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Abstract
Reflecting the discrepancy between received and predicted outcomes, the reward prediction error (RPE) plays an important 
role in learning in a dynamic environment. A number of studies suggested that the feedback-related negativity (FRN) com-
ponent of an event-related potential, known to be associated with unexpected outcomes, encodes RPEs. While FRN was 
clearly shown to be sensitive to the probability of outcomes, the effect of outcome magnitude on FRN remains to be further 
clarified. In studies on the neural underpinnings of reward anticipation and outcome evaluation, a monetary incentive delay 
(MID) task proved to be particularly useful. We investigated whether feedback-locked FRN and cue-locked dN200 responses 
recorded during an auditory MID task were sensitive to the probability and magnitude of outcomes. The cue-locked dN200 is 
associated with the update of information about the magnitude of prospective outcomes. Overall, we showed that feedback-
locked FRN was modulated by both the magnitude and the probability of outcomes during an auditory version of MID task, 
whereas no such effect was found for cue-locked dN200. Furthermore, the cue-locked dN200, which is associated with the 
update of information about the magnitude of prospective outcomes, correlated with the standard feedback-locked FRN, 
which is associated with a negative RPE. These results further expand our knowledge on the interplay between the processing 
of predictive cues that forecast future outcomes and the subsequent revision of these predictions during outcome delivery.

Keywords  Feedback-related negativity · N200 · Monetary incentive delay task · Electroencephalography

Introduction

Tightly interwoven with reinforcement learning (RL) theory 
(Bush and Mosteller 1951), decision theory assumes that 
individuals’ choices are driven by the values attached to pro-
spective outcomes (Steele and Stefansson 2015). The magni-
tude and probability of outcomes are integrated to form the 
expected value (Bandura 1977; Von Neumann and Morgen-
stern 1944). For example, the temporal difference model of 
RL (Rescorla and Wagner 1972) indicates that an individual 
assigns high values to states that predict future rewards when 
encountered unexpectedly. Therefore, the reward predic-
tion error (RPE) reflects the discrepancy between obtained 
and expected outcomes: unexpected unfavorable outcomes 
(i.e., monetary loss) produce negative RPEs, whereas unex-
pected favorable outcomes (i.e., monetary gain) result in 
positive RPEs. Subsequently, with the seminal work of 
Wolfram Schultz (1997), RL theory has come to play an 
important bridging role between economics (e.g., Camerer 
and Ho 1999; Erev and Roth 1998), psychology (Rescorla 
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and Wagner 1972), and neuroscience (Schultz 1997). The 
dopaminergic system has been proposed to broadcast a 
“prediction error” signal of precisely the form needed in 
reinforcement algorithms to drive convergence toward a 
standard dynamic programming value function (Barto and 
Sutton 1982). Since then, the dopaminergic RPE hypothesis 
has been tested with the use of a variety of neuroimaging 
techniques, including electroencephalography (EEG) (Düzel 
et al. 2009; Holroyd and Coles 2002; Knutson et al. 2005; 
O’Doherty et al. 2001; Pessiglione et al. 2006; Talmi et al. 
2012). Using EEG-evoked responses to the obtained and 
expected outcomes, Holroyd and Coles (2002) suggested 
that a feedback-related negativity (FRN) component of 
event-related potentials (ERPs) can code an RPE learning 
signal that modifies performance on the task.

FRN is a relatively negative deflection in the ERP follow-
ing losses or error feedback compared with wins or positive 
feedback. Two main interpretations have been proposed to 
explain the nature of this negative difference wave, FRN, 
which occurs approximately 250–350 ms after feedback 
onset. FRN can represent a negative ERP component, elic-
ited by an unfavorable outcome (Ullsperger et al. 2014). 
Alternatively, this negative deflection can be explained by a 
positive ERP component, elicited by a favorable outcome, 
which is the reward positivity (RewP) (Proudfit 2015). Inter-
estingly, Holroyd et al. (2008) hypothesized that the negative 
deflection observed between 250 and 350 ms after feedback 
onset reflects the same ERP component as a stimulus-locked 
N200: the difference in processing favorable and unfavora-
ble outcomes results from the summation of the “default” 
negative N200 and the reward-related positive RewP. Con-
sequently, FRN/RewP should be stronger modulated by the 
expectations of positive outcomes. While the interpreta-
tion of FRN/RewP is still under debate, a general agree-
ment exists on its involvement in context-sensitive feedback 
evaluation underlying RPEs. In addition, electro- and mag-
netoencephalographic (E/MEG) and functional magnetic 
resonance imaging (fMRI) studies suggested the causal role 
of dopaminergic activity in the cingulate cortex and the sur-
rounding medial prefrontal cortex in FRN generation (Agam 
et al. 2011; Emeric et al. 2008; Miltner et al. 1997; Walsh 
and Anderson 2012; Warren et al. 2015).

