl(n))L

α
n is a two-sided ideal of U(sl(∞)).

Furthermore, one can prove that if a c.l.s. is irreducible, i.e., is not a proper union
of two sub-c.l.s., then its annihilator is a primitive ideal. As an important step in
Zalesskii’s program, A. Zhilinskii classified all c.l.s. (and, in particular, irreducible
c.l.s.). Unfortunately, Zhilinskii’s work is not widely available as his main paper [23]
(based on [22]) is a preprint in Russian. We have given a summary of Zhilinskii’s
classification of c.l.s. in our survey paper [16], see also [14].

As a next step, we determined in [14] which simple c.l.s. have the same
annihilator, and completed in this way the classification of primitive ideals of
U(sl(∞)) arising from c.l.s. We call these ideals integrable primitive ideals (an
equivalent definition is given in [14, 16]).

The next step was made in our work [17] where we proved that any primitive
ideal of U(sl(∞)) is integrable, providing finally a classification of primitive ideals
of U(sl(∞)). The proof is based on three pillars: our study of associated pro-
varieties of primitive ideals in [14], Joseph’s original classification of primitive
ideals in U(sl(n)), and certain new combinatorial facts relating “precoherent local
systems” of representations of sl(n) for n ≥ 1 to coherent local systems introduced
above. These latter facts use heavily the Gelfand-Tsetlin branching rule.

The final result is as follows:
Primitive ideals of U(sl(∞)) are naturally parameterized by quadruples

(r, g,X, Y )

where r, g are nonnegative integers and X, Y are Young diagrams.
The integer r is the rank and represents the associated pro-variety of a primitive

ideal, see [14]. The integer g is the Grassmann number. We call it so as it arises
naturally from direct limits of exterior powers of defining sl(n)-modules, i.e., of
direct limits of fundamental sl(n)-modules. More precisely, a semiinfinite funda-
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mental sl(∞)-module is a direct limit of fundamental sl(n)-modules whose degrees
and codegrees both tend to infinity (there are uncountably many nonisomorphic
semiinfinite modules), see [9]. The annihilators of all semiinfinite fundamental
sl(∞)-modules coincide, and the corresponding ideal is labeled by (0, 1,∅,∅).

Finally, the Young diagrams X, Y also arise in a straightforward manner: the
primitive ideal with coordinates (0, 0, X, Y ) is the annihilator of the simple tensor
module VX,Y ; this module is defined as the socle of the tensor product SX(V ) ⊗
SY (V∗) where V and V∗ are the two defining representations of sl(∞) (finitary
column vectors and finitary row vectors) and SZ(·) is the Schur functor associated
to a Young diagram Z, see [6] and [19].

An essential difference with the case of sl(n) is that the annihilator in U(sl(∞))
of most simple sl(∞)-modules is equal to zero. Therefore one can think of
simple sl(∞)-modules with nonzero annihilators as small. Examples of small
simple modules are the above mentioned modules VX,Y , semiinfinite fundamental
representations, and also direct limits of growing symmetric powers of defining rep-
resentations of sl(n) for n→∞. A small simple sl(∞)-module does not need to be
integrable, i.e., does not need to be a direct limit of finite-dimensional sl(n)-modules
for n → ∞. For instance, in [9] it is shown that any simple weight sl(∞)-module
with bounded weight multiplicities is small. However, our classification of primitive
ideals implies that the annihilator of any small simple sl(∞)-module is also the
annihilator of a, possibly nonisomorphic, simple integrable sl(∞)-module. This is
a truly infinite-dimensional effect.

2 Our Goal in the Present Paper

We are now ready to explain the purpose of the paper. Despite the fact that primitive
ideals of U(sl(∞)) are classified, the existing literature does not explain how to
compute the annihilator of an arbitrary simple highest weight module Lb(λ), i.e.,
how to find the quadruple (r, g,X, Y ) corresponding to the ideal AnnU(sl(∞))Lb(λ),
for a given splitting Borel subalgebra b ⊂ sl(∞) and a character λ of b. Solving this
problem is our aim in the present work. In the case of sl(n), the analogous problem
is solved by applying the Robinson–Schensted algorithm to the weight λ + ρ, and
below we present the corresponding “infinite version” of this algorithm.

In the work [15] we have established an important preliminary result: we have
found a necessary and sufficient condition on the pair (b, λ) for the annihilator
AnnU(sl(∞))Lb(λ) to be nonzero. Recall that a splitting Borel subalgebra containing
a fixed splitting Cartan subalgebra (for instance, the diagonal matrices in sl(∞)) is
given by an arbitrary total order ≺ on a countable set, see [7]. We denote this set by
6. Theorem 3.1 in [15] asserts that AnnU(sl(∞))Lb(λ) �= 0 if and only if 6 can be
split as a finite disjoint union

6 = 61 � . . . �6k
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such that i ≺ j for any pair i ∈ 6s, j ∈ 6t with s < t , and the restriction of λ to
6s is a constant λ(s) for any s < k, satisfying λ(s) − λ(t) ∈ Z if both 6s,6t are
infinite.

The above makes it clear that in order to compute AnnU(sl(∞))Lb(λ) we need to
provide an algorithm which transforms a given pair (b, λ), where b is a splitting
Borel subalgebra and λ is a weight such that AnnU(sl(∞))Lb(λ) �= 0, to the
quadruple corresponding to the primitive ideal (r, g,X, Y ) of AnnU(sl(∞))Lb(λ).
This is precisely what we do: we construct a version of the Robinson–Schensted
algorithm which performs the above task.

3 Preliminaries

3.1 Robinson–Schensted Algorithm and sl(n)

3.1.1 Notation

We fix an algebraically closed field F of characteristic 0. If V is a vector space over
F, we set V ∗ = HomF(V ,F). All ideals in associative F-algebras are assumed to be
two-sided. We use the notions of Young diagrams and partitions as synonyms; when
writing a Young diagram as a partition (p1 ≥ p2 ≥ . . . ≥ pn > 0), the integers pi
are the row lengths of the diagram.

We identify sl(n) with the set of traceless n × n-matrices. The elementary
matrices

ei,j for 1 ≤ i �= j ≤ n, ei,i − ei+1,i+1 for 1 ≤ i ≤ n− 1

form a basis of sl(n). We fix the Cartan subalgebra hn of diagonal matrices and the
Borel subalgebra bn of upper triangular matrices. To any linear function λ ∈ h∗n we
attach the linear map

λ′ : bn→ F, eij 	→ 0 for i �= j, and λ′|hn = λ.

We denote by Fλ the one-dimensional bn-module defined by λ′. Set

M(λ) := U(sl(n))⊗U(bn) Fλ.

Let L(λ) be the unique simple quotient ofM(λ), and

I (λ) := AnnL(λ).

We identify the vector space F
n with the space of functions

f : {1, . . . , n} → F.
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For any function f ∈ F
n there exists a unique λf ∈ h∗n such that

λf (eii − ejj ) = f (i)− f (j).

Therefore to any function f ∈ F
n we can attach the primitive ideal

I (f ) := I (λf ) ⊂ U(sl(n)).

The Weyl groupWn of the pair (sl(n), hn) is the symmetric group Sn, and its action
on h∗n is induced by its action on F

n via permutations. The shifted action of Sn on
F
n, denoted by σ · f , is defined as

σ · f := σ(f + ρn)− ρn
where ρn := (−1,−2, . . . ,−n).

3.1.2 Joseph’s Description of Primitive Ideals

Let PrimU(sl(n)) be the set of primitive ideals of U(sl(n)). Duflo’s Theorem implies
that the map

ψ : Fn→ PrimU(sl(n)), f 	→ I (f )

is surjective. A description of PrimU(sl(n)), based on the description of the fibres
of ψ , is due to Joseph [10], see also [2–4, 12].

As a first step of this description, one attaches to f ∈ F
n a subgroup Wn(f ) ⊂

Wn called the integral Weyl subgroup of f . The subgroup Wn(f ) is a parabolic
subgroup of Sn, and therefore is a product of permutation groups. As a second
step, one defines an element w(f ) ∈ W(λ). In the regular case, this element w(f )
produces f from its dominant representative. For the singular case we refer the
reader to [4]. The third step consists of applying the Robinson–Schensted algorithm
to each factor of the element w(f ) with respect to the decomposition ofWn(f ) as a
direct product of symmetric groups. For each factor ofw(f ) this algorithm produces
a pair of semistandard Young tableaux called recording tableau and insertion
tableau.

The original result of Joseph [11] claims that ψ(f1) = ψ(f2) if and only if

(1) f1 and f2 define the same character of Z(sl(n)), i.e., there exists k ∈ F and a
permutation σ ∈ Sn such that σ · f1 = f2 + k,

(2) the recording tableau of each factor of w(f1) ∈ Wn(f1) coincides with the
recording tableau of the corresponding factor of w(f2 + k) under σ .

For the purpose of considering the limit n → ∞, it is convenient to restate
Joseph’s result in terms of f only without referring to w(f ). We do this in
Theorem 3.2 below.
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3.1.3 Admissible Interchanges

For a, b ∈ F we write a >Z b whenever a − b ∈ Z>0. The notations a <Z b, a ≥Z

b, a ≤Z b have similar meaning.
Let f1, f2 ∈ F

n. We say that f1 and f2 are connected by the ith admissible
interchange if

f1(j) = f2(j), j �= i, i+1, f1(i) = f2(i+1), f1(i+1) = f2(i), 1 ≤ i ≤ n−1,

and one of the following conditions is satisfied:

(1) f1(i + 1)− f1(i) �∈ Z,

(2) i ≤ n− 2 and f1(i + 1) >Z f1(i + 2) ≥Z f1(i),
(2′) i ≤ n− 2 and f1(i) >Z f1(i + 2) ≥Z f1(i + 1),
(3) i ≥ 2 and f1(i + 1) ≥Z f1(i − 1) >Z f1(i),

(3′) i ≥ 2 and f1(i) ≥Z f1(i − 1) >Z f1(i + 1).

It can be easily checked that f1 is connected with f2 by the ith admissible
interchange if and only if f2 is connected with f1 by the ith admissible interchange.
These admissible interchanges are known in the context of the Robinson–Schensted
algorithm, see Theorem 3.2 below.

We say that f1 and f2 are connected by the shifted ith admissible interchange if
the sequences f1+ρn and f2+ρn are connected by the ith admissible interchange.

3.1.4 A Version of Robinson–Schensted Algorithm for Finite Sequences

The Robinson–Schensted algorithm is a classical object of twentieth century
mathematics and has different versions. As a reference for “the standard algorithm”
we use [13]. This algorithm works with a finite sequence of nonrepeating integers,
however we note that one can apply the standard algorithm to any nonrepeating
finite sequence of elements of a totally ordered set (S,≺). The output of this
procedure consists of a Young tableau filled by elements of S (recording tableau)
and a Young tableau of the same shape filled by positive integers (insertion tableau).
The recording tableau is standard with respect to ≺ and the insertion tableau is
standard with respect to <.

If a sequence consists of elements of several distinct totally ordered sets (Si ,≺i ),
we can split the sequence into subsequences of elements of Si (one for each set) and
apply the algorithm separately to such sequences. The output consists of a collection
of pairs of tableaux-one pair per set Si .

In our case, the totally ordered sets (Si ,≺) will be of the form (a + Z) × Z,
a ∈ F, with the order

(a, i) ≺ (b, j) ⇐⇒ [(a >Z b) or (a = b, i > j)]. (1)
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Let f1, . . . , fn ∈ F be a finite sequence. We attach to f1, . . . , fn the sequence

(f1, 1), . . . , (fn, n), (2)

and split (2) into totally ordered subsets of (a+Z)×Z as above. We then apply the
standard Robinson–Schensted algorithm to (2). The output consists of a collection
of pairs of tableaux. The recording tableau in a pair is filled by {(fi, i)}1≤i≤n and the
insertion tableau is filled by 1, . . . , n. As a last step we replace the pairs (fi, i) in all
recording tableaux by fi and discard all insertion tableaux. The resulting tableaux
have strictly decreasing rows and nonincreasing columns (the corner of a tableau
being in the upper-left position). This is a consequence of the inequality inversion
in the left and right-hand sides of formula (1).

In what follows, by RS-algorithm, we mean the above procedure. We denote by
RS(f1, . . . , fn) its output. We set also

J (f1, . . . , fn) := RS(f1 − 1, . . . , fn − n);

J (f1, . . . , fn) reflects the shift of f1, . . . , fn by “ρ”.

Example 3.1 Consider the sequence 3, 4, 4, α, where α /∈ Z. We have

J (3, 4, α, 5) = RS(2, 2, α − 3, 1).

Next, we attach to the sequence 2, 2, α − 3, 1 the sequence

(2, 1), (2, 2), (α − 3, 3), (1, 4) (3)

of elements of F× Z. We have

(2, 2) ≺ (2, 1) ≺ (1, 4), (4)

and the element (α − 3, 3) is incomparable with the elements of (4). We apply the
RS-algorithm to the sequence (3) step-by-step from left to right:

(2, 1) 	→ {( (2, 1) , 1 )}, ((2, 1), (2, 2)) 	→ {( (2, 2)
(2, 1)

,
2
1
)},

((2, 1), (2, 2), (α − 3, 3)) 	→ {( (2, 2)
(2, 1)

,
2
1
), ( (α − 3, 3) , 3 )},

((2, 1), (2, 2), (α − 3, 3), (1, 4)) 	→ {( (2, 2) (1, 4)
(2, 1)

,
2 4
1

), ( (α − 3, 3) , 3 )}.
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The result is

J (3, 4, α, 5) = { 2 1
2

, α − 3 }.

Theorem 3.2 (An Equivalent Form of Joseph’s Theorem) The following condi-
tions are equivalent for sequences f1, . . . , fn ∈ F, f ′1, . . . , f ′n ∈ F:

(1) I (f1, . . . , fn) = I (f ′1, . . . , f ′n),
(2) ∃k ∈ F : J (f1, . . . , fn) = J (f ′1 + k, . . . , f ′n + k),
(3) there exists k ∈ F so that the sequences

f1, . . . , fn and f ′1 + k, . . . , f ′n + k

are connected by a series of shifted admissible interchanges.

Proof This is implied by the results of [11] and [13, Exercise 4 on page 65]. ��
In what follows, it will be convenient to encode Young tableaux via sequences.

Notation 3.3 To a Young tableau T with n boxes filled by elements of a + Z we
attach the sequence seq(T ) ∈ F

n which consists of the rows of T ordered in the
inverse lexicographical order (shorter rows come first; among rows of equal length,
rows with smaller first element come first).

It is straightforward to check that

RS(seq(T )) = T .

This implies that T can be encoded by seq(T ). If T1, . . . , Ts is a sequence
of tableaux, we set seq(T1, . . . , Ts) to be the concatenation of the sequences
seq(T1), . . . , seq(Ts).

Example 3.4 If T =
4+ a 2+ a 1+ a
4+ a 1+ a
4+ a 1+ a
3+ a

, then seq(T ) = (3+ a, 4+ a, 1+ a, 4+

a, 1+ a, 4+ a, 2+ a, 1+ a). If

T1 = 7+ a −4+ a
−8+ a , T2 = −4+ b −6+ b

−5+ b

with a−b /∈ Z, then seq(T1, T2) = (−8+a, 7+a,−4+a,−5+b,−4+b,−6+b).
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3.2 Coherent Local Systems and Their Annihilators

We now recall some results on c.l.s. The definition of c.l.s. is given in Sect. 1. In the
current section we writeQ = {Qn} for a c.l.s., whereQn = {[Lαn]} for some simple
finite-dimensional modules Lαn . Since each Lαn is determined by its dominant bn-
highest weight λαn , we can write {λαn} instead. It is convenient to think of the highest
weights λαn as functions f α ∈ Z

n
≥0 ⊂ F

n with the normalizing conditions

f α(1) ≥ f α(2) ≥ . . . ≥ f α(n) = 0

or, equivalently, as partitions with at most n− 1 parts. In this notation,Qn = {f α}.
The annihilator I (Q) of a c.l.s. Q is the ideal ∪n(∩αAnnU(sl(n))L

α
n) ⊂

U(sl(∞)).
Define functions fk,n ∈ Z

n
≥0 by setting

fk,n(i) :=
{

1 if i ≤ k
0 otherwise

.

The set of c.l.s. is partially ordered and forms a lattice:

Q ⊂ Q′ = {Qn ⊂ Q′n}, Q ∩Q′ = {Qn ∩Q′n}.

In addition, Zhilinskii defines the following Cartan product on c.l.s.:

(Q′Q′′)n := {f ∈ Z
n | f = f ′ + f ′′ for some f ′ ∈ (Q′)n, f ′′ ∈ (Q′′)n},

see [21, Subsection 2.1]. A main result of Zhilinskii is that any irreducible c.l.s. is
a Cartan product of basic c.l.s. The latter are denoted by Li ,Ri ,L∞i ,R∞i , E, E∞,
and are defined as follows:

E∞is the c.l.s. consisting of all integral dominant weights on all levels,

(Li )n := {fk,n}0≤k≤i , (L∞i )n := {f ∈ (E∞)n | f (k) = 0 for k > i},

(Ri )n := {fk,n}n−i≤k≤n, (R∞i )n := {f ∈ (E∞)n | f (k) = f (n−i) for k ≤ n−i},

En := {fk,n}0≤k<n.
We can now state

Proposition 3.5 (Unique Factorization Property [21, Theorem 2.3.1]) Any
proper irreducible c.l.s., i.e., any irreducible c.l.s. non-equal E∞, can be expressed
uniquely as a Cartan product in the following form:
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cls(r ′, r ′′, g,X, Y ) := (L∞r ′ Ll1−l2r ′+1 L
l2−l3
r ′+2 . . .L

ls−0
r ′+s) E

g (R∞r ′′R
r1−r2
r ′′+1 R

r2−r3
r ′′+2 . . .R

rt−0
r ′′+t )

(5)

where r ′, r ′′, g are nonnegative integers, and

X = (l1 ≥ . . . ≥ ls > 0), Y = (r1 ≥ . . . ≥ rt > 0)

are Young diagrams. Here, for r ′ = 0, L∞
r ′ is assumed to be the c.l.s. T consisting

of the one-dimensional sl(n)-module at all levels, and similarly R∞
r ′′ is assumed to

equal T for r ′′ = 0.

As we have shown in [14], the annihilator I (cls(r ′, r ′′, g,X, Y )) depends on the
following four parameters

r := r ′ + r ′′, g,X, Y, (6)

and all such annihilators are in a natural bijection with quadruples (6) where r, g ∈
Z≥0, and X, Y are arbitrary Young diagrams. We set

I (r, g,X, Y ) := I (cls(r, 0, g,X, Y )).

It follows from [21] that I (r, g,X, Y ) is a primitive ideal of U(sl(∞)). The
main result of [17] claims that the ideals I (r, g,X, Y ) exhaust all nonzero proper
primitive ideals of U(sl(∞)).

Next, following Zhilinskii, we attach to any basic c.l.s. Q a sequence γ (Q; ·) of
sl(2n)-modules by displaying the respective highest weights:

γ (Li; n) := fi,2n, 2n > i, γ (L∞i ; n) := (2i − 1)fi,2n, 2n > i,

γ (Ri; n) := f2n−i,2n, 2n > i, γ (R∞i ; n) := (2i − 1)f2n−i,2n, 2n > i,

γ (E; n) := fn,2n, n > 0.

Using (5) and the rule γ (Q′Q′′; n) := γ (Q′; n)+γ (Q′′; n), we extend the definition
of γ (Q; n) to all proper irreducible c.l.s.Q.

To state the next lemma we need to define a precoherent local system (p.l.s. for
short)Q. That consists of nonempty setsQn of isomorphism classes [Lαn] of simple
finite-dimensional sl(n)-modules Lαn for each n ≥ 2, such that each sl(n)-module
L
α0
n branches over sl(n−1) as a sum of sl(n−1)-modules among Lαn−1. For a p.l.s.

we do not require that every Lαn−1 with [Lαn−1] ∈ Qn−1 appear in the sl(n − 1)-
decomposition of a suitable Lα0

n with [Lα0
n ] ∈ Qn.
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Lemma 3.6 Let Q′ = {Q′n} be a p.l.s. and let Q be an irreducible c.l.s. such that
γ (Q; n) ∈ (Q′)2n for n> 0. ThenQ ⊂ Q′.
Proof The statement is implied by [21, Lemma 2.3.2]. ��

3.3 Highest Weight sl(∞)-Modules and Their Annihilators

In what follows we identify sl(∞) with the Lie algebra of traceless matrices
(aij )i,j∈6 such that each matrix has finitely many nonzero entries. We fix the
splitting Cartan subalgebra h of diagonal matrices (a detailed discussion of Cartan
subalgebras of sl(∞) see in [5]). Any subset S of 6 defines a subalgebra sl(S)
spanned by

{eij }i �=j∈S, {eii − ejj }i,j∈S.

