
Calc. Var.          (2019) 58:173 
https://doi.org/10.1007/s00526-019-1610-4 Calculus of Variations

Onmultistochastic Monge–Kantorovich problem, bitwise
operations, and fractals

Nikita A. Gladkov1 · Alexander V. Kolesnikov1 · Alexander P. Zimin1

Received: 11 March 2019 / Accepted: 31 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The multistochastic (n, k)-Monge–Kantorovich problem on a product space

∏n
i=1 Xi is an

extension of the classical Monge–Kantorovich problem. This problem is considered on the
space of measures with fixed projections onto Xi1 × · · · × Xik for all k-tuples {i1, . . . , ik} ⊂
{1, . . . , n} for a given 1 ≤ k < n. In our paper we study well-posedness of the primal and
the corresponding dual problem. Our central result describes a solution π to the following
important model case: n = 3, k = 2, Xi = [0, 1], the cost function c(x, y, z) = xyz, and
the corresponding two-dimensional projections are Lebesgue measures on [0, 1]2. We prove,
in particular, that the mapping (x, y) → x ⊕ y, where ⊕ is the bitwise addition (xor- or
Nim-addition) on [0, 1] ∼= Z

∞
2 , is the corresponding optimal transportation. In particular,

the support of π is the Sierpiński tetrahedron. In addition, we describe a solution to the
corresponding dual problem.

1 Introduction

In this paper we consider a natural modification of the Monge–Kantorovich mass transporta-
tion problem which we call “multistochastic Monge–Kantorovich problem”. To our best
knowledge, this problem has never been studied before.

Assume we are given two probability measures μ, ν on measurable spaces X , Y and
a function c : X × Y → R. Let us remind the reader that the classical Kantorovich or
transportation problem is a problem of minimization of the functional
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∫

X×Y
c(x, y)dπ, (1.1)

on the set �(μ, ν) of probability measures on X × Y with fixed marginals μ, ν.
An important tool to attack this problem coming from the linear programming theory is

the so-called dual transportation problem: maximize

∫

f dμ +
∫

gdν

on the set of couples of (integrable) functions ( f , g) satisfying f (x) + g(y) ≤ c(x, y).
The most classical cost function c is given by the distance function, but the quadratic cost

function c(x, y) = |x − y|2 has gained incredible popularity because of impressive number
of applications. For the quadratic cost function any standard solution π is concentrated on the
graphof amappingT , as provedbyBrenier [8]. In this caseT is a solutionof the corresponding
Monge problem which asks for a mapping minimizing the functional

∫
c(x, T (x))dμ in the

class of measure preserving (i.e. pushing forward μ onto ν) mappings.
Since its revival at the end of eighties the Monge–Kantorovich theory attracts growing

attention. The reader can find a lot of information on the classical mass transportation theory
in many recent textbooks and survey papers [7,12,16,32,35,36].

Our research is motivated by a number of recent results appeared in several quickly
developping branches of the mass transportation theory. Here is a short outline of the most
important problems and ideas.

(1) Multimarginal transportation problem

The book of Rachev and Rüschendorf [32] contains rich material on the multimarginal
transportation problem, in particular, a number of functional-analytical results on duality,
probabilistic applications etc.However, until recently only the two-marginals casewas impor-
tant for the largest part of applications. The books of Villani [35,36] deal with the most
important but specific two-marginals case.

The revival of interest to the multimarginal Monge–Kantorovich problem is partially
motivated by economical applications (matching theory, multi-dimensional screening), see
[12,16]. We refer to survey paper [31]. Many references on recent works on multimarginal
duality theory for a wide class of cost functions can be found in [7].

(2) Doubly- and multistochastic measures

According to the classical Birkhoff–von Neumann theorem every bistochastic matrix is a
convex combination of permutation matrices. More precisely, the permutation matrices are
exactly the extreme points of the set of bistochastic matrices. The classical problem of
Birkhoff asks for a generalization of this result for the set of bistochastic (doubly stochastic)
measures �(μ, ν). This problem has been attacked by many researches (see [1,5,18,33]), let
us in particularly mention the seminal paper [18], containing a characterization of supports
of such measures. Using this characterization Ahmad, Kim, and McCann obtained in [1]
interesting results on uniqueness of solution to the optimal transportation problem (see also [6,
29]). Exposition of relations between bistochastic measures, Markov operators, and Markov
chains can be found in [34].
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In this paper we deal with (n, k)-stochastic measures, which are probability measures on
a product space

X = X1 × X2 × · · · × Xn

with fixed projections μI ∈ P(XI ) for every XI = Xi1 × · · · × Xik , where I = {i1, . . . , ik}
is a k-tuple of indices, k < n. The simplest (and most famous) example of such measures
is given by the set of latin squares which is homeomorphic to (3, 2)-stochastic matrices.
It is important to emphasize that for the set of (n, k)-stochastic matrices (measures) with
n > 2 there is no analog of the Birkhoff–von Neumann theorem (see [21,27], see also [9] for
description of extreme points for k = 2, n = 3 in the discrete case).

(3) Monge–Kantorovich problem with linear constraints and Monge–Kantorovich problem
with symmetries

Apparenty the most famous example of a transportation problemwith linear constraints is the
optimalmartingale transportation problem coming fromfinancial mathematics. This problem
is obtained from the classical one by adding an additional constraint: themeasureπ is assumed
to be a martingale (to make the space of feasible measures non-emptyμ should stochastically
dominate ν). The dualmartingale problemhas a natural financial interpretation (see [3]).More
information about martingale transportation the reader can find in [2,3,13,17]. Remarkably, a
duality theorem for transportation problem with general linear constraints has been obtained
only recently in [37]. This results covers, in particular, the case of martingale constraints.
Another important class of linear constraints are various symmetric assumptions, in particular,
invariance with respect to an action of some group of linear operators. This type of problem
has been studied in [14,30,37]. Applications of symmetric problem to infinite-dimensional
analysis and links with ergodic theory can be found in [22,23]. The Monge–Kantorovich
problems with some convex constraints has been considered in [24–26].