The sensitivity of FRN to the valence of the outcome 
constitutes the main proof of the hypothesis that FRN might 
be an encoder of RPE’s sign (Holroyd and Coles 2002; Luu 
et al. 2000). A number of recent studies reported that FRN 
responds to the contextually most salient information and 
thus reflects an unsigned prediction error (Hauser et al. 
2014; Oliveira et  al. 2007; Talmi et  al. 2012, 2013). A 
recent meta-analysis (Sambrook and Goslin 2015) refuted 
this hypothesis and clearly demonstrated the main effect 
of valence and the interaction of RPE size and valence. 
Thus, FRN is sensitive to the size of the RPE, which can be 

manipulated by changing two components of expected value, 
namely, magnitude and probability. While the majority of 
neuroimaging studies suggest that FRN is more sensitive to 
the probability of outcomes than to their magnitude (Walsh 
and Anderson 2012), evidence also shows that the outcome 
magnitude exerts a modulatory effect on FRN (Sambrook 
and Goslin 2015).

Importantly, the brain constantly modifies expectations 
of prospective outcomes. According to RL theory, not only 
discrete outcomes but also the upcoming predictive stimuli 
can elicit RPEs. Predictive cues signaling the valence of 
future outcomes have been hypothesized to elicit an FRN-
like signal. ERPs to cues predicting future unfavorable 
outcomes show a more pronounced negative deflection in 
the time window corresponding to FRN than do ERPs to 
cues predicting future rewards (Baker and Holroyd 2009; 
Dunning and Hajcak 2007). In other studies in which cues 
indicated the probability of obtaining outcomes, ERPs were 
more negative after the cues that predicted probable negative 
outcomes than after those that predicted probable future pos-
itive outcomes (Holroyd et al. 2011; Liao et al. 2011; Walsh 
and Anderson 2011). This cue-locked FRN-like response 
(difference N200, dN200) also shapes the feedback-locked 
FRN: in the case of predicted outcomes, the RPE and the 
amplitude of the feedback-locked FRN were smaller, and in 
the case of unpredicted outcomes, the RPE and the ampli-
tude of the feedback-locked FRN were larger (for a review, 
see Walsh and Anderson 2012).

One of the paradigms that can be utilized to study the 
association between cue-locked (FRN-like) dN200 and 
standard FRN is a monetary incentive delay task (MID). 
The MID task is an elegant tool to study the different stages 
of RL from reward anticipation to its delivery (Knutson et al. 
2000, 2005). It can be used to delineate the neural mecha-
nisms of performance monitoring during behavioral acts 
with different expected values and RPEs. Initially, the MID 
task was used in fMRI studies on the neural processing of 
gains and losses (Knutson et al. 2000). Subsequent EEG and 
MEG studies utilized the MID task to examine the neural 
dynamics of reward processing with a temporal resolution in 
the millisecond range (Broyd et al. 2012; Doñamayor et al. 
2012; Thomas et al. 2013). The MID task introduces incen-
tive cues that signal both the magnitude and the probability 
of prospective outcomes. It enables the investigation of the 
effects of these two components of expected value on neural 
activity associated with the processing of incentive cues and 
feedback (Knutson et al. 2005). To our knowledge, no previ-
ous studies have investigated the simultaneous effects of the 
magnitude and probability of outcomes on incentive cue-
locked dN200 and feedback-locked FRN. In the classic MID 
task, visual stimuli, such as circles, squares, and triangles, 
are utilized as incentive cues that code the probabilities and 
magnitudes of outcomes. We developed an auditory version 
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of an MID task that relied on the sounds of different physical 
characteristics as incentive cues. This auditory version of the 
MID task was validated in this study and was further used in 
the examination of auditory perceptual learning.

The main purpose of this study is to investigate the influ-
ence of the expected probability and magnitude of the out-
come on (FRN-like) dN200 evoked by incentive cues at the 
beginning of each trial, as well as on FRN registered during 
feedback delivery at the end of each trial. We also examined 
the association between the amplitude of cue dN200 and 
FRN.