If S is infinite then sl(S) ∼= sl(∞), and sl(S) ∼= sl(|S|) if S is finite, where |S| is the
cardinality of S.

A total order ≺ on S defines a splitting Borel subalgebra

bS(≺) := span{eii − ejj }i,j∈S + span{eij }i≺j∈S,

of sl(S), see [15] for more details.
A function f : S → F defines a character λSf of bS(≺) such that

λSf (eij ) = 0 for i ≺ j, λSf (eii − ejj ) = f (i)− f (j).

Let FSf be the respective one-dimensional bS(≺)-module and let

MS≺(f ) := MS≺(λf ) := U(sl(S))⊗U(bS(≺)) FSf .

Denote by LS≺(f ) := LS≺(λf ) the unique simple quotient of MS≺(λf ) = MS≺(f ).
Put

IS≺(f ) := AnnU(sl(S))L
S≺(f ).

If F ⊂ 6 is a finite subset, then LF≺(f ) is the sl(F )-module L(f |F ) where
the totally ordered set (F,≺) is naturally identified with ({1, . . . , n},<). In what
follows, when given a total order ≺ on 6 and a function f : 6 → F, we will
use the above notations M6≺ (f ), L6≺(f ), I6≺ (f ) having in mind that ≺ defines an
order on S and f defines a function on S via restriction. Whenever S = 6 we
write simply b(≺),M≺(f ), L≺(f ), I≺(f ). Note also that in Sect. 1 our notation
Lb(λ) for a simple highest weight module displayed explicitly the relevant Borel
subalgebra b and the highest weight λ, so L≺(f ) is another notation for Lb(≺)(λf ).
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We will be particularly interested in several special kinds of splitting Borel
subalgebras.

Definition 3.7 We say that bS(≺) is a Dynkin Borel subalgebra if (S,≺) is
isomorphic as an ordered set to (Z>0,<), (Z<0,<) or (Z,<). This is equivalent
to the condition that every root of bS(≺) is a finite sum of simple roots, see [20].

Let 61,62 ⊂ 6 be two subsets. We write 61 ≺ 62 if s1 ≺ s2 for any s1 ∈ 61 and
s2 ∈ 62.

Definition 3.8 We say that bS(≺) is an ideal Borel subalgebra if S can be
partitioned into subsets

S1 ≺ S2 ≺ S3

such that (S1,≺) ∼= (Z>0,<) and (S3,≺) ∼= (Z<0,<).

Definition 3.9 Let S ⊂ 6 be a subset. We say that f ∈ F
S is ≺-locally constant on

S if there exists a partition S1 ≺ . . . ≺ St of S such that f |Si is constant for every
Si, 1 ≤ i ≤ t . We say that f ∈ F

S is almost integral on S if there exists a finite set
F ⊂ S such that f (i)− f (j) ∈ Z for all i, j ∈ S\F .

Theorem 3.10 ([15, Theorem 9]) The following conditions are equivalent:

(1) I≺(f ) �= 0,
(2) f is ≺-locally constant and almost integral on 6.

The next proposition relates the computation of the annihilators of simple highest
weight sl(∞)-modules to the computation of the annihilators of simple highest
weight sl(n)-modules for finite n.

Proposition 3.11 ([15, Lemma 5.7]) Let F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . . be an infinite
sequence of finite subsets of 6, and let S := ∪iFi . Then

IS≺(f ) = ∪n(∩i≥nIFi≺ (f )).

Corollary 3.12 Let F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . . be an infinite sequence of finite
sets such that S = ∪iFi . Let f ′ ∈ F

S be a function such that one of the following
holds:

– I
Fi≺ (f ) = IFi≺ (f ′) for all i ∈ Z>0,

– I
Fi≺ (f ) = IFi≺ (f ′) for all but finitely many i ∈ Z>0.

Then IS≺(f ) = IS≺(f ′).
Corollary 3.13 Let F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . . be an infinite sequence of finite
sets such that S = ∪iFi . Let f ′ ∈ F

S be a function such that one of the following
holds:

– f |Fi and f ′|Fi are connected by a series of shifted admissible interchanges for
all i ∈ Z>0,
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– f |Fi and f ′|Fi are connected by a series of shifted admissible interchanges for
all but finitely many i ∈ Z>0.

Then IS≺(f ) = IS≺(f ′).
Corollary 3.14 Let 61 � 62 � . . . � 6t be a partition of 6 and let f ∈ F

6 be a
function such that f |6i is constant. Assume that ≺1,≺2 are total orders on 6 such
that

61 ≺1 62 ≺1 . . . ≺1 6t and 61 ≺2 62 ≺2 . . . ≺2 6t . (7)

Then I≺1(f ) = I≺2(f ).

Definition 3.15 Let≺1,≺2 be total orders on6, and f ∈ F
6 be a function. We say

that ≺1 and ≺2 are f -equivalent if f is locally constant with respect to a partition
61 � . . . �6t of 6 and this partition satisfies (7).

Corollary 3.14 claims that I≺1(f ) = I≺2(f ) for f -equivalent total orders ≺1,≺2.

Definition 3.16 Let f ∈ F
6 be a function, almost integral and locally constant, and

let61 ≺ . . . ≺ 6t be some partition of6. We say that this partition is f -preferred if

(61,≺) ∼= (Z>0,<), (6t ,≺) ∼= (Z<0,<), (6i,≺) ∼= (Z,<) for 1 < i < t,

and for all i there exist s−i ∈ 6i and s+i+1 ∈ 6i+1 such that f (s) = f (s′) for all
s ∈ 6i, s−i ≺ s, and s′ ∈ 6i+1, s

′ ≺ s+i+1. We say that a total order ≺f is f -
preferred if there exists a partition 61 ≺f . . . ≺f 6t which is f -preferred with
respect to ≺f .

Let f ∈ F
6 be an almost integral and locally finite function with respect to a

partition 61 ≺ . . . ≺ 6t of 6. It is easy to construct an f -preferred order ≺f on
6 such that ≺f is f -equivalent to ≺. Indeed, let i1, i2, . . . , iq be the set of indices
such that 6i1 , . . . , 6iq are infinite. We split each ordered set 6ik into two infinite
sets 6lik ,6

r
ik

so that

6li1 ≺ 6ri1 ≺ . . . ≺ 6liq ≺ 6riq .

As a result, 6 equals the disjoint union

(61�62�. . .�6li1)�(6ri1�6i1+1�. . .�6li2)�. . .�(6riq �6iq+1�. . .�6t), (8)

and we have

61 ≺ 62 ≺ . . . ≺ 6li1 ≺ 6ri1 ≺ 6i1+1 ≺ . . . ≺ 6li2 ≺ . . . ≺ 6riq ≺ 6iq+1 ≺ . . . ≺ 6t .

The desired order ≺f will be f -preferred with respect to the decomposition (8). To
introduce ≺f , we start with (61 �62 � . . . �6li1) and replace the given order ≺ by
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an order ≺f isomorphic to (Z>0,>) such that 61 ≺f 62 ≺f . . . ≺f 6li1 . Next,

for (6ri1 �62 � . . . �6li1) we replace the given order ≺ by an order ≺f isomorphic

to (Z,>) such that 6ri1 ≺f 6i1+1 ≺f . . . ≺f 6li2 . We repeat this last step q − 2
times. Finally, at the right end (6riq � 62 � . . . � 6it ) we replace the order ≺ by
an order ≺f isomorphic to (Z<0,<) such that 6riq ≺f 6iq+1 ≺f . . . ≺f 6it .
The so obtained order ≺f is f -preferred and is f -equivalent to the original order.
Therefore, Corollary 3.14 implies

I≺(f ) = I≺f (f ).

4 Robinson–Schensted Algorithm at Infinity

In what follows we extend the RS-algorithm to stably decreasing infinite sequences.
Overall, the procedure is very similar to (and is based on) the one given in
Sect. 3.1.4. We consider functions f ∈ F

Z>0 ,FZ<0 ,FZ and identify them with the
respective sequences

f (1), f (2), . . . ,

. . . , f (−2), f (−1)

. . . , f (−1), f (0), f (1), . . .

Admissible interchanges for functions f ∈ F
Z>0 ,FZ<0 ,FZ are defined as in

Sect. 3.1.3.

Definition 4.1 We say that f is stably decreasing if f (i) >Z f (i + 1) for |i| > 0.

The formula ρ(i) = −i defines three different functions ρZ<0 ∈ F
Z<0 , ρZ ∈

F
Z, ρZ>0 ∈ F

Z>0 .

The following “insertion operation” inserts a given f1 ∈ F
r into positions i1 <

i2 < . . . < ir of f2:

ins(i1, . . . , ir ; f1, f2)(i) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f2(i) if i < i1,

f1(t) if i = it , 1 ≤ t ≤ r,
f2(i − t) if it < i < it+1, 1 ≤ t ≤ r − 1

f2(i − r) if i > ir

,

for f2 ∈ F
Z, or f2 ∈ F

Z>0 and i1 ≥ 0,
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ins(i1, . . . , ir ; f1, f2)(i) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f2(i + r) if i < i1

f1(t) if i = it , 1 ≤ t ≤ r,
f2(i + r − t) if it < i < it+1, 1 ≤ t ≤ r − 1

f2(i) if ir < i

,

for f2 ∈ F
Z<0 , ir ≤ 0.

Remark 4.2 Since the (shifted) admissible interchanges and the respective equiva-
lence classes are defined for all sequences regardless of any stabilization conditions,
it could be an interesting combinatorial problem to study the corresponding
equivalence classes.

4.1 Left-Infinite Case (Z<0)

Consider a stably decreasing sequence f ∈ F
Z<0 . We now explain how to apply

the infinite RS-algorithm to f . What we do is simply apply the RS-algorithm
consecutively to the finite tails f (−n), . . . , f (0) of f . Then, for n ? 0, the RS-
algorithm will keep modifying only one of the tableaux in the outputs of previous
steps. This follows from the fact for n? 0 the numbers f (n) are in same integrality
class.

Next, note that, since f is stably decreasing, this modification will amount to
adding the box f (−n− 1) to the left-hand side of the first row. In this way, the
output RS(f ) of our algorithm consists of several (possibly none) finite Young
tableaux and one tableau whose first row is infinite and all other rows are finite.
Denote the infinite tableau by T1 and the other tableaux by T2, . . . , Ts . Denote
the first row of T1 by seq(f ), T1 without the first row by T ′1. Set seq(f ) :=
seq(T ′1, T2, T3, . . . , Ts). Then it is straightforward to check that

RS(f ) = RS(ins(i1, . . . , ir ; seq(f ), seq(f )), (1)

where r is the number of elements in seq(f ) and i1, i2, . . . , ir , are integers such that

ik+1 > ik + 1, seq(f )ir >Z seq(f )k or seq(f )ir − seq(f )k /∈ Z for all k ≤ r
(2)

(the condition on ir is satisfied for ir ? 0). The equality (1) plays an important role
in our main result below.
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4.2 Right-Infinite Case (Z>0 = −Z<0)

Let f ∈ F
Z>0 be a stably decreasing function. It is clear that the sequence

f ∗ := (. . . ,−f (3),−f (2),−f (1))

is an element of FZ<0 and is stably decreasing. If g ∈ F
Z<0 , we set g∗ to be the

sequence

−g(0),−g(−1),−g(−2), . . .

Then (f ∗)∗ = f for f ∈ F
Z>0 or FZ<0 .

In this case, we have

RS(f ∗) = RS(ins(i1, . . . , is; seq(f ∗)∗, seq(f ∗)∗)∗),

where s is the number of elements in seq(f ∗) and i1, . . . , ir satisfy the mirror image
of (2)

ik+1 > ik+1, seq(f ∗)−ir >Z seq(f ∗)k or seq(f ∗)−ir −seq(f ∗)k /∈ Z for all k ≤ r.

Remark 4.3 In the procedure presented in this subsection, we apply the RS-
algorithm inductively starting from the “infinite tail” of our sequence f . It also
makes sense to apply the RS-algorithm starting from the beginning of the sequence
f . The result will differ by an analogue of the Schutzenberger involution, see [13].

4.3 Two-Sided Case (Z)

Consider a stably decreasing almost integral sequence f ∈ F
Z. We say that f is

almost integral if f (n+)− f (n−) ∈ Z for n− ? 0 and n+ > 0.
Assume f is almost integral. To apply the infinite RS-algorithm to f , all

we have to do is to apply the RS-algorithm to “middle” finite subsequences
f (n−), . . . , f (n+) of f where n− → −∞ and n+ → +∞. Note that for n− ? 0
and n+ > 0 the RS-algorithm will keep modifying only one of the tableaux in the
outputs of previous steps. This follows from the fact for n− ? 0 and n+ > 0 the
numbers f (n−), f (n+) are in same integrality class.

Next, note that since f is stably decreasing this modification will amount to
adding the boxes f (n− − 1) to the left-hand side or f (n+ + 1) to the right-hand
side of the first row. In this way, the output RS(f ) of our algorithm consists of
several finite Young tableaux (possibly none) and one tableau whose first row is
infinite and all other rows are finite. Denote the infinite tableau by T1 and the other
tableaux by T2, . . . , Ts . Denote the first row of T1 by seq(f ), T1 without the first
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row by T ′1. Note that the identification of two-sided sequences with F
Z is unique

only up to a shift, and we fix this shift in such a way that f (i) = seq(f )i for i ? 0.
Set seq(f ) := seq(T ′1, T2, T3, . . . , Ts). Then we point out that (1) holds also in

this case where r is the number of elements in seq(f ) and i1, i2, . . . , ir satisfy (2).

4.4 Admissible Interchanges and Robinson–Schensted
Algorithm at Infinity

The next proposition is an infinite-dimensional version of the equivalence of claims
(1) and (3) in Theorem 3.2.

Proposition 4.4 For stably decreasing functions f, f ′ from F
Z>0 ,FZ<0 or FZ, the

following conditions are equivalent:

(a) f and f ′ are connected by a series of admissible interchanges,
(b) RS(f ) = RS(f ′).
Proof Elementary and straightforward. ��

5 Two Attributes of an Ideal in U(sl(∞))

In this section, we introduce a sequence of algebraic varieties associated with an
ideal I ⊂ U(sl(∞)), as well as a c.l.s. associated with I .

Recall that Z(sl(n)) stands for the centre of U(sl(n)). Denote by Irrn the set of
isomorphism classes of simple finite-dimensional U(sl(n))-modules.

Lemma 5.1 (cf. [4, Subsection 3.1]) Let I1, I2 be ideals of U(sl(n)). Then the
following conditions are equivalent:

(a) I1 + I2 = U(sl(n)),
(b) 1 ∈ I1 + I2,
(c) (I1 ∩ Z(sl(n)))+ (I2 ∩ Z(sl(n))) = Z(sl(n)),
(d) 1 ∈ (I1 ∩ Z(sl(n)))+ (I2 ∩ Z(sl(n))).

Proof It is clear that (a) is equivalent to (b), and that (c) is equivalent to (d). Hence
it is enough to prove that (b) is equivalent to (d).

As an sl(n)-module with the adjoint structure, U(sl(n)) is locally finite, and is
an infinite direct sum of sl(n)-isotypic components U(sl(n))λ where λ runs over the
entire set Irrn. Hence,

I1 = ⊕λ∈Irrn(U(sl(n))λ ∩ I1), I2 = ⊕λ∈Irrn(U(sl(n))λ ∩ I2),
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and

((I1 + I2) ∩ Z(sl(n))) = (I1 + I2)sl(n) = (I1)sl(n) + (I2)sl(n)
= (Z(sl(n)) ∩ I1)+ (Z(sl(n)) ∩ I2),

where ∗sl(n) stands for g-invariants. This implies that (b) is equivalent to (d). ��
Lemma 5.2 Let I be an ideal of U(sl(n)) and L be a simple finite-dimensional
sl(n)-module. If

I ∩ Z(sl(n)) ⊂ (Z(sl(n)) ∩ AnnU(sl(n))L), (1)

then I ⊂ AnnU(sl(n))L.

Proof Note that (1) implies

1 �∈ ((I ∩ Z(sl(n)))+ (Z(sl(n)) ∩ AnnU(sl(n))L)) = Z(sl(n)) ∩ AnnU(sl(n))L.

Moreover, it follows from Lemma 5.1 that 1 /∈ (I + AnnU(sl(n))L). It is a well-
known result that there exists a unique maximal ideal m of U(sl(n)) containing
Z(sl(n)) ∩AnnU(sl(n))L, see [4, Subsection 1.1]. Clearly, AnnU(sl(n))L is maximal,
and hence

I + AnnU(sl(n))L ⊂ m = AnnU(sl(n))L.

This implies I ⊂ AnnU(sl(n))L. ��
Fix I ⊂ U(sl(∞)). For any n ≥ 2, we set

Qn(I) := {[L] ∈ Irrn | I ∩ U(sl(n)) ⊂ AnnU(sl(n))L}.

The union of Qn(I) is a p.l.s., see Sect. 3.2. Proposition 4.8 of [17] implies that
there exists a c.l.s. Q(I) such that Q(I)n = Qn(I) for n > 0. Such c.l.s. Q(I) is
clearly unique.

A theorem of Harish-Chandra claims that Z(sl(n)) is isomorphic to the Sn-
invariants S(hn)Sn in the symmetric algebra S(hn)Sn . Therefore the radical ideals of
Z(sl(n)) are in one-to-one correspondence with the Sn-invariant subvarieties of h∗n.
Let f ∈ F

n be a function. Then the ideal I (f )∩Z(sl(n)) is maximal; it corresponds
to the Sn-orbit of the weight λf + ρn where

ρn := λn,n−1,...,1.

Let I be an ideal of U(sl(∞)). Consider I ∩ Z(sl(n)). Clearly, I ∩ Z(sl(n)) is
an ideal of Z(sl(n)) and

√
I ∩ Z(sl(n)) is a radical ideal; it is identified with the

Sn-stable subvariety ZVarn(I ) of h∗n.
The variety ZVarn(I ) and the setQn(I) are related as follows.
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Proposition 5.3 Let I be a primitive ideal of U(sl(∞)). Then

(a) ZVarn(I ) equals the Zariski closure of the set

{w(λf + ρn) | [L(f )] ∈ Qn(I),w ∈ Sn}.

(b) Let f be a dominant function such that λf + ρn ∈ ZVarn(I ). Then

[L(f )] ∈ Qn(I).

Proof If I is primitive, then I is locally integrable, see [17, Section 4], which means
that

I ∩ U(sl(n)) = ∩[Lα]∈Q(I)nAnnU(sl(n))L
α.

This implies

I ∩ Z(sl(n)) = ∩[Lα]∈Q(I)n(AnnU(sl(n))L
α ∩ Z(sl(n)),

and (a) follows.
We proceed to (b). The condition λf + ρn ∈ ZVarn(I ) implies

I ∩ Z(sl(n)) ⊂ (Z(sl(n)) ∩ AnnU(sl(n))L(f )).

To finish the proof we use Lemma 5.2. ��
Consider f ∈ F

6 together with an arbitrary total order ≺ on 6. Put

F≺,n(f ) := {(f (i1)− 1, . . . , f (in)− n) ∈ F
n | i1 ≺ . . . ≺ in ∈ 6}.

Lemma 5.4 We have

λg ∈ ZVarn(I≺(f ))

for all g ∈ F≺,n(f ).

Proof Consider a finite subset F = {i1, . . . , in} of 6. It is clear that LF≺(f ) is an
sl(F )-subquotient of L≺(f ). This implies that

I≺(f ) ∩ U(sl(n)) ⊂ I≺(f ),

and hence that

I≺(f ) ∩ Z(sl(n)) ⊂ I≺(f ) ∩ Z(sl(n)).

The latter inclusion is equivalent to the desired statement. ��
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Corollary 5.5 Assume that f and f ′ are connected by a series of admissible
interchanges. Then

λg ∈ ZVarn(I≺(f ))

for all g ∈ F≺,n(f ′).

6 The Main Result for Dynkin Borel Subalgebras

Assume that b(≺) is a Dynkin Borel subalgebra. This means that we can identify the
ordered set (6,≺) with one of the three ordered sets (Z>0,<), (Z<0,<), (Z,<).