In this paper we consider the problem of maximization/minimization of the functional
∫

X
c(x1, . . . , xn)dπ

on a set of (n, k)-stochastic measures. We call it mutistochastic or (n, k)-stochastic Kan-
torovich problem. Clearly, for k = 1 one gets the multimarginal Kantorovich problem with
n-marginals, and for k = 1, n = 2 one gets the standard Kantorovich problem.

The system of projections {μI } can not be arbitrary for k > 1, and in fact, it is a nontrivial
question, when the set of (n, k)-stochastic measures is non-empty. This problem illustrates
the main source of difficulties for the multistochastic problem: the constraints are highly
non-independent, unlike the classical Monge–Kantorovich problem.We stress that existence
of feasible measures is just one question among many others which have trivial solutions for
the classical case, but not for themultistochastic one. On the other hand, the classical example
of latin squares and its relation with discrete algebraic structures (groups and quasigroups)
ensures that it is an interesting and non-artificial object.

We start with consideration of two basic questions of the mass transportation theory:
duality and cyclical monotonicity. A natural guess that the dual problem should be the max-
imization problem

∑

I

∫

f I (xi1 , . . . , xik )dμI ,

with the constraint
∑

I f I (xi1 , . . . , xik ) ≤ c is verified in Sect. 3 in a form analogous to the
duality theorem considered in [35]. The proof is based on the minimax principle. In Sect. 4
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we prove an analog of the cyclical monotonicity property. Unfortunately, applications of the
cyclical nonotonicity are not that as straightforward as in the classical case. Themain difficulty
here is that the set of discrete competitors is essentiallymore complicated that the permutation
cycles considered in the classical transportation theory. We don’t know, whether any solution
to a multistochastic problem (for a reasonable choice of the cost function c) is concentrated
on the graph of a mapping (this is a standard corollary of the cyclical monotonicity property
in the classical case). The uniqueness question is open as well. We were able, however, to
deduce from the cyclical monotonicity property that any solution is singular to the Lebesgue
measure under assumption that the projections have densities (k = 2, n = 3, Xi = [0, 1]).

In Sects. 5 and 6 we study our main example: k = 2, n = 3, Xi = [0, 1], the two-
dimensional projections are assumed to be Lebesque and

c(x, y, z) = xyz.

Let us consider the maximization problem
∫
[0,1]3 xyz → max. We show that there exists a

solution which is concentrated on the graph of the mapping

(x, y) → 1 − x ⊕ y,

where ⊕ is the bitwise addition, which is also called xor-addition or Nim-addition.
Similarly, for the minimization problem

∫
[0,1]3 xyz → min the solution π is concentrated

on the graph of the mapping

(x, y) 	→ x ⊕ y.

It is known that the bitwise operations can be used to generate fractals (see [11,15]). In
particular, the graph of this mapping (x, y) 	→ x ⊕ y is the so-called Sierpiński tetrahedron.
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This is a classical fractal self-similar set of dimension 2. In the book of Mandelbrot [28] it
is briefly described under the name “fractal skewed web”: “Let us project it along a direction
joining the midpoints of either couple of opposite sides. The initiator tetrahedron projects on
a square, to be called initial. Each second-generation tetrahedron projects on a subsquare,
namely 1/4-th initial square, etc. Thus, the web projects on the initial square. The subsquares’
boundaries overlap.”

The irregularity of this example is rather unexpected, since it is well-understood that the
standard solutions to the classical Monge–Kantorovich problems are supported by regular
surfaces. On the other hand the close relation of latin squares to groups makes the appearence
of the xor-operation (equivalently, of the group Z

∞
2 ) natural. The appearence of the bitwise

addition can be also illustrated by the baby (3, 2)-transportation problem on the cube {0, 1}3
with c = xyz. All the competitors with uniform projections are convex combinations of two
measures:

{(0, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1)},
{(0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1)}

(we identify the point and the Dirac mass with weight 1/4 at the point), defined by equations

x + y + z = 0, x + y + z = 1, mod(2).

The first measureminimizes xyz and the secondmeasuremaximizes. The fact that essentially
the same structure is preserved for the cube [0, 1]3 is due to the symmetries of the corre-
sponding continuous problem. We should stress that this is not the first example of this kind,
see paper of Di Marino et al. [10], Theorem 4.6. They considered solution to the n-marginal
Kantorovich problem with Lebesgue meaure projections and the cost function

c = h(x1 + x2 + · · · + xn).

Let us consider again the minimization problem
∫
[0,1]3 xyz → min. We show in Sect. 7

that

F(x, y) =
∫ x

0

∫ y

0
s ⊕ t dsdt − 1

4

∫ x

0

∫ x

0
s ⊕ t dsdt − 1

4

∫ y

0

∫ y

0
s ⊕ t dsdt .

solves the corresponding dual problem
∫

[0,1]2
F(x, y)dxdy +

∫

[0,1]2
F(x, z)dxdz +

∫

[0,1]2
F(y, z)dydz → max,

F(x, y) + F(x, z) + F(y, z) ≤ xyz.