Methods

Participants

Twenty-seven subjects (17 women, 23 ± 3 years old) par-
ticipated in an EEG experiment, in which both behavioral 
and electrophysiological data were collected. Data from 18 
additional subjects were excluded because of the insufficient 
number of trials in one of the conditions for the averaging 
procedure (less than 20 in at least one of the conditions, 
according to Marco-Pallares et al. 2011) or because of exces-
sive EEG artifacts. All subjects were right-handed, with nor-
mal or corrected-to-normal vision. They did not report any 
history of psychiatric or neurological problems, and they all 
reported to be right-handed. The study was approved by the 
local ethics committee. All participants gave their written 
informed consent prior to their participation.

Auditory stimuli

Acoustic cues signaled a high or low prospective reward 
probability (0.80 and 0.20, respectively) and a high or low 
prospective reward magnitude (4 and 20 rubles, the equiva-
lent of 0.07 USD or 0.4 USD, respectively). The participants 
were given the cumulative reward they had earned, and this 
was, on average, equal to the cost of a dinner. A set of four 
sounds (cues) consisted of two levels of frequency (funda-
mental frequencies of 562 and 487 Hz) and two levels of 
intensity (55 and 80 dB) to encode the prospective reward 
probability and magnitude. All tones had a duration of 
200 ms (including 5 ms of rising and falling times). Stimuli 
were generated with PRAAT software (Boersma 2001). The 
probability and magnitude of reward were encoded differ-
ently in the two experimental groups. In group 1 (n = 14), 
the outcome magnitude was encoded by the intensity of the 
acoustic cue, whereas the gain probability was encoded by 
the frequency of the acoustic cue. In group 2 (n = 13), the 
encoding of the gain magnitude and gain probability was 
reversed. To decrease the effects of the physical parameters 

of stimuli on ERP processing, we polled the data of two 
experimental groups.

Study design

The main goal of this study was to investigate the effect of 
the valence, magnitude, and probability of gains on FRN 
and dN200. Because this study is a part of a larger research 
project, the experiment consisted of two MID task sessions 
performed on 2 consecutive days. Each MID task session 
involved 152 trials. The total duration of the experiment, 
including the technical preparation, was proximately 90 min.

Day 1 At the beginning of each experiment, the ability of 
the participants to identify auditory stimuli was tested during 
a recognition test. Prior to the MID task, the trial structure 
and the meaning of each acoustic cue were explained to the 
participants. Next, the participants performed the first ses-
sion of the MID task.

Day 2 At approximately the same time of the day, the 
participants performed the second session of the MID task.

Recognition test

The recognition test was designed to ensure that the par-
ticipants were able to discriminate acoustic cues coding 
expected values. The participants were instructed to press 
a button corresponding to the delivered sound. The sound 
descriptions and target buttons were displayed on the screen 
(i.e., high, loud sound, button 1, etc.) during the task. The 
participants received positive and negative visual feedback 
to facilitate learning. The EEG session started when a sub-
ject successfully identified 8 out of 10 consecutive sounds. 
On an average, the participants made more mistakes in 
frequency identification (4.19 ± 0.86; S ± SEM) than in 
intensity identification (1.85 ± 0.41), and in simultaneous 
frequency and intensity identification (1.33 ± 0.43).

Auditory MID task

During the auditory MID task (Fig. 1), the participants 
were exposed to acoustic cues encoding the prospective 
gain magnitude (4 or 20 rubles) and probability of a win 
(0.80 or 0.20). After a variable anticipatory delay period 
(2000–2500 ms), the participants responded with a single 
button press immediately after the presentation of a visual 
target (white square) (Fig. 1). 800 ms after the button press, 
the subsequent (2000 ms long) feedback notified the par-
ticipants about both current and cumulative outcomes. The 
800-ms delay of the feedback aimed to eliminate the possible 
confound of the visual target duration on feedback-locked 
ERPs. The overall duration of a single trial was 8 s. The 
probability of a win was manipulated by altering the average 
target duration through an adaptive timing algorithm that 



	 Experimental Brain Research

1 3

followed the subjects’ performance, such that they would 
succeed in ∼ 80% of the high-probability trials and in ∼ 20% 
of the low-probability trials (Knutson et al. 2005). Thus, 
in high-probability trials, the participants had more time to 
give a response than in low-probability trials. The outcomes 
were positive (a gain of 4 or 20 rubles) or negative (omission 
of gain—participants did not gain 4 or 20 rubles).

