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Abstract

A notion of quantum matrix (QM-) algebra generalizes and unifies two famous families of
algebras from the theory of quantum groups: the RTT-algebras and the reflection equation
(RE-) algebras. These algebras being generated by the components of a ‘quantum’ matrixM
possess certain properties which resemble structure theorems of the ordinary matrix theory.
It turns out that such structure results are naturally derived in a more general framework
of the QM-algebras. In this work we consider a family of Birman-Murakami-Wenzl (BMW)
type QM-algebras. These algebras are defined with the use of R-matrix representations of
the BMW algebras. Particular series of such algebras include orthogonal and symplectic
types RTT- and RE- algebras, as well as their super-partners.

For a family of BMW type QM-algebras, we investigate the structure of their ‘charac-
teristic subalgebras’ — the subalgebras where the coefficients of characteristic polynomials
take values. We define three sets of generating elements of the characteristic subalgebra and
derive recursive Newton and Wronski relations between them. We also define an associative
⋆-product for the matrixM of generators of the QM-algebra which is a proper generalization
of the classical matrix multiplication. We determine the set of all matrix ‘descendants’ of
the quantum matrix M , and prove the ⋆-commutativity of this set in the BMW type.
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1 Introduction

A notion of a quantum matrix group, also called the RTT-algebra, is implicit in the quantum inverse
scattering method. A formal definition has been given in the works of V. Drinfel’d, L. Faddeev,
N. Reshetikhin and L. Takhtajan [7, 48]. Since then, various aspects of the quantum matrix group
theory have been elaborated, especially in attempts to define differential geometric structures on non-
commutative spaces (see, e.g., [37, 49]). In particular, a different family of algebras generated by
matrix components, the so-called reflection equation (RE-) algebras [5, 34], has been brought into
consideration. Soon it was realized that, for both the RTT- and the RE-algebras, some of the basic
concepts of the classical matrix algebra, like the notion of the spectral invariants and the characteristic
identity (the Cayley-Hamilton theorem) can be properly generalized (see [10, 42, 45, 52]). So, it
comes out that the matrix notation used for the definition of the RTT- and the RE-algebras is not
only technically convenient, but it dictates certain structure properties for the algebras themselves.
It is then natural to search for a possibly most general algebraic setting for the matrix-type objects.
Such family of algebras was introduced in refs.[18] and [24], and in the latter case the definition was
dictated by a condition that the standard matrix theory statements should have their appropriate
generalizations. These algebras were called quantum matrix (QM-) algebras although one should have
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in mind that the QM-algebras are generated by the matrix components rather than by the matrix
itself.

The RTT- and the RE-algebras are probably the most important subfamilies in the variety of QM-
algebras. They are distinguished both from the algebraic point of view (the presence of additional
non-braided bi-algebra and bi-comodule structures) and from the geometric point of view (their inter-
pretation as, respectively, the algebras of quantized functions and of quantized invariant differential
operators on a group); also, the RE-algebras naturally appear in the representation theory, in the
description of the diagonal reduction algebras [33]. However, for the generalization of the basic matrix
algebra statements, it is not only possible but often more clarifying to use a weaker structure settings
of the QM-algebras.

So far, the program of generalizing the Cayley-Hamilton theorem was fully accomplished for the
’linear’ (or Iwahori-Hecke) type QM-algebras. For the GL(m)-type algebras, the results were described
in [14, 27, 24] and for the GL(m|n)-type algebras in [15, 16]. These works generalize earlier results
on characteristic identities by A.J. Bracken, H.S. Green, et. al., in the Lie (super)algebra case [3, 13,
2, 12, 29] (for a review see [20]) and in the quantized universal enveloping algebra case [17], and by I.
Kantor and I. Trishin in the matrix superalgebra case [31, 32].

The similar investigation program for the QM-algebras of Birman-Murakami-Wenzl (BMW) type
(for their definition see section 4.1) was initiated in [44]. In the present and forthconimng works we
continue and complement this program. The family of BMW type QM-algebras serves as a unifying set-
up for the description of the orthogonal and symplectic QM-algebras as well as for their supersymmetric
partners. Some partial results about specific examples of such algebras and their limiting cases were
already derived. In particular, the characteristic identities for the generators of the orthogonal and
symplectic Lie algebras have been considered at the representation theoretical and at the abstract
algebraic levels in [3, 13] and in [2, 12, 38]. The characteristic identities for the canonical Drinfeld-
Jimbo quantizations of the orthogonal and symplectic universal enveloping algebras were obtained
in [39] and their images in the series of highest weight representations were discussed in details in
[40]. So, it is pretty clear that proper generalizations of the Cayley-Hamilton theorems do exist for
the families of orthogonal and symplectic QM-algebras. However, in a derivation of these results one
meets serious technical complications. The reason is that the structure of the Birman-Murakami-Wenzl
algebras is substantially more sophisticated then that of the Iwahori-Hecke algebras (Iwahori-Hecke
and Birman-Murakami-Wenzl algebras play similar roles in the construction of the QM-algebras of
linear and BMW types). In the present work we develop an appropriate techniques to deal with these
complications.

In sections 2 and 3 we collect necessary results concerning the Birman-Murakami-Wenzl (BMW)
algebras and their R-matrix representations. In the beginning of section 2 we define the BMW alge-
bras in terms of generators and relations, describe few helpful morphisms between these algebras, and
introduce the baxterized elements. These elements are used in subsection 2.2 for the definition of three
sets of idempotents called antisymmetrizers, symmetrizers and contractors. Necessary properties of
these idempotents are proved in proposition 2.2. All the material of this section, except the construc-
tion and properties of the contractors is fairly well known and we present it to make the presentation
self-contained.

In section 3 we consider the R-matrix representations of the BMW algebras. We define stan-
dard notions of the R-trace 1, skew-invertibility, compatible pair of R-matrices and R-matrix twist
(subsection 3.1). In subsection 3.2 we collect necessary formulas and statements relating the notions
introduced before. To investigate the skew-invertibility of the R-matrix after a twist, in subsection
3.3 we derive an expression for the twisted R-matrix, which is different from the standard one. Next
we describe the BMW type R-matrices (subsection 3.4). The major part of a technical preparatory
work is done in subsections 3.2—3.4, and 3.5, 3.6. Here we develop the R-matrix technique, which is
later used in the main sections 4, 5.

In the beginning of section 4 we introduce the QM-algebras of general and BMW types. We then
define the characteristic subalgebra of the QM-algebra. In the Iwahori-Hecke case, it is the subalgebra
where the coefficients of the Cayley-Hamilton identity take their values. As it was shown in [24],

1This operation is also called a quantum trace or, shortly, a q-trace in the literature.
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the characteristic subalgebra is abelian. In subsection 4.2 we describe three generating sets for the
characteristic subalgebra of the BMW type QM-algebra. As compared to the linear QM-algebras,
all these generating sets contain a single additional element — the 2-contraction g — which at the
classical level gives rise to bilinear invariant 2-forms for the orthogonal and symplectic groups.

Next, in subsection 4.3, we construct a proper analogue of the matrix multiplication for the quan-
tum matrices. We call it the quantum matrix product ‘⋆’. In general, the ⋆ -product is different
from the usual matrix product. It is worth noting that for the family of RE-algebras, the ⋆ -product
coincides with the matrix product. The ⋆ -product is proven to be associative and hence the ⋆ -powers
of the same quantum matrix M commute. We determine then the set of all ‘descendants’ of the
quantum matrix M in the BMW case and prove that this set is ⋆ -commutative. It turns out that,
unlike the linear QM-algebra case, it is not possible to express all these descendants in terms of the
⋆ -powers of M only. The expressions include also a new operation ‘⊺’, which can be treated as a
‘matrix multiplication with a transposition’.

In subsection 4.5 we define an extension of the BMW type QM-algebra by the element g−1 which
is the inverse to the 2-contraction. Then we construct in the extended algebra the inverse ⋆ -power of
the quantum matrix M .

The last section 5 contains the principal result of the present work, theorem 5.2, which establishes,
for the BMW type QM-algebras, recursive relations between the elements of the three generating
sets of their characteristic subalgebras. These formulas generalize the classical Newton and Wronsky
relations for the sets of the power sums, elementary and complete symmetric polynomials (see [36])
to the case of quantum matrices and simultaneously, to the situation where additional element of
the characteristic subalgebra, the 2-contraction, is present. To prove this result we first derive the
matrix relations among the descendants of the BMW type quantum matrixM (see lemma 5.1). These
relations can be viewed as the matrix counterparts of the Newton relations, and they are expected to
be important ingredients in a future derivation of the characteristic identities for the QM-algebras of
the BMW type.

Some auxilliary results, which are interesting in themselves, although not necessary for considera-
tions in the main text, are collected in the appendices. In appendix A we prove the primitivity of the
contractors from subsection 2.4. In appendix B their further properties are discussed. Appendix C is
devoted to a discussion of universal counterparts of the matrix relations given in subsections 3.2, 3.3.

In forthcoming papers we are going to construct the Cayley-Hamilton identities, and, more gener-
ally Cayley-Hamilton-Newton identities in the spirit of [23], for the series of orthogonal and symplectic
QM-algebras and, further on, for their super-partners.

2 Some facts about Birman-Murakami-Wenzl algebras

In this preparatory section we collect definitions and derive few results on the Birman-Murakami-
Wenzl algebras. We give a minimal information, which is required for the main part of the paper. In
particular, in sec.2.2 we describe series of morphisms of the braid groups and their quotient BMW
algebras; in sec.2.3 we introduce baxterized elements which are then used in the sec.2.4 to define
three series of idempotents in the BMW algerbas, the so called symmetrizers, antisymmetrizers and
contractors.

The reader will find a more detailed presentation of the Birman-Murakami-Wenzl algebras in, e.g.,
papers [51] and [35].

2.1 Definition

The braid group Bn, n ≥ 2, in Artin presentation, is defined by generators {σi}
n−1
i=1 and relations

σiσi+1σi = σi+1σiσi+1 ∀ i = 1, 2, . . . , n − 1, (2.1)

σiσj = σjσi ∀ i, j : |i− j| > 1 . (2.2)

We put, by definition, B1 := {1}.
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The Birman-Murakami-Wenzl (BMW) algebra Wn(q, µ) [4, 41] is a finite dimensional quotient
algebra of the group algebra CBn. It depends on two complex parameters q and µ. Let

κi :=
(q1− σi)(q

−11 + σi)

µ(q − q−1)
, i = 1, 2, . . . , n− 1 . (2.3)

The quotient algebra Wn(q, µ) is specified by conditions

σiκi = κiσi = µκi , (2.4)

κiσ
ǫ
i+1κi = µ−ǫκi , (2.5)

where ǫ is the sign 2, ǫ = ±1.

Eqs.(2.3) and (2.4) imply that the characteristic polynomial for the generator σi has degree three,

(σi − q1)(σi + q−11)(σi − µ1) = 0 . (2.6)

The relations (2.4) – (2.5) imply also

σ′iκi+1σ
′
i = σ′i+1κiσ

′
i+1 , where σ′ = σ − (q − q−1)1 , (2.7)

κiσ
ǫ
i+π = κiκi+πσ

−ǫ
i , σǫi+πκi = σ−ǫ

i κi+πκi , (2.8)

κiκi+πκi = κi , (2.9)

κ2i = η κi , where η :=
(q − µ)(q−1 + µ)

µ(q − q−1)
. (2.10)

Here ǫ and π are the signs: ǫ = ±1 and π = ±1.
The parameters q and µ of the BMW algebra are taken in domains3

q ∈ C\{0,±1}, µ ∈ C\{0, q,−q−1}, (2.11)

so that the elements κi are well defined and non-nilpotent. Further restrictions on q and µ will be
imposed in subsection 2.3.

2.2 Natural morphisms

• The braid groups and their quotient BMW algebras admit a chain of monomophisms

B2 →֒ . . . →֒ Bn →֒ Bn+1 →֒ . . . ,

W2 →֒ . . . →֒ Wn →֒ Wn+1 →֒ . . .
(2.12)

defined on the generators as

Bn (or Wn) ∋ σi 7→ σi+1 ∈ Bn+1 (or Wn+1) ∀ i = 1, . . . , n− 1. (2.13)

We denote by α(n)↑i ∈ Bn+i (or Wn+i) an image of an element α(n) ∈ Bn (or Wn) under a composition
of the mappings (2.12)–(2.13). Conversely, if for some j < (n−1), an element α(n) belongs to the image
of Bn−j (or Wn−j) in Bn (or Wn) then by α(n)↓j we denote the preimage of α(n) in Bn−j (or Wn−j).

This notation will be helpful in subsection 2.4 where we discuss three distinguished sequences of
idempotents in the BMW algebras.

• Consider series of elements τ (n) ∈ Bn defined inductively

τ (1) := 1, τ (j+1) := τ (j) σjσj−1 . . . σ1 . (2.14)

2If µ 6= q− q−1 then it is enough to impose only one of the relations (2.5), the relation with another sign follows (see
[26]).

3For particular values µ = ±qi, i ∈ Z, the limiting cases q → ±1 to the Brauer algebra [1] can be consistently defined.
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τ (n) is the lift of the longest element of the symmetric group Sn. The inner Bn (and, hence, Wn)
automorphism

τ : σi 7→ τ (n) σi (τ
(n))−1 = σn−i , (2.15)

will be used below in derivations in sections 2.4 and 4.

• One has three algebra isomorphisms:

ι : Wn(q, µ) → Wn(−q
−1, µ) , ι′ : Wn(q, µ) → Wn(q

−1, µ−1) and ι′′ : Wn(q, µ) → Wn(−q,−µ)

defined on generators by

ι : σi 7→ σi , (2.16)

ι′ : σi 7→ σ−1
i , (2.17)

ι′′ : σi 7→ −σi . (2.18)

The map ι interchanges the two sets of baxterized elements σ±(x) and the series of symmetrizers a(n)

and antysimmetrizers s(n): ι(a(n)) = s(n) (see subsections 2.3 and 2.4 below). For the maps ι′, ι′′ one
has: ι′(σ±(x)) = xσ±(x−1), ι′′(σ±(x)) = σ±(x). The series of (anti)symmetrizers are stable under
maps ι′ and ι′′. One also has ι(κi) = ι′(κi) = ι′′(κi) = κi.

•. There exists an algebra antiautomorphism ς : Wn(q, µ) → Wn(q, µ) (ς(xy) = ς(y)ς(x)), defined
on generators as

ς : σi 7→ σi . (2.19)

This morphism will be used later in the proofs of Propositions 2.2 and 4.11.

2.3 Baxterized elements

A set of elements σi(x), i = 1, 2, . . . , n− 1, depending on a complex parameter x, in a quotient of the
group algebra CBn is called a set of baxterized elements if

σi(x)σi+1(xy)σi(y) = σi+1(y)σi(xy)σi+1(x) (2.20)

for i = 1, 2, . . . , n − 1 and

σi(x)σj(y) = σj(y)σi(x) (2.21)

if |i− j| > 1.

Lemma 2.1 [30, 21] For the algebra Wn(q, µ), the baxterized elements exist. There are two sets of
the baxterized elements {σεi }, ε = ±1, given by

σεi (x) := 1 +
x− 1

q − q−1
σi +

x− 1

αεx+ 1
κi , (2.22)

where αε := −εq−εµ−1.

The complex argument x, traditionally called the spectral parameter, is chosen in a domain
C \ {−α−1

ε }.

2.4 Symmetrizers, antisymmetrizers and contractors

In terms of the baxterized generators we construct two series of elements a(i) and s(i), i = 1, 2, . . . , n,
in the algebra Wn(q, µ). They are defined iteratively in two ways:

a(1) := 1 and s(1) := 1 , (2.23)

a(i+1) :=
qi

(i+ 1)q
a(i) σ−i (q

−2i) a(i) or a(i+1) :=
qi

(i+ 1)q
a(i)↑1 σ−1 (q

−2i) a(i)↑1 , (2.24)

s(i+1) :=
q−i

(i+ 1)q
s(i) σ+i (q

2i) s(i) or s(i+1) :=
q−i

(i+ 1)q
s(i)↑1 σ+1 (q

2i) s(i)↑1 , (2.25)
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where iq are usual q-numbers, iq := (qi − q−i)/(q − q−1). Below we show that in each of eqs. (2.24),
(2.25) the two definitions coincide. We note that the factorized formula for the (anti)symmetrizers, in
the spirit of the fusion procedure for the BMW algebra [22], follows from the eqs. (2.24), (2.25).

To avoid singularities in the definition of a(i) (respectively, s(i)), i = 1, 2, . . . , n, we impose further
restrictions on the parameters of Wn(q, µ):

jq 6= 0 , µ 6= −q−2j+3 (respectively, µ 6= q2j−3) ∀ j = 2, 3, . . . , n . (2.26)

The elements a(i) and s(i) are called an i-th order antisymmetrizer and an i-th order symmetrizer,
respectively.

The second order antisymmetrizer and symmetrizer

a(2) =
q

2q
σ−1 (q

−2) =
(q1− σ1)(µ1 − σ1)

2q(µ+ q−1)
, s(2) =

q−1

2q
σ+1 (q

2) =
(q−11 + σ1)(µ1− σ1)

2q(µ− q)
(2.27)

are the idempotents participating in a resolution of unity in the algebra W2(q, µ) (c.f. with the
property (2.6) ),

1 = a(2) + s(2) + η−1κ1 . (2.28)

Likewise for a(2) and s(2), one can introduce higher order analogues for the third idempotent
entering the resolution. Namely, define iteratively

c(2) := η−1κ1 , c(2i+2) := c(2i)↑1 κ1κ2i+1 c
(2i)↑1 . (2.29)

The element c(2i) is called an (2i)-th order contractor. Main properties of the (anti)symmetrizers and
contractors are summarized below.