In particular, the corresponding optimal mapping T takes the form

(x, y) 	→ ∂2xy F(x, y)

and the Sierpiński tetrahedron is the set of zeroes of the nonnegative function

xyz − F(x, y) − F(x, z) − F(y, z).

In addition, this function is almost everywhere differentiable and homogeneous with respect
to factor 2. The first derivatives of this function are not differentiable, but have bounded
variation.

It is an open question which particular properties of this solution are inherited by general
solutions to the (3, 2)-problem. We discuss some related hypotheses in Sect. 8.
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2 Multistochastic problem: basic properties

In this short section we define the main objects of our study and discuss their basic properties.
We are given a finite number of spaces

X1, . . . , Xn,

equipped with σ -algebras

B1, . . . ,Bn .

The product space

X = X1 × · · · × Xn,

is equipped with the standard product of σ -algebras

B = B1 × · · · × Bn .

The projection

X 
 x → (xi1 , . . . , xik )

of X onto Xi1 × · · · Xik , i j ∈ {1, . . . , n} with i j1 �= i j2 for distinct j1, j2, will be denoted
by

PrXi1×···×Xik
, Pri ,

where i = (i1, . . . , ik).
Thoroughout the paper the following assumption holds:

Assumption I Xi are Polish spaces and Bi are the corresponding Borel σ -algebras.

Definition 2.1 (Multistochastic Kantorovich problem) For every fixed 1 ≤ k < n let Ik be
the set of all ordered k-tuples of indices i j ∈ {1, . . . , n}, i1 < i2 < · · · < ik−1 < ik . Assume
that for every k-tuple

I = (i1, . . . , ik) ∈ Ik
we are given a probability measure μI = μi1,...,ik on Xi1 × · · · × Xik . Denote by Pμ the set
of probability measures on X satisfying

Pr Iμ := PrXi1×···×Xik
μ = μI .

Finally, assume that we are given a cost function

c :
n∏

i=1

Xi → R+ ∪ {+∞}.

Then we say that P ∈ Pμ is a solution to the (n, k)-Kantorovich minimization problem
for c and {μi }, I ∈ Ik , if P gives minimum to the functional

P →
∫

X
c d P

on Pμ.
We call the problem “(n, k)-Kantorovich maximization problem” if instead of minimum

we are looking for maximum of P → ∫
X c d P.
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Unlike the standard Kantorovich problem Pμ can be empty. Let us briefly discuss some
sufficient conditions assuring that Pμ is not empty. For the sake of simplicity we restrict
ourselves to the case n = 3, k = 2, Xi = [0, 1].

A natural necessary assumption forPμ �= ∅ is the followingKolmogorov-type consistency
condition.

Remark 2.2 If the set Pμ is not empty, then

Pr1μ1,2 = Pr1μ1,3, Pr2μ1,2 = Pr2μ2,3, Pr3μ2,3 = Pr3μ1,3. (2.1)

Remark 2.3 One can naively think that (2.1) is a sufficient condition for Pμ �= ∅. But this
is not true. Consider the following example: μ1,2 is given by the (normalized) Lebesgue
measure on the diagonal {x = y}, x ∈ [0, 1], y ∈ [0, 1] and μ1,3 is the two-dimensional
Lebesgue measure on [0, 1]2.

Since the projection of the set {x = y} × [0, 1] onto 0 ≤ x ≤ 1, 0 ≤ z ≤ 1 along y
is a one-to-one mapping, there exist the unique measure on [0, 1]3 with projections μ1,2,
μ1,3. It is the normalized Lebesgue measure on the diagonal {x = y = z}, x ∈ [0, 1], y ∈
[0, 1], z ∈ [0, 1] Denote this measure by π .

In this construction μ2,3 was not used, so if μ2,3 �= Pr2,3(π), there exist no measure on
I with projections μ1,2, μ1,3 and μ2,3. But one can easily find μ2,3 different from Pr2,3(π)

such that (2.1) holds, for example μ2,3 equals Lebesgue measure on [0, 1]2.
Some sufficient condition for Pμ �= ∅ can be found in [19].

Remark 2.4 An important example of a non-empty set Pμ is given by the following system
of projections (for the sake of simplicity k = 2):

μi, j = μi × μ j ,

where every μi is a probability measure on Xi .

Assumption II It will be assumed throughout that P is non-empty.

The proof of the following result is omitted because it is a simple repetition of the proof
of the corresponding fact for the standard Kantorovich problem (see [7,35]).

Theorem 2.5 Assume that c is a lower semicontinuous function. Then there exists P ∈ Pμ

giving minimum to the functional P → ∫
cd P on Pμ.

3 Duality

In this section we prove a duality theorem for the multistochastic problem. It can be deduced
from the following general minimax result (see [35], Theorem 1.9) in the same way as the
duality theorem for the standard Kantorovich problem. The arguments are essentially the
same, we repeat the proof for the reader convenience. For the sake of simplicity we restrict
ourselves to the case of compact spaces.

Theorem 3.1 Let E be a normed vector space and E∗ be the corresponding topologically
dual space. Consider convex functionals �,� on E with values in R ∪ {+∞}. Let �∗, �∗
be their Legendre transforms. Assume that there exists a point z ∈ E satisfying �(z) <

+∞, �(z) < +∞ and � is continuous at z. Then

inf
E

(� + �) = max
z∈E∗(−�∗(−z) − �∗(z))
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Theorem 3.2 Let Xi be compact metric spaces and c ≥ 0 be a continuous function on X.
Then

min
π∈P

∫

cdπ = sup
∑

i∈Ik

∫

fi (xi1 , . . . , xik )dμi ,

there the infimum is taken over the k-tuples i = (i1, . . . , ik) ∈ Ik and the functions fi1,...,ik ∈
L1(Xi1 × · · · × Xik , μ(i1,...,ik )) satisfying

∑

i∈Ik

fi (xi1 , . . . , xik ) ≤ c.