Let f ∈ F
Z<0 , FZ>0 , FZ be a locally constant function. Clearly, this is equivalent

to

∃N ∈ Z>0 : f (i) = f (i + 1) for all |i| ≥ N. (1)

We fix such an N . Put

h±(f ) := lim
n→±∞ f (n)

cf. (1). Note that if (6,≺) ∼= (Z<0,<) or (6,≺) ∼= (Z>0,<) then any locally
constant function f ∈ F

6 is almost integral. If f ∈ F
Z is almost integral and

locally constant, then h+(f )− h−(f ) is an integer.
For a locally constant function f ∈ F

Z<0 , we set

f+ := (. . . , f (i)+ i, . . . , f (−2)+ 2, f (−1)+ 1).

Then f+ is a stably decreasing function in F
6. It is easy to see that

seq(f+)i = h−(f )+ |seq(f+)| − i for i ≤ −N

or, equivalently,

seq(f+)∗i = −h−(f )− |seq(f+)| − i for i ≥ N.

Hence the function

seq(f+)∗ + h−(f )+ |seq(f+)| − ρZ>0 , (2)

where h−(f ), |seq(f+)| are constant functions, is nonincreasing and is stably equal
to zero. The nonzero values of the function (2) form a partition which we denote by
Y (f ).
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Proposition 6.1 Let f ∈ F
Z<0 be a locally constant function. Then

I<(f ) = I (r(f ), 0,∅, Y (f ))

where r := r(f ) := |seq(f+)|.
Proof It is enough to prove

(a) I (r(f ), 0,∅, Y (f )) ⊂ I<(f ),
and

(b) I<(f ) ⊂ I (r(f ), 0,∅, Y (f )).
Statement (a) is equivalent to

I (r(f ), 0,∅, Y (f )) ⊂ I<(f ′) (3)

for some f ′ such that f and f ′ are connected by a series of admissible interchanges.
We pick f ′ as in (1) with i1, . . . , ir satisfying (2). Then we apply [15, Lemma 5.4]
and Proposition 3.11 to the inserted variables. This shows (a).

Theorem 3.2 of [15] implies that (b) is equivalent to
(b′)Qn(I (r(f ), 0,∅, Y (f ))) ⊂ Qn(I<(f )) for n> 0.
According to [14, Lemma 7.6c)] we have

Qn(I (r(f ), 0,∅, Y (f ))) = ∪r ′+r ′′=rcls(r ′, r ′′,∅, Y (f )).
Hence we need to prove that

cls(r ′, r ′′, 0,∅, Y (f ))n ⊂ Qn(I<(f ))

for any n> 0 and all nonnegative integers r ′, r ′′ such that r ′ + r ′′ = r .
We fix r ′, r ′′ with r ′ + r ′′ = r . Let the partition Y (f ) be (l1 ≥ . . . ≥ ls > 0). We

also fix n ≥ r + s. Then Lemma 5.4 asserts that

λg ∈ ZVarn(I<(f )), (4)

for any λg ∈ F<,n(f ).
We will now make use of Corollary 3.13 which allows us to replace f in the

formula (4) by any f ′ which is connected with f by a series of shifted admissible
interchanges. Let i1, . . . , ir be integers satisfying condition (2). Consider the subset

Fi1,...,ir := {i1, . . . , ir ,−(n− r), . . . ,−1} ⊂ 6. (5)

Define fi1,...,ir by the requirement that (fi1,...,ir )
+ equals the right-hand side of (1)

applied to f+, i1, . . . , ir . The order of the elements of Fi1,...,ir in (5) allows us to
consider fi1,...,ir |Fi1,...,ir as a vector in F

n. Since f and fi1,...,ir are connected by a
series of shifted admissible interchanges, Corollary 5.5 implies that

λg′ ∈ ZVarn(I<(f )) = ZVarn(I<(fi1,...,ir )),
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where

g′(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

seq(f+)k + ik − k
if 1 ≤ k ≤ r

seq(f+)k−1−n+s + (k − 1− n+ s)− k = h−(f )+ r − k
if r < k ≤ n− s

seq(f+)k−1−n+s + (k − 1− n+ s)− k = h−(f )− r − k − ln+1−k
if n− s < k ≤ n

.

For all choices of negative integers i1, . . . , ir satisfying (2), the above weights
λg′ form a subset of ZVarn(I<(f )) whose Zariski closure contains the set λg′′ for
any g′′ of the form

g′′(k) =

⎧
⎪⎪⎨

⎪⎪⎩

ik if 1 ≤ k ≤ r
h−(f )+ r − k if r < k ≤ n− s
h−(f )+ r − k − ln+1−k if n− s < k ≤ n

where now i1, . . . , ir ∈ F are arbitrary. Therefore, Proposition 5.3 implies

[L(i1, . . . , ir ′ , l1, l2, . . . , ls , 0, . . . , 0,−jr ′′ , . . . ,−j2,−j1)] ∈ Q(I<(f ))n (6)

for all positive integers i1 ≥ i2 ≥ . . . ≥ ir ′ , j1 ≥ . . . ≥ jr ′′ such that ir ≥ l1, jr ′′ ≥
0. Consequently,

γ (cls(r ′, r ′′, 0,∅, Y (f )); n) ∈ Q(I<(f ))2n. (7)

Now Lemma 3.6 implies b′), and the proof is complete. ��
Proposition 6.2 Let f ∈ F

Z>0 be a locally constant function. Then

I<(f ) = I (r(f ∗), 0, Y (f ∗),∅).

Proof This proposition can be proved by repeating the proof of Proposition 6.1
and making some obvious changes. For a shorter proof, note that the outer
automorphism

eij 	→ −eji
of sl(∞) interchanges the simple modules L<(f ) and L>(−f ) ∼= L<(f

∗)
((Z>0,>) is isomorphic to (Z<0,<) and thus L>(−f ) ∼= L<(f

∗)), and inter-
changes the ideals I (r(f ∗), 0, Y (f ∗),∅) and I (r(f ∗), 0,∅, Y (f ∗)). Therefore the
statement also follows from Proposition 6.1. ��
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Consider now the case (6,≺) = (Z,<). It is clear that if f ∈ F
Z is a locally

constant function, then

f+ := (. . . , f (−1)+ 1, f (0), f (1)− 1, . . . , f (i)− i, . . .)
is an element of FZ and is stably decreasing.

Proposition 6.3 Let f ∈ F
Z be a locally constant function. Let

r := r(f ) = |seq(f+)|.
Then

I<(f ) = I (r, h−(f )− h+(f )+ r,∅,∅).

Proof The proof follows the same idea as the proof of Proposition 6.1. Below we
highlight the necessary changes.

The inclusion

I (r, h−(f )− h+(f )+ r,∅,∅) ⊂ I<(f )
is equivalent to

I (r, h−(f )− h+(f )+ r,∅,∅) ⊂ I<(f ′) (8)

where f ′ is as in (1). By applying [15, Lemma 5.4] and Proposition 3.11 to the
inserted variables we establish (8).

Next, Theorem 3.2 of [15] implies that the inclusion

I<(f ) ⊂ I (r, h−(f )− h+(f )+ r,∅,∅)
is equivalent to the inclusions

Qn(I (r, h
−(f )− h+(f )+ r,∅,∅)) ⊂ Qn(I<(f )) for n> 0.

As in the proof of Proposition 6.1, it suffices to show that

∪r ′+r ′′=rcls(r ′, r ′′, h−(f )− h+(f )+ r,∅,∅) ⊂ Qn(I<(f )) for n> 0.

We fix nonnegative integers r ′, r ′′ with r ′ +r ′′ = r . For n ≥ r Lemma 5.4 asserts
that

λg ∈ ZVarn(I<(f )), (9)

for any λg ∈ F<,n(f ). We now replace f in formula (9) by an appropriate f ′ with
I<(f ) = I<(f ′). Let i1, . . . , ir be integers satisfying (2). Consider the subset

Fi1,...,ir := {i1, . . . , ir ,−(n− r ′)−N, . . . ,−1−N, 1+N, 2+N, . . . , (n− r ′′)+N} ⊂ 6.
(10)
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Define fi1,...,ir by the requirement that (fi1,...,ir )
+ equals the right-hand side of (1)

applied to f+, i1, . . . , ir . The order of the elements of Fi1,...,ir in (10) allows us to
consider fi1,...,ir |Fi1,...,ir as a vector in F

2n. Then I<(f ) = I<(fi1,...,ir ). Moreover,
Corollary 5.5 implies that

λg′ ∈ ZVar2n(I<(f )) = ZVar2n(I<(fi1,...,ir )),

where

g′(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

seq(f+)k + ik − k
if 1 ≤ k ≤ r

seq(f+)k−1−N−n−r ′′ + (k − 1−N − n− r ′′)− k = h−(f )− k
if r < k ≤ n+ r ′′

seq(f+)k−n−r ′′+N + (k − n− r ′′ +N)− k = h+(f )− k
if n+ r ′′ < k ≤ 2n

.

For all integers i1, . . . , ir satisfying (2), the above weights λg′ form a subset of
ZVar2n(I<(f )) whose Zariski closure contains the set λg′′ for any g′′ of the form

g′′(k) =

⎧
⎪⎪⎨

⎪⎪⎩

ik if 1 ≤ k ≤ r
seq(f+)k − k = h−(f )− k if r < k ≤ n
seq(f+)k − k = h+(f )− k if n < k ≤ 2n

where now i1, . . . , ir ∈ F are arbitrary. Therefore Proposition 5.3 implies

[L(i1, . . . , ir ′ , h−(f ), . . . , h−(f )︸ ︷︷ ︸
(n−r ′)−times

, h+(f ), . . . , h+(f )︸ ︷︷ ︸
(n−r ′′)−times

,−jr ′′ , . . . , j1)] ∈ Q(I<(f ))n.

for all positive integers i1 ≥ i2 ≥ . . . ≥ ir ′ , j1 ≥ . . . ≥ jr ′′ such that

ir ′ ≥ h−(f ),−jr ′′ ≤ h+(f ).
Consequently,

γ (cls(r ′, r ′′, 0,∅,∅); n) ∈ Q(I<(f ))2n.
We complete the proof by applying Lemma 3.6. ��

7 Main Results

We are now ready to state the general result. Consider a given simple highest
weight module L≺(f ) where f ∈ F

6 is a ≺-locally constant and almost integral
function. Let ≺f be a total order on 6 such that ≺f is f -equivalent to ≺, and
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≺f is f -preferred with respect to a partition 61 � . . . � 6t of 6, see Sect. 3.3.
Propositions 6.1, 6.2, 6.3 imply that

I61≺f (f ) = I (r1, 0, X,∅), I6t≺f (f ) = I (rt , 0,∅, Y ),

I6i≺f (f ) = I (ri, gi,∅,∅), 1 < i < t
for appropriate nonnegative integers r1, . . . , rt , g1, . . . , gt and Young diagrams
X, Y .

Theorem 7.1 We have I≺(f ) = I (r1 + . . .+ rt , g2 + . . .+ gt−1, X, Y ).

Proof The proof follows the same lines as the proofs of Propositions 6.1, 6.2, 6.3.
One first proves the inclusion

I (r1 + . . .+ rt , g2 + . . .+ gt−1, X, Y ) ⊂ I≺(f )
by the same argument as above.

For the opposite inclusion, one considers functions fi1,...,ir which, restricted
to 6i , coincide with the corresponding functions constructed in the proofs of
Propositions 6.1, 6.2, 6.3. This means that the integers i1, . . . , ir arise as a union
of independently chosen t subsets of integers. With this modification, the argument
goes through almost verbatim. ��

8 Examples

8.1 Annihilator of Nonintegrable Bounded Highest Weight
Modules

Assume that (6,≺) = (Z>0,<). Fix α ∈ F, n ∈ Z≥1 and consider the <-locally
constant function

f := (−1, . . . ,−1︸ ︷︷ ︸
(n−1) times

, α, 0, 0, 0, 0, . . .). (1)

Then

h(f ) = 0, f+ = (−1,−2,−3, . . . ,−n, α − n,−(n+ 1),−(n+ 2), . . .),

(f+)∗ = (. . . , (n+ 2), (n+ 1), n− α, n, . . . , 3, 2, 1),

seq((f+)∗) = n− α, seq((f+)∗) = (. . . , (n+ 2), (n+ 1), n, . . . , 1).

Hence r = 1, Y = ∅, and

I<(f ) = I (1, 0,∅,∅).
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Assume next that (6,≺) = (Z<0,<). Fix α ∈ F, n ∈ Z≥1 and consider

f := (. . . ,−1,−1, α, 0, . . . , 0︸ ︷︷ ︸
(n−1) times

), (2)

Here

h(f ) = −1, f+ = (. . . , n, n− 1, (n− 1)+ α, (n− 2), . . . , 2, 1, 0),

seq((f+)∗) = n− 1+ α, seq((f+)∗) = (. . . , n, (n− 1), (n− 2), . . . , 0).

Hence r = 1, X = ∅, and again

I<(f ) = I (1, 0,∅,∅).

Finally let (6,≺) = (Z,<). Fix α ∈ F and consider

f := (. . . ,−1,−1, α, 0, 0, . . .) (3)

where f (n) = α. We have

h(f ) = −1, f+ = (. . . , 2− n, 1− n, 0− n, α − n,−1− n,−2− n, . . .),

seq((f+)∗) = α−n, seq(f+) = (. . . , 2−n, 1−n, 0−n,−1−n,−2−n, . . .).

Hence r = 1, g = h(f )+ r = 0, and again

I<(f ) = I (1, 0,∅,∅).

The above computations show that the simple highest weight modules with
highest weights (1), (2), (3) share the same annihilator in U(sl(∞)), namely
the primitive ideal I (1, 0,∅,∅). Moreover, in [9] it is proved that any simple
nonintegrable highest weight sl(∞)-module with bounded weight multiplicities is
isomorphic to one of the above highest weight modules, for a suitable choice of
identification of (6,≺) with (Z>0,<), (Z<0,<), or (Z,<). Note that the simple
modules with highest weights (1), (2), (3) are multiplicity free over h.

8.2 Annihilator of Semiinfinite Fundamental Representations

Let L be a direct limit of exterior powers 'kn(Vn) of Vn where Vn is a defining
sl(n)-module, and kn is a nondecreasing sequence satisfying 1 < kn < n and such
that kn+1 = kn or kn+1 = kn + 1. Assume that

lim kn = lim(n− kn) = ∞.
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Then one can show [9] that L is a highest weight sl(∞)-module for an appropriately
chosen Borel subalgebra b(≺), and that the highest weight f ∈ F

6 of L can be
chosen to take only values 1 and 0. Moreover, the Borel subalgebra b(≺) can be
chosen to be a Dynkin Borel subalgebra such that (6,≺) = (Z,<). Then, by
Proposition 6.3,

I≺(f ) = I (0, 1,∅,∅).

In Sect. 1 we referred to L as a semiinfinite fundamental representation of sl(∞).

8.3 Annihilators of a Class of Modules Containing all Simple
Tensor Modules

Consider the case when b is ideal with respect to a partition 61 ≺ 62 ≺ 63 of 6
such that 62 is empty. Assume that f has finitely many nonzero coordinates. The
construction at the end of Sect. 3.3 provides an f -preferred partition6′1 ≺ 6′2 ≺ 6′3
of 6 for which f |6′2 equals zero. This implies that

I
6′1≺ (f ) = I (r1, 0, X,∅), I

6′2≺ (f ) = I (0, 0,∅,∅), I
6′3≺ (f ) = I (r3, 0,∅, Y )

for some r1, r2 ∈ Z≥0 and some Young diagramsX, Y . Therefore, I≺(f ) = I∗(r1+
r3, 0, X, Y ) by Theorem 7.1. It is easy to check that the primitive ideals obtained
in this way run over all ideals of the form I (r, 0, X, Y ) for arbitrary r,X, Y . The
case when r1 = r3 = 0 corresponds to the case of the simple tensor modules VX,Y
mentioned in Sect. 1.
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Abstract We describe a general framework for prime, completely prime,
semiprime, and primitive ideals of an abelian 2-category. This provides a non-
commutative version of Balmer’s prime spectrum of a tensor triangulated category.
These notions are based on containment conditions in terms of thick subcategories
of an abelian category and thick ideals of an abelian 2-category. We prove
categorical analogs of the main properties of noncommutative prime spectra. Similar
notions, starting with Serre subcategories of an abelian category and Serre ideals
of an abelian 2-category, are developed. They are linked to Serre prime spectra
of Z+-rings. As an application, we construct a categorification of the quantized
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by constructing Serre completely prime ideals of monoidal categories of modules of
the KLR algebras, and by taking Serre quotients with respect to them.
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1 Introduction

1.1 Noncommutative Categorical Prime Spectra
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other areas. It is defined for triangulated categories with a symmetric monoidal
structure. As noted in [4], Balmer’s construction and results more generally apply
to braided monoidal triangulated categories.

The notion of a prime spectrum of a braided monoidal triangulated category
is a categorical version of the notion of a prime spectrum of a commutative ring.
In the classical case of noncommutative rings, there are four different notions of
primality [11]: prime, completely prime, semiprime, and primitive spectra. In this
paper we develop categorical notions of all of them, and prove analogs of many
of their main properties. We do this in the abelian setting. However, instead of
simply considering abelian monoidal categories, we work with the more general
setting of abelian 2-categories. It is necessary to consider this more general setting,
because many of the monoidal categorifications of noncommutative algebras that
have been constructed so far are in the setting of 2-categories, rather than monoidal
categories, see [18, 29, 34]. Categorifications via 2-categories are even needed for
relatively small algebras such as the idempotented version of the quantized universal
enveloping algebra of sl2; we refer the reader to [29] for a very informative review
of this particular categorification.

1.2 Thick and Prime Ideals of Abelian 2-Categories

A 2-category is a category enriched over the category of 1-categories. In other
words, a 2-category T has the property that for every two objects A1, A2 of it, the
morphisms T (A1, A2) form a 1-category and satisfy natural identity conditions.
A 2-category with one object is the same thing as a strict monoidal category.
An abelian 2-category is such a category for which the 1-categories T (A1, A2)

are abelian and the composition bifunctors are biexact. We work with small 2-
categories, i.e., with 2-categories T whose objects form a set and for which all
1-categories T (A1, A2) are small. We denote by T1 the isomorphism classes of 1-
morphisms of T . For two subsets X, Y ⊆ T1, denote by

X ◦ Y the set of isomorphism classes of 1-morphims of T having representatives of the

form fg for f and g representing classes in X and Y such that fg is defined.

The different versions of prime ideals of abelian 2-categories which we develop
are based on the notion of a thick subcategory of an abelian category and its 2-
incarnation, the notion of a thick ideal of an abelian 2-category. Recall that a thick
(sometimes called wide) subcategory of an abelian category is a nonempty full
subcategory which is closed under taking kernels, cokernels, and extensions.
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A thick ideal I of an abelian 2-category T is a collection of subcategories
I(A1, A2) of T (A1, A2) for all objects A1, A2 of T such that

1. I(A1, A2) are thick subcategories of the abelian categories T (A1, A2) and
2. the composition bifunctors of T restrict to bifunctors

T (A2, A3)×I(A1, A2)→ I(A1, A3) and I(A2, A3)×T (A1, A2)→ I(A1, A3)

for all objects A1, A2, A3 of T .

We call a proper thick ideal P of an abelian 2-category T
(p) prime if, for all thick ideals I and J of T , I1 ◦ J1 ⊆ P1 implies that either

I ⊆ P or J ⊆ P ,
(sp) semiprime if it is an intersection of prime ideals,
(cp) completely prime if, for all f, g ∈ T1, f ◦ g ⊆ P1 implies that either f ∈ P1

or g ∈ P1. Note that the set f ◦ g is either empty or is a singleton.

We obtain categorical versions of the main properties of prime, semiprime, and
completely prime ideals of noncommutative rings. In Sect. 3 it is proved that the
following are equivalent for a proper thick ideal P of an abelian 2-category T :

(p1) P is a prime ideal;
(p2) If f, g ∈ T1 and f ◦ T1 ◦ g ⊆ P1, then either f ∈ P1 or g ∈ P1;
(p3) If I and J are any thick ideals properly containing P , then I1 ◦ J1 �⊆ P1;
(p4) If I and J are any left thick ideals of T such that I1 ◦ J1 ⊆ P1, then either

I ⊆ P or J ⊆ P .