Proposition 2.2 Two expressions given for the antisymmetrizers and symmetrizers in eqs.(2.24)
and (2.25) are identical. The elements a(n) and s(n) are central primitive idempotents in the algebra
Wn(q, µ). One has

a(n)σi = σia
(n) = −q−1a(n), s(n)σi = σis

(n) = qs(n) ∀ i = 1, 2, . . . , n− 1 (2.30)
and

a(n)a(m)↑i = a(m)↑ia(n) = a(n), s(n)s(m)↑i = s(m)↑is(n) = s(n) if m+ i ≤ n . (2.31)

The antisymmetrizers a(n), for all n = 2, 3, . . ., are orthogonal to the symmetrizers s(m), for all
m = 2, 3, . . . ,

a(n)s(m) = 0 . (2.32)

The element c(2n) is a primitive idempotent in the algebra W2n(q, µ) and in the algebra W2n+1(q, µ).
One has

c(2n)c(2i)↑n−i = c(2i)↑n−ic(2n) = c(2n) ∀ i = 1, 2, . . . , n ; (2.33)

c(2n)σi = c(2n)σ2n−i , σic
(2n) = σ2n−i c

(2n) ∀ i = 1, 2, . . . , n − 1 , (2.34)
and

c(2n)σn = σn c
(2n) = µc(2n) . (2.35)

The contractors c(2n) are orthogonal to the antisymmetrizers a(m) and to the symmetrizers s(m) for all
m > n.

Proof. The explicit formula (2.24) for idempotents, which we call antisymmetrizers here, appears in
[50], although without referring to the baxterized elements (see the proof of the lemma 7.6 in [50]).4

Our proof of the formulas (2.30) and (2.31) relies on the relations (2.20) for the baxterized generators.

4Different expressions for the antisymmetrizers and symmetrizers, which are less suitable for our applications, were
derived in [19].
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We first check that the elements a(i) defined iteratively by the first formula in (2.24) satisfy the
relations (2.30) and (2.31). The equalities (2.30) for the antisymmetrizers are equivalent to

a(n)s(2)↑i−1 = s(2)↑i−1a(n) = a(n)c(2)↑i−1 = c(2)↑i−1a(n) = 0 , ∀ i = 1, 2, . . . n− 1 ,

which, in turn, are equivalent to

a(n) σ−i (q
2) = σ−i (q

2) a(n) = 0 . (2.36)

Indeed, the spectral decomposition of σ−i (q
2) contains (with nonzero coefficients) only two idempotents,

s(2)↑i−1 and c(2)↑i−1:

σ−i (q
2) = q 2q (s

(2)↑i−1 +
1 + qµ

q3 + µ
c(2)↑i−1) .

To avoid a singularity in the expression for σ−i (q
2), we have to assume additionally µ 6= −q3 for the

rest of the proof. However, the expressions entering the relations (2.30) and (2.31) are well defined
and continuous at the point µ = −q3 (unless −q3 coincides with one of the forbidden by eq.(2.26)
values of µ), so the validity of the relations (2.30) and (2.31) at the point µ = −q3 follows by the
continuity.

Notice that the equalities a(n)σi = −q−1a(n) are equivalent to the equalities σia
(n) = −q−1a(n) due

to the antiautomorphism (2.19) since ς(a(n)) = a(n) by construction.

We now prove the equalities (2.30) and (2.31) by induction on n.

For n = 2, a(2)σ1 = −q−1a(2), by (2.27) and (2.6).

Let us check the equalities for some fixed n > 2 assuming that they are valid for all smaller
values of n. Notice that as a byproduct of the definition (2.24) (the first equality) and the induction
assumption, the relations (2.36) and (2.31) are satisfied, respectively, for all i = 1, 2, . . . , n− 2 and for
all m, i : m+ i ≤ n− 1. It remains to check the relation (2.36) for i = n− 1 and the relation (2.31)
for m = n− i. Respectively, we calculate

a(n) σ−n−1(q
2) ∼ a(n−1)σ−n−1(q

−2n+2)a(n−1) σ−n−1(q
2)

∼ (a(n−1)a(n−2))σ−n−1(q
−2n+2)σ−n−2(q

−2n+4)σ−n−1(q
2) a(n−2)

= (a(n−1)σ−n−2(q
2))σ−n−1(q

−2n+4)σ−n−2(q
−2n+2) a(n−2) = 0 ,

(‘∼’ means ‘proportional’) and

a(n) a(n−i)↑i =
qn−i−1

(n− i)q
(a(n)a(n−i−1)↑i)σ−n−1(q

−2(n−i−1)) a(n−i−1)↑i

=
qn−i−1

(n− i)q
a(n) (1 + qi−n(n− i− 1)q) a

(n−i−1)↑i = a(n) .

Here in both cases, the definition of antisymmetrizers (2.24) (the first equality), induction assumption
and relation (2.20) were used. The centrality and primitivity of the idempotents a(n) ∈ Wn(q, µ) follow
then from the relations (2.30).

To prove equivalence of the two expressions for the antisymmetrizers given in the formulas (2.24),
notice that under conjugation by τ (i+1) (2.14) the first expression in the formulas (2.24) gets trans-
formed into the second one. However, the elements a(i+1) are central in Wi+1, so they do not change
under the conjugation which proves the consistency of the equalities (2.24).

All the assertions concerning the symmetrizers follow from the relations for the antisymmetrizers
by an application of the map ι (2.16)

ι(a(n)) = s(n), ι(s(n)) = a(n), ι(c(2n)) = c(2n) .
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the latter formulas are direct consequences of the definitions.

The orthogonality of the antisymmetrizers and the symmetrizers is a byproduct of the relations
(2.30):

−q−1a(n)s(m) = (a(n)σ1)s
(m) = a(n)(σ1s

(m)) = qa(n)s(m) .

The equalities (2.33) can be proved by induction on n. They are obvious in the case n = 1. Let
us check them for some fixed n ≥ 2, assuming they are valid for all smaller values of n. Notice that
the iterative definition (2.29) together with the induction assumption approve the relations (2.33) for
all values of index i, except i = n. Checking the case i = n splits in two subcases: n = 2 and n > 2.
In the subcase i = n = 2, we have c(4) = η−2κ2κ3κ1κ2 and

(

c(4)
)2

= η−4κ2κ3κ1κ
2
2κ3κ1κ2 = η−3κ2κ3(κ1κ2κ1)κ3κ2 = η−3κ2κ3κ1κ3κ2 = η−2κ2κ3κ1κ2 = c(4) ,

while in the subcase i = n > 2, the calculation is carried out as follows

(

c(2n)
)2

= c(2n−2)↑1κ1κ2n−1c
(2n−2)↑1κ1κ2n−1c

(2n−2)↑1

=
(

c(2n−2)↑1c(2n−4)↑2
)

(κ1κ2κ1)(κ2n−1κ2n−2κ2n−1)
(

c(2n−4)↑2c(2n−2)↑1
)

= c(2n−2)↑1κ1κ2n−1c
(2n−2)↑1 = c(2n) .

Here in both calculations we used the definition (2.29), the induction assumption and the relations
(2.9) and (2.10).

Taking into account the relations (2.33), one can derive an alternative expression for the contractors

c(2i) = c(2i−2)↑1κ1κ2i−1c
(2i−2)↑1 = c(2i−2)↑1κ1κ2i−1c

(2i−4)↑2κ2κ2i−2c
(2i−4)↑2

= (c(2i−2)↑1c(2i−4)↑2)κ1κ2i−1κ2κ2i−2c
(2i−4)↑2 = c(2i−2)↑1κ2i−1κ2i−2κ1κ2c

(2i−4)↑2

= . . . = c(2i−2)↑1 (κ2i−1κ2i−2 . . . κi+1) (κ1κ2 . . . κi−1) c
(2)↑i−1

= η−1c(2i−2)↑1 (κ2i−1κ2i−2 . . . κi+1) (κ1κ2 . . . κi) .

(2.37)

Now, using this expression and noticing that, by the relations (2.8),

κi+1κi−1κiσi−1 = κi+1κi−1σ
−1
i = κi−1κi+1σ

−1
i = κi+1κi−1κiσi+1 ,

we conclude that the equality (2.34) is satisfied for i = n− 1. In particular, the relations (2.34) hold
for n = 2 and i = 1. It is enough (by induction on n) to prove the relations (2.34) for i = 1. Then
observe, again by the relation (2.8), that

κiκi±1κi±2 σi = κiκi±1σi κi±2 = κiσ
−1
i±1κi±2 = σi±2 κiκi±1κi±2 .

Now, for n > 2,

c(2n)σ1 = η−1c(2n−2)↑1 (κ2n−1κ2n−2 . . . κn+1) (κ1κ2 . . . κn) σ1

= η−1c(2n−2)↑1 (κ2n−1κ2n−2 . . . κn+1) σ3 (κ1κ2 . . . κn)

= η−1c(2n−2)↑1σ3 (κ2n−1κ2n−2 . . . κn+1) (κ1κ2 . . . κn)

= η−1c(2n−2)↑1σ2n−3 (κ2n−1κ2n−2 . . . κn+1) (κ1κ2 . . . κn)

= η−1c(2n−2)↑1 (κ2n−1κ2n−2 . . . κn+1) σ2n−1 (κ1κ2 . . . κn) = c(2n)σ2n−1 .

The relation (2.35) follows from the property (2.4) and the expression (2.37) (with i = n) for the
contractor. Then, orthogonality of the contractors c(2n) with the antisymmetrizers and the symmetriz-
ers a(m), s(m), m > n is a corollary of the relations (2.30) and (2.35).
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A statement of the primitivity of the idempotent c(2n) ∈ Wi(q, µ), i = 2n, 2n+ 1, goes beyond the
needs of the present paper, we mention it for a sake of completeness and postpone a purely algebraic
proof till the appendix A. �

Since the family of higher contractors does not appear to have been previously discussed in the
literature, we include Appendix B, which contains their additional properties.

3 R-matrices

Let V denote a finite dimensional C-linear space, dimV = n. Fixing some basis {vi}
n
i=1 in V we

identify elements X ∈ End(V ⊗n) with matrices Xj1j2...jn
i1i2...in

.

In this section we investigate properties of certain elements in Aut(V ⊗2) generating representations
of the braid groups Bn or, more specifically, of the Birman-Murakami-Wenzl algebras Wn(q, µ) on the
spaces V ⊗n. Traditionally such operators are called R-matrices.

R-matrices and compatible pairs of R-matrices are introduced in subsection 3.1. We aslo discuss
there the notions of the skew-invertibility and the R-trace. Some basic technique, useful in the work
with the R-matrices, is presented in subsection 3.2.

A twist operation which associates a new R-matrix to a compatible pair of R-matrices, is discussed
in subsection 3.3. We derive there an alternative expression for the twisted R-matrix and study its
skew-invertibility.

Starting from subsection 3.4, we concentrate on the R-matrices of the BMW type. In subsections
3.5, 3.6 important ingredients appear: a matrix G and the linear maps φ and ξ. As it will be explained
in section 4, the matrix G is responsible for the commutation relation of the quantum matrix with
a special element, called 2-contraction, of the quantum matrix algebra. The two maps φ and ξ, in
turn, are necessary for the definition of the ⋆ -product of the BMW type quantum matrices, which is
a proper generalization of the usual matrix multiplication to the case of matrices with noncommuting
entries.

3.1 Definition and notation

Let X ∈ End(V ⊗2). For any n = 2, 3, . . . and 1 ≤ m ≤ n− 1, denote by Xm an operator whose action
on the space V ⊗n is given by the matrix

(Xm)j1...jni1...in
:= I

j1...jm−1

i1...im−1
X

jmjm+1

imim+1
I
jm+2...jn
im+2...in

.

Here I denotes the identity operator. In some formulas below (see, for instance, the equations (3.1) )
we will also use a notation Xmr ∈ End(V ⊗n), 1 ≤ m < r ≤ n− 1, referring to an operator given by a
matrix

(Xmr)
j1...jn
i1...in

:= Xjmjr
imir

I
j1...jm−1jm+1...jr−1jr+1...jn
i1...im−1im+1...ir−1ir+1...in

.

Clearly, Xm = Xmm+1.

We reserve the symbol P for the permutation operator: P (u⊗ v) = v ⊗ u ∀ u, v ∈ V . Below we
repeatedly make use of relations

P 2 = I ; P12X12 = X21P12 ∀ X ∈ End(V ⊗ V ) ; Tr (1)P12 = Tr (3)P23 = I2 ,

where the symbol Tr(i) stands for the trace over an i-th component space in the tensor power of the
space V .

An operator X ∈ End(V ⊗2) is called skew invertible if there exists an operator ΨX ∈ End(V ⊗2)
such that

Tr (2)X12ΨX23 = Tr (2)ΨX12X23 = P13 . (3.1)

Define two elements of End(V )

CX := Tr(1)ΨX12 , DX := Tr(2)ΨX12 . (3.2)
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By (3.1),
Tr (1)CX1X12 = I2 , Tr (2)DX2X12 = I1 . (3.3)

A skew invertible operator X is called strict skew invertible if one of the matrices, CX or DX , is
invertible (by lemma 3.5 below, if one of the matrices, CX or DX , is invertible then they are both
invertible).

An equation
R1R2R1 = R2R1R2 .

for an element R ∈ Aut(V ⊗2) is called the Yang-Baxter equation.

An element R ∈ Aut(V ⊗2) that fulfills the Yang-Baxter equation is called an R-matrix.

All R-matrices in this text are assumed to be invertible.

Clearly, the permutation operator P is the R-matrix; R−1 is the R-matrix iff R is. Any R-matrix
R generates representations ρR of the series of braid groups Bn, n = 2, 3, . . .

ρR : Bn → Aut(V ⊗n) , σi 7→ ρR(σi) = Ri, 1 ≤ i ≤ n− 1. (3.4)

If additionally the R-matrix R satisfies a third order minimal characteristic polynomial (c.f. with the
relation (2.6) )

(qI −R)(q−1I +R)(µI −R) = 0 , (3.5)

and an element
K := µ−1(q − q−1)−1 (qI −R)(q−1I +R) (3.6)

fulfills conditions
K2K1 = R±1

1 R±1
2 K1 (3.7)

and
K1K2K1 = K1 , (3.8)

then we call R an R-matrix of a BMW type (c.f. with eqs.(2.3)–(2.10); we make a different but
equivalent choice of defining relations).

For an R-matrix of the BMWtype, the formulas (3.4) define representations of the algebras
Wn(q, µ) → End(V ⊗n), n = 2, 3, . . . . In particular, ρR(κi) = Ki.

An ordered pair {R,F} of two operators R and F from End(V ⊗2) is called a compatible pair if
conditions

R1 F2 F1 = F2 F1R2 , R2 F1 F2 = F1 F2R1 , (3.9)

are satisfied. If, in addition, R and F are R-matrices, the pair {R,F} is called a compatible pair of
R-matrices. The equalities (3.9) are called twist relations (on the notion of the twist see [8, 47, 25]).
Clearly, {R,P} and {R,R} are compatible pairs of R-matrices; pairs {R−1, F} and {R,F−1} are
compatible iff the pair {R,F} is.

Definition 3.1 Consider a space of n×n matrices Matn(W ), whose entries belong to some C-linear
space W . Let R be a skew invertible R-matrix. A linear map

Tr
R
: Matn(W ) → W, Tr

R
(M) =

n∑

i,j=1

(DR)
j
iM

i
j , M ∈ Matn(W ) ,

is called an R-trace.

The relation (3.3) in this notation reads

Tr
R(2)R12 = I1 . (3.10)
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3.2 R-technique

In this and the next subsections we develop a technique for dealing with the R-matrices, their compat-
ible pairs and the R-trace. Most of results reported here, like lemma 3.5 and, in a particular case of a
compatible pair {R,R} – lemmas 3.2 and 3.3 and the corollary 3.4 – are rather well known (see, e.g.,
[21, 43]). However, we often use them in a more general setting and so, when necessary, we present
sketches of proofs.

Proposition 3.6 contains new results. Here we derive an expression, different from the standard
one, for the twisted R-matrix, which helps to investigate its skew-invertibility.

A universal (i.e., quasi-triangular Hopf algebraic) content of the matrix relations derived in this
and the next subsections is discussed in the appendix C.

Lemma 3.2 Let {X,F} be a compatible pair, where X is skew invertible. Let Matn(W ) be as in the
definition 3.1. For any M ∈ Matn(W ), one has

Tr (1)
(

CX1F
ε
12M2 F

−ε
12

)

= I2Tr (CXM) , (3.11)

Tr (2)
(

DX2F
−ε
12 M1 F

ε
12

)

= I1 Tr (DXM) (3.12)

for ε = ±1.

Proof. We use the twist relations (3.9) in a form

F ε
23X34 F

−ε
23 = F−ε

34 X23 F
ε
34 , ε = ±1 .

Multiplying it by (ΨX12ΨX45) and taking the traces in the spaces 2 and 4, we get

Tr (2)(ΨX12 F
ε
23 P35 F

−ε
23 ) = Tr (4)(ΨX45 F

−ε
34 P13 F

ε
34) . (3.13)

Here the relation (3.1), defining the operator ΨX , was applied to calculate the traces. Now taking the
trace in the space number 1 or number 5, we obtain (after relabeling)

Tr (1)(CX1 F
ε
12 P23 F

−ε
12 ) = CX3 I2 , (3.14)

Tr (3)(DX3 F
−ε
23 P12 F

ε
23) = DX1 I2 . (3.15)

These two relations are equivalent forms of the relations (3.11) and (3.12). For example, the formula
(3.11) is obtained by multiplying the relation (3.14) by the operator M3 and taking the trace in the
space 3. �

Lemma 3.3 Let {X,F} be a compatible pair of skew invertible operators X and F . Then the following
relations

CX1ΨF 12 = F−1
21 CX2 , ΨF 12 CX1 = CX2 F

−1
21 , (3.16)

ΨF 12DX2 = DX1 F
−1
21 , DX2 ΨF 12 = F−1

21 DX1 (3.17)

hold.

Proof. For a skew invertible operator F , the relations (3.16) and (3.17) are equivalent to the
relations (3.14) and (3.15). Let us demonstrate how the left one of the relations (3.16) is derived from
the relation (3.14) with ε = 1.

Multiply the relation (3.14) by a combination (P23ΨF 24) from the right, take the trace in the space
2 and simplify the result using the relation (3.1) for X = F and the properties of the permutation

Tr (1)(CX1 P14 F
−1
13 ) = CX3 Tr (2)(P23 ΨF 24) = CX3ΨF 34 .