Proof Let E be the space of continuous functions on X . By Radon’s theorem E∗ is the space
of finite (signed) measures on X .

Set:

�(u) = 0, if u ≥ −c

and �(u) = +∞ in the opposite case.
Let π0 be a probability measure which belongs to Pμ. For every function u which has

representation u = ∑
i∈Ik

fi we set

�(u) =
∫

udπ0 =
∑

i∈Ik

∫

fi dμi , if u =
∑

i∈Ik

fi ,

and �(u) = +∞ otherwise. It is easy to check that the functionals satisfy assumptions of
Theorem 3.1.

Clearly

inf
u

(
�(u) + �(u)

)
= − sup

∑
i∈Ik fi≤c

∑

i∈Ik

∫

fi dμi .

Let us find the Legendre transform of the functionals

�∗(−π) = sup
u

(
−

∫

udπ − �(u)
)

= sup
u≥−c

(
−

∫

udπ
)

= sup
u≤c

∫

udπ.

It is easy to see that �∗(−π) = ∫
cdπ , if π is a non-negative measure. If not, then clearly

�∗(−π) = +∞.

Let us compute �∗(π) = supu
(∫

udπ − �(u)
)
. Clearly �∗(π) = 0, if Priπ = μi and

�∗(π) = +∞ in the opposite case. This implies

max
z∈E∗(−�∗(−π) − �∗(π)) = − min

Priπ=μi

∫

cdπ.

The proof is complete. ��

4 Cyclical monotonicity

Starting from this section we work with the following particular case:

n = 3, k = 2,

c(x, y, z) = xyz.
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Here we consider the maximization problem
∫

[0,1]3
xyzdπ → max, π ∈ �(μ12, μ23, μ13).

This problem seems to be the simplest but important and illustrative particular case of
the multistochastic Kantorovich problem. The choice of the cost function is natural in view
of the examples which will be given below. In addition, it is analogous to the simplest
quadratic Kantorovich problem with one-dimensional marginals. Indeed, the minimization
of

∫ |x − y|2dπ on the set of measures �(μ, ν) with fixed marginals μ, ν is equivalent to
maximization of

∫
xydπ on the same set.

In the case of the standard Kantorovich problem with two marginals the well-known
cyclical monotonicity property fully characterizes the solutions. In particular, if themarginals
are one-dimensional, then the solution is concentrated on the graph of amonotone function. In
this section we prove a weak analog of this property for our special multistochastic problem.
Unlike the standard Kantorovich problem with one-dimensional marginals, the geometric
structure of the sets which are cyclically monotone in our sense is essentially less clear.

To show cyclical monotonicity we follow an approach from [2] (Lemma 1.11).
Assume we are given three finite sets

X = {x1, . . . xn} ⊂ R, Y = {y1, . . . yn} ⊂ R, Z = {z1, . . . zn} ⊂ R

of cardinality n.
In what follows we denote by

U (X , Y , Z)

the set of discrete probability measures on X × Y × Z which have uniform projections onto
X ×Y , X × Z , Y × Z . Among all measures inU (X , Y , Z) let us consider a special important
subclass of uniform distributions πG on the sets of the type

G = (x, y, f (x, y)), x ∈ X , y ∈ Y , f : X × Y → Z ,

where f admits the following property: fix any zi ∈ Z , then for every x j ∈ X there exists
exactly one yk ∈ Y and for every yl ∈ Y there exists exactly one xm ∈ X such that

zi = f (xi , yk) = f (xm, yl).

Then the uniform measure πG on G belongs to U (X , Y , Z).
The set

L(X , Y , Z)

of such G can be identified with n × n latin squares.

Remark 4.1 Let us mention another important difference between the multistochastic and the
standardKantorovich problem.By the classical theoremofBirkhoff every bistochasticmatrix
is a convex combination of the permutation matrices. In the multistochastic case there is no
analog of the Birkhoff theorem: not every multistochastic matrix is a convex combination of
matrices with entries (ai j ) satisfying ai j = 0 or ai j = 1. An example is given by
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See [27] for explanations and [9] for descriptions of extremal points.

Definition 4.2 Let	 ⊂ R
3 be a finite set and π	 be the uniformmeasure on	. We say that	′

is the competitor of	 if π	 and π	′ have the same projections onto the principal hyperplanes

Prxy	 = Prxy	
′, Pryz	 = Pryz	

′, Prxz	 = Prxz	
′.

Definition 4.3 The set	 ⊂ R
3 is called cyclicallymonotone if for every natural n andG ⊂ 	

of cardinality n
∫

xyzdπG ′ ≤
∫

xyzdπG

for every competitor of G.

Theorem 4.4 Let π be a solution to a (3, 2)-multistochastic Kantorovich maximization prob-
lem with c(x, y, z) = xyz. Then there exists a cyclically monotone set 	 with π(	) = 1.

Proof For every n let

Mn =
{
G ⊂ R

3, card(G) = n, there exists a competitor G ′ such that
∫

xyzdπG <

∫

xyzdπG ′
}

⊂ (R3)n .

According to ([4], Proposition 2.1), derived from general duality result of Kellerer [20], one
of the following two options holds:

(1) Mn is contained in a set of the type ∪n
i=1R

3 × · · · × Mi
n × · · · × R

3 with π(Mi
n) = 0.