We call the set of such thick ideals of T the prime spectrum of T , to be denoted by
Spec(T ), and define a Zariski type topology on it. For a multiplicative subset M of
T1 (see Definition 3.13) and a proper thick ideal I of T such that I1 ∩M = ∅, we
prove that every maximal element of the set

X(M, I) := {K a thick ideal of T | K ⊇ I and K1 ∩M = ∅}

is a prime ideal of T . This implies that Spec(T ) is non-empty for every abelian
2-category.

Categorical versions of simple, noetherian, and weakly noetherian noncommu-
tative rings are given in Sect. 4. There we prove that for every weakly noetherian
abelian 2-category T and a proper thick ideal I of T , there exist finitely many
minimal Serre prime ideals over I and there is a finite list of minimal prime ideals
over I (possibly with repetition) P(1), . . . ,P(m) such that the product

P(1)1 ◦ . . . ◦ P(m)1 ⊆ I1.
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In Sect. 5 we prove a categorical version of the Levitzki–Nagata theorem for
semiprime ideals, and furthermore show that the following are equivalent for a
proper thick ideal Q of T :

(sp1) Q is semiprime;
(sp2) If f ∈ T1 and f ◦ T1 ◦ f ⊆ Q1, then f ∈ Q1;
(sp3) If I is any thick ideal of T such that I1 ◦ I1 ⊆ Q1, then I ⊆ Q;
(sp4) If I is any thick ideal properly containing Q, then I1 ◦ I1 �⊆ Q1;
(sp5) If I is any left thick ideal of T such that I1 ◦ I1 ⊆ Q1, then I ⊆ Q.

1.3 Serre Prime Ideals of 2-Categories and Ideals of Z+-Rings

Serre subcategories of abelian categories are a particular type of thick subcategories.
A thick ideal I of an abelian 2-category T will be called a Serre ideal if I(A1, A2)

is a Serre subcategory of T (A1, A2) for all objects A1, A2 of T . For those ideals
one can consider the Serre quotient T /I which is an abelian 2-category under a
mild condition on I.

We define a Serre prime (resp. semiprime, completely prime) ideal of an abelian
2-category T to be a prime (resp. semiprime, completely prime) ideal which is
a Serre ideal. Section 6 treats in detail these ideals, and proves that they are
characterized by similar to (p3)–(p4) and (sp3)–(sp5) properties as in Sect. 1.2, but
with thick ideals replaced by Serre ideals. In other words, these kinds of ideals can
be defined entirely based on the notion of Serre ideals of abelian 2-categories, just
like the more general prime ideals are defined in terms of thick ideals.

The set of Serre prime ideals of T , denoted by Serre-Spec(T ), has an induced
topology from Spec(T ). This topology is shown to be intrinsically given in terms of
Serre ideals of T . If C is a strict abelian monoidal category, an alternative topology
which more closely resembles the topology of Balmer in [1] can also be put on
Serre-Spec(C). Under this topology, Serre-Spec(C) is a ringed space.

Denote Z+ := {0, 1, . . .}. The Grothendieck ringK0(T ) of an abelian 2-category
T is a Z+-ring in the terminology of [7, Ch. 3], see Definitions 2.3 and 6.8. In
Sect. 6.4 we define the notions of Serre ideals and Serre prime (semiprime and
completely prime) ideals of a Z+-ringR. The set of Serre prime ideals ofR, denoted
by Serre-Spec(R), is equipped with a Zariski type topology.

It is proved in Sect. 6 that, for an abelian 2-category T with the property that
every 1-morphism of T has finite length, the functor K0 induces bijections between
the sets of Serre ideals, Serre prime (semiprime and completely prime ideals) of the
abelian 2-category T and the Z+-ring K0(T ). Furthermore, the map

K0 : Serre-Spec(T )→ Serre-Spec(K0(T ))

is shown to be a homeomorphism.
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For a Serre prime (resp. semiprime, completely prime) ideal I of T , the Serre
quotient T /I is a prime (resp. semiprime, domain) abelian 2-category. If every 1-
morphism of T has finite length, then

K0(T /I) ∼= K0(T )/K0(I).

The point now is that if we have a categorification of a Z+-ring R via an abelian
2-category T (i.e., K0(T ) ∼= R) and I is a Serre ideal of R, then there is a unique
Serre ideal I of T such that K0(I) = I . Furthermore, the Serre quotient T /I
categorifies the Z+-ring R/I , i.e., K0(T /I) ∼= K0(T )/K0(I). If I is a Serre
prime (resp. semiprime, completely prime) ideal of the Z+-ring R, then the Serre
quotient T /I is a prime (resp. semiprime, domain) abelian 2-category. We view
this construction as a general way of constructing monoidal categorifications of Z+-
rings out of known ones by taking Serre quotients. This is illustrated in Sect. 9 in the
case of the quantized coordinate rings of open Richardson varieties for symmetric
Kac–Moody algebras.

We expect that, in addition, Serre prime ideals of abelian 2-categories and
Z+-rings will provide a framework for finding intrinsic connections between
prime ideals of noncommutative algebras and totally positive parts of algebraic
varieties. In the case of the algebras of quantum matrices, such a connection was
previously found by exhibiting related explicit generating sets for prime ideals of
the noncommutative algebras and minors defining totally positive cells [10].

Primitive ideals of abelian 2-categories T are introduced in Sect. 7 as the
annihilation ideals of simple exact 2-representations in the setting of [35, 36], where
it is proved that all such ideals are Serre prime ideals of T .

1.4 Prime Spectra of Additive 2-Categories

One can develop analogous (but much simpler) theory of different forms of prime
ideals of an additive 2-category T , which is a 2-category such that T (A1, A2) are
additive categories for A1, A2 ∈ T and the compositions

T (A2, A3)× T (A1, A2)→ T (A1, A3)

are additive bifunctors for A1, A2, A3 ∈ T .
This can be done by following exactly the same route as Sects. 3–5 but based

off the notion of a thick ideal of an additive 2-category. Call a full subcategory
of an additive category thick if it is closed under direct sums, direct summands,
and isomorphisms. A thick ideal I of an additive 2-category T is a collection of
subcategories I(A1, A2) of T (A1, A2) for all objects A1, A2 of T such that

1. I(A1, A2) are thick subcategories of the additive categories T (A1, A2) and
2. T1 ◦ I1 ⊂ I1, I1 ◦ T1 ⊆ I1.
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Using the same conditions on containments with respect to thick ideals and 1-
morphisms as in Sects. 3–5, one defines prime, semiprime, and completely prime
ideals of additive 2-categories and proves analogs of the results in those sections
(though in a simpler way than the abelian setting). One also analogously defines a
Zariski topology on the set Spec(T ) of prime ideals of T by using containments
with respect to thick subcategories of T . There are no analogs of the Serre type
ideals in this setting.

If an additive 2-category T has the property that each of its 1-morphisms has
a unique decomposition as a finite set of indecomposables (e.g., if all additive
categories T (A1, A2) are Krull–Schmidt), then the split Grothendieck ring Ksp0 (T )
is a Z+-ring, see Remark 2.4. Similarly to Sect. 6.5, for such additive 2-categories
T , one shows that the map Ksp0 (−) gives

• a bijection between the sets of thick, prime, semiprime, and completely prime
ideals of T and the sets of Serre ideals, Serre prime, semiprime, and completely
prime ideals of the Z+-ring Ksp0 (T ), and

• a homeomorphism Spec(T )→ Serre-Spec(Ksp0 (T )).
Call the annihilation ideal of a simple 2-representation of an additive 2-category

T (in the setting of [35, 36]) a primitive ideal of T . Similarly to Sect. 7, one shows
that each such ideal is a prime ideal of T .

In a forthcoming publication we obtain analogs of the results in the paper for
(noncommutative) prime spectra of triangulated 2-categories.

1.5 Categorifications of Richardson Varieties via Prime Serre
Quotients

We finish with an important example of Serre completely prime ideals of abelian
2-categories that can be used to categorify the quantized coordinate rings of certain
closures of open Richardson varieties. For a symmetrizable Kac–Moody group G,
a pair of opposite Borel subgroups B± and Weyl group elements u ≤ w, the
corresponding open Richardson variety is defined as the intersections of opposite
Schubert cells in the full flag variety of G,

Ru,w := (B−uB+)/B+ ∩ (B+wB+)/B+ ⊂ G/B+.

They have been used in a wide range of settings in representation theory, Schubert
calculus, total positivity, Poisson geometry, and mathematical physics. For sym-
metric Kac–Moody groups, Leclerc [30] constructed a cluster algebra inside the
coordinate ring of each Richardson variety of the same dimension. In the quantum
situation, Lenagan and the second named author constructed large families of toric
frames for all quantized coordinate rings of Richardson varieties that generate those
rings [31].
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Recently, for each symmetrizable Kac–Moody algebra g, Kashiwara, Kim, Oh,
and Park [24] constructed a monoidal categorification of the quantization of a
closure of Ru,w in terms of a monoidal subcategory of the category of graded, finite
dimensional representations of the Khovanov–Lauda–Rouquier (KLR) algebras
associated to g. Their construction uses Leclerc’s interpretation of the coordinate
ring of a closure of Ru,w in terms of a double invariant subalgebra.

Denote byRu,w the closure ofRu,w in the Schubert cell (B+wB+)/B+ ⊂ G/B+.
We construct a monoidal categorification of the quantization U−u [w]/Iu(w) of the
coordinate ring ofRu,w used in the construction of toric frames in [31]. HereU−q [w]
are the quantum Schubert cell algebras [5, 33] and Iu(w) are the homogeneous
completely prime ideals of these algebras that arose in the classification of their
prime spectra in [43]. This classification was based on the fundamental works
of Anthony Joseph on the spectra of quantum groups [16, 17] from the early
90s. It was proved in [19, 26, 38] that certain monoidal subcategories Cw of the
categories of graded, finite dimensional modules of the KLR algebras associated to
g categorify the dual integral form U−A[w]∨ where A := Z[q±1]. We prove that for
a symmetrizable Kac–Moody algebra g, the ideals Iw(u)∩U−A[w]∨ have bases that
are subsets of the upper global/canonical basis of U−A[w]∨. From this we deduce
that for symmetric g, Iw(u)∩U−A[w]∨ are Serre completely prime ideals of the Z+-
ring U−A[w]∨. The bijection from Sect. 1.3 implies that the monoidal category Cw
has a Serre completely prime ideal Iu(w) such that K0(Iu(w)) = Iw(u), and thus,
the Serre quotient Cw/Iu(w) categorifies U−A[w]∨/(Iw(u) ∩ U−A[w]∨):

K0(Cw/Iu(w)) ∼= U−A[w]∨/(Iw(u) ∩ U−A[w]∨).

It is an important problem to connect the categorification of Kashiwara, Kim, Oh,
and Park [24] of open Richardson varieties (via subcategories of KLR modules) to
ours (via Serre quotients of categories of KLR modules).

2 Abelian 2-Categories and Categorification

This section contains background material on (abelian) 2-categories and categorifi-
cation of algebras.

2.1 2-Categories

A category T is said to be enriched over a monoidal category M if the space of
morphisms between any two objects of T is an object in M and T satisfies natural
axioms which relate composition of morphisms in T and the identity morphisms of
objects of T to the monoidal structure of M. We refer the reader to [25] for details.
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A 2-category is a category enriched over the category of 1-categories. This means
that for a 2-category T , given two objects A1, A2 of it, the morphisms T (A1, A2)

form a 1-category. The objects of these categories are denoted by the same symbol
T (A1, A2) – they are the 1-morphisms of T . The morphisms of the categories
T (A1, A2) are the 2-morphisms of T . For a pair of 1-morphisms f, g ∈ T (A1, A2),
we will denote by T (f, g) the 2-morphisms between f and g, i.e., the morphisms
between the objects f and g in the category T (A1, A2).

We have 2 types of compositions of 1- and 2-morphisms. We follow the notation
of [29]:

1. For a pair of objects A1, A2 of T , the composition of morphisms in the category
T (A1, A2) is called vertical composition of 2-morphisms of T . In the globular
representation of T , such a composition is given by the following diagram

A2 A1.

h

g

f

β

α

The vertical composition of the 2-morphisms α ∈ T (f, g) and β ∈ T (g, h) will
be denoted by βα ∈ T (f, h), where f, g, h are objects of T (A1, A2).

2. For each three objects A1, A2, A3 of T , we have a bifunctor of 1-categories

T (A2, A3)× T (A1, A2)→ T (A1, A3). (2.1)

The resulting composition of 1- and 2-morphisms of T is called horizontal
composition. In the globular representation of T , these compositions are given
by the diagram

A3 A2 A1.

f2

g2

α2

f1

g1

α1

In this notation, the horizontal composition of 2-morphisms will be denoted by
α2 ∗ α1. The horizontal composition of 1-morphisms will be denoted by f2f1.

A 2-category T has identity 1-morphisms 1A ∈ T (A,A) (for its objects A ∈ T ).
The compositions and identity morphisms satisfy natural associativity and identity
axioms [29, 34], which are equivalent to the definition of 2-categories in the
language of enriched categories.

2-categories are generalizations of monoidal categories, in the sense that a strict
monoidal category is the same thing as a 2-category with one object:

To a strict monoidal category M, one associates a 2-category T with one object
A by taking T (A,A) :=M. The tensor product in M is used to define composition
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of 1-morphisms of T . For f, g ∈ M = T (A,A), one defines the 2-morphisms
T (f, g) :=M(f, g). All 2-categories with 1 object arise in this way.

Recall that a 1-category C is called small if its objects form a set and C(A1, A2)

is a set for all pairs of objectsA1, A2 ∈ C. Throughout the paper we work with small
2-categories T , which are 2-categories satisfying the conditions that the objects of
T form a set and T (A1, A2) is a small 1-category for all pairs of objects A1, A2
of T .

The set of objects of such a 2-category T will be denoted by the same symbol T .
The set of 1-morphisms of T will be denoted by T1.

2.2 Abelian 2-Categories and Categorification

Definition 2.1 We will say that a 2-category T is an abelian 2-category if
T (A1, A2) are abelian categories for all A1, A2 ∈ T and the compositions

T (A2, A3)× T (A1, A2)→ T (A1, A3)

are exact bifunctors for all A1, A2, A3 ∈ T .
More generally, for a ring k, we will say that T is a k-linear abelian 2-category

if T (A1, A2) are k-linear abelian categories for A1, A2 ∈ T .

A multiring category in the terminology of [7, Definition 4.2.3] is precisely a
k-linear abelian 2-category with one object.

Remark 2.2 Let k be a field. Recall that a k-linear abelian category C is called
locally finite if it is Hom-finite (i.e., dimk C(A1, A2) < ∞ for all A1, A2 ∈ C)
and each object of C has finite length; we refer the reader to [7, §1.8] for details.
Let LFAbex be the monoidal category of locally finite abelian categories equipped
with the Deligne tensor product ([6] and [7, §1.11]) and morphisms given by exact
functors.

In this terminology, a k-linear abelian 2-category T with the property that the
1-categories T (A1, A2) are locally finite for all A1, A2 ∈ T is the same thing as
a category which is enriched over the monoidal category LFAbex . This is easy
to verify, the only key step being the universality property of the Deligne tensor
product with respect to exact functors [7, Proposition 1.11.2(v)].

We will denote by K0(C) the Grothendieck group of an abelian category C. To
each abelian 2-category T one associates the pre-additive category K0(T ) whose
objects are the objects of T and morphisms are

K0(T )(A1, A2) := K0(T (A1, A2)) for A1, A2 ∈ T .

Given a pre-additive category F , one says that the 2-category T categorifies F if
K0(T ) ∼= F as pre-additive categories.
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To a pre-additive category F , one associates a ring with elements

⊕A1,A2∈FF(A1, A2).

The product in the ring is the composition of morphisms when it makes sense and 0
otherwise. In particular, the identity morphisms 1A are idempotents of the ring for
all objects A ∈ F . By abuse of notation, this ring is denoted by the same symbol F
as the original category.

Definition 2.3 For an abelian 2-category T , the ring K0(T ) is called the
Grothendieck ring of T . We say that T categorifies an S-algebra R, for a
commutative ring S, if K0(T )⊗Z S ∼= R.

Often, it is not sufficient to consider multiring categories (abelian monoidal
categories) to obtain categorifications of algebras, and one needs the more general
setting of 2-categories.

Remark 2.4 An additive 2-category is a 2-category T such that T (A1, A2) are
additive categories for all A1, A2 ∈ T and the compositions

T (A2, A3)× T (A1, A2)→ T (A1, A3)

are additive bifunctors for all A1, A2, A3 ∈ T . For such a category T , one defines
the pre-additive categoryKsp0 (T )whose objects are the objects of T and morphisms
are the split Grothendieck groups

K
sp

0 (T (A1, A2))

of the additive categories T (A1, A2) for A1, A2 ∈ T .
We say that an additive 2-category T categorifies an S-algebra R if Ksp0 (T )⊗Z

S ∼= R.

3 The Prime Spectrum

In this section we define the prime spectrum of an abelian 2-category and a Zariski
type topology on it. We prove two equivalent characterizations of prime ideals,
extending theorems from classical ring theory. We also prove that maximal elements
of the sets of ideals not intersecting multiplicative sets of 1-morphisms of 2-
categories are prime ideals.



Prime Spectra of 2-Categories and Categorifications of Richardson Varieties 511

3.1 Thick Ideals of Abelian 2-Categories

Definition 3.1 A weak subcategory I of a 2-category T is

(1) a subcollection I of objects of T and
(2) a collection of subcategories I(A1, A2) of T (A1, A2) for A1, A2 ∈ I,

such that the composition bifunctors (2.1) restrict to bifunctors

I(A2, A3)× I(A1, A2)→ I(A1, A3)

for A1, A2, A3 ∈ I.

A weak subcategory I of a 2-category T is not necessarily a 2-category on its
own because it might not contain the identity morphisms 1A for its objects A ∈ I.
Apart from this, a weak subcategory of a 2-category satisfies the other axioms for
2-categories. The relationship of a weak subcategory to a 2-category is the same as
the relationship of a subring to a unital ring R. In the latter case, the subring does
not need to contain the unit of R.

Definition 3.2

(1) A thick subcategory of an abelian category is a nonempty full subcategory
which is closed under taking kernels, cokernels, and extensions.

(2) A thick weak subcategory of an abelian 2-category T is a weak subcategory I of
T having the same set of objects and such that for any pair of objects A1, A2 ∈
T , I(A1, A2) is a thick subcategory of the abelian category T (A1, A2).

(3) A thick ideal of an abelian 2-category T is a thick weak subcategory I of T
such that, for all 1-morphisms f in T and g in I, the compositions fg, gf are
1-morphisms of I whenever they are defined.

Sometimes the term wide subcategory is used instead of thick, see, for instance,
[14].

Every thick subcategory of an abelian category is closed under isomorphisms
and taking direct summands of its objects (because one can take the kernels of
idempotent endomorphisms of its objects).

For a thick weak subcategory I of an abelian 2-category T , I(A1, A2) is an
abelian category for every pair of objects A1, A2 ∈ I with respect to the same
kernels and cokernels as the ambient abelian category T (A1, A2).

In part (3), the compositions of 1-morphisms that are used are the horizontal
compositions discussed in Sect. 2.1. More explicitly, a thick subcategory I of T is
a thick ideal if for all f1 ∈ T (A1, A2), g2 ∈ I(A2, A3) and f3 ∈ T (A3, A4), we
have

g2f1 ∈ I(A1, A3) and f3g2 ∈ I(A2, A4),

where A1, A2, A3, A4 ∈ T .
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Remark 3.3 Let I and J be a pair of thick weak subcategories of T . Then

I ⊆ J if and only if I1 ⊆ J1.

In particular,

I = J if and only if I1 = J1.

Example 3.4 There exists a unique thick ideal of every 2-category T whose set of
1-morphisms consists of the 0 objects of the abelian categories T (A1, A2) for all
A1, A2 ∈ T . This thick ideal will be denoted by 0T . Every other thick ideal of T
contains 0T .

For two subsets X, Y ⊆ T1, denote by

X ◦ Y the set of isomorphism classes of 1-morphims of T having representatives of the

form fg for f and g representing classes in X and Y such that fg is defined.

In general, X ◦ Y can be empty. For f, g ∈ T1 the composition f ◦ g is either empty
or consists of one element.

In this notation, a thick weak subcategory I of T is a thick ideal if and only if

T1 ◦ I1 ⊆ I1 and I1 ◦ T1 ⊆ I1.