Then simplify the left hand side of the equality using the cyclic property of the trace

Tr (1)(CX1 P14 F
−1
13 ) = Tr (1)(P14 F

−1
13 CX1) = F−1

43 CX4Tr (1)P14 = F−1
43 CX4 .

This proves the left relation in (3.16). �
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Corollary 3.4 Let {X,F} and {Y, F} be compatible pairs of skew invertible operators X, Y and F .
Then the following relations

F12 CX1CY 2 = CY 1CX2F12 , F12DX1DY 2 = DY 1DX2F12 , (3.18)

F12 (CXDY )2 = (CXDY )1 F12 , F12 (DY CX)1 = (DY CX)2 F12 , (3.19)

Tr (1)(CX1F
−1
12 ) = (CXDF )2 = (DFCX)2 , (3.20)

Tr (2)(DX2F
−1
12 ) = (CFDX)1 = (DXCF )1 (3.21)

hold.

Proof. A calculation (F−1
12 CY 1)CX2 = CY 2(ΨF 21CX2) = CY 2CX1F

−1
12 = CX1CY 2F

−1
12 proves the

left one of the relations (3.18). Here the relations (3.16) were applied.

A calculation (F−1
12 CX1)DY 1 = CX2(Ψ

F
21DY 1) = CX2DY 2F

−1
12 proves the left one of the relations

(3.19). Here one uses subsequently the left equations from (3.16) and (3.17).

The relations (3.20) follow by taking Tr (2) of the equations (3.16).

The rest of the relations in (3.18)–(3.21) are derived in a similar way. �

Lemma 3.5 Let X be a skew invertible R-matrix. Then statements
a) the R-matrix X−1 is skew invertible;
b) the R-matrix X is strict skew invertible,

are equivalent.
Provided these statements are satisfied, both CX and DX are invertible and one has

CX−1 = D−1
X , DX−1 = C−1

X . (3.22)

Proof. See [43], section 4.1, statements after eq.(4.1.77), or [21], proposition 2 in section 3.1. �

Under an assumption of an existence, for an R-matrix X, of the operators X−1, ΨX and ΨX−1 ,
the relations (3.22) were proved in [46].

Since, for a compatible pair {X,F}, the pair {X,F−1} is also compatible, the formulas (3.22)
together with the relations (3.20-3.21) imply that CXCF = CFCX and DXDF = DFDX .

3.3 Twists

Let {R,F} be a compatible pair of R-matrices. Define a twisted operator

Rf := F−1RF . (3.23)

It is well known that Rf is an R-matrix and the pair {Rf , F} is compatible. Therefore, one can twist
again; in [24] it was shown that if F is skew invertible then

DF 1DF 2 ((Rf )f )12 = R12DF 1DF 2 and CF 1CF 2 ((Rf )f )12 = R12 CF 1 CF 2 . (3.24)

A comparison of two equalities in eq.(3.24) shows that

[R12 , (C
−1
F DF )1 (C

−1
F DF )2 ] = 0 . (3.25)

Proposition 3.6 Let {R,F} be a compatible pair of R-matrices. The following statements hold:

a) if F is strict skew invertible then the twisted R-matrix Rf , defined by the formula (3.23), can be
expressed in a form

Rf 12 = Tr (34)
(

F−1
32 CF−13R34DF 4F14

)

; (3.26)
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b) if R is skew invertible and F is strict skew invertible then Rf is skew invertible; its skew inverse
is

ΨRf 12
= CF−12Tr (34)

(

F−1
23 ΨR 34F41

)

DF 1 ; (3.27)

moreover, ΨRf
can be expressed in a form

ΨRf 12
= CF−12F21DF−12ΨR 12CF 1F

−1
21 DF 1 ; (3.28)

c) under the conditions in b),

CRf
= CF−1DR CF , DRf

= DF−1CRDF (3.29)

(thus, if, in addition to the conditions in b), R is strict skew invertible then Rf is strict skew
invertible as well).

Proof. To verify the assertion a) we calculate

Rf 12 = (F−1RF )12 = F−1
12

(

Tr (4)F
−1
41 CF−14

)

(RF )12

= Tr (4)
(

(RF )41F
−1
12 F

−1
41 CF−14

)

=
(

Tr (3)P13

)

Tr (4)
(

(RF )41F
−1
12 CF−11ΨF 14

)

= Tr (34)
(

(RF )43F
−1
32 CF−13P13ΨF 14

)

= Tr (3)
(

F−1
32 CF−13P13Tr (4)ΨF 14(RF )43

)

,

(3.30)

where in the second equality we used the relation (3.3) for X = F−1; in the third equality we applied
the twist relations for the compatible pairs {R,F} and {F,F}; in the fourth equality we applied the
relations (3.16) for X = F−1 and inserted the identity operator Tr (3)P13; in the fifth equality we
permuted the operator P13 rightwards and then, in the sixth equality, used the cyclic property of the
trace to move the combination (RF )43 to the right.

To complete the transformation, we derive an alternative form for the underlined expression in the
last line in eq.(3.30). Multiplying the twist relation R2F3F2 = F3F2R3 by a combination (ΨF 12DF 4)
and taking the traces in the spaces 2 and 4, we obtain (using the formulas (3.1) and (3.3) for X = F )

Tr (2) (ΨF 12(RF )23) = Tr (4) (DF 4F34P13R34) ,

which is equivalent (multiply by P13 from the left and use the cyclic property of the trace) to

P13Tr (2) (ΨF 12(RF )23) = Tr (4) (R34DF 4F14) . (3.31)

Now, substituting the equality (3.31) into the last line of the calculation (3.30), we finish the trans-
formation and obtain the formula (3.26).

Given the formula for Rf , the calculation of ΨRf
becomes straightforward and one finds the formula

(3.27).

Thus, the skew invertibility of Rf is established.

Now we derive the expression (3.28) for ΨRf
. Multiplying the equality (3.13) with ε = 1 by a

combination P35DF−15 from the right and taking the trace in the space 5, we obtain

Tr (2)(ΨR12F23) = Tr (45)(ΨR45F
−1
34 P13F34P35DF−15)

= Tr (4)(F
−1
34 P13F34DF−13ΨR43) .

Substituting this into the expression (3.27), we find

ΨRf 12
= CF−12 Tr (34)

(

F−1
23 F

−1
14 P13F14DF−11ΨR 41

)

DF 1

= CF−12 Tr (4)
(

F−1
14 Tr (3)(F

−1
23 P13)F14DF−11ΨR 41

)

DF 1

= CF−12 Tr (4)
(

F−1
14 F

−1
21 F14DF−11ΨR 41

)

DF 1

= CF−12 F21 Tr (4)
(

F−1
14 F

−1
21 DF−11ΨR 41

)

DF 1

= CF−12 F21DF−12Tr (4)
(

F−1
14 ΨF 12ΨR 41

)

DF 1 .

(3.32)
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We used the Yang-Baxter equation for the operator F in the fourth equality and the relations (3.16)
in the fifth equality.

Multiplying eq.(3.13) with ε = −1 by ΨF 01P13 from the left and by P35ΨF 56 from the right and
taking the traces in the spaces 1 and 5, we find

F−1
14 ΨF 12ΨR 41 = ΨR 12ΨF 41F

−1
21 .

Substituting this into the last line of the calculation (3.32), we obtain the equality (3.28).

Finally, the expressions (3.29) for the operators CRf
and DRf

are obtained by taking the trace in
the space 1 or the space 2 of the expression (3.27) for the skew inverse of the twisted R-matrix and
the subsequent use of the relations (3.3) for X = F±1 and the relations (3.2), (3.20) and (3.21) for
X = R. �

Remark 3.7 If one uses the expression (3.26) for the twisted R-matrix then the relation (3.24)
becomes straightforward:

((Rf )f )12 = Tr (3456)
(

F−1
32 (D−1

F )3F
−1
54 (D−1

F )5R56DF 6F36DF 4F14

)

= Tr (3456)
(

F−1
54 DF 4F14(D

−1
F )5R56DF 6F

−1
32 (D−1

F )3F36

)

= Tr (56)
(

P15DF 1(D
−1
F )5R56DF 6(D

−1
F )2P26

)

= (D−1
F )2Tr (56)

(

P15(D
−1
F )5R56DF 6P26

)

DF 1

= (D−1
F )1(D

−1
F )2R12DF 1DF 2 .

In the first equality we applied the formula (3.26) twice and replaced the operators CF−1 by D−1
F by

the relation (3.22); in the second equality we collected together the terms involving the space number
3 (they are underlined) and the terms involving the space number 4 (they are underlined twice); in
the third equality we evaluated the traces in the spaces 3 and 4 using the relations from lemma 3.3;
in the fourth equality we moved the operator (D−1

F )2 leftwards out of the trace and the operator DF 1

rightwards out of the trace; in the fifth equality we transported the operator P15 rightwards and the
operator P26 leftwards under the trace and then evaluated the remaining traces in the spaces 5 and 6.

3.4 BMW type R-matrices

In this subsection we discuss the R-matrices of the BMW type in more detail.

In lemma 3.8 we collect additional relations specific to the BMW type R-matrices. Based on these
formulas, we will introduce later, in subsections 3.5 and 3.6, an invertible operator G ∈ Aut(V ) and
linear maps φ and ξ, which will be used in section 4 for a definition of a product of quantum matrices
and for a quantum matrix inversion.

Lemma 3.8 Let R be a skew invertible R-matrix of the BMW type. Then

• the operator R is strict skew invertible;

• the rank of the operator K equals one, rkK = 1;

• the following relations

Tr (2)K12 = µ−1DR1 , Tr (1)K12 = µ−1CR2 , (3.33)

Tr
R(2)K12 = µ I1 , (3.34)

TrRI = µ η ≡
(q − µ)(q−1 + µ)

(q − q−1)
, (3.35)

CRDR = µ2I , (3.36)

K12DR1DR2 = DR1DR2K12 = µ2K12 (3.37)

hold.
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Proof. The proof of all the statements in the lemma but the last one is given in [26].

The last relation (3.37) (which, in another form, figures in [26], in proposition 2) can be established
in the following way.

The first equality in (3.37) is a consequence of a relation

R12DR1DR2 = DR1DR2R12 , (3.38)

which is just the equality (3.18) written for the pair {R,R}. Then the conditions K2 ∼ K and
rkK = 1 together imply K12DR1DR2 ∼ K12DR1DR2K12 ∼ K12 . A coefficient of proportionality in
this relation is recovered by taking the trace of it in the space 2 and the subsequent use of the relations
(3.33) and (3.34). �

In [26], a pair of mutually inverse matrices

E2 := Tr (1)(K12P12) and E−1
1 := Tr (2)(K12P12) (3.39)

was introduced (see eqs.(32) and (33) and proposition 2 in [26]).

We shall now collect several useful identities involving the operators K and E.

Lemma 3.9 (a) The following relations

K12K23 = E3 K12P23P12 , K23K12 = E−1
1 K23P12P23 , (3.40)

K13K23 = µ−1DR2 K13P12 , K12K13 = µ−1CR3 K12P23 , (3.41)

K23K14P12P34 = K23K14 , K23K14P13P24 = K23K14P23P14 ,

K12E
−1
1 = µ−1K12P12DR1 , E1K12 = µ−1DR1P12K12

hold.

(b) We have
K12E1E2 = E1E2K12 = K12 .

(c) The operator K is skew invertible, its skew inverse is

ΨK12 = E1K12E2 = µ−2DR1K21DR1 .

Proof. (a) All these identities follow from the rank one property of the operator K (written explicitly,
with indices, they become evident).

(b) To verify, for instance, that K12E
−1
1 E−1

2 = K12, use the definition (3.39) of the matrix E−1
2 ,

E−1
2 = Tr (3)(K23P23), and then the relation (3.40) to remove the trace.

(c) This follows from the identities in (a) in the lemma. �

Remark 3.10 The relations (3.40) admit the following generalizations:

K1K2 . . . Kj = E3E4 . . . Ej+1 · (P1P2 . . . Pj)
2Kj ,

Kj . . . K2K1 = E−1
1 E−1

2 . . . E−1
j−1Kj · (Pj . . . P2P1)

2 .

The relations (3.41) admit the following generalizations:

K10K20 . . . Kj0 = µ1−j(DR2DR3 . . . DRj) · (P1P2 . . . Pj−1) Kj0 ,

K01K02 . . . K0j = µ1−j(CR2CR3 . . . CRj) · (P1P2 . . . Pj−1) K0j .

In all four formulas above j is an arbitrary positive integer. These relations can be proved by induction
on j.
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3.5 Operator G

In the following lemma, we define analogues of the matrices E and E−1 for a compatible pair {R,F}
of R-matrices. When the operator F is the permutation operator, F = P , the matrix G of the
definition-lemma 3.11 coincides with the matrix E.

Definition-Lemma 3.11 Let {R,F} be a compatible pair of R-matrices, where R is skew-invertible
of the BMW type and F is strict skew-invertible. Define an element G ∈ End(V ) by

G1 := Tr (23)K2F
−1
1 F−1

2 . (3.42)

The operator G is invertible, the inverse operator reads

G−1
1 = Tr (23)F2F1K2 . (3.43)

The following relations

R12G1G2 = G1G2R12 , (3.44)

F ε
12G1 = G2F

ε
12 for ε = ±1 , (3.45)

[DR, G] = 0 , (3.46)

[CF , G] = [DF , G] = 0 , (3.47)

[E,G] = 0 ,

[CF , E] = [DF , E] = 0

are satisfied.

Proof. A check of the invertibility of G is a direct calculation

G1G
−1
1 = (Tr (23)K2F

−1
1 F−1

2 )(Tr (23)F2F1K2) = Tr (23)K2F
−1
1 F−1

2 K2F2F1

= Tr (23)K2F
−1
1 Kf 2F1 = Tr (23)K2F2Kf 1F

−1
2 = Tr (23)Kf 2Kf 1 = I .

(3.48)

Here in the first line we used the formulas (3.42) and (3.43) and the property rkK = 1: if Π = |ζ〉〈ψ|
is a rank one projector then Tr (ΠA) = 〈ψ|A|ζ〉 for any operator A and

Tr (ΠA)Tr (ΠB) = 〈ψ|A|ζ〉 〈ψ|B|ζ〉 = 〈ψ|AΠB|ζ〉 = Tr (ΠAΠB)

for any A and B; in the second line of the calculation (3.48) we passed from K to Kf = F−1KF and
applied the twist relations (for the operators Kf and F ) and the cyclic property of the trace. In the
last equality of (3.48) we evaluated the traces using the relations (3.33) and then the relation (3.34)
for the operator Kf (we are allowed to use these relations because the operator Rf is skew-invertible
by proposition 3.6).

Notice that, in view of the relation (3.37), we can rewrite the formula for the operator G using the
R-traces instead of the ordinary ones

G1 = µ−2 Tr
R(23)K2F

−1
1 F−1

2 . (3.49)

Applying the formula (3.12) (written for F ε = X = R) twice to this equality, we begin our next
calculation

G1I2 = µ−2Tr
R(34)(R2R3)K2F

−1
1 F−1

2 (R−1
3 R−1

2 ) = µ−2Tr
R(34)K3K2F

−1
1 F−1

2 R−1
3 R−1

2

= µ−2Tr
R(34)K2F

−1
1 F−1

2 K2K3 = µ−1Tr
R(3)K2F

−1
1 F−1

2 K2 .
(3.50)
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Here we used the relation (3.7) in the last equality of the first line. In the second line we again applied
the relation (3.7) after moving the operator K3 to the right (for that we need the relation (3.37) and
the cyclicity of the trace) and then we evaluated one R-trace with the help of the relation (3.34).

Now we use the formula (3.50) for the product G1G2 in a transformation

G1G2R1 = µ−2Tr
R(34)(K3F

−1
2 F−1

3 K3)(K2F
−1
1 F−1

2 K2)R1

= µ−2Tr
R(34)F

−1
2 F−1

3 K2K3K2F
−1
1 F−1

2 K2R1 = µ−2Tr
R(34)F

−1
2 F−1

3 F−1
1 F−1

2 K1K2R1

= µ−2Tr
R(34)F

−1
2 F−1

3 F−1
1 F−1

2 K1R
−1
2 = µ−2 Tr

R(34)K3F
−1
2 F−1

3 F−1
1 F−1

2 R−1
2

= µ−2Tr
R(34)F

−1
2 F−1

1 F−1
3 F−1

2 R3K2K3 = µ−2R1TrR(34)F
−1
2 F−1

1 F−1
3 F−1

2 K2K3

= µ−2R1 TrR(34)K3F
−1
2 F−1

3 F−1
1 F−1

2 K2 = R1G1G2 ,

which demonstrates the relation (3.44). While doing the above calculation, we repeatedly used the
twist relations for the pairs {K,F−1} and {R,F−1}, applied the formulas (3.7) and (3.7) and exploited
the cyclic property of the trace to move the operator K3 to the right/left in the fourth/fifth line,
respectively.

Due to the expression (3.49) for the operator G, we can write

G1I2 = µ−2Tr
R(34)

(

(F−ε
2 F−ε

3 )K2F
−1
1 F−1

2 (F ε
3F

ε
2 )
)

by the formula (3.12).

The relation (3.45) is now proved as follows

G1F
ε
1 = µ−2Tr

R(34)

(

(F−ε
2 F−ε

3 )K2F
−1
1 F−1

2 (F ε
3F

ε
2 )
)

F ε
1

= µ−2Tr
R(34)(F

−ε
2 F−ε

3 )F ε
3F

ε
2F

ε
1K3F

−1
2 F−1

3 = F ε
1µ

−2Tr
R(34)K3F

−1
2 F−1

3 = F ε
1G2 .

(3.51)

Here we subsequently used the twist relations for the pair {K,F ε}, the Yang-Baxter equations for F
and again the expression (3.49) for the operator G.

Vanishing of the commutators [CF , G] and [DF , G] in eq.(3.47) follow from the above proved
equality. To find these commutators, transform eq.(3.51) to

G1ΨF 12 = ΨF 12G2 , G2ΨF 12 = ΨF 12G1 ,

(multiply the relation (3.51) by a combination ΨF 41ΨF 23 and take Tr (12)) and then apply the trace
in the space 1 or the space 2 to these relations and compare results.

The relation (3.46) is approved by a calculation

G1DR1 = µ−2Tr
R(23)K2F

−1
1 F−1

2 DR1 = µ−2Tr (23)K2F
−1
1 F−1

2 DR1DR2DR3

= µ−2Tr (23)DR1DR2DR3K2F
−1
1 F−1

2 = DR1G1 .