(2) There exists a measure γ on Mn such that γ (Mn) > 0 and Pri (γ ) ≤ π for every i .

We will show that (2) is impossible. Thus (1) holds for every n and

	 = R
3\ ∪∞

n=1 ∪n
i=1M

i
n

is the desired cyclically monotone set.
Assume that (2) holds for some n. Set γ ′ = 1

n

∑n
i=1 Pri (γ ). Clearly, for the uniform

measure πG on G ∈ Mn there holds πG = 1
n

∑n
i=1 Pri (δ(G)) and

γ ′ =
∫

πG dγ (G).

By definition of Mn for γ -a.e. G there exists a competitor G ′ such that and
∫
xyzdπG <∫

xyzdπG ′ . Moreover, using linear programming algorithms one can make the correspon-
dence G → G ′ measurable. Define

γ̃ =
∫

πG ′dγ (G)

Clearly
∫
xyzdγ̃ >

∫
xyzdγ ′ and γ ′, γ̃ have the same projection onto the principal hyper-

planes. Then we set π ′ = π − γ ′ + γ̃ . The measures π, π ′ have the same projections onto
the principal hyperplanes and π ′ has a larger total cost. We obtain a contradiction. ��
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Example 4.5 The simplest example of a set G which belongs to some L(X , Y , Z) is given by
the following four-points set with uniform projections on the products of some two-points
sets

X1 = (a1, b1, c2), X2 = (a1, b2, c1), X3 = (a2, b1, c1), X4 = (a2, b2, c2).

The set G is cyclically monotone for c = xyz if and only if

(a1 − a2)(b1 − b2)(c1 − c2) ≤ 0.

The well-known and by now classical result of Y. Brenier establishes existence of the
so-called optimal transportation mapping in the classical setting. We don’t know whether
the multistochastic Kantorovich problem admits the same property. However, applying the
cyclical monotonicity property proved in Proposition 4.4 we are able to show a weak version
of the Brenier theorem saying that under natural assumptions π is a singular measure.

Let us denote by λn the standard n-dimensional Lebesgue measure.

Lemma 4.6 Let A ⊂ R
3 be a Borel set of positive Lebesgue measure. There exist numbers

x1 < x2, y1 < y2, z1 < z2,

such that {x1, x2} × {y1, y2} × {z1, z2} ⊂ A.

Proof Without loss of generality let us consider bounded sets. By Fubini’s theorem one gets
that for every ε > 0 the set Az of numbers z̃ satisfying

λ2(A ∩ {z = z̃}) > ε

has a non-zero Lebesgue measure. Hence there exists two points z1, z2 ∈ Az , such that the
projections A ∩ {z = z1}, A ∩ {z = z2} onto the hyperplane xy have an intersection B of
a positive measure. Hence B × {z1, z2} ⊂ A. Next we apply the same arguments to the
one-dimensional sections of B: {y = ỹ} ∩ B. This completes the proof. ��
Corollary 4.7 Every cyclically monotone set 	 ⊂ R

3 satisfies λ3(	) = 0.

Proof Assume that λ3(	) > 0. Then according to Lemma 4.6 there exist numbers x1 <

x2, y1 < y2, z1 < z2, such that {x1, x2} × {y1, y2} × {z1, z2} ⊂ 	. We get a contradiction
with Example 4.5. ��

5 Main example: primal problem

In this section we consider our main example: (3, 2)-Kantorovich problem on the unit three-
dimensional cube [0, 1]3, where the projections onto principal hyperplanes are equal to
two-dimensional Lebesgue measure λ2. The cost function is given by

c(x, y, z) = xyz.

The set of measures with such projections will be denoted by Pλ. We are looking for

max
P∈Pλ

∫

xyz d P. (5.1)

In this concerete example we are able to find an explicit solution. We emphasize that this is
possible because the problem admits many symmetries. We don’t know whether the problem
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has an explicit solution even after slight changes, for instance, in the casewhen the projections
are equal to products μi × μ j , where {μi } are fixed one-dimensional distributions.

We denote by ⊕ the bitwise addition (xor). Given two couples of numbers x, y ∈ [0, 1]
we consider their diadic decompositions

x = 0, x1x2x3 . . ., y = 0, y1y2y3 . . ., xi , yi ∈ {0, 1}.
Then the xor operation is defined as follows:

x ⊕ y = 0, x1 ⊕ y1 x2 ⊕ y2 x3 ⊕ y3 . . .,

where 0 ⊕ 0 = 1 ⊕ 1 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1.

Remark 5.1 The addition is not well-defined for dyadic rational numbers, because they can
be written in two different ways. We agree that every dyadic rational number less then 1 has a
finite numbers of units in its decomposition. The number x = 1 will be always decomposed
in the following way:

1 = 0, 11111 . . ..

Thus

x ⊕ 1 = 1 − x .

This operation is continuous up to a countable set of dyadic numbers.

Theorem 5.2 The image π of two-dimensional Lebesgue measure λ(dx) × λ(dy) under the
mapping

T : (x, y) → (x, y, 1 − x ⊕ y)

is a solution to problem (5.1).
If instead of maximizing the total cost function one asks for

min
P∈Pλ

∫

xyz d P,

then the corresponding mapping T is given by

T : (x, y) → (x, y, x ⊕ y).

Remark 5.3 We don’t knowwhether this concrete problem and the problem in general setting
(for an appropriate cost function) has unique solution. In this example there exists a corre-
sponding optimalmapping, butwe don’t knowwhether the same is true for any (3, 2)-problem
(under appropriate assumptions on the projections).