At the beginning of the task, the initial duration of the 
target was based on the reaction times (RTs) collected during 
the training session. Prior to the MID task, the participants 
were instructed on which acoustic cues corresponded to 
which probabilities and magnitudes of outcomes.

On average, the duration of the visual target was set to 
272 ± 28 ms for trials with a high-gain probability and 
189 ± 26 ms for trials with a low-gain probability. The 
reward feedback was presented in an average of 58 ± 6 trials 
out of 76 in the case of 80% gain probability, and an average 
of 14 ± 3 trials out of 76 for the 20% gain probability.

Analysis of behavioral results

The RT in each trial type was averaged for each participant, 
grand averaged, and subjected to two-way repeated measures 
ANOVA, with Magnitude (small vs. large magnitude) and 
Probability (low vs. high probability) as the within-subject 
variables.

EEG data acquisition

EEG data were recorded with the following 28 active elec-
trodes (Brain Products GmbH) according to the extended 
version of the 10–20 system: Fp1, Fp2, F3, F4, C3, C4, P3, 
P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, Oz, FC1, 
FC2, CP1, CP2, FC5, FC6, CP5, and CP6. Active channels 
were referenced against the mean of two mastoid electrodes 
to display the maximal FRN response at the frontal electrode 
sites. The electrooculogram was recorded with electrodes 
placed at the outer canthi and below the right eye. Data were 
acquired with a BrainVision actiCHamp amplifier (Brain 
Products GmbH) and sampled at 500 Hz. Impedance was 
confirmed to be less than 5 kΩ in all electrodes prior to 
recording.

Auditory MID task EEG data analysis

EEG signals were pre-processed with BrainVision Analyzer 
2.1 (Brain Products GmbH). The EEG was filtered offline 
(passband 1–30 Hz, notch filter 50 Hz), and then ICA-based 
ocular artifact correction was performed. After manual 
inspection of the raw data for remaining artifacts, the data 
were segmented into epochs of 600 ms, including a 100-ms 
pre-stimulus. Each trial was baseline corrected to an aver-
age activity between − 100 and 0 ms before stimulus onset. 
Epochs including voltage changes exceeding 75 mV at any 
channel were omitted from the averaging. Epochs were sepa-
rately averaged for different trial types. ERPs obtained dur-
ing the first and second sessions were pooled together. This 
procedure also helped increase the number of trials averaged 
for each type of feedback because of a small number of trials 
for unexpected outcomes. Averaged ERP waveforms were 
computed within each subject and condition with a mini-
mum number of 20 trials per condition. Furthermore, we 
separately processed auditory ERPs evoked by the presenta-
tion of incentive cues and visual ERPs evoked by feedback 
presentation. Statistical analyses were performed for the Fz 
electrode, a standard electrode location for FRN analysis 
(e.g., Gehring and Willoughby 2002; topographic maps 
Figs. 2, 3). Peak amplitudes were quantified as the average 
amplitude (± 20 ms) around the local minimum occurring 
within the timeframe of interest (250–350 ms) post-stimulus 
onset. A time window chosen for the statistical analysis of 
N200 and FRN was based on visual inspection of the grand-
average waveforms and the results of previous studies. The 
timeframes of interest were the same for all ERP waveforms. 
All statistical analyses were performed with Matlab 2015a 
and SPSS software package (22.0).

We averaged the auditory cue-locked ERPs according to 
the combination of reward magnitude or reward probabil-
ity that they signaled: small magnitude × low probability 
(75 ± 4 trials), small magnitude × high probability (76 ± 4 
trials), large magnitude × low probability (73 ± 4 trials), 
and large magnitude × high probability (73 ± 3 trial). As a 
result, we obtained four types of the cue-locked waveforms. 
Two-way repeated measures ANOVA, with Probability 
(unlikely vs. likely) and Magnitude (small vs. large) as the 