Here the expression (3.49) for the operator G, the relations (3.18) for X = Y = R and the relation
(3.37) were used.

To prove the relation [E,G] = 0, we rewrite the expression for G:

G1 = Tr (23)(K2F
−1
1 F−1

2 ) = η−1Tr (23)(K2K2F
−1
1 F−1

2 ) = η−1Tr (23)(K2F
−1
1 F−1

2 K1)

= η−1Tr (23)(F
−1
1 F−1

2 K1K2) = η−1Tr (23)(F
−1
1 F−1

2 K1P23P12)E1 .
(3.52)
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In the second equality we used the relation K2 = ηK; in the third equality we used the twist relation;
in the fourth equality we moved the operator K2 cyclically under the trace; in the fifth equality we
used the first of the relations (3.40).

Due to the relation (3.45), the combination Tr (23)(F
−1
1 F−1

2 K1P23P12) commutes with the operator
G1. Therefore the operators G and E commute.

We have already shown that the operators CF and DF commute with the operator G. It follows
then from the expression (3.52) for the operator G that to prove that the operators CF and DF

commute with the operator E it is enough to prove that the operators CF and DF commute with the
combination Ξ1 := Tr (23)(F

−1
1 F−1

2 K1P23P12). We have

Ξ1DF−11 = Tr (23)(F
−1
1 F−1

2 DF−13K1P23P12) = Tr (23)(F
−1
1 F−1

2 DF−13CR3CR
−1
3 K1P23P12)

= Tr (23)(F
−1
1 DF−12CR2F

−1
2 K1P23P12)CR

−1
1 = DF−11CR1Ξ1CR

−1
1 = DF−11Ξ1 .

(3.53)

In the first equality we moved the operator DF−1 leftwards through the permutation operators; in the
second equality we inserted CR3CR

−1
3 ; in the third equlity we used the relations (3.19) and moved the

operator CR
−1
1 rightwards out of the trace; in the fourth equality we used again the relations (3.19).

The operator CR commutes with the operators G and E by the already proved relation (3.46) for the
compatible pairs {R,F} and {R,P}; therefore, due to the expression (3.52) for the operator G, the
operator CR commutes with the operator Ξ, which is used in the fifth equality.

The calculation (3.53) establishes the relation [CF , E] = 0; the proof of the relation [DF , E] = 0 is
similar, we do not repeat details. �

Remark 3.12 One can rewrite further the expression (3.49) for G:

G1 = µ−2Tr
R(23)F

−1
1 F−1

2 K1 = µ−2Tr
R(2)F

−1
1 CF 2DR2K1

= Tr
R(2)F

−1
1 CF 2D

−1
R 1K1 = µ−2Tr

R(2)F
−1
1 CF 2CR1K1

= µ−2CF 1TrR(2)CR2F
−1
1 K1 = CF 1Tr (2)F

−1
1 K1 .

Here we used subsequently: the twist relation, the relations (3.21), (3.37), (3.36), (3.18) and then
again (3.36).

Similarly,
G−1

1 = Tr (2)(K1F1)D
−1
F 1 .

3.6 Two linear maps

The next lemma introduces two linear maps which will be important in the study of the matrix
⋆-product.

Definition-Lemma 3.13 Let {R,F} be a compatible pair of skew invertible R-matrices, where the
operator R is of the BMW type and the operator F is strict skew invertible. Define two endomorphisms
φ and ξ of the space Matn(W ):

φ(M)1 := Tr
R(2)

(

F12M1F
−1
12 R12

)

, M ∈ Matn(W ), (3.54)

and

ξ(M)1 := Tr
R(2)

(

F12M1F
−1
12 K12

)

, M ∈ Matn(W ) . (3.55)

The mappings φ and ξ are invertible; their inverse mappings read

φ−1(M)1 = µ−2Tr
R

(2)
f

(

F−1
12 M1R

−1
12 F12

)

(3.56)
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and

ξ−1(M)1 = µ−2Tr
R

(2)
f

(

F−1
12 M1K12F12

)

. (3.57)

The following relations for the R-traces

Tr
R

f

φ(M) = Tr
R
M , Tr

R
f

ξ(M) = µTr
R
M . (3.58)

are satisfied.

Proof. The expressions in the right hand sides of the formulas (3.56) and (3.57) are well defined,
since, by proposition 3.6 b), the R-matrix Rf is skew invertible.

Let us check the relation φ−1(φ(M)) =M directly.

Using the formulas (3.54) and (3.56) and applying the relation (3.12) for the pair {R,F} we begin
a calculation

φ−1(φ(M))1 = µ−2Tr
R

(2)
f

(

F−1
12 (Tr

R(2′)F12′M1F
−1
12′R12′)R

−1
12 F12

)

= µ−2Tr
R

(2)
f

Tr
R(3)

(

F−1
1 F−1

2 F1M1F
−1
1 R1F2R

−1
1 F1

)

.

In the next step we move the element F1, underlined in the expression above, to the left and it
becomes F2 due to the Yang-Baxter equation; then we transport the operator to the right using the
cyclic property of the trace (when F2 moves cyclically, Tr

R
(2)
f

Tr
R(3) becomes Tr

R(2)Tr
R

(3)
f

due to the

relations (3.18) ). Applying the Yang-Baxter equation for the operator F and the relations (3.18) in
the case X = R and Y = Rf , we continue the calculation

φ−1(φ(M))1 = µ−2Tr
R(2)Tr

R
(3)
f

(

F−1
1 F−1

2 M1F
−1
1 R1F2R

−1
1 F1F2

)

= µ−2Tr
R(2)Tr

R
(3)
f

(

F−1
1 M1F

−1
2 Rf 1 F

−1
1 F2F1Rf

−1
1 F2

)

= µ−2Tr
R(2)Tr

R
(3)
f

(

F−1
1 M1F

−1
2 Rf 1F2 F1 F

−1
2 Rf

−1
1 F2

)

= µ−2Tr
R(2)

(

F−1
1 M1F1(Tr

R
(3)
f

Rf 2F1Rf
−1
2 )F−1

1

)

.

(3.59)

Here we consequently transformed the underlined expressions using the definition of the twisted R-
matrix Rf , the Yang-Baxter equation for the operator F and the twist relations for the compatible
pair {Rf , F}. To calculate the trace underlined in the last line of eq.(3.59), we apply the relation
(3.12) for the compatible pair {Rf , Rf} and then use the relation (3.21) written for the compatible
pair {Rf , F

−1}. The result reads

φ−1(φ(M))1 = µ−2 Tr
R(2)

(

F−1
1 M1F1(DRf

CF−1)1F
−1
1

)

.

Now, using the relations (3.19), written for the compatible pairs {Rf , F} and {F−1, F}, the relations
(3.29) and (3.22) for X = F , the relations (3.36) and the (3.3) for X = F−1, we complete the
calculation

φ−1(φ(M))1 = µ−2Tr (2)
(

(DRf
CF−1DR)2F

−1
1

)

M1

= µ−2Tr (2)
(

(DF−1CRDFCF−1DR)2F
−1
1

)

M1 = Tr (2)(DF−12F
−1
12 )M1 =M1 .

A proof of the equality ξ−1(ξ(M)) = M proceeds quite similarly until the line (3.59), where one
has to use a relation

Tr
R(2)(K1M1K1) = (TrRM)I1 ∀M ∈ Matn(W )
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instead of the relation (3.12). This in turn follows from the relations (3.33) and (3.34) and the property
rkK = 1.

The relations (3.58) can be directly checked starting from the definitions (3.54) and (3.55), applying
the relation (3.18) in the case X = R and Y = Rf and then using the formulas (3.10) and (3.34). �

Remark 3.14 For the mapping φ, the statement of lemma 3.13 remains valid if one weakens the
conditions, imposed on the R-matrix R, replacing the BMW type condition by the strict skew invert-
ibility. In this case, one should substitute the term µ−2DRf

by DR−1
f

in the expression (3.56) for the

inverse mapping φ−1. The proof repeats the proof of the formula (3.56).

4 Quantum matrix algebra

In this section we deal with the main objects of our study, the quantum matrix algebras, and construct
the ⋆-product for them. We mainly discuss the quantum matrix algebras of the type BMW.

In subsection 4.2 we introduce a characteristic subalgebra of the quantum matrix algebra. In the
theory of the polynomial identities, a ring, generated by the traces of products of generic matrices,
is known as the ring of matrix invariants (see, e.g., [11]). The characteristic subalgebra can be
understood as a generalization of the ring of matrix invariants (in the simplest case of a single matrix)
to the setting of the quantum matrix algebras and, simultaneously, to a situation when the invariants
can be formed not only by taking a trace (on the quantum level, the invariants can be conveniently
formed by taking the R-trace of a product of a ‘string’ M1M2 . . .Mn by a matrix image of a word in
the braid group Bn).

In propositions 4.7, 4.8 we exhibit three generating sets of the characteristic subalgebra in the
BMW case. Explicit relations between the generators of these sets will be constructed in section 5.
Some preparatory work for this constructions is performed in the rest of section 4.

In subsection 4.3 we introduce an algebra P(R,F ) for the quantum matrix algebras of the general
type. The algebra P(R,F ) has the same relationship to the characteristic subalgebra as the trace ring
(see, e.g., [11]) to the ring of matrix invariants.

In subsection 4.4 we prove the commutativity of the algebra P(R,F ) in the case of the quantum
matrix algebras of the BMW type.

In subsection 4.5 we define an extended quantum matrix algebra of the BMW type by adding an
inverse of the quantum matrix.

4.1 Definition

Consider a linear space Matn(W ), introduced in the definition 3.1. For a fixed element F ∈ Aut(V ⊗V ),
we consider series of ‘copies’ Mi, i = 1, 2, . . . , n, of a matrix M ∈ Matn(W ). They are defined
recursively by

M1 :=M1, Mi := Fi−1Mi−1F
−1
i−1 . (4.1)

For F = P , these are usual copies, Mi = Mi, but, in general, Mi can be nontrivial in all the spaces
1, . . . , i.

We shall, slightly abusing notation, denote by the same symbol Mi an element in Matn(W )⊗k for
any k ≥ i, which is defined by an inclusion of the spaces

Matn(W )⊗j →֒ Matn(W )⊗(j+1) : Matn(W )⊗j ∋ X 7→ X ⊗ I ∈ Matn(W )⊗(j+1) .

From now on we specify W to be the associative C-algebra freely generated by the unity and by
n2 elements M b

a, W := C〈1,M b
a〉, 1 ≤ a, b ≤ n.

Definition 4.1 Let {R,F} be a compatible pair of strict skew invertible R-matrices (see section 3.1).
A quantum matrix algebra M(R,F ) is a quotient algebra of the algebra W = C〈1,M b

a〉 by a two-sided
ideal generated by entries of the matrix relation

R1M1M2 =M1M2R1 , (4.2)
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where M = ‖M b
a‖

n
a,b=1 is a matrix of the generators of M(R,F ) and the matrix copies Mi are con-

structed with the help of the R-matrix F as in eq.(4.1).

If R is an R-matrix of the BMW type (see eqs.(3.5)–(3.8) ) then M(R,F ) is called a BMW type
quantum matrix algebra.

Remark 4.2 The quantum matrix algebras were introduced in Ref. [18] under the name ‘quantized
braided groups’. In the context of the present paper they have been first investigated in [24]. The
matrixM ′ of the generators of the algebra M(R,F ) used in [24] is different from the matrixM that we
use here. A relation between these two matrices is explained in section 3 of [25]: M ′ = DRM(DF )

−1.

Lemma 4.3 [24] The matrix copies of the matrix M = ‖M b
a‖

n
a,b=1 of the generators of the algebra

M(R,F ) satisfy relations

FiMj = Mj Fi for j 6= i, i+ 1, (4.3)

RiMj = Mj Ri for j 6= i, i+ 1, (4.4)

RjMj Mj+1 = Mj Mj+1Rj for j = 1, 2, . . . , (4.5)

Fi Fi+1 . . . Fk ·MiMi+1 . . .Mk = Mi+1Mi+2 . . .Mk+1 · Fi Fi+1 . . . Fk for i ≤ k . (4.6)

4.2 Characteristic subalgebra

From now on we assume that M is the matrix of generators of the quantum matrix algebra M(R,F )
and its copies Mn are calculated by the rule (4.1).

Denote by C(R,F ) a vector subspace of the quantum matrix algebra M(R,F ) linearly spanned by
the unity and elements

ch(α(n)) := Tr
R(1, . . . , n)(M1 . . .Mn ρR(α

(n))) , n = 1, 2, . . . , (4.7)

where α(n) is an arbitrary element of the braid group Bn.

Notice that elements of the space C(R,F ) satisfy a cyclic property

ch(α(n)β(n)) = ch(β(n)α(n)) ∀ α(n), β(n) ∈ Bn , n = 1, 2, . . . , (4.8)

which is a direct consequence of the relations (4.4), (4.5) and (3.38) and the cyclic property of the
trace.

Definition-Proposition 4.4 [24] The space C(R,F ) is a commutative subalgebra of the quantum
matrix algebra M(R,F ):

ch(α(n)) ch(β(i)) = ch(α(n) β(i)↑n) = ch(α(n)↑i β(i)) . (4.9)

Recall that α(n)↑i denotes the image of an element α(n) under the embedding Bn →֒ Bn+i defined in
(2.13). We shall call C(R,F ) the characteristic subalgebra of M(R,F ).

A proof of the proposition given in [24] is based in particular on the following lemma:

Lemma 4.5 [24] Consider an arbitrary element α(n) of the braid group Bn. Let {R,F} be a compatible
pair of R-matrices, where R is skew invertible. Then relations

Tr
R(i + 1, . . . , i+ n)(Mi+1 . . .Mi+n ρR(α

(n)↑i)) = I1,2,...,i ch(α
(n)) (4.10)

hold for any matrix M ∈ Matn(W )5.

5Here there is no need to specify M to be the matrix of the generators of the algebra M(R,F ).
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We will make use of lemma 4.5 several times below.

Let us introduce a shorthand notation for certain elements of C(R,F )

p0 := TrR I (= µη in the BMW case) , p1 := TrRM , (4.11)

pi := ch(σi−1 . . . σ2σ1) = ch(σ1σ2 . . . σi−1) , i = 2, 3, . . . . (4.12)

The last equality in eq.(4.12) is due to the inner automorphism (2.15) and the cyclic property (4.8) .
The elements pi are called traces of powers of M or, shortly, power sums.

From now on in this subsection we assume the R-matrix R and, hence, the algebra M(R,F ) to
be of the BMW type. Denote

g := ch(c(2)) ≡ η−1ch(κ1) ≡ η−1 Tr
R(1, 2)

(
M1M2K1

)
. (4.13)

The notation used here was introduced in the formulas (2.3), (2.10), (2.29) and (3.6). We call the
element g a contraction of two matrices M or, simply, a 2-contraction.

Lemma 4.6 Let M be the matrix of generators of the BMW type quantum matrix algebra M(R,F ).
Then its copies, defined in eq.(4.1), fulfill relations

KnMnMn+1 = MnMn+1Kn = µ−2Kn g ∀ n ≥ 1 . (4.14)

Proof. We employ induction on n. Due to the property rkK = 1, one has

K1M1M2 = M1M2K1 = K1 t ,

where t ∈ M(R,F ) is a scalar. Evaluating the R-trace of this equality in the spaces 1 and 2 and using
the relations (3.34) and (3.35), one finds t = µ−2g, which proves the relation (4.14) in the case i = 1.
It remains to check the induction step n→ (n+ 1):

Kn+1Mn+1Mn+2 = Kn+1(FnMnF
−1
n )Mn+2 = Kn+1FnMn(Fn+1Mn+1F

−1
n+1)F

−1
n

= (Kn+1FnFn+1)MnMn+1F
−1
n+1F

−1
n = FnFn+1(KnMnMn+1)F

−1
n+1F

−1
n

= µ−2FnFn+1KnF
−1
n+1F

−1
n g = µ−2Kn+1 g .

Here eqs.(4.1) and (4.3), the twist relation (3.9) for the pair {K,F} and the induction assumption
were used for the transformation. �

Proposition 4.7 Let M(R,F ) be the quantum matrix algebra of the BMW type. Its characteristic
subalgebra C(R,F ) is generated by the set {g, pi}i≥0.

Proof. Consider the chain of the BMW algebras monomorphisms (2.12)–(2.13). We adapt, for n ≥ 3,
the following presentation for an element α(n) ∈ Wn

α(n) = βσ1β
′ + γκ1γ

′ + δ , (4.15)

where β, β′, γ, γ′, δ ∈ Im(Wn−1) ⊂ Wn. For n = 3, the formula (4.15) follows from the relations (2.1)–
(2.7). For n > 3, it can be proved by induction on n (one has to prove that the expressions of the form
(4.15) form an algebra, for which it is enough to show that the products σ1βσ1, σ1βκ1, κ1βσ1 and κ1βκ1
with β ∈ Im(Wn−1) ⊂ Wn can be rewritten in the form (4.15); this is done by further decomposing
β, using the induction assumption, β = β̃σ2β̃

′ + γ̃κ2γ̃
′ + δ̃, where β̃, β̃′, γ̃, γ̃′, δ̃ ∈ Im(Wn−2) ⊂ Wn).

Using the expression (4.15) for α(n) and the cyclic property (4.8), we conclude that, in the BMW
case, any element (4.7) of the characteristic subalgebra can be expressed as a linear combination of
terms

ch(α1α2 . . . αn−1) , where αi ∈ {1, σi, κi} . (4.16)
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Let us analyze the expressions (4.16) for different choices of αi.

i) If αi = 1 for some value of i, then, applying the relation (4.10), we get

ch(α1 . . . αi−1αi+1 . . . αn−1) = ch(α1 . . . αi−1) ch((αi+1 . . . αn−1)
↓i) , (4.17)

where (αi+1 . . . αn−1)
↓i ∈ Wn−i is the preimage of (αi+1 . . . αn−1) ∈ Wn.

ii) In the case when αn−1 = κn−1, we apply the relation (4.14) and then the relations (3.10), (3.34)
or (3.35) to reduce the expression (4.16) to

ch(α1 . . . αn−2κn−1) = f(αn−2) ch(α1 . . . αn−3) g , (4.18)

where f(σn−2) = µ−1, f(κn−2) = 1 and f(1) = η.

iii) In the case when αi = κi for some i, and αj = σj for all j = i + 1, . . . , n − 1, we perform the
following transformations

ch(α1 . . . αi−1κiσi+1σi+2 . . . σn−1) = ch(α1 . . . αi−2 σ
−1
i αi−1κiκi+1σi+2 . . . σn−1)

= . . . = ch(α1 . . . αi−2(σ
−1
n−2 . . . σ

−1
i )αi−1κiκi+1 . . . κn−1).