Proof Let us consider the following transformations of [0, 1]3
Txy(x, y, z) = (1 − x, 1 − y, z),

Txz(x, y, z) = (1 − x, y, 1 − z),

Tyz(x, y, z) = (x, 1 − y, 1 − z).

All these transformations push forward arbitrary measure μ ∈ Pλ onto a measure from Pλ.
We define

μxy = μ ◦ T−1
xy , μxz = μ ◦ T−1

xz , μyz = μ ◦ T−1
yz .
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Next we note that every μ ∈ Pλ satisfies
∫

xyzdμxy =
∫

(z − xz − yz + xyz)dμ

=
∫

xyzdμ +
∫ 1

0
zdz −

∫ 1

0

∫ 1

0
xzdxdz −

∫ 1

0

∫ 1

0
yzdydz =

∫

xyzdμ.

Thus the total cost
∫
xyzdμ is invariant with respect to T xy (and with respect to T yz, T xz).

Hence it follows that for every π̃ solving (5.1) the measures π̃ xy, π̃ yz, π̃ xz , and

π1 = π̃ + π̃ xy + π̃ xz + π̃ yz

4

are solutions to problem (5.1) as well. Note that π1 is invariant with respect to T xy , T yz , T xz .
This follows from the relations

T xyT xz = T xzT xy = T yz, T xyT xy = Id.

Next we decompose [0, 1]3 into sets I1, I2. Every Ii , i ∈ {1, 2} is a union of four smaller
cubes of volume 1/23:

I1 = [0, 1]3\I2
I2 =

[

0,
1

2

]3 ⋃
([

1

2
, 1

]2
×

[

0,
1

2

])
⋃

([

0,
1

2

]

×
[
1

2
, 1

]2
)

⋃ ([
1

2
, 1

]

×
[

0,
1

2

]

×
[
1

2
, 1

])

.

Since every set I1, I2 is invariant under Txy , Tyz , Txz , the measures

πI1 = (π1)|I1 , πI2 = (π1)|I2
are invariant as well. Hence the push-forward image

π x
I2 = πI2 ◦ T−1

x

of measure πI2 with respect to Tx : (x, y, z) 	→ (1 − x, y, z) has the same hyperplane
projections as πI2 . Thus

πI1 + π x
I2

belongs to Pλ.
Let us show that πI2 = 0. To this end it is sufficient to show that

∫

xyzdμ <

∫

xyzdμ̂,

where μ̂ = μ ◦ (T x )−1, for every non-zero measure μ, which is invariant with respect to
T xy , T yz , T xz , and sastisfies supp(¯) ⊂ I2. Indeed, if we show this, then we get

∫

xyzdπI1 +
∫

xyzdπ x
I2 >

∫

xyzdπI1 +
∫

xyzdπI2 .

The latter implies that measure πI1 + π x
I2
gives better value to the total cost function.
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Let ν be the projections of μ (hence, projections of μ̂) onto x-axis, and ηx (dy, dz),
η̂x (dy, dz) are corresponding conditional measures

μ = ν(dx)ηx (dydz),

μ̂ = ν(dx)η̂x (dydz).

Note that η is invariant with respect to T yz and

η̂x = ηx ◦ T−1
y = ηx ◦ T−1

z = η1−x = η̂1−x ◦ T−1
z . (5.2)

Hence
∫

xyz(dμ − dμ̂) =
∫ (∫

yz(dηx − dη̂x )

)

xν(dx)

=
∫ 1

2

0

(∫

yz(dηx − dη̂x )

)

xν(dx)+
∫ 1

1
2

(∫

yz(dηx−dη̂x )

)

xν(dx)

=
∫ 1

1
2

(∫

yz(dηx − dη̂x )

)

(2x − 1)ν(dx).

Next, using T zy-invariance of η and (5.2), one gets
∫

yz(dηx − dη̂x ) = 1

2

(∫

(yz + (1 − z)(1 − y))(dηx − dη̂x )

)

= 1

2

∫
(
yz + (1 − z)(1 − y) − (1 − y)z − y(1 − z)

)
dηx = 1

2

∫

(2y − 1)(2z − 1)dηx .

Finally,

∫

xyz(dμ − dμ̂) = 1

2

∫ 1

1
2

[∫

(2y − 1)(2z − 1)dηx (dzdy)

]

(2x − 1)ν(dx).

Since the support of μ lies in I2, one gets
∫
xyz(dμ − dμ̂) < 0.

Thus we get that the support of π1 belongs to the union of four disjoint cubes with volume
1/23

J1 = I1 = C1 ∪ C2 ∪ C3 ∪ C4.

Hence the restriction of π1 onto every cubeCi is a solution of (2.1) for the same cost function
with marginals which are restrictions of Lebesgue measure on projections of correspoding
Ci . Hence the same arguments are applicable to everyCi and one gets a solutionπ2 supported
on a union of 16 cubes of volume 1/43

J2 = ∪4
i=1 ∪4

j=1 Ci j .

Repeating this argument one gets a sequence of decreasing sets Jn such that each of them
contains support of a measure πn which solves (2.1). Clearly, the sequence {πn} admits a
weak limit π supported on

J = ∩∞
n=1 Jn .

We get immediately that π solves the desired problem, moreover J is a graph of T (x, y) (up
to a set which projection on xy has zero measure) and π is the unique measure supported on
J with the desired projections. ��
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The following pictures represent the iteration procedure.

As we already mentioned, J is a self-similar fractal of Hausdorff dimension two, called
“Sierpiński tetrahedron”. This is a Kantor-type set which is a limit of iterations of unions of
4n tetrahedrons. Remarkably, in our proof we get an alternative construction and obtain J as
an intersection of collections of cubes.