Definition 3.5 A thick left (respectively right) ideal of an abelian 2-category T is a
thick weak subcategory I of T such that

T1 ◦ I1 ⊆ I1 (respectively I1 ◦ T1 ⊆ I1).

Remark 3.6 LetA1, A2, B1, B2 be four objects of an abelian 2-category T such that

Ai ∼= Bi for i = 1, 2.

Then for every thick ideal I of T , we have (noncanonical) isomorphisms of abelian
categories

I(A1, A2) ∼= I(B1, B2). (3.1)

Indeed, let fi ∈ T (Ai, Bi) and gi ∈ T (Bi, Ai) be such that

figi ∼= 1Bi and gifi ∼= 1Ai
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for i = 1, 2 (where the isomorphisms are in the categories T (Bi, Bi) and
T (Ai, Ai)). The functor giving the equivalence (3.1) is defined by

h 	→ f2hg1

on the level of objects h ∈ I(A1, A1) and

α 	→ 1f2 ∗ α ∗ 1g1

on the level of morphisms.

3.2 Prime Ideals of Abelian 2-Categories

A thick ideal I of T will be called proper if I �= T ; by Remark 3.3 this is the same
as I1 � T1.

Definition 3.7 We call P a prime ideal of T if P is a proper thick ideal of T with
the property that for every pair of thick ideals I and J of T ,

I1 ◦ J1 ⊆ P1 ⇒ I ⊆ P or J ⊆ P .

The set of all prime ideals P of an abelian 2-category T will be called the prime
spectrum of T and will be denoted by Spec(T ).
By Remark 3.3, the property on the right side of the implication can be replaced
with I1 ⊆ P1 or J1 ⊆ P1.

3.3 Two Equivalent Characterizations of Prime Ideals

The following lemma is straightforward.

Lemma 3.8 The intersection of any family of thick ideals is a thick ideal.

If M is a collection of 1-morphisms of T (i.e., M ⊆ T1), let 〈M〉 denote the
smallest thick ideal of T containing M, which exists by the previous lemma.

Lemma 3.9 For every two collections M,N ⊆ T1 of 1-morphisms of an abelian
2-category T , we have

〈M〉1 ◦ 〈N 〉1 ⊆ 〈M ◦ T1 ◦N 〉1. (3.2)



514 K. Vashaw and M. Yakimov

Proof We will first show that

〈M〉1 ◦N ⊆ 〈M ◦ T1 ◦N 〉1. (3.3)

The 1-morphisms of 〈M〉 are obtained from the elements of M by successive taking
of kernels and cokernels (of 2-morphisms between these elements), and extensions
(between these elements), as well as compositions on the left and the right by
elements in T1. We need to show that those operations, composed on the right with
the elements of N , yield elements of the right-hand side.

(1) Suppose that α : f → g is a 2-morphism for f, g ∈ T1 with the property that

f n, gn ∈ 〈M ◦ T ◦N 〉1 for all n ∈ T1 ◦N .

Note that, for example, every 1-morphism in M has this property. Let κ : k → f

be the kernel of α. Since exact functors preserve kernels, κ ∗ idn : kn→ f n is the
kernel of α ∗ idn : f n→ gn. The thickness property of 〈M ◦ T1 ◦N 〉 implies that
kn ∈ 〈M ◦ T1 ◦N 〉1 for all n ∈ T1 ◦N .

Symmetrically, one shows that if γ : g → c is the cokernel of α, then cn ∈
〈M ◦ T1 ◦N 〉1 for all n ∈ T1 ◦N .

(2) Next, assume that

0 → f → g→ h→ 0

is an exact sequence in one of the abelian categories T (A1, A2), where f, h have
the property that f n, hn ∈ 〈M ◦ T1 ◦ N 〉1 for all n ∈ T1 ◦ N . Since horizontal
composition in T is exact, for any n ∈ T1 ◦N , we get a short exact sequence

0 → f n→ gn→ hn→ 0.

Since the first and last terms are in 〈M ◦ T1 ◦N 〉1, so is the middle term.
Combining (1)–(2) and the fact that 〈M ◦ T1 ◦ N 〉1 is stable under left

compositions with elements of T1 yields (3.3). Analogously, we derive (3.2) from
(3.3) by using 〈M〉1 in place of M. ��
Theorem 3.10 A proper thick ideal P of an abelian 2-category T is prime if and
only if for all m, n ∈ T1, m ◦ T1 ◦ n ⊆ P1 implies that either m ∈ P1 or n ∈ P1.

Proof Suppose P is a prime ideal of T , and thatm◦T ◦n ⊆ P for somem, n ∈ T1.
Then by the previous lemma,

〈m〉1 ◦ 〈n〉1 ⊆ 〈m ◦ T1 ◦ n〉1 ⊆ P1,

and so by primeness of P , 〈m〉 ⊆ P1 or 〈n〉 ⊆ P1. Therefore, m or n is in P1.
Now suppose P is a proper thick ideal of T with the property that for all m, n ∈

T1, m ◦ T1 ◦ n ⊆ P1 implies that either m ∈ P1 or n ∈ P1. Let I and J be a pair of
thick ideals of T such that
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I1 ◦ J1 ⊆ P1 and J1 �⊆ P1.

Then there is some j ∈ J1 with j �∈ P1. However, i ◦ T1 ◦ j ⊆ P1 for any i ∈ I1
since i ◦ T1 ⊆ I1, j ∈ J1, and I1 ◦ J1 ⊆ P1. The assumed property of P implies
that I1 ⊆ P1. Therefore I ⊆ P by Remark 3.3. ��

It is easy to see that Theorem 3.10 implies the following:

Proposition 3.11 A proper thick ideal P of an abelian 2-category T is prime if and
only if for every pair of right thick ideals I and J of T

I1 ◦ J1 ⊆ P1 ⇒ I ⊆ P or J ⊆ P .

A similar characterization holds using left thick ideals.

Theorem 3.12 A proper thick ideal P of an abelian 2-category T is prime if
and only if for all thick ideals I,J of T properly containing P , we have that
I1 ◦ J1 �⊆ P1.

Proof The implication ⇒ is clear. Suppose P is a proper thick ideal which is not
prime. Then there exist some thick ideals I and J of T with I1 ◦ J1 ⊆ P1 and
I,J �⊆ P . Set

M := P1 ∪ I1 and N := P1 ∪ J1.

By Remark 3.3, P1 is properly contained in both 〈M〉1 and 〈N 〉1. Lemma 3.9
implies that

〈M〉 ◦ 〈N 〉 ⊆ 〈M ◦ T1 ◦N 〉. (3.4)

Observe that

M ◦ T1 ◦N ⊆ P1, (3.5)

by the following. Consider the composition itj for some i ∈M, t ∈ T1, j ∈ N . So,
i ∈ I or P1; likewise, j ∈ I or P1. If at least one of the two 1-morphism i, j is in
P1, we have itj ∈ P1 since P is a thick ideal; if i ∈ I1 and j ∈ J1, then i ◦ t ∈ I1,
so itj ∈ I1 ◦ J1 ⊆ P1 by assumption.

Therefore 〈M〉 and 〈N 〉 are thick ideals properly containing P and 〈M〉1 ◦
〈N 〉1 ⊆ P1 (the last inclusion follows from (3.4)–(3.5) and the minimality of the
thick ideal 〈−〉). Hence, P does not have the stated property, which completes the
proof of the theorem. ��
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3.4 Relation to Maximal Ideals

Definition 3.13 A nonempty set M ⊆ T1 will be called multiplicative if M is a
subset of non-zero equivalence classes of objects of T (A,A) for some object A of
T and M ◦M ⊆M.

The condition that M ⊆ T (A,A) means that all 1-morphism in M are
composable. Let us explain the motivation for this condition. Let R be a ring and
{es} be a collection of orthogonal idempotents. If M is a multiplicative subset such
that

M ⊆
⋃

s,t

esRet

thenM ⊆ esRes for some s, because otherwiseM will contain the 0 element of R.

Theorem 3.14 Assume that M is a multiplicative subset of T1 for an abelian 2-
category T and that I is a proper thick ideal of T such that I1 ∩M = ∅.

Let P be a maximal element of the collection of thick ideals of T containing
I and intersecting M trivially, equipped with the inclusion relation, i.e., P is a
maximal element of the set

X(M, I) := {K a thick ideal of T | K ⊇ I and K1 ∩M = ∅}.

Then P is prime.

Proof Fix such an ideal P . Suppose Q and R are thick ideals properly containing
P . By Theorem 3.12, it is enough to show that Q ◦R �⊆ P . Since

I ⊆ P ⊆ Q and I ⊆ P ⊆ R,

both Q1 and R1 must intersect nontrivially with M, by the maximality assumption
on P . Let q ∈ Q1 ∩M and r ∈ R1 ∩M. If Q ◦ R ⊆ P , then we would obtain
that qr ∈ P , because by the definition of multiplicative subset of T1, each two
elements of M are composable. However, since qr ∈ M, this contradictions with
the assumption that P1 ∩M = ∅. ��
Remark 3.15 The set X(M, I) from Theorem 3.14 is nonempty because I ∈
X(M, I). The union of an ascending chain of thick ideals in the set X(M, I) is
obviously a thick ideal of T . By Zorn’s lemma, the setX(M, I) from Theorem 3.14
always contains at least one maximal element.

Corollary 3.16

(1) For each proper thick ideal I of an abelian 2-category T , there exists a prime
ideal P of T that contains I.
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(2) Let M be a multiplicative set of an abelian 2-category T . Every maximal
element of the set of thick ideals K of T such that K1 ∩M = ∅ is a prime
ideal. The set of such thick ideals contains at least one maximal element.

Proof (1) Since the thick ideal I is proper, there exists an object A ∈ T such that
1A /∈ I1. Indeed, otherwise

T (B,A) = T (B,A) ◦ 1A = I(B,A)

for all objects A,B ∈ T . The statement of part (1) follows from Theorem 3.14
applied to M := {1A} for an object A ∈ T such that 1A /∈ I.

(2) For each multiplicative subset M of an abelian 2-category T , the thick ideal
0T from Example 3.4 intersects M trivially. This part follows from Theorem 3.14
applied to the thick ideal I := 0T . ��

The second part of the corollary, applied to the multiplicative subset M := {1A}
for an object A ∈ T , implies the following:

Corollary 3.17 The prime spectrum of every abelian 2-category T is nonempty.

Definition 3.18

(1) An abelian 2-category T will be called prime if 0T is a prime ideal of T .
(2) An abelian 2-category T will be called simple if the only proper thick ideal of

T is 0T .

Corollary 3.17 implies that every simple abelian 2-category T is prime.

3.5 The Zariski Topology

Definition 3.19 Define the family of closed sets V (I) := {P ∈ Spec(T ) | P ⊇ I}
of Spec(T ) for all thick ideals I.

Remark 3.20 This topology is different from the one considered by Balmer [1]. The
main reason for which we consider it is to ensure good behavior under the K0 map,
see Theorem 6.12(4).

Lemma 3.21 For each abelian 2-category T , the above family of closed sets turns
Spec(T ) into a topological space. The corresponding topology will be called the
Zariski topology of Spec(T ).
It is easy to verify for that for every pair of thick ideals I,J of T and for every
(possibly infinite) collection {Is} of thick ideals of T , similarly to the classical
situation, we have
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V (I) ∪ V (J ) = V (〈I1 ◦ J1〉) and

⋂

i

V (Is) = V
(〈
⋃

i

(Is)1

〉)
.

Finally, we also have V (T ) = ∅ and V (0T ) = Spec(T ).

3.6 An Example

Let � be a nonempty set and k be an arbitrary field. Let kVectk be the category of
finite dimensional k-vector spaces considered as (k,k)-bimodules. Let {ka | a ∈ �}
be a collection of fields isomorphic to k and indexed by �.

There is a unique k-linear abelian 2-category M�(k) whose set of objects is �
and such that

M�(k)(a, b) := kb
Vectka for a, b ∈ �.

Its composition bifunctors are given by

−⊗kb
− :M�(k)(b, c)×M�(k)(a, b)→M�(k)(a, c).

Its Grothendieck group is K0(M) ∼= M�(Z) – the ring of square matrices with
finitely many nonzero integer entries whose rows and columns are indexed by �. In
the terminology of Sect. 2.2, M�(k) is a categorification of the matrix ring M�(k′)
for any field k

′.
Analogously to the classical situation, we show:

Lemma 3.22 The abelian 2-categories M�(k) are simple (and thus prime).

Proof Let I be a thick ideal of M�(k) that properly contains the 0-ideal 0M�(k).
Then for some a, b ∈ �,

I(a, b) �= 0.

Since I is thick, I(a, b) is a nonzero subcategory of kb
Vectka that is closed under

taking direct summands. Hence I(a, b) contains the 1-dimensional vector space in
kb

Vectka , and so,

I(a, b) = kb
Vectka =M�(k)(a, b).
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Since all objects in M�(k) are isomorphic to each other, Remark 3.6 implies that

I(a′, b′) =M�(k)(a
′, b′)

for all a′, b′ ∈ �. Thus I =M�(k), which completes the proof. ��

4 Minimal Primes in Noetherian Abelian 2-Categories

In this section we define noetherian abelian 2-categories T , and prove that for all
proper thick ideals I of T , there exist finitely many minimal primes over I and the
product of their 1-morphism sets (with repetitions) is contained in I1.

4.1 Noetherian Abelian 2-Categories

Definition 4.1

(1) An abelian 2-category will be called left (resp. right) noetherian if it satisfies
the ascending chain condition on thick left (resp. right) ideals.

(2) An abelian 2-category will be called noetherian if it is both left and right
noetherian.

(3) An abelian 2-category will be called weakly noetherian if it satisfies the
ascending chain condition on (two-sided) thick ideals.

More concretely, an abelian 2-category is noetherian if for every chain of thick left
ideals

I ⊆ I2 ⊆ . . .

there exists an integer k such that Ik = Ik+1 = . . . and such a property is also
satisfied for ascending chains of thick right ideals.

4.2 Existence of Minimal Primes

Lemma 4.2 In any abelian 2-category T , for every thick ideal I and every prime
ideal P containing I, there is a minimal prime P ′ such that

I ⊆ P ′ ⊆ P .

Proof Let χ denote the set of primes which contain I and are contained in P . We
will use Zorn’s lemma to produce a minimal element of this set. We first show that
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any nonempty chain in χ has a lower bound in χ . Take a nonempty chain of prime
ideals in χ , say

P(1) ⊇ P(2) ⊇ . . .

Then define Q = ∩∞i=1P(i). Since each P(i) contains I and is contained in P , Q is
a thick ideal which has these properties. It remains to show that Q is a prime ideal.
Take f, g ∈ T1 such that f ◦ T1 ◦ g ⊂ Q1, and f �∈ Q1. Then f is not in some P(i)1 .

Therefore, f /∈ P(j)1 for j ≥ i, and by the primeness of P(j), g ∈ P(j)1 , for j ≥ i as

well. Therefore, g ∈ P(k)1 for all k, and thus, g ∈ Q1. This implies that Q is prime,
and Zorn’s lemma completes the proof. ��

4.3 Finiteness and Product Properties of Minimal Primes

Theorem 4.3 In a weakly noetherian abelian 2-category T , for every proper thick
ideal I, there exist finitely many minimal prime ideals over I. Furthermore, there
exists a finite list of minimal prime ideals over I (potentially with repetition)
P(1), . . . ,P(m) such that the product

P(1)1 ◦ . . . ◦ P(m)1 ⊆ I1.

Proof Denote the set

χ := {I a proper thick ideal of T | � prime ideals P(1), . . . ,P(m) ⊇ I

such that P(1)1 ◦ . . . ◦ P(m)1 ⊆ I1}.

Suppose that χ is nonempty. By the weakly noetherian property of T , there exists
a maximal element of χ (because every ascending chain in χ eventually stabilizes).
Let I be a maximal element of χ . The ideal I cannot be prime, since I ∈ χ . By
Theorem 3.12 there exist proper thick ideals J and K such that

J1 ◦K1 ⊂ I1,

where J and K both properly contain I. The latter property of J and K and the
maximality of I imply that J ,K /∈ χ . Hence, there exist two collection of prime
ideals P(1), . . . ,P(m) ⊇ J and Q(1), . . . ,Q(n) ⊇ K such that

P(1)1 ◦ . . . ◦ P(m)1 ⊆ J1 and Q(1)1 ◦ . . . ◦Q(n)1 ⊆ K1.
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Then

P(1)1 ◦ . . . ◦ P(m)1 ◦Q(1)1 ◦ . . . ◦Q(n)1 ⊂ I1,

giving a contradiction, since the ideals P(i) and Q(j) are prime and contain I.
Hence, χ is empty. In other words, for every proper thick ideal I of T there exist

prime ideals P(1), . . . ,P(m) ⊇ I such that

P(1)1 ◦ . . . ◦ P(m)1 ⊆ I1. (4.1)

Applying Lemma 4.2, we obtain that for each P(i), there exists a minimal prime

P(i) over I such that P(i) ⊆ P(i). Combining this with (4.1) gives

P(1)1 ◦ . . . ◦ P(m)1 ⊆ I1

for the minimal primes P(1), . . . ,P(m) of I.
Finally, we claim that every minimal prime ideal P over I is in the list

P(1), . . . ,P(m). This implies that there are only finitely many primes of T that are
minimal over I. Indeed, we have

P(1)1 ◦ . . . ◦ P(m)1 ⊆ P1,

and by the primeness of P , we have

I ⊆ P(i) ⊆ P

for some i. Since P is minimal over I, P(i) = P . ��
The following corollary follows from applying Theorem 4.3 to 0T .

Corollary 4.4 A weakly noetherian abelian 2-category has finitely many minimal
prime ideals.

We also have the following corollary of Theorem 4.3:

Corollary 4.5 For a weakly noetherian abelian 2-category T , all closed subsets
of Spec(T ) (with respect to the Zariski topology) are finite intersections of finitely
many sets of the form V (P) for prime ideals P of T , recall Sect. 3.5.
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5 The Completely Prime Spectrum and the Semiprime
Spectrum

In this section we define the notions of completely prime and semiprime ideals
of abelian 2-categories, and give equivalent characterizations, one of which is an
extension of the Levitzki–Nagata theorem from noncommutative ring theory.

5.1 Completely Prime Ideals

Definition 5.1 A thick ideal P of an abelian 2-category T will be called completely
prime when it has the property that for all f, g ∈ T1:

f ◦ g ⊆ P1 ⇒ f ∈ P1 or g ∈ P1.

This is equivalent to saying that for all 1-morphisms f and g of T , if fg is not
defined or fg is a 1-morphism in P , then f or g is a 1-morphism in P . The stronger
assumption, including the case of the condition when fg is not defined, is needed
to get the correct analog of a completely prime ideal of an algebra with a set of
orthogonal idempotents. Let R be a ring and {es} be a collection of orthogonal
idempotents. If I is a completely prime ideal of R such that

I ⊆
⊕

s,t

esRet ,

then for all s, t �= t ′, s′,

either esRet ⊆ I or et ′Res′ ⊆ I,

because (esRet )(et ′Res′) = 0.
Theorem 3.10 implies the following:

Corollary 5.2 Every completely prime ideal of an abelian 2-category is prime.

Proof Assume that P is a completely prime ideal of T . Let f ∈ T (A3, A4) and
g ∈ T (A1, A2) be such that

f ◦ T1 ◦ g ⊆ P1.

IfA2 �= A3, then fg is not defined and the assumption on P gives that either f ∈ P1
or g ∈ P1. If A2 = A3, then

fg = f 1A2g ∈ f ◦ T1 ◦ g ⊆ P1,

and, again by the assumption on P , we have that either f ∈ P1 or g ∈ P1. ��
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For every abelian 2-category T , given an object A of T , consider the 2-
subcategory TA of T having one object A and such that TA(A,A) := T (A,A). It is
an abelian 2-category with one object (i.e., a multiring category). The next lemma
shows that the completely prime ideals of an abelian 2-category T are classified in
terms of the completely prime ideals of these multiring categories.

Lemma 5.3 Let T be an abelian 2-category.

(1) If P is a completely prime ideal of T , then there exists an object A of T and a
completely prime ideal Q of the multiring category TA such that

P(B,C) =
{
Q(A,A), if B = C = A
T (B,C), otherwise.

(5.1)

(2) If A is an object of T and Q is a completely prime ideal of TA such that

T (B,A) ◦ T (A,B) ⊆ Q(A,A) (5.2)

for every object B of T , then (5.1) defines a completely prime ideal P of T .