(4.19)

Here the relations (2.8) and the cyclic property (4.8) are repeatedly used; expressions suffering a
transformation are underlined.

Now, depending on a value of αi−1, we proceed in different ways.
If αi−1 = κi−1 then by eqs.(2.8) and (4.18) we have

(4.19) = ch(α1 . . . αi−2 σi−1σi . . . σn−3κn−2κn−1)

= ch(α1 . . . αi−2 σi−1σi . . . σn−3) g .

If αi−1 = σi−1 = σ−1
i−1+(q− q−1)(1−κi−1) then, using the relations σ−1

i σ−1
i−1κi = κi−1κi and applying

the previous results (4.18) and (4.17), we obtain

(4.19) = ch(α1 . . . αi−2 κi−1σi . . . σn−3) g

+(q − q−1)µ−1 ch(α1 . . . αi−2) pn−i−1 g

− (q − q−1) ch(α1 . . . αi−2 σi−1σi . . . σn−3) g .

Iterating transformations i)—iii) finitely many times, we eventually prove the assertion of the propo-
sition. �

We keep considering the BMW type quantum matrix algebra M(R,F ) with the R-matrix R
generating representations of the algebras Wn(q, µ), n = 1, 2, . . .. Assume that the antisymmetrizers
a(i) and symmetrizers s(i) in these latter algebras are consistently defined (see eqs.(2.24), (2.25) and
(2.26) ). In this case, we can introduce two following sets of elements in the characteristic subalgebra
C(R,F )

a0 := 1 and s0 := 1 ; (4.20)

ai := ch(a(i)) and si := ch(s(i)) , i = 1, 2, . . . . (4.21)

Proposition 4.8 Let M(R,F ) be the quantum matrix algebra of the BMW type. Assume that jq 6=
0, µ 6= −q−2j+3 (respectively, jq 6= 0, µ 6= q2j−3) for all j = 2, 3, . . . . Then the characteristic
subalgebra C(R,F ) is generated by the set {g, ai}i≥0 (respectively, {g, si}i≥0).

Proof. These statements are byproducts of the previous proposition and the Newton relations, which
are proved in section 5, theorem 5.2. �
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4.3 Matrix ⋆ -product, general case

Consider the quantum matrix algebra M(R,F ) of the general type (no additional conditions on an
R-matrix R).

Denote by P(R,F ) a linear subspace of Matn(M(R,F )) spanned by C(R,F )-multiples of the
identity matrix, I ch ∀ ch ∈ C(R,F ), and by elements

M1 := M, (Mα(n)
)1 := Tr

R(2, . . . , n)(M1 . . .Mn ρR(α
(n))) , n = 2, 3, . . . , (4.22)

where α(n) belongs to the braid group Bn. The space P(R,F ) inherits a structure of a right C(R,F )–
module

Mα(n)
ch(β(i)) =M (α(n)β(i)↑n) ∀α(n) ∈ Bn, β

(i) ∈ Bi , n, i = 1, 2, . . . , (4.23)

which is just a component-wise multiplication of the matrix Mα(n)
by the element ch(β(i)) (use the

relation (4.10) to check this). The C(R,F )–module structure agrees with an R-trace map TrR (which
means that TrR(Xa) = TrR(X)a ∀ X ∈ P(R,F ) and ∀ a ∈ C(R,F ))

P(R,F )
TrR−→ C(R,F ) :







Mα(n)
7→ ch(α(n)) ,

I ch(α(n)) 7→ (TrRI) ch(α
(n)) ,

(4.24)

where α(n) ∈ Bn , n = 1, 2, . . .

Besides, elements of the space P(R,F ) satisfy a reduced cyclic property

M (α(n)β(n−1)↑1) =M (β(n−1)↑1α(n)) ∀α(n) ∈ Bn, β
(n−1) ∈ Bn−1, n = 2, 3, . . . . (4.25)

Definition-Proposition 4.9 Formulas

Mα(n)
⋆ Mβ(i)

:= M (α(n)⋆β(i)) , (4.26)

where

α(n) ⋆ β(i) := α(n)β(i)↑n(σn . . . σ2σ1σ
−1
2 . . . σ−1

n ) , (4.27)

(I ch(β(i))) ⋆ Mα(n)
:= Mα(n)

⋆ (I ch(β(i))) := Mα(n)
ch(β(i)) , (4.28)

(I ch(α(i))) ⋆ (I ch(β(n))) := I (ch(α(i)) ch(β(n))) , (4.29)

define an associative multiplication on the space P(R,F ), which agrees with the C(R,F )–module struc-
ture (4.23).6

Proof. To prove the associativity of the multiplication (4.26), it is enough to check

(α(n) ⋆ β(i)) ⋆ γ(m) = α(n) ⋆ (β(i) ⋆ γ(m)) ,

which is a staightforward exercise in an application of the relations (2.1) and (2.2).

It is less trivial to prove a compatibility condition for the formulas (4.26) and (4.28)

{

Mα(n)
⋆ (I ch(β(i)))

}

⋆ Mγ(m)
= Mα(n)

⋆
{

(I ch(β(i))) ⋆ Mγ(m)
}

,

which, in terms of the matrix ‘exponents’, amounts to

α(n)β(i)↑nγ(m)↑(i+n)(σi+n . . . σ2σ1σ
−1
2 . . . σ−1

i+n)

mod (4.25)
= α(n)γ(m)↑nβ(i)↑(m+n)(σn . . . σ2σ1σ

−1
2 . . . σ−1

n ) .

(4.30)

6In other words, a map ch(α(n)) 7→ I ch(α(n)) is an algebra monomorphism C(R,F ) →֒ P(R,F ).
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Here the symbol
mod (4.25)

= means the equality modulo the reduced cyclic property (4.25).

To check eq.(4.30), we apply a technique, which was used in [24] to prove the commutativity of
the characteristic subalgebra. Consider an element

u
(i+m)
i,m := (σi . . . σ2σ1)(σi+1 . . . σ3σ2) . . . (σi+m−1 . . . σm+1σm)

= (σiσi+1 . . . σi+m−1)(σi−1σi . . . σi+m−2) . . . (σ1σ2 . . . σm) ,
(4.31)

which intertwines certain elements of the braid group B(i+m):

β(i) u
(i+m)
i,m = u

(i+m)
i,m β(i)↑m , γ(m)↑i u

(i+m)
i,m = u

(i+m)
i,m γ(m) . (4.32)

Substitute an expression (u
(i+m)↑n
i,m γ(m)↑nβ(i)↑(n+m)(u

(i+m)↑n
i,m )−1) for the factor (β(i)↑nγ(m)↑(i+n)) in the

left hand side of the equation (4.30), move the element u
(i+m)↑n
i,m cyclically to the right and then use

an equality

(σ−1
1 σ−1

2 . . . σ−1
i )u

(i+m)
i,m = u

(i+m−1)↑1
i,m−1 (4.33)

to cancel it on the right hand side. Such transformation results in the right hand side of the equation
(4.30).

Consistency of the multiplication and the C(R,F )–module structures on P(R,F ) follows obviously
from the last equality in (4.28). �

To illustrate the relation between the ⋆ -product and the usual matrix multiplication, we present
formulas (4.26) and (4.27) in the case n = 1 (α(1) ≡ 1) in a form

M ⋆N =M · φ(N) ∀N ∈ P(R,F ) , (4.34)

where · denotes the usual matrix multiplication and the map φ is defined by the formula (3.54) in
subsection 3.6.

The noncommutative analogue of the matrix power is given by a repeated ⋆ -multiplication by the
matrix M

M0 := I , Mn := M ⋆M ⋆ . . . ⋆ M
︸ ︷︷ ︸

n times

= M (σ1σ2...σn−1) = M (σn−1...σ2σ1) . (4.35)

Here we introduce symbol Mn for the n-th power of the matrix M . The standard matrix powers
multiplication formula follows immediately from the definition

Mn ⋆ M i = Mn+i . (4.36)

Proposition 4.10 A C(R,F )–module, generated by the matrix powers Mn, n = 0, 1, . . ., belongs to
the center of the algebra P(R,F ).

Proof. It is sufficient to check a relation M ⋆ Mα(i)
= Mα(i)

⋆ M , which, in turn, follows from a
calculation

α(i)σi . . . σ2σ1σ
−1
2 . . . σ−1

i = σi . . . σ2σ1α
(i)↑1σ−1

2 . . . σ−1
i

mod (4.25)
= α(i)↑1σ1 . �

4.4 Matrix ⋆ -product, BMW case

It is natural to expect that the algebra P(R,F ) is commutative as all of its elements are generated by
the matrix M alone. We can prove the commutativity in the BMW case. Notice that (in contrast to
the Iwahori-Hecke case), in the BMW case, the algebra P(R,F ) cannot be generated by the ⋆ -powers
of M only.

By an analogy with formula (4.34), we define a C(R,F )–module map M⊺ : P(R,F ) → P(R,F )

M⊺(N) := M · ξ(N), N ∈ P(R,F ) , (4.37)

where the endomorphism ξ is defined by formula (3.55) in subsection 3.6. Equivalently, we can write

M⊺(Mα(n)
) =M (α(n)↑1κ1) ∀ α(n) ∈ Wn, n = 1, 2, . . . . (4.38)
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Proposition 4.11 Let the quantum matrix algebra M(R,F ) be of the BMW type. Then the algebra
P(R,F ) is commutative. As a C(R,F )–module, it is spanned by matrices

Mn and M⊺(Mn+2) , n = 0, 1, . . . . (4.39)

Proof. A proof of the last statement of the proposition goes essentially along the same lines as the
proof of proposition 4.7 and we will not repeat it. The only modification is a reduction of the cyclic
property (c.f., eqs.(4.8) and (4.25) ), which finally leads to an appearance of the additional elements
{M⊺(Mn)}n≥2 in the generating set.

To prove the commutativity of P(R,F ), we derive an alternative expression for the exponent in
the matrix product formula (4.26)

α(n) ⋆ β(i) = (σ−1
i . . . σ−1

2 σ1σ2 . . . σi)α
(n)↑iβ(i) . (4.40)

The calculation proceeds as follows

α(n) ⋆ β(i) = α(n)β(i)↑n(σn . . . σ1σ
−1
2 . . . σ−1

n ) = u
(n+i)
n,i α(n)↑iβ(i)(u

(n+i)
n,i )−1(σn . . . σ1σ

−1
2 . . . σ−1

n )

mod(4.25)
= (u

(n+i−1)↑1
n,i−1 )−1(σ−1

2 . . . σ−1
n )u

(n+i)
n,i α(n)↑iβ(i) = (u

(n+i−1)↑1
n,i−1 )−1σ1u

(n+i−1)↑1
n,i−1 α(n)↑iβ(i)

= (σ−1
i . . . σ−1

2 )(u
(n+i−2)↑2
n−1,i−1 )−1σ1u

(n+i−2)↑2
n−1,i−1 (σ2 . . . σi)α

(n)↑iβ(i) = right hand side of eq.(4.40).

Here we applied again the intertwining operators (4.31) and used their properties (4.32) and (4.33)
and the reduced cyclicity. One more property

u
(n+i)
n,i = u

(n+i−1)↑1
n−1,i (σ1σ2 . . . σi)

is used in the last line of the calculation.

Due to proposition 4.10, to prove the commutativity of the algebra P(R,F ), it remains to check
the commutativity of the set {M⊺(Mn)}n≥2.

Notice that the factors of the exponents of the matrices M⊺(Mn) can be taken in an opposite
order, M⊺(Mn) = M (κ1σ2σ3...σn) = M (σn...σ3σ2κ1) . This observation, together with formula (4.40),

allow us to choose the exponents of two matrices M⊺(Mn) ⋆ M⊺(M i) and M⊺(M i) ⋆ M⊺(Mn) to be

mirror (left-right) images of each other. Finally, Mα(n)
=M ς(α(n)), ∀α(n) ∈ Wn(q, µ), where ς is the

antiautomorpism (2.19), since both sides of this equality can be expanded into linear combinations of
the generators (4.39), which are invariant with respect to the mirror reflection of their exponents, and
since the expansion rules (i.e. the defining relations for the BMW algebras) are mirror symmetric. �

Lemma 4.12 For the BMW type quantum matrix algebra M(R,F ), one has

M⊺(I) = µM , M⊺(M) = µ−1I g , (4.41)

M⊺(M⊺(N)) = N g ∀ N ∈ P(R,F ) . (4.42)

Proof. The relations (4.41) follow immediately from the relations (4.14) and (3.34) and the definitions
(4.37) and (3.55).

As for the equality (4.42), it is enough to check it in the case when the matrix N is a power of the
matrix M .

To evaluate the expression M⊺(M⊺(Mn)) =M (κ1κ2σ3...σn+1), we transform its exponent, using the
relations (2.8) in the BMW algebra and the reduced cyclic property, to

κ1κ2σ3 . . . σn+1 = κ1(κ2κ3σ
−1
2 )σ4 . . . σn+1

mod (4.25)
= (σ−1

2 κ1κ2)κ3σ4 . . . σn+1

= σ1κ2κ3σ4 . . . σn+1 = . . .
mod (4.25)

= σ1σ2 . . . σn−1κnκn+1 .

(4.43)
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For the exponent (4.43), the matrix power is easily calculated, again with the help of the relations
(4.14) and (3.34), and gives the expression Mng. �

The last relation in (4.41) shows that to introduce the inverse matrix to the matrixM it is sufficient
to add the inverse g−1 of the 2-contraction g to the algebra M(R,F ). This is realized in the next
subsection.

4.5 Matrix inversion

In this subsection we define an extended quantum matrix algebra, to which the inverse of the quantum
matrix belongs.

Lemma 4.13 Let M(R,F ) be the BMW type quantum matrix algebra. Its 2-contraction g fulfills a
relation

M g = g (G−1MG) , (4.44)

where G is defined by formula (3.42).

Proof. The proof consists of a calculation

M1 (gK2) = µ2M1M2M3K2 = µ2M1M2M3K2K1K2 = µ2K2
(
M1M2K1

)
M3K2

= gK2K1M3K2 = (gK2)Tr (2,3)
(
K2K1M3

)

= (gK2) Tr (2,3)
(

K2F2F1K2M1F
−1
1 F−1

2

)

= (gK2) Tr (2,3)(F2F1K2)M1Tr (2,3)(K2F
−1
1 F−1

2 ) = (gK2) (G
−1MG)1.

(4.45)

Here the relations (4.14) and (2.9) were used in the first two lines; the property rkK = 1 was used
in the last/first equality of the second/fourth line; the definition of M3 was substituted and the twist
relation for the pair {K,F} was used in the third line; the formulas (3.42) and (3.43) for G and G−1

were substituted in the last equality. �

Definition-Proposition 4.14 Let M(R,F ) be the BMW type quantum matrix algebra. Consider an
extension of the algebra M(R,F ) by a generator g−1 subject to relations

g−1 g = g g−1 = 1 , g−1M = (G−1MG) g−1 . (4.46)

The extended algebra, which we shall further denote by M
•
(R,F ), contains an inverse matrix to the

matrix M
M−1 := µ ξ(M) g−1 : M ·M−1 = M−1 ·M = I . (4.47)

Proof. Lemma 4.13 ensures the consistency of the relations (4.46). The equality M ·M−1 = I for
the inverse matrix (4.47) follows immediately from the formulas (4.41) and (4.37).

To prove the equality M−1 ·M = I, consider a mirror partner of the map ξ:

θ(M) := µ−2Tr
R(2)K1M2 . (4.48)

By the (left-right) symmetry arguments in the assumptions of lemma 3.13, the map θ is invertible and
the inverse map reads

θ−1(M) = Tr
R

(2)
f

(

F−1
1 K1M1F1

)

. (4.49)

Applying in a standard way the transformation formula (3.12), we calculate a composition of the maps
ξ and θ,

ξ(θ(M))1 = θ(ξ(M))1 = µ−2Tr
R(2, 3)K2K1M3 = Tr (2,3)K2K1M3 = (G−1MG)1 . (4.50)

Here the relation (3.37) was used to substitute the R-traces by the usual traces; the last equality
follows from a comparison of the second and the last lines in the calculation (4.45).

Now we observe that, in view of the relations (4.14) and (3.34), a matrix (−1M) := µ g−1 θ−1(M)
fulfills the relation (−1M) ·M = I. The identity (−1M) =M−1 follows then from the relations (4.50)
and (4.44). �
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Remark 4.15 One can generalize the definitions of the characteristic subalgebra and of the matrix
powers to the case of the extended quantum matrix algebra M

•
(R,F ). Not going into details, we just

mention that the extended characteristic subalgebra C
•
(R,F ) is generated by the set {g, g−1, pi}i≥0

and the extended algebra P
•
(R,F ), as a C

•
(R,F )–module, is spanned by matrices

Mn and M⊺(Mn) ∀ n ∈ Z .

Here inverse powers of M are defined through the repeated ⋆ -multiplication by M−1, which is given
by

M−1 ⋆ N := N ⋆M−1 := φ−1(M−1 ·N) ∀ N ∈ P
•

(R,F ) . (4.51)

Explicitly, one has

M−n := M−1 ⋆ . . . ⋆ M−1⋆
︸ ︷︷ ︸

n times

I = TrR−1
f (2,...,n+1)

(

M−1
2 M−1

3 . . .M−1
n+1 ρR−1

f
(σn . . . σ2σ1)

)

;

where the copies M−1
i of the matrix M−1 are defined as (c.f. with eq.(4.1) )

M1 := M1, Mi+1 := F−1
i Mi Fi, i = 2, 3, . . . . (4.52)

Notice that in general M−1 = φ−1(M−1) 6=M−1. Here are some particular examples of the multipli-

cation by M−1

M−n ⋆M i = M i−n , M−1 ⋆ Mα(n)↑1 = ch(α(n)) I .