Fig. 1   Structure of the auditory 
version of the monetary incen-
tive delay (MID) task
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Fig. 2   Grand-averaged audi-
tory ERP waveforms (Fz) 
superimposed for two types 
of cues, signaling the prob-
abilities (low and high) and the 
magnitudes (big or and small) 
of gains (upper row). Differ-
ence waveforms were calculated 
separately for the probability 
(low − high) and the magnitude 
(small − big) of the gains. The 
width of the blue bars cor-
responds to the 250–350-ms 
time window within which the 
differences between correspond-
ing ERPs were measured and 
plotted in the form of difference 
waveforms (upper row) and 
voltage topographical distribu-
tions (bottom row)

Fig. 3   Grand-averaged visual ERP waveforms (Fz) superimposed for 
different types of feedback (upper row). Difference waveforms were 
calculated separately for valence (misses − gains), probability ((unex-
pected misses  −  unexpected gains)  −  (expected misses  −  expected 
gains)), and magnitude ((big misses  −  big gains)  −  (small 

misses − small gains)) of the outcomes. The width of the blue bars 
corresponds to the 250–350-ms time window within which the differ-
ences between corresponding ERPs were measured and plotted in the 
form of difference waveforms (upper row) and voltage topographical 
distributions (bottom row)
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within-subject variables, was conducted for the N200 ampli-
tudes for the cues signaling different gain probabilities and 
gain magnitudes. Then, we processed feedback-locked visual 
ERP in two different ways: by pooling the ERPs for expected 
(highly likely) and unexpected (highly unlikely) outcomes, 
irrespective of magnitude, and by pooling the ERPs for the 
large (20 rub) and small (4 rub) magnitudes, irrespective of 
probability. Taking into account the valence of the outcome 
(gain or omission of gain), we obtained 4 × 2 different types 
of waveforms. For probability-pooled ERPs, we calculated 
the ERPs (29 ± 3 trials) to unlikely positive outcomes (gain, 
p = 0.20), the ERPs (112 ± 7 trials) to likely positive out-
comes (gain, p = 0.80), the ERPs (29 ± 5 trials) to unlikely 
negative outcomes (miss, p = 0.80), and the ERPs (112 ± 11 
trials) to likely negative outcomes (miss, p = 0.20). For mag-
nitude-pooled ERPs, we calculated the ERPs (67 ± 5 trials) 
to small positive outcomes (4 rub), the ERPs (84 ± 10 trials) 
to large positive outcomes (20 rub), the ERPs (71 ± 8 trials) 
to small negative outcomes (misses of 4 rub), and the ERPs 
(68 ± 7 trials) to large negative outcomes (misses of 20 
rub). The ERPs obtained during the first and second sessions 
were pooled together. Two-way repeated measures ANOVA, 
with Valence (gain vs. miss) and Probability (unlikely vs. 
likely) as the within-subject variables, was conducted for the 
FRN amplitudes derived from the probability-pooled ERPs. 
Two-way repeated measures ANOVA, with Valence (gain vs. 
miss) and Magnitude (small vs. large) as the within-subject 
variables, was conducted for the FRN amplitudes derived 
from the magnitude-pooled ERPs.

In all repeated measures ANOVAs, significant inter-
actions were further decomposed with simple effect tests 
(Howell and Lacroix 2012; Stevens 1991). The level of 
significance was set to p < 0.05. The p values reported 
for the ANOVAs were adjusted with Greenhouse–Geisser 
correction.

For correlation analyses, we calculated two sets of data. 
The first set comprised two types of cue-locked dN200. For 
this, following the logic of FRN computation, we obtained 
two difference waveforms for the cue-locked ERPs: (1) 
we subtracted ERPs evoked by the cues indicating a high 
probability of a win from ERPs for cues indicating a low 
probability of a win (probability-dN200); (2) we subtracted 
ERPs for the cues predicting large potential gains from ERPs 
for the cues predicting small potential gains (magnitude-
dN200). Additionally, we calculated three different types 
of dFRNs (defined as the most negative value of the differ-
ence waveform). The standard FRN (we use the term stand-
ard dFRN hereafter) identified for the difference waveform 
was obtained by subtracting all positive outcomes (gains) 
from ERPs for all negative outcomes (omission of gain). 
Probability-dFRN and magnitude-dFRN were calculated 
similar to RPE-FRN, as introduced by Sambrook and Goslin 
(2015). By subtracting the waveforms for gains and misses 

with the same size of RPE, we obtained difference wave-
forms reflecting differences in processing feedback valence 
in the case of small and large RPEs. Then, we subtracted 
the obtained difference waveforms for the small RPE from 
waveforms for the large RPE. Thus, the overall scheme of 
probability-dFRN calculation was as follows: ((unexpected 
misses − unexpected gains) − (expected misses − expected 
gains)), irrespective of their magnitude of outcome. For the 
magnitude-dFRN, the calculation scheme was similar ((large 
misses − large gains) − (small misses − small gains)).