Proof (1) Since P is a proper thick ideal of T , there exists an object A of T such
that 1A /∈ P1. (Otherwise P1 will contain all 1-morphisms of T because

T (B,A) ◦ 1A = T (B,A). (5.3)

This will contradict the properness of P .) Obviously

Q(A,A) := P(A,A)

defines a completely prime ideal of the multiring category TA. It remains to show
that P is given by (5.1) in terms of Q.

If B is an object of T which is different from A, then the composition 1A1B is
not defined and 1A /∈ P1, hence 1B ∈ P1. It follows that P is given by (5.1) by an
argument similar to (5.3).

(2) The condition (5.2) ensures that the weak thick subcategory P of T given by
(5.1) is a thick ideal of T . Its complete primeness is easy to show. ��
Definition 5.4 A multiring category T will be called a domain if its zero ideal 0T
is completely prime, i.e., if

M ⊗N ∼= 0 ⇒ M ∼= 0 or N ∼= 0

for all objectsM of T .
An abelian 2-category T will be called prime, it its zero ideal 0T is prime.
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Example 5.5 Let H be a Hopf algebra over a field k. Denote by H−mod the
category of finite dimensional H -modules. It is a k-linear multiring category. This
category is a domain: if V,W ∈ H−mod are such that V ⊗W ∼= 0, then

dimV dimW = 0.

Therefore, either dimV = 0 or dimW = 0. So, either V ∼= 0 orW ∼= 0. ��
Let T be an abelian 2-category. The same proof shows that if

(1) η : T1 → R is a map such that R is a domain and η(fg) = η(f )η(g) for all
f, g ∈ T for which the composition is defined, and

(2) I is a thick ideal of T such that I1 = η−1(0),

then I is a completely prime ideal of T .

5.2 Semiprime Ideals

Definition 5.6 A thick ideal of an abelian 2-category will be called semiprime if it
is an intersection of prime ideals. An abelian 2-category T will be called semiprime,
it its zero ideal 0T is semiprime.

Theorem 4.3 implies that in a weak noetherian abelian 2-category every semiprime
ideal is the intersection of the finitely many minimal primes over it.

The following theorem is a categorical version of the Levitzki–Nagata theorem.

Theorem 5.7 A thick ideal Q is semiprime if and only if for all f ∈ T1,

f ◦ T1 ◦ f ⊆ Q1 ⇒ f ∈ Q1. (5.4)

Proof First, suppose Q = ⋂
s P(s) for some collection {P(s)} of primes of T .

Suppose f ∈ T1, and f ◦T1 ◦f ⊆ Q1. By primeness, f ∈ P(s)1 for all s. Therefore,
f ∈ Q1.

For the other direction, suppose that Q is a thick ideal of T having the property
(5.4). Choose an element

g ∈ T1, g /∈ Q1,

and set g0 := g. It follows from (5.4) that g0 ◦ T1 ◦ g0 �⊆ Q1. Choose

g1 ∈ g0 ◦ T1 ◦ g0, g1 /∈ Q1.

Again, since g1 /∈ Q1, the condition (5.4) implies that g1◦T1◦g1 �⊆ Q1. Proceeding
inductively in this manner, we construct a sequence of 1-morphisms g0, g1, . . . of
T such that
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gi ∈ gi−1 ◦ T1 ◦ gi−1, gi /∈ Q1. (5.5)

Since gi ∈ gi−1 ◦ T ◦ gi−1, we have gi ◦ T ◦ gi ⊆ gi−1 ◦ T ◦ gi−1. Consider the set
S of thick ideals I of T such that

Q ⊆ I and gi /∈ I1 for all i = 0, 1, . . . .

This set is nonempty because Q ∈ S. Since the union of a chain of thick ideals is a
thick ideal, we can apply Zorn’s lemma to get that S contains a maximal element.
Denote one such element by P . The proper thick ideal P is prime. Indeed, if J and
K are thick ideals that properly contain P , then by maximality of P , there are some
gj ∈ J1 and gk ∈ K1. If m is the max of j and k, then gm is in both J1 and K1 by
the first property in (5.5). Hence,

gm+1 ∈ gm ◦ T1 ◦ gm ⊆ J1 ◦K1 and gm+1 �∈ P1.

Therefore, J1 ◦ K1 �⊆ P1, and by Theorem 3.12, P is prime. For every element
g ∈ T1 that is not in Q1, we have produced a prime P(g) of T such that

Q ⊆ P(g) and g /∈ P(g).

Therefore,

Q =
⋂

g∈T1\Q1

P(g),

which completes the proof of the theorem. ��
Theorem 5.8 Suppose Q is a proper thick ideal in an abelian 2-category T . Then
the following are equivalent:

(1) Q is semiprime;
(2) If I is any thick ideal of T such that I1 ◦ I1 ⊆ Q1, then I ⊆ Q;
(3) If I is any thick ideal properly containing Q, then I1 ◦ I1 �⊆ Q1;
(4) If I is any right thick ideal of T such that I1 ◦ I1 ⊆ Q1, then I ⊆ Q;
(5) If I is any left thick ideal of T such that I1 ◦ I1 ⊆ Q1, then I ⊆ Q.

Proof (1)⇒ (4): Suppose Q is semiprime and I is a right thick ideal with I1 ◦I1 ⊂
Q1. Take any i ∈ I1. Then i ◦ t ∈ I for all t ∈ T1. Therefore, i ◦ T1 ◦ i ∈ Q1.
Theorem 5.7 implies that i ∈ Q. Hence, I1 ⊆ Q1, and thus I ⊆ Q by Remark 3.3.

(1)⇒ (5): This follows from a symmetric argument.
(4)⇒ (5) and (3): This is clear, since a thick ideal is also a right thick ideal, and

a left thick ideal.
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(3) ⇒ (2): Suppose (3) holds, and I is a thick ideal with I1 ◦ I1 ⊆ Q1. Then
〈I1 ∪Q1〉 is a thick ideal containing Q. Since

(I1 ∪Q1) ◦ (I1 ∪Q1) = (I1 ◦ I1) ∪ (Q1 ◦ I1) ∪ (I1 ◦Q1) ∪ (Q1 ◦Q1) ⊆ Q1,

applying Lemma 3.9, we obtain

〈I1∪Q1〉1◦〈I1∪Q1〉1 ⊆ 〈(I1∪Q1)◦T1◦(I1∪Q1)〉1 = 〈(I1∪Q1)◦(I1∪Q1)〉1 ⊆ Q1.

From the assumption that the ideal Q has the property (3) and the fact that 〈I1∪Q1〉
is a thick ideal containing Q, we get that 〈I1 ∪Q1〉 = Q. Therefore, I1 ⊆ Q1, and
thus I ⊆ Q by Remark 3.3.

(2)⇒ (1): Suppose (2) holds, and f ∈ T is a 1-morphism such that f ◦T1 ◦f ⊆
Q1. Lemma 3.9 implies that

〈f 〉1 ◦ 〈f 〉1 ⊆ 〈f ◦ T1 ◦ f 〉1 ⊆ Q1.

Therefore, by (2), 〈f 〉1 ⊆ Q1, and so, f ∈ Q1. Hence, Q1 is semiprime. ��
We have the following corollary from the characterizations (4) and (5) of semiprime
ideals in the previous theorem. For a subset X ⊆ T1, denote by X◦n := X ◦ · · · ◦X
the n-fold composition power.

Lemma 5.9 If Q is a semiprime ideal of the abelian 2-category T , and I is a right
or left thick ideal with (I1)

◦n ⊆ Q1, then I ⊆ Q.

Proof We prove the statement by induction on n. For n ≥ 2, we have

((I1)
◦(n−1))◦2 = (I1)

◦n ◦ (I1)
n−2 ⊆ Q1.

Theorem 5.8 implies that (I1)
◦(n−1) ⊆ Q1, and so by the inductive assumption,

I ⊆ Q. ��

6 The Serre Prime Spectra of Abelian 2-Categories
and Z+-Rings

In this section we define and investigate the notions of Serre prime, semiprime,
and completely prime ideals of abelian 2-categories and Z+-rings. We establish
that the corresponding topological spaces for abelian 2-categories and Z+-rings
are homeomorphic. We also describe the relations of the first set of notions to the
notions of prime, completely prime, and semiprime ideals of abelian 2-categories,
and the second set of notions to the prime spectra of rings.
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6.1 Serre Ideals of Abelian 2-Categories

Recall that a Serre subcategory of an abelian 1-category is a subcategory which is
closed under subobjects, quotients, and extensions. Every Serre subcategory I of an
abelian category C is thick, and in particular, is closed under isomorphisms. For such
a subcategory, one forms the Serre quotient C/I which has a canonical structure of
abelian category [42, §10.3]. By [37, Theorem 5], for every Serre subcategory I of
an abelian category C, we have the exact sequence

K0(I)→ K0(C)→ K0(C/I)→ 0. (6.1)

Definition 6.1

(1) We call a thick ideal I of an abelian 2-category T a Serre ideal if for every two
objects A1, A2 ∈ T ,

I(A1, A2) is a Serre subcategory of T (A1, A2).

(2) A Serre prime (resp. semiprime, completely prime) ideal P of an abelian 2-
category T is a prime (resp. semiprime, completely prime) ideal which is a
Serre ideal.

In the terminology of Definition 3.1, a Serre ideal of an abelian 2-category T is
a weak subcategory I with the same set of objects such that

(1) for any pair of objects A1, A2 ∈ T , I(A1, A2) is a Serre subcategory of the
abelian category T (A1, A2) and

(2) I1 ◦ T1 ⊆ I1, T1 ◦ I1 ⊆ I1.

We will say that I is a left (resp. right) Serre ideal of T if condition (1) is satisfied
and T1 ◦ I1 ⊆ I1 (resp. I1 ◦ T1 ⊆ I1).

Proposition 6.2 For every Serre ideal I of an abelian 2-category T such that 1A /∈
I(A,A) for all objects A ∈ T , one can form the Serre quotient T /I with the same
set of objects, with the morphism 1-categories

(T /I)(A1, A2) := T (A1, A2)/I(A1, A2) for A1, A2 ∈ T ,

and with identity 1-morphisms given by the images of 1A. This quotient is an abelian
2-category.

The proof of the proposition is direct, using (6.1) and the following well-known
fact:

If, for i = 1, 2, Ci are abelian categories, Ii are Serre subcategories, and F :
C1 → C2 is an exact functor such that F(I1) ⊆ I2, then the induced functor F :
C1/I1 → C2/I2 is exact.
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This follows from the commutativity of the square diagram consisting of the

compositions of functors C1 → C1/I1
F→ C2/I2 and C1

F→ C2 → C2/I2, the
exactness of the projection functors Ci → Ci/Ii (see [42, Exercise 10.3.2(4)]), and
the fact that every exact sequence in C1/I1 is isomorphic to one coming from an
exact sequence in C1, [8].

It is easy to prove that, similarly to the ring theoretic case, we have the following:

Lemma 6.3 A proper Serre ideal P of a multiring category T is completely prime,
if and only if the Serre quotient T /I is a domain in the sense of Definition 5.4.

Analogously to Lemmas 3.8 and 3.9 one proves the following result. We leave
the details to the reader.

Lemma 6.4 Let T be an abelian 2-category.

(1) The intersection of any family of Serre ideals of T is a Serre ideal of T . In
particular, for any subset M ⊆ T1, there exists a unique minimal Serre ideal of
T containing M; it will be denoted by 〈M〉S .

(2) For M,N ⊆ T1, we have

〈M〉S1 ◦ 〈N 〉S1 ⊆ 〈M ◦ T1 ◦N 〉S1 .

6.2 Serre Prime Ideals of Abelian 2-Categories

Similarly to the proofs of Theorems 3.10, 3.12, 3.14 and 5.8, using Lemma 6.4, one
proves the following result:

Theorem 6.5 Let T be an abelian 2-category.

(1) The following are equivalent for a proper Serre ideal P of T :

(a) P is a Serre prime ideal;
(b) If I and J are any Serre ideals of T such that I1 ◦ J1 ⊆ P1, then either

I ⊆ P or J ⊆ P;
(c) If I and J are any Serre ideals properly containing P , then I1 ◦J1 �⊆ P1;
(d) If I and J are any left Serre ideals of T such that I1◦J1 ⊆ P1, then either

I ⊆ P or J ⊆ P .

(2) Let M be a nonempty multiplicative subset of T1 (cf. Definition 3.13) and I
be a Serre ideal of T such that I1 ∩M = ∅. Let P be a maximal element of
the collection of Serre ideals of T containing I and intersecting M trivially,
equipped with the inclusion relation, i.e., P is a maximal element of the set

X(M, I) := {K a Serre ideal of T | K ⊇ I and K1 ∩M = ∅}.

Then P is Serre prime ideal.
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(3) The following are equivalent for a proper Serre ideal Q of T :

(a) Q is a Serre semiprime ideal;
(b) If I is any Serre ideal of R such that I1 ◦ I1 ⊆ Q1, then I ⊆ Q;
(c) If I is any Serre ideal properly containing Q, then I1 ◦ I1 �⊆ Q1;
(d) If I is any left Serre ideal of T such that I1 ◦ I1 ⊆ Q1, then I ⊆ Q.

In the proof of part (1) of the theorem, the key step is to show that a proper Serre
ideal I of T satisfying the property (b) is a Serre prime ideal of T . This is proved
by showing that property (b) implies that for all m, n ∈ T1,

m ◦ T1 ◦ n ⊆ P1 ⇒ m ∈ P1 or n ∈ P1.

This fact is verified by repeating the proof of Theorem 3.10, but using Lemma 6.4(2)
in place of Lemma 3.9.

The set X(M, I) in part (3) of the theorem is nonempty because I ∈ X(M, I).
The union of an ascending chain of Serre ideals in the set X(M, I) is obviously a
Serre ideal of T . By Zorn’s lemma, the set X(M, I) always contains at least one
maximal element.

Similarly to the proof of Corollary 3.16, we obtain:

Corollary 6.6 For every proper Serre ideal I of an abelian 2-category T , there
exists a Serre prime ideal P of T that contains I.

Analogously to the proof of Theorem 4.3 one proves the following:

Proposition 6.7 For every abelian 2-category T satisfying the ACC on (2-sided)
Serre ideals, given a proper Serre ideal I of T , there exist finitely many minimal
Serre prime ideals over I. Furthermore, there is a finite list of minimal Serre prime
ideals over I (possibly with repetition) P(1), . . . ,P(m) such that the product

P(1)1 ◦ . . . ◦ P(m)1 ⊆ I1.

Let Serre-Spec(T ) denote the set of Serre prime ideals of an abelian 2-category
T . Similarly to Sect. 3.5, one shows that it is a topological space with closed subsets
given by

V S(I) = {P ∈ Serre-Spec(T ) | P ⊇ I}

for the Serre ideals I of T . We will refer to this as to the Zariski topology of
Serre-Spec(T ). Proposition 6.7 implies that, if T satisfies the ACC on Serre ideals,
then every closed subset of Serre-Spec(T ) is a finite intersection of subsets of the
form V S(P) for some P ∈ Serre-Spec(T ). In particular, this property holds for all
weakly noetherian abelian 2-categories T .

The set-theoretic inclusion

Serre-Spec(T ) ↪→ Spec(T ) (6.2)
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realizes Serre-Spec(T ) as a topological subspace of Spec(T ). Indeed, Lemma 6.4(1)
implies that for every thick ideal I of T we have

V (I) ∩ Serre-Spec(T ) = V S(〈I〉S).

6.3 The Serre Prime Spectrum as a Ringed Space

For the following subsection, assume that C is an abelian monoidal category. In
the case when it is strict this is the same as an abelian 2-category with one
object. All constructions and results in the paper are valid for abelian monoidal
categories without the strictness assumption. By Remark 3.20 and the embedding
(6.2), the Zariski topology we have thus far endowed Serre-Spec(C) which is
different from the topology used by Balmer in [1]. The motivation for this consists
of the applications to categorification, which we develop below. However, if C is an
abelian monoidal category, we can consider an analogue of Balmer’s topology on
Serre-Spec(C), where we define the closed sets of Serre-Spec(C) to be

V SB (X) = {P ∈ Serre-Spec(C) | X ∩ P = ∅}

for any set of objects X in C. Analogously to Section 2 of [1], one shows that
this collection defines a topological space. It may be equipped with a sheaf of
commutative rings in a similar manner to [1]. Let U = V c be an open set of
Serre-Spec(C), where V = V SB (X) for some family of objects X. Let CV =⋂

P∈U P . Note that CV is a Serre ideal, since it is an intersection of Serre ideals. We
define a presheaf of commutative rings in the following way:

U 	→ EndC/CV (1, 1),

where 1 is the image of 1 (the unit object of C with respect to the monoidal product)
in the Serre quotient C/CV . Recalling Proposition 6.2, C/CV has a canonical
structure as an abelian monoidal category. By, e.g., Proposition 2.2.10 in [7],
EndC/CV (1, 1) is a commutative ring. The sheafification of this presheaf gives
Serre-Spec(C) the structure of a ringed space. The question about the construction
of a ringed space structure on the spectra of abelian monoidal categories was raised
by Michael Wemyss.

6.4 Z+-Rings and Their Serre Prime Ideals

Recall that Z+ := {0, 1, . . .}.
We will use the following slightly weaker terminology for Z+-rings compared to

[7, Definition 3.1.1]:
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Definition 6.8 We will call a ring R a Z+-ring if it is a free abelian group and has
a Z-basis {bγ | γ ∈ �} such that for all α, β ∈ �,

bαbβ =
∑

γ∈�
n
γ
α,βbγ

for some nγα,β ∈ Z+.

In addition, [7, Definition 3.1.1] requires that a Z+-ring R be a unital ring and

1 =
∑

γ∈�
nγ bγ for some nγ ∈ Z+. (6.3)

We do not require a Z+-ring to be unital and to have the above additional property
in order to apply the notion to the Grothendieck rings of abelian 2-categories with
infinitely many objects.

For a Z+-ring R, denote

R+ :=
⊕

γ∈�
Z+bγ .

For r, s ∈ R, denote

r ≤ s if s − r ∈ R+.

Definition 6.9 Let R be a Z+-ring.

(1) A left (resp. right) ideal I of R will be called a a left (resp. right) Serre ideal if
it has the properties that

I = (I∩R+)−(I∩R+) and s ∈ R+, r ∈ I∩R+, s ≤ r ⇒ s ∈ I. (6.4)

(2) A Serre ideal of R is a 2-sided ideal I of R which satisfies (6.4).
(3) A Serre prime ideal of R is a proper Serre ideal P of R that has the property

that

IJ ⊆ P ⇒ I ⊆ P or J ⊆ P

for all Serre ideals I, J of R.
(4) A Serre semiprime ideal of R is an ideal which is the intersection of Serre prime

ideals.
(5) A Serre completely prime ideal of R is a proper Serre ideal P that has the

property that for all r, s ∈ R+,

rs ∈ P ⇒ r ∈ P or s ∈ P.
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For a subgroup I (under addition) of a Z+-ring R, the property (6.4) is equivalent
to

I =
⊕

γ∈�′
Zbγ for some subset �′ ⊆ �. (6.5)

In particular, the right- and 2-sided Serre ideals of R satisfy (6.5). Using this fact
one easily proves the following theorem, by following the strategy of the proofs of
Proposition 3.1, Theorem 3.7, and Corollary 3.8 in [11].

Theorem 6.10 Let R be a Z+-ring.

(1) The following are equivalent for a proper Serre ideal P of R:

(a) P is a Serre prime ideal;
(b) If I and J are two Serre ideals of R properly containing P , then IJ �⊆ P ;
(c) If I and J are two left Serre ideals of R such that IJ ⊆ P , then either

I ⊆ P or J ⊆ P ;
(d) For all α, β ∈ �,

bαRbβ ⊆ P ⇒ bα ∈ P or bβ ∈ P.

(2) A proper Serre ideal P of R is a completely prime Serre ideal if and only if for
all α, β ∈ �,

bαbβ ∈ P ⇒ bα ∈ P or bβ ∈ P.

(3) The following are equivalent for a proper Serre idealQ of R:

(a) Q is a Serre semiprime ideal;
(b) If I is any Serre ideal of R such that I 2 ⊆ Q, then I ⊆ Q;
(c) If I is any Serre ideal of R properly containingQ, then I 2 �⊆ Q;
(d) For all r ∈ R+,

rRr ⊆ P ⇒ r ∈ P.