5 Relations for generating sets of the characteristic subalgebra: BMW

case.

In this last section we use the basic identities from subsection 5.1 to establish relations between the
three sets of elements in the characteristic subalgebra — {g, ai}i≥0, {g, si}i≥0 and the power sums
{g, pi}i≥0. As a byproduct, we prove the proposition 4.8.

Before we proceed, let us recall the initial data of the construction.

• Given a compatible pair of R-matrices {R,F}, in which the operator F is strict skew invertible
and the operator R is skew invertible of the BMW type (and, hence, strict skew invertible), we
introduce the BMW type quantum matrix algebra M(R,F ) (see definition 4.1);

• Assuming additionally that the eigenvalues q and µ of the R-matrix R (i.e., the parameters of
the BMW algebras, whose representations are generated by the matrix R) satisfy conditions
iq 6= 0, µ 6= −q3−2i ∀ i = 2, 3, . . . , n (see (2.26)) we can consistently define the antisymmetrizers

a(i) and introduce skew powers of the quantum matrix M : Ma(i) , 0 ≤ i ≤ n.

5.1 Basic identities

In this subsection we establish relations between ‘descendants’ of the matrices Ma(i) in the algebra
P(R,F ). These relations are used later in a derivation of the Newton relations.

For 1 ≤ i ≤ n and m ≥ 0, we consider two series of descendants of Ma(i) :

A(m,i) := iqM
m ⋆ Ma(i) , B(m+1,i) := iqM

m ⋆ M⊺(Ma(i)) . (5.1)

It is suitable to define A(m,i) and B(m,i) for boundary values of their indices

A(−1,i) := iq φ
−1
(

Tr
R(2, 3, . . . i)M2M3 . . .Mi ρR(a

(i))
)

, B(0,i) := iq φ
−1(ξ(Ma(i))) (5.2)

and

A(m,0) := 0 and B(m,0) := 0 ∀ m ≥ 0 . (5.3)
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Notice that although the elements A(−1,i) and B(0,i) do not, in general, belong to the algebra P(R,F ),
their descendants A(−1,i)g and B(0,i)g do (see eqs.(5.4) and (5.5) in the case m = 0).

In the case when the contraction g (and, hence, the matrix M) is invertible, the formulas (5.1),

with m now an arbitrary integer, can be used to define descendants of Ma(i) in the extended algebra
P

•
(R,F ) (see the remark 4.15). In this case, the matrices A(−1,i) and B(0,i) are expressed uniformly:

A(−1,i) = iqM
−1 ⋆ Ma(i) , B(0,i) = iqM

−1 ⋆M⊺(Ma(i)).

Lemma 5.1 For 0 ≤ i ≤ n−1 and m ≥ 0, the matrices A(m−1,i+1) and B(m+1,i+1) satisfy recurrent
relations

A(m−1,i+1) = qiMm ai − A(m,i) −
µq2i−1(q − q−1)

1 + µq2i−1
B(m,i) , (5.4)

B(m+1,i+1) =
(

µ−1q−iMm ai +
q − q−1

1 + µq2i−1
A(m,i) − B(m,i)

)

g . (5.5)

Proof. For i = 0 relations (5.4) and (5.5) by (5.3) simplify to

A(m−1,1) =Mm , B(m+1,1) = µ−1Mmg .

They follow from eqs. (4.36), (4.41).

Let us check (5.4) for i > 0. For m ≥ 0, we calculate

A(m,i+1) = (i+ 1)qM
(a(i+1)↑m σm...σ2σ1) = qiM (a(i)↑(m+1) σ−

m+1(q
−2i)σm...σ2σ1)

= qiMm+1 ai − A(m+1,i) −
µq2i−1(q − q−1)

1 + µq2i−1
B(m+1,i) .

Here in the first line we used the second formula from (2.24) for a(i+1)↑m and applied the reduced
cyclic property (4.25) and the relations (2.31) to cancel one of two terms a(i)↑(m+1). In the second line
we substituted the formula (2.22) for the baxterized elements σ−m+1(q

−2k) and applied the relation
(4.10) to simplify the first term in the sum.

For A(−1,i+1), the relations (5.4) are verified similarly

A(−1,i+1) = qi φ−1
(

Tr
R(2, 3, . . . i+ 1)M2M3 . . .Mi+1ρR(a

(i)↑1σ−1 (q
−2i))

)

= qi φ−1(I) ai − iq φ
−1(φ(Ma(i))) −

µq2i−1(q − q−1)

1 + µq2i−1
iq φ

−1(ξ(Ma(i)))

= qi I ai − A(0,i) −
µq2i−1(q − q−1)

1 + µq2i−1
B(0,i) .

Here the definitions (3.54) and (3.55) of the endomorphisms φ and ξ were additionally taken into
account.

To prove (5.5) for i > 0 we proceed in the same way

B(m+1,i+1) = (i+ 1)qM
(a(i+1)↑m+1 κm+1σm...σ2σ1) = qiM (a(i)↑m+2 σ−

m+2(q
−2i) κm+1σm...σ2σ1)

= q−iMm⋆M⊺(M)ai − iqM
(a(i)↑m+2 σ−1

m+2κm+1σm...σ1) +
qi − q−i

1 + µq2i−1
Mm⋆M⊺(M⊺(Ma(i))).

(5.6)

Here in the second line we used another expression for the baxterized generators

σεi (x) = x1 +
x− 1

q − q−1
σ−1
i −

αεx(x− 1)

αεx+ 1
κi ,

which follows by a substitution σi = σ−1
i + (q − q−1)(1− κi) into the original expression (2.22).
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Now, notice that

σ−1
3 κ2σ1 = σ−1

3 κ2κ1σ
−1
2

mod (4.25)
= σ−1

2 σ−1
3 κ2κ1 = κ3κ2κ1 , (5.7)

and, hence, in the case m ≥ 1, the second term in the last line of the equality (5.6) can be expressed
as

− iqM
(a(i)↑m+2 σ−1

m+2κm+1σm...σ1) = −iqM
m−1 ⋆M⊺(M⊺(M⊺(Ma(i)))) . (5.8)

Applying then the formulas (4.41) and (4.42) to the expressions (5.6) and (5.8), we complete verification
of (5.5) for m ≥ 1.

For the case m = 0, the transformation of the second term in (5.6) should be slightly modified.
Notice that by eq.(5.7),

φ(Ma(i)↑2σ−1
2 κ1) = ξ(M⊺(M⊺(Ma(i)))) .

Inverting the endomorphism φ in this formula and using the relation (4.42) and the definition of B(0,i)

(5.2), we complete the transformation of the second term in (5.6) and, again, get the equality (5.5). �

5.2 Newton and Wronski relations

Theorem 5.2 Let M(R,F ) be a BMW type quantum matrix algebra. Assume that its two parameters
q and µ satisfy the conditions (2.26), which allow to introduce either the set {ai}

n
i=0 or, respectively,

the set {si}
n
i=0 in the characteristic subalgebra C(R,F ) (see the definitions (4.20) and (4.21) ). Then

the following Newton recurrent formulas relating, respectively, the sets {ai, g}
n
i=0, or {si, g}

n
i=0 to the

set of the power sums (see the definitions (4.11) and (4.12) )

n−1∑

i=0

(−q)iai pn−i = (−1)n−1nq an + (−1)n
⌊n/2⌋
∑

i=1

(

µqn−2i − q1−n+2i
)

an−2i g
i (5.9)

and

n−1∑

i=0

q−isi pn−i = nq sn +

⌊n/2⌋
∑

i=1

(

µq2i−n + qn−2i−1
)

sn−2i g
i (5.10)

are fulfilled.

In the case, when both sets {ai, g}
n
i=0 and {si, g}

n
i=0 are consistently defined, they satisfy the Wron-

ski relations
n∑

i=0

(−1)iai sn−i = δn,0 − δn,2 g , (5.11)

where δi,j is a Kronecker symbol.

Remark 5.3 One can use the formulas (5.9) and (5.10) for an iterative definition of the elements
ai and si for i ≥ 1, with initial conditions a0 = s0 = 1. In this case, the elements an and sn are
well defined, assuming that iq 6= 0 ∀ i = 2, 3, . . . n. The additional restrictions on the parameter µ,
which appeared in their initial definition (4.21), are artifacts of the use of the antisymmetrizers and
symmetrizers a(n), s(n) ∈ Wn(q).

Proof. We prove the relation (5.9). Denote

J (0) := 0, J (i) :=
i−1∑

j=0

(−q)jM i−jaj , i = 1, 2, . . . , n .

We are going to find an expression for the matrix J (n) in terms of the matrices A(0,i) and B(0,i),
1 ≤ i ≤ n.

As we shall see, there exist matrices H(i), which fulfill equations

(1− q2)H(i) g =
(

J (i) + (−1)iA(0,i)
)

, i = 0, 1, . . . , n. (5.12)
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To calculate the matrices H(i), we substitute repeatedly the relations (5.4) for the elements A(0,i),
A(1,i−1), . . . , A(i−1,1) in the right hand side of eq.(5.12). It then transforms to

H(i) g = −µq−1
i−1∑

j=1

(−1)j
q2j−1

1 + µq2j−1
B(i−j,j) , i = 0, 1, . . . , n. (5.13)

Now, using the expressions (5.5) for the elements B(i−j,j), one can check that matrices

H(0) := H(1) := 0, (5.14)

H(i) :=
i−2∑

j=0

(−q)j

1 + µq2j+1

(

M i−j−2aj +
µqj(q − q−1)

1 + µq2j−1
A(i−j−2,j) − µqjB(i−j−2,j)

)

, i = 2, . . . , n.

satisfy eq.(5.13).

Next, consider a combination (H(i+2) −H(i)g). Using eq.(5.14) for the first term and eq.(5.13) for
the second term, we calculate

H(i+2) −H(i)g =
i−1∑

j=0

(−q)j

1 + µq2j+1

(

M i−jaj +
µqj(q − q−1)

1 + µq2j−1
(A(i−j,j) − q−1B(i−j,j))

)

+
(−q)i

1 + µq2i+1

(

Iai +
µqi(q − q−1)

1 + µq2i−1
A(0,i) − µqiB(0,i)

)

, ∀ i = 0, . . . , n.

To continue, we need the following auxiliary result:

Lemma 5.4 For 1 ≤ i ≤ n, one has

(−1)i−1A(0,i)

1 + µq2i−1
=

i−1∑

j=0

(−q)j

1 + µq2j+1

(

M i−jaj +
µqj(q − q−1)

1 + µq2j−1
(A(i−j,j) − q−1B(i−j,j))

)

. (5.15)

Proof. Use the recursion (5.4) for A(i−j−1,j+1) to calculate

A(i−j−1,j+1)

1 + µq2j+1
+

A(i−j,j)

1 + µq2j−1
=

qj

1 + µq2j+1

(

M i−jaj +
µqj(q − q−1)

1 + µq2j−1
(A(i−j,j) − q−1B(i−j,j))

)

.

Compose an alternating sum of the above relations for 0 ≤ j ≤ i − 1 and take into account the
condition A(i,0) = 0. �

Using the relation (5.15), we finish the calculation

H(i+2) −H(i)g = (1+ µq2i+1)−1
(

(−q)iIai + (−1)i+1(A(0,i) + µq2iB(0,i))
)

∀ i = 0, . . . , n− 2. (5.16)

Now it is straightforward to get

H(i) =

[i/2]
∑

j=1

(−1)i−1

1 + µq2(i−2j)+1

(

A(0,i−2j) + µq2(i−2j)B(0,i−2j) − qi−2jIai−2j

)

gj−1 , ∀ i = 0, . . . , n, (5.17)

where [k] denotes the integer part of the number k. Finally, substituting the expression (5.17) back
into eq.(5.12), we obtain a formula

J (i) = (−1)i−1A(0,i) +

[i/2]
∑

j=1

(−1)i−1(1− q2)

1 + µq2(i−2j)+1

(

A(0,i−2j) + µq2(i−2j)B(0,i−2j) − qi−2jIai−2j

)

gj , (5.18)

which is valid for 0 ≤ i ≤ n.

Taking the R-trace of eq.(5.18), we obtain the Newton relations (5.9). Here, in the calculation of
the R-trace of B(0,i−2j), we took into account the formulas (3.58).
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The formulas (5.10) can be deduced from the relations (5.9) by a substitution q → −q−1, aj →
sj. This is justified by the existence of the BMW algebras homomorphism (2.16) ι : Wn(q, µ) →
Wn(−q

−1, µ) and a fact that one and the same R-matrix R generates representations of both algebras
Wn(q, µ) and Wn(−q

−1, µ).

The relation (5.11) is proved by induction on n. The cases n = 0, 1, 2 are easily checked with the
use of eqs.(5.9) and (5.10). Then, making an induction assumption, we derive the Wronski relations
for arbitrary n > 2. To this end, we take a difference of eqs.(5.10) and (5.9)

n−1∑

i=0

(

q−isi pn−i − (−q)iai pn−i

)

= nq(sn + (−1)nan) + terms proportional to g

and substitute for pn−i in the first/second term of the left hand side its expression from the Newton
relation (5.9)/(5.10) (with n replaced by n − i). As a result, all terms, containing the power sums,
cancel and, after rearranging the summations, we get

nq

n∑

i=0

(−1)iaisn−i = −

[n/2]
∑

i=1

(q1−n+2i + qn−1−2i)gi
n−2i∑

j=0

(−1)jajsn−2i−j .

By the induction assumption, the double sum in the right hand side of this relation vanishes identically:
when n is odd, the second sum vanishes for all values of the index i; when n is even, the second sum
is different from zero only for two values of the index i, i = n/2 and i = n/2 − 1, and these two
summands cancel. �

A Primitivity of contractors

In this appendix we return to the consideration of the contractors in the BMW algebra. We shall
establish useful properties of the contractors in lemmas A.1, A.2 and then use it to demonstrate their
primitivity (announced in proposition 2.2 in subsection 2.4) in proposition A.3.

In this appendix we shall denote by W(σi, σi+1, . . . , σj), where i ≤ j, the BMW algebra with the
generators σi, σi+1, . . . , σj (the values of the parameters q and µ are fixed).

Lemma A.1 Let α ∈ W(σ1, σ2, . . . , σj), where j ≥ n. Then there exists an element α̃ ∈
W(σn+1, σn+2, . . . , σj) such that

c(2n)α = c(2n)α̃ .

Proof. Assume that α ∈ W(σi, σi+1, . . . , σj) and α /∈ W(σi+1, . . . , σj). If i > n then there is nothing
to prove.

For i ≤ n, we shall prove that there exists an element α′ ∈ W(σi+1, . . . , σj) such that

c(2n)α = c(2n)α′ .

Given this statement, the proof follows by induction on i.

Due to the formula (4.15), we can express the element α as a linear combination of elements of the
form xuix̄, where x, x̄ ∈ W(σi+1, . . . , σj) and ui is equal to 1, σi or κi. The terms with ui = 1 belong
already to W(σi+1, . . . , σj) so we may assume that the element ui is non-trivial (that is, equals σi or
κi).

We express now the element x as a linear combination of the elements of the form yui+1ȳ, where
y, ȳ ∈ W(σi+2, . . . , σj) and ui+1 is equal to 1, σi+1 or κi+1. Each element ȳ commutes with the
element ui thus the element α becomes a linear combination of elements of the form yui+1ui ¯̄x with
y ∈ W(σi+2, . . . , σj) and ¯̄x ∈ W(σi+1, . . . , σj). In the terms with ui+1 = 1 we move the element y
rightwards through the element ui and continue the process for the terms with ui+1 equal to σi+1 or
κi+1. After a finite number of steps the process terminates and we will have an expression for the
element α as a linear combination of terms

ui+k . . . ui+1uiz , (A.1)
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where the element z belongs to W(σi+1, . . . , σj) and each of the elements ui+s, s = 0, 1, . . . k, is equal
to σi+s or κi+s.

Let us first analyze expressions (A.1) with i+k > n. The contractor c(2n) is divisible by the element
κn from the right due to the relation (2.33). The element κn can move rightwards in the product
c(2n)ui+k . . . ui+1uiz until it reaches the element un+1 and we arrive at the expression . . . κnun+1un . . ..
For all four possibilities (σn+1σn, σn+1κn, κn+1σn or κn+1κn) for the product un+1un, the expression
κnun+1un can be rewritten, with the help of the relations (2.5)–(2.9), in a form κnvn+1, where vn+1

is a polynomial in σn+1. Moving the element κn back to the contractor c(2n), we obtain

c(2n)ui+k . . . ui+1uiz = c(2n)ui+k . . . un+2vn+1 · un−1 . . . uiz = c(2n)un−1 . . . uiz̄

with some other z̄ ∈ W(σi+1, . . . , σj).

Thus we can rewrite the product of the contractor c(2n) by an expression (A.1) with i+ k > n as
a product of c(2n) with an expression of the same form (A.1) but with i+ k < n.

Now using the relations (2.34) we remove the elements ui+k one by one to the right:

c(2n)ui+k . . . ui+1ui = c(2n)un−i−kui+k−1 . . . ui+1ui = c(2n)ui+k−1 . . . ui+1uiun−i−k .

At the end we will obtain for the product c(2n)α an expression of the form c(2n)α′, where the element
α′ belongs to W(σi+1, . . . , σj), as stated. �

Lemma A.2 Relations (2.5) and (2.9) involving the elements κi have the following analogues for the
higher contractors:

c(2i) σ2i c
(2i) = η−1µ−1c(2i) , (A.2)

c(2i) κ2i c
(2i) = η−1c(2i) . (A.3)

Proof. We prove the identity (A.3) by induction on i (the base of induction, i = 1, is the relation
(2.9) itself):

c(2i+2)κ2i+2c
(2i+2) = c(2i)↑1κ2i+1κ1c

(2i)↑1κ2i+2c
(2i+2) = c(2i)↑1κ2i+1κ1κ2i+2c

(2i+2)

= c(2i)↑1κ2i+1κ2i+2κ2i+1c
(2i+2) = c(2i)↑1κ2i+1c

(2i+2) = η−1c(2i+2) .