Furthermore, we estimated whether the cue-locked 
dN200 can vary as a function of the feedback-locked dFRN 
with the use of Spearman correlation. For this purpose, we 
first calculated the correlation for two types of dN200 and 
standard dFRN. Then, we correlated probability-dN200 
with probability-dFRN, and magnitude-dN200 with mag-
nitude-dFRN. Cook’s distance was used to identify outliers. 
Cases with a Cook’s distance greater than 4/n were excluded 
from further analysis (Bollen and Jackman 1985).

Results

Behavioral results

We calculated the RTs for all trial types in both MID ses-
sions. The probability and magnitude of the expected out-
come significantly modulated RTs (factors Probability 
[F(1, 26) = 73.937, p < 0.001, �2

p
 = 0.733] and Magnitude 

[F(1, 26) = 17.598, p < 0.001, �2
p
 = 0.395]). On average, the 

participants were faster in trials with a low probability of 
positive outcomes (212 ± 5 ms) than in trials with a high 
probability (230 ± 4 ms). The RT was faster in trials with 
larger expected gains (218  ±  4  ms) than in those with 
smaller expected gains (224 ± 5 ms). No significant interac-
tions between factors were observed.

Electrophysiological results

We first analyzed cue-locked ERPs with a 250–350-ms time 
window, which is typical for the standard FRN. Figure 2 
(left) suggests that N200 was relatively more negative for 
cues signaling a low probability of gain than for those sign-
aling a high probability of gain. However, the omnibus 
ANOVA showed no significant effect of the factor Probabil-
ity [F(1, 26) = 1.520, p = 0.229, �2

p
 = 0.055] or Magnitude 

[t(1, 26) = 2.009, p = 0.168] on N200 amplitudes in the 
interval 250–350 ms post-cue onset. The interaction Prob-
ability  ×  Magnitude was also not significant [F(1, 
26) = 0.287, p = 0.596, �2

p
 = 0.011].
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Figure 3 illustrates different types of feedback-locked 
visual ERPs and the scalp distributions of the dFRNs 
(250–350 ms post feedback). In all conditions, feedback was 
followed by FRN as a negative deflection with a maximum 
around 300 ms. The modulation of FRN by the probability 
and magnitude of gains was investigated in two separate 
ANOVA analyses. We evaluated the effect of Valence and 
Probability on FRN amplitude in ERPs pooled for different 
probabilities (Fig. 3, middle). The significant main effect of 
Valence [F(1, 26) = 15.196, p = 0.001, �2

p
 = 0.369] resulted 

from more negative amplitudes of FRN for misses 
(1.017 ± 0.501 µV) than for gains (2.550 ± 0.594 µV). The 
main effect of Probability  was not significant 
[F(1, 26) = 0.001, p = 0.978, �2

p
 = 0]. Instead, we found a 

significant interaction of Valence  ×  Probability 
[F(1, 26) = 8.379, p = 0.008, �2

p
 = 0.244]: the effect of Prob-

ability for misses was not significant [F(1, 26)  =  2.326, 
p = 0.139, �2

p
 = 0.082], but that for gains was significant 

[F(1, 26) = 9.301, p = 0.005, �2
p
 = 0.263].

We further tested the effects of Valence and Magnitude 
on FRN amplitude in ERPs pooled for different magnitudes 
of outcome (Fig. 3, right). The significant main effect of 
Valence [F(1, 26) = 6.519, p = 0.017, �2

p
 = 0.200] resulted 

from the more negative amplitude of FRN to misses 
(1.445 ± 0.474 µV) than to gains (2.800 ± 0.565 µV).

The analysis also revealed a significant main effect of 
Magnitude [F(1, 26) = 19.094, p < 0.001, �2

p
 = 0.423], indicat-

ing a smaller FRN for large gains (2.724 ± 0.545 µV) than 
for small gains (1.521  ±  0.463  µV). The interaction 
Valence × Magnitude was not significant [F(1, 26) = 0.123, 
p = 0.730, �2

p
 = 0.005].