Denote by Serre-Spec(R) the set of Serre prime ideals of a Z+-ring R. Similarly to
Sect. 6.2, one proves that Serre-Spec(R) is a topological space with closed subsets

V S(I) = {P ∈ Serre-Spec(T ) | P ⊇ I }

for the Serre ideals I of R. We will call this the Zariski topology of Serre-Spec(R).
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6.5 Z+-Rings and Abelian 2-Categories

For an abelian category C denote by Cs the equivalence classes of its simple objects.

Lemma 6.11 Assume that C is an abelian category in which every object has finite
length. Then the following hold:

(1) Every two Jordan-Hölder series of an object of C contains the same collections
of simple subquotients counted with multiplicities and, as a consequence,

K0(C) ∼=
⊕

A∈Cs
Z[A].

(2) The Serre subcategories of C are in bijection with the subsets of Cs . The Serre
subcategory corresponding to a subsetX ⊆ Cs is the full subcategory S(X) of C
whose objects have Jordan-Hölder series with simple subquotients isomorphic
to objects in X.

(3) For every Serre subcategory I of C,

K0(C/I) ∼= K0(C)/K0(I).

Proof The first part of the lemma is [7, Theorem 1.5.4].
(2) Clearly, for every subsetX ⊆ Cs , the subcategory S(X) of C is Serre. Assume

that I is a Serre subcategory of C. Denote by X the isomorphism classes of simple
objects of C which belong to I. Since I is closed under taking subquotients and
isomorphisms, I ⊆ S(X). Because I is closed under extensions, S(X) ⊆ I. Thus,
I = S(X).

(3) It easily follows from parts (1) and (2) that the first map in (6.1) is injective.
The resulting short exact sequence from (6.1) implies the third part of the lemma.

��
For an abelian 2-category T , denote by (T1)s the isomorphism classes of simple

1-morphisms of T . Recall Definition 3.1. For a subset X ⊆ (T1)s , denote by S(X)
the (unique) weak subcategory of T such that

S(X)(A1, A2) := S(X ∩ T (A1, A2))

for all A1, A2 ∈ T .

Theorem 6.12 Assume that T is an abelian 2-category with the property that every
1-morphism of T has finite length. (In other words, every object of T (A1, A2) has
finite length for all objects A1, A2 ∈ T .) Then the following hold:

(1) The weak subcategories I of T with the property that I(A1, A2) is a Serre
subcategory of T (A1, A2) for all A1, A2 ∈ T are parametrized by the subsets
of (T1)s . For X ⊆ (T1)s , the corresponding subcategory is S(X).
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(2) The Grothendieck ring K0(T ) is a Z+-ring and

K0(T ) ∼=
⊕

f∈(T1)s

Z[f ].

If, in addition, T has finitely many objects, then K0(T ) has the property (6.3)
and, more precisely,

1 =
∑

A∈T
[1A].

(3) The map K0 defines a bijection between the sets of left (resp. right, 2-sided)
Serre ideals of T and of K0(T ).

(4) The map K0 defines a homeomorphism

K0 : Serre-Spec(T )
∼=→ Serre-Spec(K0(T )).

It is a bijection between the subsets of completely prime (resp. semiprime) ideals
of T and K0(T ).

Proof Part (1) follows from Lemma 6.11(2).
(2) The fact that K0(T ) is a Z+-ring follows from the fact that for every abelian

category C and B ∈ C,

[B] ∈
⊕

A∈Cs
Z+[A].

The second statement in part (2) is obvious.
(3) We consider the case of left Serre ideals, the other two cases being analogous.

Let I be a left Serre ideal of T . By part (1) of the theorem, I = S(X) for some
X ⊆ (T1)s . Therefore, the subset

K0(I) =
⊕

f∈X
Z[f ] ⊆ K0(T )

has the property (6.4). Since T1 ◦ I1 ⊆ I1, we have K0(T )K0(I) ⊆ K0(I), and
thus, K0(I) is a left Serre ideal of K0(T ).

Next, let I be a left Serre ideal of K0(T ). By (6.5),

I =
⊕

f∈X
Z[f ]

for someX ⊆ (T1)s . Let I be the weak subcategory S(X) of T . Clearly,K0(I) = I .
To show that I is a left Serre ideal of T , it remains to prove that T1 ◦ I1 ⊆ I1, i.e.,
that
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g2f1 ∈ I(A1, A3) for all g2 ∈ T (A2, A3), f1 ∈ I(A1, A2)

for all objects A1, A2, A3 of T . Since I is a left Serre ideal,

[g2f1] = [g2][f1] ∈ I =
⊕

f∈X
Z[f ],

and thus, g2f1 ∈ S(X) = I.
It is straightforward to verify that the above two maps I 	→ K0(I) and I 	→ I

are inverse bijections between the left Serre ideals of T and K0(T ).
(4) Similarly to part (3) one proves that the map K0 defines a bijection between

the prime (resp. completely prime, semiprime) ideals of the abelian 2-category T
and the Z+-ringK0(T ). In the first case one uses the characterization of Serre prime
ideals of an abelian 2-category in Theorem 6.5(1)(b) vs. the definition of Serre prime
ideals of a Z+-ring. In the second case one uses the definitions of completely prime
ideals in the two settings. In the third case one uses the characterizations of Serre
semiprime ideals in the two settings given in Theorems 6.5(3)(b) and 6.10(3)(b).

The fact that the map

K0 : Serre-Spec(T )→ Serre-Spec(K0(T ))

is a homeomorphism follows from the definitions of the collections of closed sets in
the two cases in terms of Serre ideals and the bijection in part (3) of the theorem. ��

We have the following immediate corollary of part (3) of the theorem and
Lemma 6.11:

Corollary 6.13 Let T be an abelian 2-category which is a categorification of the k-
algebra R⊗Z k for a Z+-ring R. If I is a Serre ideal of R and I is the unique Serre
ideal of T with K0(I) = I as in Theorem 6.12(3), then T /I is a categorification of
the k-algebra (R/I)⊗Z k.

6.6 Serre Prime Ideals of Z+-Rings vs. Prime Ideals

Let R be a Z+-ring. In general, Serre-Spec(R) is not a subset of the prime spectrum
Spec(R) of R. Similarly a Serre completely prime ideal of R is not necessarily a
completely prime ideal of R (in the classical sense), and a Serre semiprime ideal
of R is not necessarily a semiprime ideal of R. The point in all three cases is that
the notions of Serre type are formulated in terms of inclusion properties concerning
elements of R+, while the classical notions are formulated in terms of inclusion
properties concerning elements of the full ring R.
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Example 6.14 Consider the commutative Z+-ringR := Z[x]/(x2−1)with positive
Z-basis {1, x}. The 0-ideal of R is Serre prime while it is not a prime ideal of R.

Example 6.15 Consider the setting of Example 5.5 and assume that H is a finite
dimensional Hopf algebra over the field k. The 0 ideal of H−mod is Serre
completely prime, and by Theorem 6.12(4), 0 is a Serre completely prime ideal of
K0(H−mod). However, 0 is not a completely prime ideal of the ring K0(H−mod)
becauseK0(H−mod)⊗ZQ is a finite dimensional algebra over Q and thus definitely
has 0 divisors (unless this algebra is isomorphic to the field Q). Furthermore the
0 ideal of K0(H−mod) is not even semiprime, except for the special case when
the algebra K0(H−mod) ⊗Z Q is semisimple (because the radical of this finite
dimensional algebra is nilpotent). ��

On the other hand, the following lemma provides a simple but important fact
about getting Serre prime (resp. completely prime, semiprime) ideals of a Z+-ring
R from particular types of prime (resp. completely prime, semiprime) ideals of a R
in the classical sense.

Lemma 6.16 Assume that R is a Z+-ring with a positive basis {bγ | γ ∈ �}. If

I =
⊕

γ∈�′
Zbγ for some subset �′ ⊆ �

and I is a prime (resp. completely prime, semiprime) ideal of R in the classical
sense, then I is a Serre prime (resp. completely prime, semiprime) ideals of R.

Proof The first property of I is equivalent to the one in (6.4). The assumption that I
is a prime (resp. completely prime, semiprime) ideal of R implies that it satisfies the
condition (b) in Theorem 6.10(1) in the first case, the condition in Theorem 6.10(2)
in the second case, and the condition (d) in Theorem 6.10(3) in the third case. For
example, if I is a semiprime ideal ofR in the classical sense, it satisfies the condition
(d) in Theorem 6.10(3) for all r ∈ R. Now the lemma follows from Theorem 6.10.

��
Remark 6.17 Let R be a Z+-ring categorified by an abelian 2-category T . By
Theorem 6.12(3) and Lemma 6.16, the prime ideals of R that are categorifiable
are precisely the ones that are thick; that is the set

Spec(R) ∩ Serre-Spec(R).

7 The Primitive Spectrum

In this section we describe the relationship between the annihilation ideals of
simple 2-representations of abelian 2-categories and the Serre prime ideals of these
categories.
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7.1 2-Representations

Following Mazorchuk–Miemietz [35], define a 2-representation of a 2-category T
to be a strict 2-functor F from T to Cat, the 2-category of all small categories. That
is, F sends objects of T to small categories, 1-morphisms of T to functors between
categories, and 2-morphisms of T to natural transformations between functors.

Recall that the category of additive functors between two abelian categories has
a canonical structure of an abelian category.

Definition 7.1 A 2-representation F of a 2-category T will be called exact, if

(1) F(A) is an abelian category for every object A in T ;
(2) F(f ) is an additive functor for all 1-morphisms f in T ;
(3) For any exact sequence of 1-morphisms in T ,

0 → f → g→ h→ 0,

the sequence

0 → F(f )→ F(g)→ F(h)→ 0

is an exact sequence of 1-morphisms in Cat.

Following Mazorchuk, Miemietz, and Zhang [36, Section 3.3], we call a 2-
representation F simple if the collection of categories

{F(A) | A ∈ T }

has no nonzero proper T -invariant ideals. Such an ideal X is a subset of the disjoint
union of the set of morphisms of the categories F(A) for A ∈ T with the following
properties:

(1) ab and ba are in X for all a ∈ X and all morphisms b in F(A) such that the
composition is well-defined;

(2) F(f )(a) ∈ X for all f ∈ T1 and a ∈ X;
(3) There is some morphism a ∈ X which is not a zero morphism.

7.2 Annihilation Ideals of 2-Representations

Definition 7.2 Given an exact 2-representation F of the abelian 2-category T ,
define its annihilation ideal Ann(F) to be the weak subcategory of T having the
same set of objects, set of 1-morphisms given by

Ann(F)1 := {f ∈ T1 | F(f ) is a zero functor},
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and set of 2 morphisms

Ann(F)(f, g) := F(f, g) for all f, g ∈ Ann(F)1.

Lemma 7.3 The annihilation ideal Ann(F) of every exact 2-representation F of
an abelian 2-category T is a Serre ideal of T .

Proof The proof is a direct verification of the necessary properties.
To verify the ideal property of Ann(F), choose f ∈ Ann(F)1 and g ∈ T1

such that the composition is defined. Then F(f ) is a zero functor, and therefore,
F(fg) = F(f )F(g) is also a zero functor. So, fg ∈ Ann(F)1. Likewise,
T1 ◦ Ann(F)1 ⊆ Ann(F)1.

To verify that Ann(F)(A1, A2) is a Serre subcategory of the abelian category
T (A1, A2) for all objects A1 and A2 of T , consider an exact sequence 0 → f →
g → h→ 0 in T (A1, A2). By Definition 7.1(3), 0 → F(f )→ F(g)→ F(h)→
0 is an exact sequence in the abelian category of additive functors between the
abelian categories F(A1) and F(A2).

If f, h ∈ Ann(F), then F(f ) and F(h) are both the zero functor and F(g) must
also be the zero functor. Hence, g ∈ Ann(F)1. Likewise, assuming instead that
g ∈ Ann(F)1, we get that f, h ∈ Ann(F)1. Hence, Ann(F) is a Serre ideal of T .

��
Finally we have the following theorem, analogous to the relationship between

prime ideals of rings and annihilators of simple representations, see e.g. [11,
Proposition 3.12].

Theorem 7.4 Suppose F is a simple exact 2-representation of an abelian 2-
category T . Then Ann(F) is a Serre prime ideal of T .

Proof We use the assumption of the simplicity of F to show that Ann(F) satisfies
the condition in Theorem 3.12, form which we obtain that Ann(F) is a prime ideal
of T . The fact that Ann(F) is a Serre ideal was established in Lemma 7.3.

Suppose that I and J are thick ideals such that

I1 ◦ J1 ⊆ Ann(F)1,

and neither I nor J is contained in Ann(F). Then we claim that the set

X := {a(F(j)(b))c | a, b, c morphisms such that the composition is defined, j ∈ J1}

forms a nonempty T -invariant ideal, contradicting the simplicity of F . It is clear
that this set is an ideal, i.e., closed under composition on the left and right by
any morphisms of Cat with appropriate source and target. We must show that it is
invariant under T , that it is nonzero, and that it is a proper subset of all morphisms
of the categories F(A) for all objects A of T .
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First, assume that g ∈ T1. Then

F(g)(a(F(j)(b))c) = F(g)(a)F(g)(F(j)(b))F(g)(c) = F(g)(a)F(gj)(b)F(g)(c),

which is clearly in X whenever the composition is defined, since gj ∈ J1. Hence,
X is T -invariant.

Next, we show that X is a proper subset. For all i ∈ I1 and a(F(j)(b))c ∈ X,
we have

F(i)(a(F(j)(b))c) = F(i)(a)F(ij)(b)F(i)(c) = F(i)(a)0F(i)(c) = 0

whenever the composition is defined. If X equals the set of all morphisms of the
collection of abelian categories {F(A) | A ∈ T }, then this would imply that F(i) is
a zero functor for all i ∈ I1. Therefore, I1 ⊆ Ann(F)1. Applying Remark 3.3 and
the assumption that I is a thick ideal gives that I is contained in Ann(F), which is
a contradiction.

By a similar argument, one shows that X contains nonzero morphisms. Since J
is not contained in the annihilator of F by assumption, there is some j ∈ J1 such
that F(j) is not the zero functor, and hence there is some morphism b such that
F(j)(b) is a nonzero morphism. Then by letting a and b be the appropriate identity
morphisms, we see that F(j)(b) is a nonzero morphism in X.

Therefore, X is a nonzero, proper T -invariant ideal, which contradicts our
assumption that F is simple. This gives that Ann(F) is a Serre prime ideal of T . ��
Definition 7.5 The primitive spectrum of an abelian 2-category T , denoted
Prim(T ), is the subset of Serre-Spec(T ) consisting of all primes P for which there
exists a simple exact 2-representation F of T with P = Ann(F).

8 Quantum Schubert Cell Algebras, Canonical Bases,
and Prime Ideals

This section contains background material on quantum groups and quantum Schu-
bert cell algebras, and their canonical bases defined by Kashiwara and Lusztig.
We recall facts about the homogeneous completely prime ideals of the quantum
Schubert cell algebras and their relations to quantizations of Richardson varieties.

8.1 Quantum Groups, Canonical Bases, and Quantum
Schubert Cell Algebras

Let g be a (complex) symmetrizable Kac–Moody algebra with Cartan matrix
(aij )

r
i,j=1 and Cartan subalgebra t ⊂ g. Denote the Weyl group of g by W . Let
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{αi | 1 ≤ i ≤ r} ⊂ t∗ and {si | 1 ≤ i ≤ r} be the sets of simple roots of g
and simple reflections of W , respectively. Denote by {α∨i | 1 ≤ i ≤ r} ⊂ t and
{*i | 1 ≤ i ≤ r} ⊂ t∗ the sets of simple coroots and fundamental weights of g.
Thus, 〈α∨i , αj 〉 = aij . Let (., .) be a nondegenerate symmetric bilinear form on t∗
satisfying

〈α∨i , λ〉 =
2(αi, λ)

(αi, αi)
for λ ∈ t∗ and (αi, αi) = 2 for short roots αi.

Then

di := (αi, αi)

2
∈ Z+.

Let

Q, P, P+ ⊂ t∗

be the root and weight lattices of g, and the set of its dominant integral weights.
Denote

P∨ := {h ∈ t | 〈h, P 〉 ⊂ Z} ⊂ t and Q+ :=
⊕

Z+αi ⊂ t∗.

As it is standard, we will assume that (., .) is chosen so that (P, P ) ⊂ Q. The
induced symmetric bilinear form on t will be also denoted by (., .).

Let Uq(g) be the quantized universal enveloping algebra of g over Q(q) with
generators ei, fi, qh for 1 ≤ i ≤ r , h ∈ P∨ and relations as in [20]. We will use the
Hopf algebra structure of Uq(g) with coproduct given by

�(ei) = ei ⊗ 1+ qdiα∨i ⊗ ei, �(fi) = fi ⊗ q−diα∨i + 1⊗ fi, �(qh) = qh ⊗ qh
(8.1)

for h ∈ P∨, 1 ≤ i ≤ r . Let U±q (g) and U0
q (g) be the unital subalgebras of Uq(g)

generated by {ei | 1 ≤ i ≤ r} (resp. {fi | 1 ≤ i ≤ r}) and {qh | h ∈ P∨}. Denote
the (symmetric) q-integers and factorials

qi := qdi , [n]i := qni − q−ni
qi − q−1

i

and [n]i ! := [1]i . . . [k]i .

Denote by ∗ and ϕ the Q(q)-linear anti-automorphisms of Uq(g) defined by

e∗i := ei, f ∗i := fi, (qh)∗ := q−h, and

ϕ(ei) := fi, ϕ(fi) := ei, ϕ(qh) := qh
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for 1 ≤ i ≤ r , h ∈ P∨. The composition ϕ∗ := ϕ◦∗ = ∗◦ϕ, which is a Q(q)-linear
automorphism of Uq(g), satisfies

ϕ∗(ei) = fi, ϕ∗(fi) = ei and ϕ∗(qh) = q−h.

This composition is denoted by ∨ in [22]; we will use the above notation to avoid
interference with later notation.

The Hopf algebra Uq(g) is graded by the root latticeQ by setting

deg ei = αi, deg fi = −αi, deg qh = 0. (8.2)

The homogeneous components of a subspace Y of Uq(g) of degree γ ∈ Q will be
denoted by Yγ . Denote by e′′i the Q(q)-linear skew-derivations of U−q (g) such that

e′′i (fj ) = δij and e′′i (xy) = e′′i (x)y+q−(αi ,γ )xe′′i (y) for x ∈ U−q (g)γ , y ∈ U−q (g).

Kashiwara’s (nondegenerate, symmetric) bilinear form

(−,−)K : U−q (g)× U−q (g)→ Q(q)

is defined by

(1, 1)K = 1 and (fix, y)K = (x, e′′i (y))K
for all 1 ≤ i ≤ r and x, y ∈ U−q (g).
Remark 8.1 This differs slightly from the conventional choice for Kashiwara’s form
〈−,−〉K : U−q (g)× U−q (g)→ Q(q), which is defined by

〈1, 1〉K = 1 and 〈fix, y〉K = 〈x, e′i (y)〉K
for all 1 ≤ i ≤ r and x, y ∈ U−q (g) in terms of the Q(q)-linear skew-derivations e′i
of U−q (g) given by

e′i (fj ) = δij and e′i (xy) = e′i (x)y + q(αi ,γ )xe′i (y) for x ∈ U−q (g)γ , y ∈ U−q (g).

The two forms are related by

(x, y)K = 〈x, y〉K for x, y ∈ U−q (g), (8.3)

where x 	→ x denotes the Q-linear automorphism of Q(q) given by q̄ = q−1 and the
bar involution of Uq(g) (the skew-linear automorphism of Uq(g) given by f i = fi).
Using (8.3), one converts dualization results with respect to one form to such results
for the other.
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Let A := Z[q±1] and U±A(g) be the (divided power) integral forms of U±q (g),
which are the A-subalgebras of U±q (g) generated by e(k)i = eki /[k]i ! and f (k)i =
f ki /[k]i ! for 1 ≤ i ≤ r , k ∈ Z+, respectively. The dual integral form U−A(g)

∨ of
U−q (g) is the A-subalgebra given by

U−A(g)
∨ = {x ∈ U−q (g) | (x, U−A(g))K ⊂ A}.