In the first equality we used the definition (2.29); in the second equality we used the property (2.33); in
the third equality we moved the element κ1 rightwards to the contractor c(2i+2) and used the property
(2.34); in the fourth equality we used the relation (2.9); the fifth equality is the induction assumption.

The identity (A.2) is proved again by induction on i (the base of induction, i = 1, is now the
relation (2.5) ):

c(2i+2)σ2j+2c
(2i+2) = c(2i)↑1κ2i+1κ1c

(2i)↑1σ2i+2c
(2i+2) = c(2i)↑1κ2i+1κ1σ2i+2c

(2i+2)

= c(2i)↑1κ2i+1σ2i+2κ2i+1c
(2i+2) = µ−1c(2i)↑1κ2i+1c

(2i+2) = µ−1η−1c(2i+2) .

In the first equality we used the definition (2.29); in the second equality we used the property (2.33); in
the third equality we moved the element κ1 rightwards to the contractor c(2i+2) and used the property
(2.34); in the fourth equality we used the relation (2.5); the fifth equality is the identity (A.3).

The proof is finished. �

Proposition A.3 The contractor c(2n) is a primitive idempotent in the algebra W2n(q, µ) and in the
algebra W2n+1(q, µ).
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Proof. To prove both statements about the primitivity, one has to check that a combination
c(2n)α(2n+1)c(2n) is proportional to the contractor c(2n) for an arbitrary element α(2n+1) from the
algebra W2n+1(q, µ).

Let α be an arbitrary element from the algebra W(σ1, . . . , σj), where j ≥ 2n + 1. Due to lemma
A.1, we have c(2n)α = c(2n)β with β ∈ W(σn+1, . . . , σj).

Let i (i > 0) be such that β ∈ W(σn+i, σn+i+1, . . . , σj) and β /∈ W(σn+i+1, . . . , σj). We shall
demonstrate that there exists an element β̄ ∈ W(σn+i+1, . . . , σj) for which

c(2n)βc(2n) = c(2n)β̄c(2n) .

Given this statement, the proof follows by induction on i.

The element β is a linear combination of elements of the form xun+iy, where the elements x and
y belong to W(σn+i+1, . . . , σj) and ui is equal to σn+i or κn+i. We have

c(2n)xun+iyc
(2n) = c(2n)xc(2i)↑n−iun+ic

(2i)↑n−iyc(2n) ∼ c(2n)xc(2i)↑n−iyc(2n) = c(2n)xyc(2n) .

In the first equality we used the relations (2.33); the proportionality follows from the relations (A.3)
and (A.2). Then we used again the relations (2.33) to absorb the contractor c(2i)↑n−i into c(2n).

The proof is finished. �

B Further properties of contractors

The relations, involving the elements κi, for the generators of the BMW algebras have analogues for
the higher contractors. Two examples of such relations are proved in lemma A.2. In proposition B.1
we prove further analogues.

The identities in the lemma below have several versions obtained by an application of the automor-
phisms (2.16) and (2.15) and the antiautomorphism (2.19). For an identity of each type we present
one version.

Proposition B.1 Another analogue of the identity (2.9):

κ2jc
(2j)κ2j = η−1κ2jc

(2j−2)↑1 . (B.1)

More general than (A.2) analogues of the identity (2.5):

c(2j)σj+kσj+k+1 . . . σ2jc
(2j) = (η−1µ−1)j+1−kc(2j) for 0 < k ≤ j (B.2)

and
c(2j)σj−kσj−k+1 . . . σ2jc

(2j) = η−j(µ−1)j−1−kc(2j) for 0 ≤ k < j . (B.3)

An analogue of the identities (2.8):

c(2j)c(2j)↑1 = η−jc(2j)σ−1
2j σ

−1
2j−1 . . . σ

−1
1 . (B.4)

An analogue of the identity (2.7):

σ′jσ
′
j−1 . . . σ

′
1c

(2j)↑1σ′1 . . . σ
′
j−1σ

′
j = σ′j+1σ

′
j+2 . . . σ

′
2jc

(2j)σ′2j . . . σ
′
j+2σ

′
j+1 . (B.5)

Another analogue of the identity (2.9):

c(2j)↑1c(2j)c(2j)↑1 = η−2jc(2j)↑1 . (B.6)

An analogue of the identity (2.35):

c(2j)τ (2k)↑j−k = µkc(2j) for k ≤ j . (B.7)

where the elements τ (i) are defined in eq.(2.14).
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Proof. The identity (B.1) is proved by induction on j (the base of induction, j = 1, is the relation
(2.9) ):

κ2j+2c
(2j+2)κ2j+2 = κ2j+2c

(2j)↑1κ2j+1κ1c
(2j)↑1κ2j+2 = c(2j)↑1κ2j+2κ2j+1κ2j+2κ1c

(2j)↑1

= c(2j)↑1κ2j+2κ1c
(2j)↑1 = η−1κ2j+2c

(2j)↑1 .

In the first equality we used the definition (2.29); in the second equality we formed the combination
κ2j+2κ2j+1κ2j+2; in the third equality we used the relation (2.9); the fourth equality is the induction
assumption.

The identity (B.2) is proved by induction on k down; the base of induction, when k = j, is the
identity (A.2).

c(2j)σj+kσj+k+1 . . . σ2jc
(2j) = c(2j)c(2k)↑j−kσj+kσj+k+1 . . . σ2jc

(2k)↑j−kc(2j)

= c(2j)c(2k)↑j−kσj+kc
(2k)↑j−kσj+k+1 . . . σ2jc

(2j)

= η−1µ−1c(2j)c(2k)↑j−kσj+k+1 . . . σ2jc
(2j)

= η−1µ−1c(2j)σj+k+1 . . . σ2jc
(2j) = (η−1µ−1)j+1−kc(2j) .

In the first equality we used the property (2.33); in the second equality we formed the combination
c(2k)↑j−kσj+kc

(2k)↑j−k; in the third equality we used the identity (A.2); in the fourth equality we used
again the property (2.33); the fifth equality is the induction assumption.

The identity (B.3) is proved by induction on k. We have c(2j)σj = µc(2j) by the relation (2.35), so
the identity (B.3) with k = 0 follows from the identity (B.2) with k = 1.

Next, we have, for i < j:

c(2j)σiσi+1 . . . σ2jc
(2j) = c(2j)σ2j−i(σi+1 . . . σ2j)c

(2j)

= c(2j)(σi+1 . . . σ2j)σ2j−i−1c
(2j) = c(2j)(σi+1 . . . σ2j)σi+1c

(2j) .
(B.8)

Here we used the property (2.34) and the defining relation (2.1).
The last expression in eq.(B.8) can be rewritten in a form

c(2j)σi+2(σi+1 . . . σ2j)c
(2j) ,

again by the braid relation (2.1).

If i+ 2 is still smaller than j, we continue in the same manner:

c(2j)σi+2(σi+1 . . . σ2j)c
(2j) = c(2j)σ2j−i−2(σi+1 . . . σ2j)c

(2j)

= c(2j)(σi+1 . . . σ2j)σ2j−i−3c
(2j) = c(2j)(σi+1 . . . σ2j)σi+3c

(2j)
(B.9)

and the last expression in eq.(B.9) can again be rewritten in a form

c(2j)σi+4(σi+1 . . . σ2j)c
(2j) .

We repeat this process till the moment when the index of the underlined σ becomes equal to j. Then
we use the property (2.35) and conclude

c(2j)σiσi+1 . . . σ2jc
(2j) = µc(2j)σi+1 . . . σ2jc

(2j) ,

which, due to the induction assumption, finishes the proof of the identity (B.3).

The proof of the identity (B.4) consists of a calculation

c(2j)c(2j)↑1 = c(2j)σ1σ2 . . . σ2jc
(2j)σ−1

2j . . . σ
−1
2 σ−1

1 = η−jc(2j)c(2j)σ−1
2j . . . σ

−1
2 σ−1

1 .
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The first equality here is valid due to the defining relations (2.1); in the second equality we used the
identity (B.3) with k = j − 1.

Using a combination of the isomorphisms (2.15) and (2.17), we can rewrite the identity (B.4) in
forms

c(2j)↑1c(2j) = η−jc(2j)↑1σ1σ2 . . . σ2j , (B.10)

c(2j)c(2j)↑1 = η−jc(2j)σ2j . . . σ2σ1 (B.11)

and
c(2j)↑1c(2j) = η−jc(2j)↑1σ−1

1 σ−1
2 . . . σ−1

2j . (B.12)

We now turn to the proof of the identity (B.5). First, we prove by induction on i the following
identity:

σ′1(κ2κ3 . . . κj+1)σ
′
1σ

′
2 . . . σ

′
j = σ′2σ

′
3 . . . σ

′
j+1(κ1κ2 . . . κj)σ

′
j+1 . (B.13)

The base of induction (j = 1) is the identity (2.7). The induction step is

σ′1(κ2κ3 . . . κj+2)σ
′
1σ

′
2 . . . σ

′
j+1 = σ′1(κ2κ3 . . . κj+1)(σ

′
1σ

′
2 . . . σ

′
j)κj+2σ

′
j+1

= σ′2σ
′
3 . . . σ

′
j+1(κ1κ2 . . . κj)σ

′
j+1κj+2σ

′
j+1 = σ′2σ

′
3 . . . σ

′
j+1(κ1κ2 . . . κj)σ

′
j+2κj+1σ

′
j+2

= σ′2σ
′
3 . . . σ

′
j+2(κ1κ2 . . . κj+1)σ

′
j+2 ,

where we used the identity (2.7) in the third equality.

The image of the identity (B.13) under the antiautomorphism (2.19) reads

σ′jσ
′
j−1 . . . σ

′
1(κj+1κj . . . κ2)σ

′
1 = σ′j+1(κjκj−1 . . . κ1)σ

′
j+1σ

′
j . . . σ

′
2 . (B.14)

The proof of the identity (B.5) is again by induction on j (the base of induction is the identity
(2.7) ):

(σ′j+1σ
′
j . . . σ

′
1)c

(2j+2)↑1(σ′1 . . . σ
′
jσ

′
j+1)

= η−1(σ′j+1 . . . σ
′
1)c

(2j)↑2(κ2j+2 . . . κj+3)(κ2 . . . κj+2)(σ
′
1 . . . σ

′
j+1)

= η−1(σ′j+1 . . . σ
′
2)c

(2j)↑2(κ2j+2 . . . κj+3)σ
′
1(κ2 . . . κj+2)(σ

′
1 . . . σ

′
j+1)

= η−1(σ′j+1 . . . σ
′
2)c

(2j)↑2(κ2j+2 . . . κj+3)(σ
′
2 . . . σ

′
j+2)(κ1 . . . κj+1)σ

′
j+2

= η−1(σ′j+1 . . . σ
′
2)c

(2j)↑2(σ′2 . . . σ
′
j+1)(κ2j+2 . . . κj+3)σ

′
j+2(κ1 . . . κj+1)σ

′
j+2

= η−1(σ′j+2 . . . σ
′
2j+1)c

(2j)↑1(σ′2j+1 . . . σ
′
j+2)(κ2j+2 . . . κj+3)σ

′
j+2(κ1 . . . κj+1)σ

′
j+2

= η−1(σ′j+2 . . . σ
′
2j+1)c

(2j)↑1σ′2j+2(κ2j+1 . . . κj+2)(σ
′
2j+2 . . . σ

′
j+3)(κ1 . . . κj+1)σ

′
j+2

= η−1(σ′j+2 . . . σ
′
2j+2)c

(2j)↑1(κ2j+1 . . . κj+2)(κ1 . . . κj+1)(σ
′
2j+2 . . . σ

′
j+2)

= (σ′j+2 . . . σ
′
2j+2)c

(2j+2)σ′2j+2 . . . σ
′
j+2 .

Here in the first equality we used the expression (2.37) for the contractor; in the second equality we
moved the element σ′1 rightwards to the string (κ2 . . . κj+2); in the third equality we transformed the
underlined expression using the identity (B.13); in the fourth equality we moved the string (σ′2 . . . σ

′
j+1)

leftwards to the contractor c(2j)↑2; in the fifth equality we used the induction assumption to transform
the underlined expression; in the sixth equality we transformed the underlined expression using the
shift ↑j+1 of the identity (B.14); in the seventh equality we rearranged terms and then used again the
expression (2.37) for the contractor in the eighth equality.

The following calculation establishes the identity (B.6):

c(2j)↑1c(2j)c(2j)↑1 = η−jc(2j)↑1c(2j)σ2j . . . σ2σ1 = η−2jc(2j)↑1 .
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Here in the first equality we used the relation (B.11) while in the second one we used the relation
(B.12).

To prove the identity (B.7), it is enough to prove its particular case

c(2j)τ (2j) = µjc(2j) (B.15)

since the element c(2j) is divisible by the element c(2j−2k)↑k due to the relations (2.33).

We shall need two identities. The first one is

c(2j+2)σ1σ2 . . . σ2j = c(2j+2)c(2j)↑1σ1σ2 . . . σ2j = ηjc(2j+2)c(2j) . (B.16)

In the first equality we used the relations (2.33); in the second equality we used the relations (B.10)
and again (2.33).

Here is the second identity:

c(2j+2)c(2j)σ2j+1 = c(2j+2)σ1c
(2j) = c(2j+2)σ2j−1c

(2j) = c(2j+2)σ3c
(2j)

= . . . = µc(2j+2)c(2j) .
(B.17)

In the first equality we moved the element σ2j+1 leftwards through the contractor c(2j) and then we
replaced the combination c(2j+2)σ2j+1 by c(2j+2)σ1 due to the relation (2.34); repeatedly using the
relation (2.34), we replaced the combination σ1c

(2j) by σ2j−1c
(2j), then c(2j+2)σ2j−1 by c(2j+2)σ3 etc.

The index of the element σ jumps by 2; at one moment it becomes equal to either j or j + 1 and we
use then the relation (2.35).

We now prove the relation (B.15) by induction on j (the base of induction, j = 1, is the relation
(2.4) ):

c(2j+2)τ (2j+2) = c(2j+2)(σ1 . . . σ2j+1)τ
(2j+1) = ηjc(2j+2)c(2j)σ2j+1τ

(2j+1)

= µηjc(2j+2)c(2j)τ (2j+1) = µηjc(2j+2)c(2j)τ (2j)(σ2j . . . σ1)

= µj+1ηjc(2j+2)c(2j)(σ2j . . . σ1) = µj+1η2jc(2j+2)c(2j)c(2j)↑1

= µj+1η2jc(2j+2)c(2j)↑1c(2j)c(2j)↑1 = µj+1c(2j+2) .

In the first equality we used the iterative definition of the elements τ (i) (it is different but equivalent to
the one given in eq.(2.15) ); in the second equality we used the relation (B.16); in the third equality we
used the relation (B.17); in the fourth equality we used again the iterative definition of the elements
τ (i); the fifth equality is the induction assumption; in the sixth equality we used the relation (B.11);
in the seventh equality we used the relations (2.33); finally, in the eighth equality we used the relation
(B.6).

The proof is finished. �

Remark B.2 We have also

c(2j+2)τ (2j+1) = c(2j+2)(σ1 . . . σ2j)τ
(2j) = ηjc(2j+2)c(2j)τ (2j) = (ηµ)jc(2j+2)c(2j) .

In the first equality we used the iterative definition of the elements τ (i); in the second equality we used
the relation (B.16); in the third equality we used the identity (B.7).

C On twists in quasitriangular Hopf algebras

Here we shall discuss universal (i.e., quasi-triangular Hopf algebraic) counterparts of relations from
subsections 3.2, 3.3, especially from proposition 3.6: we shall see, in item 8 of the appendix, that
these relations have a quite transparent meaning, they reflect the properties of the twisted universal
R-matrix.

We do not give an introduction to the theory of quasitriangular Hopf algebras assuming that the
reader has some basic knowledge on the subject (see, e.g., [6], the chapter 4).
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C.1 Generalities

1. Let A be a Hopf algebra; m,∆, ǫ and S denote the multiplication, comultiplication, counit and
antipode, respectively.

Assume that A is quasitriangular with a universal R-matrix R = a⊗b (this is a symbolic notation,
instead of

∑

i ai ⊗ bi). One has (S ⊗ S)R = R. The universal R-matrix R is invertible, its inverse is
related to R by formulas R−1 = S(a)⊗ b or (id ⊗ S)(R−1) = R.

For elements in A ⊗ A, the ‘skew’ product ⊙ is defined as the product in Aop ⊗ A, where Aop

denotes the algebra with the opposite multiplication. In other words, the skew product of two elements,
x ⊗ y and x̃ ⊗ ỹ is (x ⊗ y) ⊙ (x̃ ⊗ ỹ) = x̃x ⊗ yỹ. For a skew invertible element X ∈ A ⊗ A, we shall
denote its skew inverse by ψX . The universal R-matrix R has a skew inverse, ψR = a ⊗ S(b). The
element ψR is invertible, (ψR)

−1 = a ⊗ S2(b). The element R−1 is skew invertible as well, its skew
inverse is ψ(R−1) = S2(a) ⊗ b. All these formulas are present in [9]. We shall see below that there
are similar formulas for the twisting element F . However, the properties of the twisting element F
and of the universal R-matrix R are different, for instance, the square of the antipode is given by
S2(x) = u

R
x (u

R
)−1, where u

R
= S(b)a, but there is no analogue of such formula for F . Because of

this difference, we felt obliged to give some proofs of the relations for F .

Let ρ be a representation of the algebra A in a vector space V . For an element X ∈ A⊗A, denote
by ρ̂(X ) ∈ End(V ⊗2) an operator ρ̂(X ) = P · (ρ⊗ ρ)(X ) (recall that P is the permutation operator).
The skew product ⊙ translates into the following product ⊙̂ for elements of End(V ⊗2):

(X⊙̂Y )13 := Tr (2)(X12Y23) . (C.1)

In other words, if X ⊙ Y = Z then ρ̂(X ) ⊙̂ ρ̂(Y) = ρ̂(Z). For an operator X ∈ End(V ⊗2), its skew
inverse ΨX , in the sense explained in subsection 3.1, is presicely the inverse with respect to the product
⊙̂.