Correlation analyses showed a significant positive cor-
relation between standard dFRN and magnitude-dN200 
(Fig. 4) forecasting different magnitudes of prospective out-
comes (Spearman r = 0 0.540, p  =  0.005). The significant 
correlations between magnitude-dN200 and standard dFRN 
was positive, indicating that the larger N200 to the cues fore-
casting larger gains predicts the larger dFRN to the negative 
feedback. None of the other correlation analyses yielded a 
significant result (ps > 0.10).

Discussion

The main purpose of this study is to investigate whether 
the feedback-locked FRN and cue-locked FRN-like activity 
(dN200) recorded during an auditory MID task are sensitive 
to the probability and magnitude of outcomes and whether 
the amplitudes of these two components are correlated. We 

observed a significant interplay between magnitude-dN200 
and standard dFRN. Moreover, we show that the feedback-
locked FRN component is sensitive to both the magnitude 
and the probability of outcomes, whereas the analysis of 
N200 did not reveal any significant effects.

We were particularly interested in the interplay between 
the FRN and RPE functions. Consistent with previous stud-
ies, the amplitude of negative deflection between 250 and 
350 ms after feedback onset was modulated by outcome 
valence, which is believed to reflect the neural correlate of 
RPE (Hajcak et al. 2006; Holroyd and Coles 2002; Milt-
ner et al. 1997; Nieuwenhuis et al. 2004; Yeung and Sanfey 
2004). FRN amplitude was also affected by RPE magnitude, 
which was varied by manipulating the magnitude and prob-
ability of outcomes. For the probability-pooled ERPs, FRN 
was modulated by outcome probability only for positive out-
comes, whereas for the magnitude-pooled ERPs, FRN was 
modulated by the magnitude of both positive and negative 
outcomes.

Previous studies demonstrated gain/loss asymmetry of 
the effect of probability on FRN: the likelihood of out-
comes affects FRN for gains (positive RPE) more strongly 
than FRN for losses or omissions of gains (negative RPE) 
(for a review, see Walsh and Anderson 2012). In our study, 
outcome probability was manipulated using different dura-
tions of the visual target, which could potentially affect the 
feedback processing by making the outcome probability 
more salient than the outcome magnitude. We observed a 
preferential sensitivity of probability-pooled FRN to the 
degree of only positive RPEs. It can be attributed to the 
different neural mechanisms underlying feedback process-
ing for positive and negative outcomes (Cohen et al. 2007), 
and it is consistent with the hypothesis on the greater range 
of dopaminergic responses to positive outcomes than to 
negative outcomes because of the low baseline firing rate 
of dopamine neurons (Walsh and Anderson 2012). The nor-
epinephrine system has also been suggested to play a role 
in the processing of infrequent motivationally salient events 
by modulating the ongoing activity in the anterior cingulate 
cortex (ACC). Therefore, the ACC represents a crucial hub 
integrating the activity of both norepinephrine and dopamine 
neuromodulatory systems and thus providing high sensitiv-
ity to both the expectedness and the valence of task-relevant 
events (Warren and Holroyd 2012).

We observed a modulation of FRN by the magnitude of 
outcome for both positive and negative outcomes. How-
ever, evidence of FRN modulation by the magnitude of the 
expected outcome has been controversial. Some studies 
suggest that FRN is not influenced by reward magnitude 
(Cui et al. 2013; Hajcak et al. 2003, 2006; Holroyd et al. 
2006; Marco-Pallares et al. 2008; Nieuwenhuis et al. 2004; 
De Pascalis et al. 2010; Yeung and Sanfey 2004). How-
ever, increasing evidence also shows that FRN encodes 
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magnitude in addition to probability and valence (Belle-
baum et al. 2010; Kreussel et al. 2012; Toyomaki and 
Murohashi 2005). One previous study reported that FRN 
modulation by the magnitude of outcome was stronger 
for positive feedback than for negative feedback (Kreus-
sel et al. 2012). In our opinion, the apparent discrepancy 
between the results of previous studies could be attrib-
uted to differences in study designs and data analyses. 
For example, Kreussel et al. (2012) instructed subjects 
to choose between two stimuli (cues) signaling potential 
monitory wins (vs. no wins) or monitory losses (vs. no 
losses), whereas the participants in our MID task did not 
select cues and faced only monitory wins (vs. no wins). 
Taken together, these discrepancies in experimental 
designs must be considered in the direct comparison of 
results across studies, which in turn call for the further 

investigation of the effect of the reward magnitude on 
FRN.