Kashiwara [20] and Lusztig [32] defined the canonical/lower global basis of
U±A(g) and the dual canonical/upper global basis of U±A(g)

∨. These bases have a
number of remarkable properties; for instance, they descend to bases of integrable
highest weight modules by acting on highest weight vectors. We will denote by Blow±
the lower global basis of U±A(g) and by Bup

− the upper global basis of U−A(g).
The lower global basis Blow− and the upper global basis Bup

− form a pair of dual
bases of U−A(g) and U−A(g)

∨ with respect to the pairing (−,−)K . For b ∈ Blow− ,
denote by b∨ ∈ Bup

− the corresponding dual element, so

(b, c∨)K = δb,c for b, c ∈ Blow− . (8.4)

The lower global bases Blow± satisfy the invariance properties

(Blow± )∗ = Blow± and ϕ(Blow± ) = ϕ∗(Blow± ) = Blow∓ , (8.5)

see [21, Theorem 2.1.1], [22, Theorem 4.3.2] and [19, Theorem 8.3.4].
To each Weyl group element w, one associates the quantum Schubert cell

algebras U−q [w] ⊆ U−q (g). They can be defined in two ways. Starting from a
reduced expression

w = si1 . . . siN
of w, consider the roots

β1 := αi1 , β2 := si1(αi2), . . . , βN := si1 . . . siN−1(αiN )

and the root vectors

{fβj := Ti1 . . . Tij−1(fj ) | 1 ≤ j ≤ N} (8.6)

using Lustig’s braid group action [15, 33] on Uq(g). De Concini, Kac, and Procesi
[5], and Lusztig [33, §40.2] defined the algebra U−q [w] as the unital Q(q)-
subalgebra of U−q (g) with generating set (8.6), and proved that this is independent
on the choice of reduced expression ofw. Berenstein and Greenstein [3] conjectured
that
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U−q [w] = U−q (g) ∩ Tw(U+q (g)),

and Kimura [28] and Tanisaki [40] proved this property. It can be used as a second
definition of the algebras U−q [w]. Kimura proved [27, Theorem 4.5] that

Bup
− [w] := Bup

− ∩ U−q [w] (8.7)

is an A-basis of the A-algebra

U−A[w]∨ := U−q [w] ∩ U−A(g)∨.

We will refer to this algebra as to the dual integral form of U−q [w]. The set Bup
− [w]

is called the upper global basis of U−A[w]∨.

8.2 Homogeneous Completely Prime Ideals of the Algebras
U−

q [w]

Denote the Hopf subalgebras U≥0 := U+q (g)U0
q (g) and U≤0 := U−q (g)U0

q (g) of
Uq(g). The Rosso-Tanisaki form

(−,−)RT : U≤0 × U≥0 → Q(q1/d)

(for an appropriate d ∈ Z+) is the Hopf algebra pairing satisfying

(y, xx′)RT = (�(y), x′ ⊗ x)RT , (yy′, x)RT = (y ⊗ y′,�(x))RT
for y, y′ ∈ U≤0, x, x′ ∈ U≥0, and normalized by

(fi, ej )RT = δij , (qh, qh
′
)RT = q−(h,h′), (fi, q

h′)RT = (qh, ei)RT = 0

for 1 ≤ i, j ≤ r , h, h′ ∈ P∨. We have (U−q (g), U+q (g))RT = Q(q).
This is a slightly different normalization than the usual one [15, Eq. (6.12)(2)]

needed in order to match this form to Kashiwara’s one. The two normalizations for
(−,−)RT are related to each other by a Hopf algebra automorphism of U≤0 coming
from the torus action associated to itsQ-grading.

For γ ∈ Q+ let

{xγ,i} and {yγ,i}

be a set of dual bases of (U−q (g))−γ and (U+q (g))γ with respect to (−,−)RT . The
quasi-R-matrix of Uq(g) is
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R :=
∑

γ∈Q+

∑

i

yγ,i ⊗ xγ,i ∈ U+q (g)⊗̂U−q (g)

where the completed tensor product is with respect to the descending filtration [33,
§4.1.1].

For λ ∈ P+, we will denote by V (λ) the irreducible Uq(g)-module of highest
weight λ and by V (λ)◦ its restricted dual

V (λ)◦ := ⊕ν∈P (V (λ)ν)∗ (8.8)

where

V (λ)ν := {v ∈ V (λ) | qhv = q〈ν,h〉v, ∀h ∈ P∨} for ν ∈ P

are the (finite dimensional) weight spaces of V (λ). Let vλ be a fixed highest weight
vector of V (λ). Denote by B(λ)low the lower global basis of (the integral form
U−A(g)vλ) of V (λ). It is an A-basis of U−A(g)vλ and a Q(q)-basis of V (λ). For
w ∈ W , let vwλ be the unique element of V (λ)wλ which belongs to B(λ)low. Let

V ±w (λ) := U±q (g)vwλ ⊆ V (λ)

be the associated Demazure modules. For v ∈ V (λ) and ξ ∈ V (λ)∗, denote the
corresponding matrix coefficient of V (λ) considered as a functional on Uq(g):

cξ,v ∈ (Uq(g))∗ given by cξ,v(x) = ξ(x · v) for x ∈ Uq(g).

A subspace U of Uq(g) will be called homogeneous if

U =
⊕

γ∈Q
Uγ where Uγ := U ∩ Uq(g)γ .

Theorem 8.2 ([43, Theorem 3.1(a)], [12, Theorem 6.5(a)]) Let g be a symmetriz-
able Kac–Moody algebra and w ∈ W be a Weyl group element. For all u ∈ W such
that u ≤ w, the set

Iw(u) = {〈cξ,vwλ ⊗ id,R〉∗ | ξ ∈ V (λ)◦, ξ ⊥ V −u (λ), λ ∈ P+}

is a homogeneous completely prime ideal of U−q [w].
The proof of this theorem extensively used the works of Joseph [16, 17] and

Gorelik [13].
The Rosso-Tanisaki form (−,−)RT satisfies

(y∗, x∗)RT = (y, x)RT for y ∈ U≤0, x ∈ U≥0,
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[15, Lemma 6.16]. Therefore,

R∗⊗∗ = R, (8.9)

and thus, the ideals Iw(u) are also given by

Iw(u) = {〈(cξ,vwλ ◦ ∗)⊗ id,R〉 | ξ ∈ V (λ)◦, ξ ⊥ V −u (λ), λ ∈ P+}.

We will need the following relation between the bilinear forms (−,−)K and
(−,−)RT , and the corresponding expression for R in terms of global bases.

Proposition 8.3 Let g be a symmetrizable Kac–Moody algebra. For all x1, x2 ∈
U−q (g), we have

(x1, ϕ
∗(x2))RT = (x1, x2)K. (8.10)

The quasi-R-matrix of Uq(g) is given by

R =
∑

b∈Blow−

ϕ∗(b)⊗ b∨ =
∑

b∈Blow−

ϕ(b)⊗ (b∨)∗, (8.11)

recall (8.4).

Proof The Q-grading of U≤0 specializes to a Z+-grading via the group homomor-
phism Q → Z given by αi 	→ −1. The corresponding graded components will be
denoted by (U≤0)l . Set

(U≤0)≥l := (U≤0)l ⊕ (U≤0)l+1 ⊕ . . .

For x := fi1 . . . fik and h := di1α∨i1 + · · · + dikα∨ik , we have

�(x)−x⊗q−h−
k∑

j=1

q
(αij ,αi1+...+αij−1 )fi1 . . . fij−1fij+1 . . . fik⊗fij q

−h+dij α∨ij ∈ U≤0⊗(U≤0)≥2,

i.e.,

�(x)− x ⊗ q−h −
r∑

i=1

e′′i (x)⊗ fiq−h+diα
∨
i ∈ U≤0 ⊗ (U≤0)≥ 2.

This property, and the two properties of the Rosso-Tanisaki form

((U≤0)γ , (U
≥0)ν)RT = 0 for γ + ν �= 0,

(xqh, yqh
′
)RT = q−(h,h′)(x, y)RT for x ∈ U−q (g), y ∈ U+q (g), h, h′ ∈ P∨
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(see [15, Eqs. 6.13(1)–(2)]) imply that the bilinear form 〈−,−〉 on U−q given by

〈x, y〉 := (x, ϕ∗(y))RT
satisfies 〈x, fiy〉 = 〈e′′i (x), y〉 for x, y ∈ U−q (g) and 1 ≤ i ≤ r . The uniqueness
property of the Kashiwara form implies that this form equals (−,−)K , which proves
(8.10).

The invariance property (8.5), the relation (8.10) between the bilinear forms
(−,−)RT and (−,−)K , and the orthogonality property (8.4) imply that

{ϕ∗(b) | b ∈ Blow− } and {b∨ | b ∈ Blow− }

are a pair of dual bases of U+q (g) and U−q (g) with respect to the pairing (−,−)RT .
This gives the first equality in (8.11). The second equality follows from (8.9) and
the first invariance property in (8.5). ��

8.3 Quantizations of Richardson Varieties

Let G be the Kac–Moody group (over C) corresponding to g. Let B± be opposite
Borel subgroups ofG. For u,w ∈ W , the open Richardson variety associated to the
pair (u,w) is the locally closed subset of the flag variety G/B+ defined by

Ru,w := (B−uB+)/B+ ∩ (B+wB+)/B+.

It is nonempty if and only if u ≤ w in which case it has dimension �(w)− �(u) (in
terms of the standard length function � : W → Z+). We have the stratifications of
G/B+ into unions of Schubert cells

G/B+ =
∐

w∈W
(B+wB+)/B+ =

∐

u∈W
(B−uB+)/B+

and open Richardson varieties

G/B+ =
∐

u≤w
u,w∈W

Ru,w.

Denote the closure

Ru,w := Cl(B+wB+)/B+(Ru,w)

of Ru,w in the Schubert cell (B+wB+)/B+.
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For w ∈ W , define the dual extremal vectors

ξwλ ∈ V (λ)∗wλ by ξwλ(vwλ) = 1

(keeping in mind that dimV (λ)wλ = 1). Denote the image of the corresponding
extremal matrix coefficient in U−q [w]:

�λ,wλ := 〈cξ,vwλ ⊗ id,R〉∗ ∈ U−q [w] for λ ∈ P+.

Proposition 8.4 For all symmetrizable Kac–Moody algebras g and u ≤ w ∈ W ,
the factor ring U−q [w]/Iw(u) is a quantization of the coordinate ring C[Ru,w] of
the closure of the open Richardson variety Ru,w in the Schubert cell (B+wB+)/B+.
The localization

(U+[w]/Iw(u))[�−1
*i,w*i

, 1 ≤ i ≤ r]

of this ring is a quantization of the coordinate ring C[Ru,w].
These facts were stated in [44, pp. 274–275] for finite dimensional complex simple
Lie algebras g, but the proofs given there carry over to the symmetrizable Kac–
Moody case directly.

9 Categorifying Richardson Varieties

In this section, we prove that the ideals Iw(u) ∩ U−A[w]∨ of U−A[w]∨ are Serre
completely prime ideals for all symmetric Kac–Moody algebras g and u ≤ w ∈ W .
We then use Theorem 6.12(4) to construct a (domain) multiring category which
categorifies the quantization of the coordinate ring of the closure of the open
Richardson variety Ru,w in the Schubert cell (B+wB+)/B+. This category is
obtained as a factor of a multiring category consisting of graded, finite dimensional
representations of the corresponding KLR algebras.

9.1 The Categorifications of U−
A(g)∨ and U−

A[w]∨,
and Relations to Dual Canonical bases

For each symmetrizable Kac–Moody algebra g, Khovanov, Lauda [26] and
Rouquier [38] defined a family of (graded) quiver Hecke algebras over a base field k,
which we will call KLR algebras. They proved that the category C which is the direct
sum of the categories of finite dimensional graded modules of the KLR algebras
associated to g has the following properties:
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Theorem 9.1 (Khovanov–Lauda [26] and Rouquier [38]) For each symmetriz-
able Kac–Moody algebra g and base field k, C is a k-linear multiring category such
that

K0(C) ∼= U−A(g)∨. (9.1)

The action of q on the right-hand side and the shift of grading autoequivalence of C
are related via

[M(k)] = qk[M] for all objectsM of C.

The theorem implies that for every symmetrizable Kac–Moody algebra g, U−A(g)
∨

is a Z+-ring with positive Z+-basis {[M]} where M runs over the isomorphism
classes of the simple objects of C. (Here we disregard the structure of U−A(g)

∨ as
an A-algebra and view it just as a ring.) For symmetric Kac–Moody algebras g,
the relation between this basis and the upper global basis of U−A(g)

∨ is given by
the next theorem. For it we recall that the dual of each graded finite dimensional
representation of a KLR algebra has a canonical structure of a KLR module which
is also graded, finite dimensional. This gives a canonical duality endofunctor of C.

Theorem 9.2 (Varagnolo–Vasserot [41] and Rouquier [39]) For each symmetric
Kac–Moody algebra g and base field k of characteristic 0, under the isomorphism
(9.1), the upper global basis corresponds to the set of isomorphism classes of the
self-dual simple modules in the category C.

The theorem implies that in these cases U−A(g)
∨ is a Z+-ring with positive Z+-basis

qZBup
− .

For each symmetric Kac–Moody algebra g and w ∈ W , in [19, §11.2] Kang,
Kashiwara, Kim, and Oh constructed a monoidal subcategory Cw of C as the smallest
monoidal Serre subcategory closed under shifts, containing a certain set of simple
self-dual modules of the KLR algebras ([19, Definition 11.2.1]) and, using [9], they
proved:

Theorem 9.3 (Kang–Kashiwara–Kim–Oh [19]) For each symmetric Kac–
Moody algebra g,

K0(Cw) ∼= U−A[w]∨. (9.2)

Combining Theorems 9.2 and 9.3 gives that, under the isomorphism (9.2), the
elements of the upper global basis Bup

− [w]∨ of U−A[w]∨ (recall (8.7)) correspond to
the isomorphism classes of the simple self-dual objects of Cw. In particular,U−A[w]∨
is a Z+-ring with a positive Z-basis

qZBup
− [w].
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9.2 Serre Completely Prime Ideals of the Z+-Rings U−
A[w]

and the Multiring Categories Cw

For u ≤ w, denote the ideals

Iw(u)
∨
A := Iw(u) ∩ U−A[w]∨

of U−A[w]. Theorem 8.2 implies that for every symmetrizable Kac–Moody algebra
g, Iw(u)∨A are completely prime ideals of U−A[w] in the classical sense. The
following is the main result of this section.

Theorem 9.4

(1) Let g be a symmetrizable Kac–Moody algebra and u ≤ w ∈ W . The ideal
Iw(u)

∨
A has an A-basis given by

Bup
− [w] ∩ Iw(u)∨A.

Furthermore, it is a Serre completely prime ideal of the Z+-ring U−A[w]∨.
Denote by Xw(u) the set of isomorphism classes of self-dual simple objects

M of Cw such that [M] ∈ Iw(u)∨A. Let

Iw(u) := S(Xw(u)[k], k ∈ Z)

be the full subcategory of Cw whose objects have Jordan-Hölder series with sim-
ple subquotients isomorphic to shifts of objects in Xw(u) as in Lemma 6.11(2).

(2) Let g be a symmetric Kac–Moody algebra and u ≤ w ∈ W . For all base
fields k of characteristic 0, Iw(u) are Serre completely prime ideals of the k-
linear multiring category Cw. For the corresponding Serre quotient Cw/Iw(u),
we have

K0(Cw/Iw(u)) ∼= U−A[w]∨/Iw(u)∨A.

By the first part of Theorem 9.4(1),

(
U−A[w]∨/Iw(u)∨A

)⊗A Q(q) ∼= U−[w]/Iw(u)

and by Proposition 8.4, U−[w]/Iw(u) is a quantization of the coordinate ring
C[Ru,w] of the closure of the Richardson variety Ru,w in the Schubert cell
(B+wB+)/B+. This fact and Theorem 9.4(2) imply that the Serre quotient
Cw/Iw(u), which is a domain in the sense of Definition 5.4, is a monoidal
categorification of the quantization of C[Ru,w].
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9.3 Proof of Theorem 9.4

Recall that B(λ)low denoted the lower global basis of the irreducible module V (λ)
for λ ∈ P+. We will need two facts about the lower global bases of Demazure
modules proved by Kashiwara:

Theorem 9.5 (Kashiwara [21]) For every symmetrizable Kac-Moody algebra g
and dominant integral weight λ ∈ P+, the intersection

B±w(λ)low := B(λ)low ∩ V ±w (λ)
is a Q(q)-basis of the Demazure module V ±w (λ).

The sets B±w(λ)low are called the lower global bases of the Demazure modules
V ±w (λ). The plus case was proved in [21, Proposition 3.2.3(i)] and the minus in
[21, Proposition 4.1]. The following theorem describes the relationship between the
canonical/lower global bases B+w(λ) of the Demazure modules and the action of the
canonical/lower global bases ofU+A(g) acting on the corresponding extremal weight
vectors.

Theorem 9.6 (Kashiwara [22, 23]) Let g be a symmetrizable Kac-Moody algebra
g and λ ∈ P+ be a dominant integral weight. Denote the subset

B+w(λ)low := {b ∈ Blow+ | b · vwλ �= 0}
of the lower global basis of U+A(g). Then there is a bijection between this set and
the lower global basis of the Demazure module V +w (λ) given by

ηw : B+w(λ)low ∼=−→ B+w(λ)low given by ηw(b) := b · vwλ.

The corresponding fact to this theorem for the negative Demazure modules (where
everywhere plus is replaced by minus) was proved in [21, Proposition 4.1].

The following proposition is a stronger form of the statement of the first part of
Theorem 9.4(1).

Proposition 9.7 For all symmetrizable Kac–Moody algebras g, and u ≤ w ∈ W ,
the ideal Iw(u) of the quantum Schubert cell algebraU−q [w] has a Q(q)-basis given
by

⋃

λ∈P+

{
b∨ | b ∈ ϕ−1η−1

w

(
B+w(λ)low\B−u (λ)low)}.

Proof For λ ∈ P+, consider the basis of V (λ)◦ (cf. (8.8)) which is dual to the lower
global basis B(λ)low of V (λ). Given v ∈ B(λ)low, denote by v∨ the corresponding
dual element, so

v∨1 (v2) = δv1v2 for v1, v2 ∈ B(λ)low.
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Theorem 9.5 implies that

{ξ ∈ V (λ)◦ | ξ ⊥ V −u (λ)} = Span
Q(q)

{B+w(λ)low\B−u (λ)low}

⊕ Span
Q(q)

{B(λ)low\(B+w(λ)low ∪ B−u (λ)low)}.

For v ∈ B(λ)low\(B+w(λ)low ∪ B−u (λ)low), we have v∨ ⊥ V +w (λ), and thus,

〈cv∨,vwλ ⊗ id,R〉 = 0.

Therefore, the subspace

{〈cξ,vwλ ⊗ id,R〉∗ | ξ ∈ V (λ)◦ | ξ ⊥ V −u (λ)} ⊂ Iw(u)

is spanned by

{〈cv∨,vwλ ⊗ id,R〉∗ | v ∈ B+w(λ)low\B−u (λ)low}.

The proposition now follows from the identity

〈cv∨,vwλ ⊗ id,R〉∗ = (ϕ−1η−1
w (v)

)∨ for v ∈ B+w(λ)low. (9.3)

To show this, first note that Theorem 9.6 implies that for v ∈ B+w(λ)low and b ∈ Blow+ ,

〈v∨, b · vwλ〉 =
{

1, if b = η−1
w (v)

0, otherwise.

Using this and the second part of Proposition 8.3, for v ∈ B+w(λ)low, we obtain

〈cv∨,vwλ ⊗ id,R〉∗ =
∑

b∈Blow−

〈v∨, ϕ(b) · vwλ〉b∨ =
(
ϕ−1η−1

w (v)
)∨
,

which shows (9.3) and completes the proof of the proposition. ��
Proof of Theorem 9.4 (1) The first statement in part (1) follows from Propo-
sition 9.7. By Theorem 8.2, Iw(u) is a completely prime ideal of U−q [w], and

therefore, the contraction Iw(u)∩U−A[w] is a completely prime ideal ofU−A[w]. The
ideal Iw(u)∩U−A[w] has a Z-basis consisting of elements that belong to qZBup

− [w],
which, by Theorem 9.2, is precisely the positive basis of the Z+-ring U−A[w]. Now
we apply Lemma 6.16, which gives that Iw(u)∩U−A[w] is a Serre completely prime
ideal of U−A[w].
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Part (2) follows from part (1), Theorem 6.12(4) (applied to the category Cw) and
the isomorphism K0(Cw) ∼= U−A[w]∨ from Theorem 9.3. ��
It is possible that Theorem 9.4(2) holds for symmetrizable Kac–Moody algebras g
by arguments that avoid the use of Theorem 9.2.
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