2. The following lemma is well known (see, e.g., [6], the chapter 4, and references therein).

Lemma C.1 Consider an invertible element F = α ⊗ β ∈ A ⊗ A (we use the symbolic notation,
α⊗ β =

∑

i αi ⊗ βi, like for the universal R-matrix) and let F−1 = γ ⊗ δ. Assume that the element F
satisfies

F12 (∆⊗ id)(F) = F23 (id⊗∆)(F) . (C.2)

Assume also that
ǫ(α)β = α ǫ(β) = 1 . (C.3)

Then an element v
F
= αS(β) is invertible, its inverse is

(v
F
)−1 = S(γ) δ . (C.4)

One also has
S(α) (v

F
)−1 β = 1 and γ v

F
S(δ) = 1 . (C.5)

Twisting the coproduct by the element F ,

∆F (a) = F ∆(a) F−1 , (C.6)

one obtains another quasitriangular structure on A with

RF = F21 R F−1 (C.7)

and
SF (a) = v

F
S(a) (v

F
)−1 (C.8)

(the counit does not change).

An element F , satisfying conditions (C.2) and (C.3) is called twisting element. We shall denote by
AF the resulting ‘twisted’ quasitriangular Hopf algebra.

Remark C.2 On the representation level, the formula (C.7) transforms (compare with eq.(3.23) )
into ρ̂(RF ) = ρ̂(F)21ρ̂(R)21ρ̂(F)−1

21 . Below, when we talk about matrix counterparts of universal
formulas, one should keep in mind this difference in conventions.
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3. Assume, in addition to eq.(C.2), that

(∆ ⊗ id) (F) = F13 F23 (C.9)

and
(id⊗∆) (F) = F13 F12 . (C.10)

Now the conditions (C.3) follow from the relations (C.9) and (C.10) and the invertibility of the
twisting element F : applying ǫ ⊗ id ⊗ id to the relation (C.9), we find (ǫ ⊗ id)(F) = 1; applying
id⊗ id⊗ ǫ to the relation (C.10), we find (id⊗ ǫ)(F) = 1.

Since ∆op(x)R = R∆(x) for any element x ∈ A (where ∆op is the opposite comultiplication), it
follows from the relation (C.9) that

R12 F13 F23 = F23 F13 R12 . (C.11)

Similarly, the relation (C.10) implies

R23 F13 F12 = F12 F13 R23 . (C.12)

When both relations (C.9) and (C.10) are satisfied, the relation (C.2) is equivalent to the Yang–
Baxter equation for the twisting element F :

F12 F13 F23 = F23 F13 F12 . (C.13)

Remark C.3 One also has

(∆F ⊗ id)(F21) = F31 F32 and (id⊗∆F )(F21) = F31 F21 .

Therefore, one can twist ∆F again, now by the element F21.

On the matrix level, this corresponds to the second conjugation of ρ̂(R) by ρ̂(F),

ρ̂( (RF )F21 ) = ρ̂(F)2 ρ̂(R) ρ̂(F)−2 .

Remark C.4 The element F−1
21 satisfies the conditions (C.2), (C.9) and (C.10) if the element F does.

Thus, one can twist the coproduct ∆ by the element F−1
21 as well.

4. The conditions (C.3), (C.9), (C.10) imply the invertibility and skew-invertibility of the element
F . The formulas for its inverse and skew inverse are similar to the corresponding formulas for the
universal R-matrix R (in particular, we reproduce the standard formulas for R since we can take
F = R).

Lemma C.5 Assume that the conditions (C.3) and (C.9) are satisfied. Then the element F is in-
vertible, its inverse is

F−1 = S(α)⊗ β . (C.14)

Assume that the conditions (C.3) and (C.10) are satisfied. Then the element F is skew invertible,
with the skew inverse

ψF = α⊗ S(β) . (C.15)

Assume that the conditions (C.3), (C.9) and (C.10) are satisfied. Then

(S ⊗ S)(F) = F . (C.16)

Moreover, the element ψF is invertible, its inverse is

(ψF )
−1 = α⊗ S2(β) (C.17)

and the element F−1 is skew-invertible, its skew inverse reads

ψ(F−1) = S2(α) ⊗ β . (C.18)
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Proof. The calculations are similar to those, from textbooks, for the universal R-matrix. We include
this proof for a completness only.

Applications of m12 ◦ S1 and m12 ◦ S2 to the relation (C.9) imply the formula (C.14) (here m12

is the multiplication of the first and the second tensor arguments; S1 is an operation of taking the
antipode of the first tensor argument, etc.).

Applications of m23 ◦ S2 and m23 ◦ S3 to the relation (C.10) establish the formula (C.15).

Given the formula (C.15), the statement, that the element ψF is a left skew inverse of the element
F , reads in components:

αα′ ⊗ S(β′)β = 1 , (C.19)

where primes are used to distinguish different summations terms, the expression αα′ ⊗ S(β′)β stands
for

∑

i,j αiαj ⊗ S(βj)βi. Applying S1 to this equation, we find (S(α′)⊗ S(β′)) · (S(α)⊗ β) = 1 which
means that the element S(α′)⊗ S(β′) is the left inverse of the element S(α)⊗ β. However, the latter
element is, by the formula (C.14), the inverse of F . Therefore, the relation (C.16) follows.

Applying S2 to the equality (C.19), we find that the element α⊗ S2(β) is the right inverse of the
element ψF .

Applying S2
1 to the equality (C.19) and using the relation (C.16), we find that S2(α)⊗β is a right

skew inverse of the element F−1.

We shall not repeat details for the left inverse of the element ψF and the left skew inverse of the
element F−1, calculations are analogous. �

Remark C.6 There is a further generalization of the formulas from lemma C.5. Start with the
element F and alternate operations ‘take an inverse’ and ‘take a skew inverse’. Then the next operation
is always possible, the result is always invertible and skew invertible. One arrives, after n steps, at
Sn(α) ⊗ β if the first operation was ‘take an inverse’; if the first operation was ‘take a skew inverse’
then one arrives at α⊗ Sn(β) (see [9], section 8).

From now on, we shall assume that the twisting element F is invertible and satisfies the conditions
(C.2), (C.9) and (C.10).

C.2 Counterparts of matrix relations

5. We turn now to the Hopf algebraic meaning of relations from subsections 3.2, 3.3.

The square of the antipode in an almost cocommutative Hopf algebra, with a universal R-matrix
R = a⊗ b, satisfies the property S2(x) = u

R
x(u

R
)−1, where u

R
= S(b)a, for any element x ∈ A. In

a matrix representation of an algebra A, the element u
R

maps to the matrix Dρ̂(R) (and the element
S(u

R
) maps to the matrix Cρ̂(R)), so an identity (which follows from the relation (C.16) )

(1⊗ u
R
) F−1 (1⊗ (u

R
)−1) ≡ (1⊗ u

R
)(S(α) ⊗ β)(1⊗ (u

R
)−1 = S(α) ⊗ S2(β)

= α⊗ S(β) ≡ ψF

becomes one of the relations from lemma 3.3. In a similar manner, one can interpret other relations
from lemma 3.3.

Such an interpretation is not, however, unique. For instance, applying m12 ◦ S2 to the relation
(C.13) and using the formula (C.14), one finds

v
F
⊗ 1 = α′v

F
S(α)⊗ ββ′ ,

which, after an application of S2, becomes, due to the formulas (C.15) and (C.16),

v
F
⊗ 1 = ψF (v

F
⊗ 1) F . (C.20)
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Similarly, applying (id ⊗ S) ◦m23 ◦ τ23 ◦ S3 (where τ is the flip, τ(x ⊗ y) = y ⊗ x) to eq.(C.13) and
using eqs.(C.16) and (C.17), one finds

1⊗ v
F
= αα′ ⊗ S(β′)v

F
S2(β) ,

which, after an application of S1, becomes, with the help of eq.(C.16),

1⊗ v
F
= F (1⊗ v

F
) ψF . (C.21)

In the matrix picture, the relations (C.20) and (C.21) are also equivalent to particular cases of the
relations from lemma 3.3 – but this time we did not use the fact that the square of the antipode is
given by the conjugation by the element u

R
.

Below we shall make use of another version of the formulas (C.20) and (C.21).

Writing the formulas (C.20) and (C.21) as (v
F
⊗ 1)F−1 = ψF (vF ⊗ 1) and F−1(1 ⊗ v

F
) = (1 ⊗

v
F
)ψF , respectively, and using the expressions for ψF , (ψF )

−1 and F−1 from lemma C.5, we find, in
components:

v
F
S(α) ⊗ β = αv

F
⊗ S(β) (C.22)

and, respectively,
S(α)⊗ βv

F
= α⊗ v

F
S(β) . (C.23)

Applying S1 or S2 to eqs.(C.22) and (C.23), we obtain corresponding formulas with v
F

replaced
by S(v

F
). These formulas, together with eqs.(C.22) and (C.23), imply

F · (v
F
S(v

F
)⊗ 1) = (v

F
S(v

F
)⊗ 1) · F ,

F · (1⊗ v
F
S(v

F
)) = (1⊗ v

F
S(v

F
)) · F .

(C.24)

It follows, from a compatibility of the relations (C.20) and (C.21) (express the element ψF in terms
of F and v

F
in two ways), that

F12 · (vF ⊗ v
F
) = (v

F
⊗ v

F
) · F12 . (C.25)

The relations (C.24) and (C.25) are universal analogues of the matrix equalities (3.19) and (3.18)
(for certain choices of the compatible pairs of the R-matrices) from the corollary 3.4.

6. We need some more information about the element v
F
. The inverse to the element v

F
is given by

the formula (C.4); it follows from lemma C.5 that (v
F
)−1 = S2(α)β.

By eq.(C.16), one has S(v
F
) = S(β)α and, then, S2(v

F
) = v

F
. Since S2(x) = u

R
x(u

R
)−1 for any

element x ∈ A, we conclude that the element u
R

commutes with the element v
F
and, similarly, with

the element S(v
F
).

Making the flip in the relations (C.22) and (C.23), multiplying them out and comparing, we find
that the elements v

F
and S(v

F
) commute.

Remark C.7 In fact, more is true. Applying id⊗Sj to the relation (C.22), we obtain v
F
α⊗Sj−1(β) =

αv
F
⊗Sj+1(β) (we used the relation (C.16) to rearrange the powers of the antipode). In a similar way,

applying S−j ⊗ id to the relation (C.23), we obtain α⊗ Sj−1(β)v
F
= α⊗ v

F
Sj+1(β). Multiplying out

and comparing the right hand sides, we find that the element v
F
commutes with the elements Sk(α)β

∀ k ∈ Z.

The same procedure, applied to the flipped versions of the relations (C.22) and (C.23) shows that
the element v

F
commutes with the elements Sk(β)α ∀ k ∈ Z.

Applying the antipode to these commutativity relations, we find that the element S(v
F
) commutes

with the elements Sk(α)β and Sk(β)α ∀ k ∈ Z as well.
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7. We shall now establish a Hopf algebraic counterpart of the relation (3.24).

There is a closed formula for the coproduct of the element v
F
, again similar to the standard formula

for the coproduct of the element u
R
.

Lemma C.8 One has
∆(v

F
) = F−1

12 F−1
21 · (v

F
⊗ v

F
) . (C.26)

Proof. Together, eqs.(C.9) and (C.10) imply

(∆⊗∆)(F) = F14F13F24F23 .

Therefore, the coproduct of v
F
can be written in a form

∆(v
F
) = α(1)S(β(2))⊗ α(2)S(β(1)) = αα′S(ββ′′)⊗ α′′v

F
S(β′) (C.27)

(we use the Sweedler notation for the coproduct, ∆(x) = x(1) ⊗ x(2) for an element x ∈ A).

Using the relation (C.23), we continue to rewrite the expression (C.27):

∆(v
F
) = αS(α′)S(ββ′′)⊗ α′′β′v

F
. (C.28)

The relation (C.13), in a form F13F23F
−1
12 = F−1

12 F23F13, reads, in components,

αS(α′)⊗ α′′β′ ⊗ ββ′′ = S(α)α′′ ⊗ βα′ ⊗ β′β′′ . (C.29)

Using eq.(C.29), we transform the right hand side of eq.(C.28) to a form

∆(v
F
) = S(α)α′′S(β′′)S(β′)⊗ βα′v

F
= S(α)v

F
S(β′)⊗ βα′v

F
.

Using again eq.(C.23), we obtain

∆(v
F
) = S(α)β′v

F
⊗ βS(α′)v

F
,

which, by the formula (C.14), is a component form of the relation (C.26). �

Applying the flip to the relation (C.26), we find ∆op(v
F
) = F−1

21 F−1
12 ·(v

F
⊗v

F
). Since ∆op(v

F
) R =

R ∆(v
F
), we conclude

(RF )F21 (v
F
⊗ v

F
) = (v

F
⊗ v

F
) R . (C.30)

The translation of the equality (C.30) into the matrix language is equivalent to the relation (3.24) (see
the remarks C.2 and C.3).

Remark C.9 It follows from the relation (C.26) that

∆(S(v
F
)) = (S(v

F
)⊗ S(v

F
)) · F−1

12 F−1
21 . (C.31)

The relation (C.25), together with the relations (C.26) and (C.31), implies that an element

ϕ := v
F
S(v

F
)−1 (C.32)

is group-like, ∆(ϕ) = ϕ ⊗ ϕ. Therefore, S(ϕ) = ϕ−1 = S(v
F
)(v

F
)−1 but S(ϕ) = S(v

F
S(v

F
)−1) =

(v
F
)−1S(v

F
), which shows again that v

F
commutes with S(v

F
).
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8. The twisted Hopf algebra AF is quasitriangular, so we can write the usual identities for its
universal R-matrix RF = F21RF−1. The relations from proposition 3.6 are the matrix counterparts
of some of these identities.

For the twisted Hopf algebra AF , one finds, with the help of the first relation in eq.(C.5), that
u(RF ) = ϕu

R
, where the element ϕ is defined by the formula (C.32) (on the matrix level, this becomes

one of the relations (3.29) ). In particular,

(SF )
2 (x) = ϕ S2(x) ϕ−1 . (C.33)

(i) The relation (3.26) is a consequence of, for example, the identity

(id⊗ SF )((RF )
−1) = RF . (C.34)

We have

RF = (id ⊗ SF)((RF )
−1) = (id⊗ SF )(FR−1F−1

21 ) = (id⊗ SF )(αS(a)β
′ ⊗ βbS(α′))

= αS(a)β′ ⊗ v
F
S2(α′)S(b)S(β)(v

F
)−1 = αaβ′ ⊗ v

F
S2(α′)bS(β)(v

F
)−1 .

(C.35)

Here we used eq.(C.8) and the identities from lemma C.5 for F and R. Applying S2 ⊗S to eq.(C.22),
we find

v
F
S2(α) ⊗ β = αv

F
⊗ β , (C.36)

since S2(v
F
) = v

F
. Using the relation (C.36) and the relation (C.23) in a form S(α) ⊗ (v

F
)−1β =

α⊗ S(β)(v
F
)−1, we rewrite the last expression in eq.(C.35):

RF = S(α)aβ′ ⊗ α′v
F
b(v

F
)−1β

or
RF = F21 ⊙

(

(1⊗ v
F
)R(1 ⊗ v

F
)−1
)

⊙F−1 , (C.37)

which, on the matrix level, is equivalent to the relation (3.26).

(ii) Next,

ψ(RF ) = (id⊗ SF )(RF ) = (id⊗ SF )(F21RF−1) = (id⊗ SF )(βaS(α
′)⊗ αbβ′)

= βaS(α′)⊗ v
F
S(β′)S(b)S(α)(v

F
)−1 = βaα′ ⊗ v

F
β′S(b)S(α)(v

F
)−1

or
(1⊗ v

F
)−1 ψ(RF ) (1⊗ v

F
) = F ⊙ ψR ⊙F−1

21 , (C.38)

which, on the matrix level, is equivalent to the relation (3.27).

(iii) To obtain another formula for ψ(RF ), we start with the identity ψ(RF ) = (id⊗(SF)
2)((RF )

−1),
which is a direct consequence of the identities from lemma C.5:

ψ(RF ) = (id⊗ (SF )
2)(FR−1F−1

21 ) = (id⊗ (SF )
2)
(

αS(a)β′ ⊗ βbS(α′)
)

= αS(a)β′ ⊗ ϕS2(β)S2(b)S3(α′)ϕ−1 = αaβ′ ⊗ ϕS2(β)S(b)S3(α′)ϕ−1

= αaβ′ ⊗ S(v
F
)−1βv

F
S(b)(v

F
)−1S(α′)S(v

F
) .

(C.39)

Here we used the identities from lemma C.5, relations α⊗ v
F
S2(β) = α⊗βv

F
and S3(α)(v

F
)−1⊗β =

(v
F
)−1S(α) ⊗ β, which follow from eqs.(C.22) and (C.23), and the formula (C.33) for the square of

the twisted antipode.

Eq.(C.39) can be rewritten as

(1⊗ S(v
F
)) ψ(RF ) (1⊗ S(v

F
)−1) = F (1⊗ v

F
) ψR (1⊗ (v

F
)−1) F−1

21 , (C.40)

which, in the matrix picture, is equivalent to eq.(3.28).
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(iv) The property (SF ⊗ SF )(RF ) = RF leads to

(v
F
⊗ v

F
) F−1 R F21 = F21 R F−1 (v

F
⊗ v

F
) . (C.41)

Since the twisting element F commutes with v
F
⊗ v

F
, the formula (C.41) is another manifestation of

the relation (3.24).

Remark C.10 We conclude this appendix with several more properties of the group-like element ϕ
defined in eq.(C.32).

We have
R · (ϕ⊗ ϕ) = (ϕ⊗ ϕ) · R . (C.42)

To see this, apply S ⊗ S to the relation (C.30) and then compare with the same relation (C.30).

The matrix equivalent of the relation (C.42) is the relation (3.25).

Recall that a quasitriangular Hopf algebra A is called a ribbon Hopf algebra if it contains a ribbon
element r, that is, a central element such that r2 = u

R
S(u

R
) and ∆(r) = R−1

12 R
−1
21 · (r ⊗ r) (see [46],

or [6], the chapter 4). The twisted algebra AF is a ribbon Hopf algebra if the algebra A is; for the
ribbon element of the algebra AF , one can choose r

F
= ϕr.
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