Remark 5.4 Themost trivial example of a fractal solution to theMonge–Kantorovich problem
is apparently the (3, 2)-Kantorovich problem with Lebesgue measure projections and c =
1 − x ⊕ y. Then the solution is again the Sierpiński tetrahedron. But this is due to a special
choice of the cost function. Unlike this, ourmain example deals with the smooth cost function
c = xyz and the extremality of the presented solution is highly non-obvious. In addition,
we will see in the subsequent sections that a solution to the corresponding dual problem
provides a non-trivial representation of the Sierpiński tetrahedron as a set of zeroes of an a.e.
differentiable function.

Less trivial example is given by measures supported on the set

T = {x + y = x ⊕ y, x ∈ [0, 1], y ∈ [0, 1]}, (5.3)

which is a variant of the Sierpiński triangle (see [11]).
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Note that all x ∈ [0, 1], y ∈ [0, 1] satisfy
x + y ≥ x ⊕ y.

Let π be any probability measure on T with projections Prxπ = μ, Pryπ = ν. Consider
the Monge–Kantorovich problem

∫

[0,1]2
x ⊕ y d P → max, Prx P = μ, Pryπ = P. (5.4)

By theKantorovich duality principle the functions x, y solve the corresponding dual problem.
Hence π is a solution to (5.4).

In particular, the self-similar measure π0 on T solves problem (5.4) with marginalsμ = ν,
where μ can be described as the distribution of the series

∑∞
i=1

ξi
2i

, where the sequence of
i.i.d. Bernoulli random variables {ξi } satisfies ξi = 1 with probability 1/3 and ξi = 0
with probability 2/3. Another example is the (normalized) Lebesgue measure on the main
diagonal.

Another example of a fractal solution for smooth cost function can be found in the paper
of DiMarino et al. [10], Theorem 4.6. Themultimarginal Kantorovich prolemwith Lebesgue
projections and the cost function

h(x1 + x2 + · · · + xn),

where h is convex admits a fractal solution related to n-base decompositions.

6 Main example: dual problem

For the problem
∫

xyzdπ → min,

where π has Lebesgue projections onto principal hyperplane, let us consider the correspond-
ing dual problem:
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∫

F(x, y)dxdy +
∫

G(y, z)dxdy +
∫

H(z, x)dxdz → max, (6.1)

F(x, y) + G(y, z) + H(z, x) ≤ xyz. (6.2)

It is clear that by symmetries of the problem one can reduce the general problem to the case

F = G = H , F(x, y) = F(y, x).

Let us remind to the reader that by the standard duality arguments any function F satisfying
(6.2) and

F(x, y) + G(y, z) + H(z, x) = xyz, z = x ⊕ y

(x, y)-almost everywere is a solution to (6.1).
Discretizing the problem and performing finite-dimensional linear programming algo-

rithms we were able to guess reccurent relations for the restriction of F onto the set of dyadic
rational numbers. Using these relations we prove the desired properties of our function.
Finally, we will give an integral representation for the solution in the next section.

6.1 Definition and easy properties

Let N0 be the set of all non-negative integers.

Definition 6.1 Let f : N0 × N0 → Z be a function defined as follows. Set:

f (0, 0) = 0, f (0, 1) = f (1, 0) = −1, f (1, 1) = 2.

In all other points f is defined by the following recurrent relations:

f (a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8 f ( a2 , b
2 ) if a ≡ 0 (mod 2) and b ≡ 0 (mod 2),

4
(
f ( a−1

2 , b
2 ) + f ( a+1

2 , b
2 )

) + 3 if a ≡ 1 (mod 2) and b ≡ 0 (mod 2),

4
(
f ( a2 , b−1

2 ) + f ( a2 , b+1
2 )

) + 3 if a ≡ 0 (mod 2) and b ≡ 1 (mod 2),

2
(
f ( a−1

2 , b−1
2 ) + f ( a−1

2 , b+1
2 ) + f ( a+1

2 , b−1
2 ) + f ( a+1

2 , b+1
2 )

) + 2,

if a ≡ 1 (mod 2) and b ≡ 1 (mod 2).

(6.3)

The following properties can be immediately derived from the definition.

f (a, b) = f (b, a). (6.4)

If a is odd and b is even, then

f (a, b) = 1

2
( f (a + 1, b) + f (a − 1, b)) + 3. (6.5)

If a is odd and b is odd, then

f (a, b) = 1

2
( f (a + 1, b) + f (a − 1, b)) − 2. (6.6)

f (a, b) ≡ a + b (mod 2). (6.7)
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6.2 Continuity

Using the homogeneity relation

f (2a, 2b) = 8 f (a, b)

with factor two one can define fC (x, y) for any non-negative binary-rational x and y. Namely,
assume that (x, y) = ( a

2n , b
2n ), then one can set fC (x, y) = 8−n f (a, b). It is easy to check

that fC is well-defined. Inwhat followswe extend fC to all pairs of non-negative real numbers
by continuity. To this end we need some estimates of the increments of f .

Consider a family of integer segments In : In = [0, 2n+1], n ≥ 0. Note that for any a ∈ In
with n ≥ 1 the numbers a

2 for even a, and a+1
2 and a−1

2 for odd a, belong to the segment
In−1.

Set:

Nn,m = max(| f (a + 1, b) − f (a, b)| : a, (a + 1) ∈ In, b ∈ Im).

Lemma 6.2 There exists universal constant C, such that Nn,m ≤ C(4n + 4m).