According to the RL theory of FRN, the size of the cue-
locked RPE should vary with the amount of information 
that the cue carries about the future outcome (i.e., prob-
ability or magnitude of gain). More specifically, the cue-
locked FRN should increase with the amount of information 
that the cue is carrying, and this should modulate the neural 
response to feedback presentation: if the outcome is in line 
with the expectation formed by the cue, the prediction error 
and the feedback-locked FRN will be relatively small. In the 
opposite condition, if the outcome violates the expectation 
formed by the cue, it will result in a larger prediction error 
and feedback-locked FRN (Walsh and Anderson 2012). In 
the majority of studies that investigated cue-feedback RPE 
processing, cues provided complete information about 

Fig. 4   Cue-locked dN200 amplitudes (Fz) as a function of feedback-locked dFRN (Fz) amplitudes
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upcoming outcomes (Dunning and Hajcak 2007; Baker 
and Holroyd 2009). In some studies in which cues provided 
probabilistic information about outcomes, the cues signaling 
highly probable negative outcomes evoked larger cue-locked 
FRN than those signaling highly probable positive outcomes 
(Holroyd et al. 2011; Liao et al. 2011; Walsh and Anderson 
2011).

Although in our study, we observed a larger amplitude 
of the N200 response to cues signaling a low probability 
of gains than to those signaling a high probability of gains 
(probability-dN200), which is similar to that in Walsh and 
Anderson (2010), the effect was not significant. We also did 
not find any correlation between probability-dN200 and 
standard dFRN or probability-dFRN. In previous studies 
(Holroyd et al. 2011; Liao et al. 2011; Walsh and Ander-
son 2011) in which cues provided probabilistic information 
about outcomes, the probability of success was determined 
automatically and independently from the subjects’ perfor-
mance. However, in our MID task, the probability of success 
was determined by the time window for the response. This 
difference in paradigms might explain the lack of modula-
tion of cue-locked dN200 by outcome probability. We did 
not also observe any significant modulation of the cue-
locked dN200 by the magnitude of the expected outcome at 
the group level. The lack of sensitivity of cue-locked dN200 
to the components of expected value (probability and magni-
tude) observed at the group level could also be explained by 
the sensory modality of the incentive cues in our study: the 
processing of auditory cues could differ from the processing 
of visual cues (horizontal and vertical lines, such as those 
in Knutson et al. 2005). Despite the possible difficulties in 
auditory cue recognition, the cueing was successful in pro-
viding information about the magnitude and probability of 
the expected outcome, as revealed by the modulation of the 
participants’ RT (similarly to studies with visual cues: Hel-
finstein et al. 2013; Knutson et al. 2003, 2005; Rademacher 
et al. 2014).

Nevertheless, across all participants, we observed a posi-
tive correlation between magnitude-dN200 and standard 
dFRN. Thus, a larger magnitude-dN200 is associated with 
a more pronounced standard dFRN. Importantly, dN200 is 
derived by contrasting neural responses to auditory cues that 
forecast small gains with cues that forecast large gains. One 
possible interpretation of our finding is that the neural activ-
ity generating cue-locked dN200 provides complementary 
information for the processing of favorable and unfavorable 
outcomes underlying FRN. This interpretation is consist-
ent with the RL theory of FRN. Interestingly, according to 
(Walsh and Anderson 2012), when participants know the 
magnitude of the forthcoming feedback (as indicated by a 
cue at the beginning of each trial) but not its valence, no 
effect of magnitude on FRN is observed. This meta-scale 
finding may indicate that the relations between cue-locked 

dN200 and feedback-locked dFRN can be different in the 
case of cues signaling the valence of future outcomes and 
cues signaling magnitude. Further studies are needed to 
clarify the sensitivity of feedback-locked FRN to the cueing 
of probability and magnitude and how this information is 
processed in the brain.

Conclusion

Overall, we showed that feedback-locked FRN was modu-
lated by both the magnitude and the probability of outcomes 
during an auditory version of the MID task. Furthermore, 
the cue-locked dN200, which is associated with the update 
of information about the magnitude of prospective out-
comes, correlated with the standard feedback-locked dFRN, 
which is associated with the processing of favorable and 
unfavorable outcomes (RPE). The results further expand our 
knowledge of the interplay between the processing of the 
evaluation of ongoing predictive events and future outcomes 
and the following revision of these predictions during out-
come delivery.
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