Proof It will be convenient to prove more general inequality Nn,m ≤ C1(4n + 4m) + C2

applying induction method. At the end we obtain that C2 can take negative values.
Base of induction for n = m = 0 can be checked directly: N0,0 = 15 ≤ 2C1 + C2.
To prove the step of induction let us estimate | f (a + 2, b) − f (a, b)|, where b ∈ Im ,

a, (a + 2) ∈ In and a is even.
Let b be even. Then | f (a + 2, b) − f (a, b)| = 8| f ( a2 + 1, b

2 ) − f ( a2 , b
2 )|. If n and m are

both strictly positive, we obtain by induction hypothesis

8

∣
∣
∣
∣ f

(
a

2
+ 1,

b

2

)

− f

(
a

2
,
b

2

)∣
∣
∣
∣ ≤ Nm−1,n−1.

If only one number (say, m) is positive, then

8

∣
∣
∣
∣ f

(
a

2
+ 1,

b

2

)

− f

(
a

2
,
b

2

)∣
∣
∣
∣ ≤ Nm−1,0.

In any case one gets

8

∣
∣
∣
∣ f

(
a

2
+ 1,

b

2

)

− f

(
a

2
,
b

2

)∣
∣
∣
∣ ≤ 8

(

C1

(

4n−1 + 4m−1 + 3

4

)

+ C2

)

= 2C1(4
n + 4m) + (6C1 + 8C2). (6.8)

Here we used inequality 4max(n−1,0)+4max(m−1,0) ≤ 4n−1+4m−1+ 3
4 , which holds provided

one of the numbers n,m is positive.
Using that a + 1 is odd and applying the recurrent relations (6.5) one gets

f (a + 1, b) = 1

2
( f (a, b) + f (a + 2, b)) + 3,

f (a + 2, b) − f (a + 1, b) = 1

2
( f (a + 2, b) − f (a, b)) − 3,

f (a + 1, b) − f (a, b) = 1

2
( f (a + 2, b) − f (a, b)) + 3.
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These estimates imply that | f (a + 1, b) − f (a, b)| and | f (a + 2, b) − f (a + 1, b)| can
be estimated from above by

1

2
| f (a + 2, b) − f (a, b)| + 3 ≤ C1(4

n + 4m) + (3C1 + 4C2 + 3)

≤ C1(4
n + 4m) + C2, (6.9)

provided 3C1 + 4C2 + 3 ≤ C2.
Hence we obtain that for any even b ∈ Im and for any even a, (a + 1) ∈ In the following

inequality holds: | f (a + 1, b) − f (a, b)| ≤ C1(4n + 4m) + C2.
Let now b be odd.We estimate | f (a+2, b)− f (a, b)| for any even a satisfying a, (a+2) ∈

In in a similar manner. Using recurrent relations (6.3) we obtain:

f (a + 2, b) − f (a, b) = 4

[

f

(
a

2
+ 1,

b + 1

2

)

− f

(
a

2
,
b + 1

2

)]

+ 4

[

f

(
a

2
+ 1,

b − 1

2

)

− f

(
a

2
,
b − 1

2

)]

+ 6

≤ 8

[

C1

(

4n−1 + 4m−1 + 3

4

)

+ C2

]

+ 6 = 2C1(4
n + 4m)

+(6C1 + 8C2 + 6).

Next we estimate | f (a + 1, b) − f (a, b)| and | f (a + 2, b) − f (a + 1, b)|. Since a + 1
and b are odd, one gets applying (6.6)

f (a + 1, b) = 1

2
( f (a, b) + f (a + 2, b)) − 2,

f (a + 2, b) − f (a + 1, b) = 1

2
( f (a + 2, b) − f (a, b)) + 2,

f (a + 1, b) − f (a, b) = 1

2
( f (a + 2, b) − f (a, b)) − 2.

Finally,

| f (a + 1, b) − f (a, b)|, | f (a + 2, b) − f (a + 1, b)|
≤ 1

2
| f (a + 2, b) − f (a, b)| + 2 ≤ C1(4

n + 4m) + 3C1 + 4C2 + 5

≤ C1(4
n + 4m) + C2,

provided that 3C1 + 4C2 + 5 ≤ C2.
Now we get that for all odd b ∈ Im and for all a, (a + 1) ∈ In one has

| f (a + 1, b) − f (a, b)| ≤ C1(4
n + 4m) + C2.

This implies Nn,m ≤ C1(4n + 4m) + C2, which completes the induction step.
To conclude it is sufficient to find solutions C1 and C2 to the following system of inequal-

ities
⎧
⎪⎪⎨

⎪⎪⎩

2C1 + C2 ≥ 15,

3C1 + 4C2 + 3 ≤ C2,

3C1 + 4C2 + 5 ≤ C2.

(6.10)

Set: C1 = 17,C2 = −19. This completes the proof. ��
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In what folows we consider the square

I = [0, 2N+1] × [0, 2N+1].
Assume that dyadic rational numbers x,�x, y,�y satisfy (x, y), (x + �x, x + �y) ∈ I .

Lemma 6.3 | fC (x + �x, x + �y) − fC (x, y)| ≤ 22N+1C(|�x | + |�y|).
Proof There exist an integer numberM , such that 2Mx , 2M y, 2M�x , 2M�y are non-negative
integers. Then the desired result follows from the line of inequalities

| fC (x + �x, x + �y) − fC (x, y)|
= 1

8M
| f (2M (x + �x), 2M (y + �y)) − f (2Mx, 2M y)|

≤ 1

8M
2M (|�x | + |�y|)NN+M,N+M

≤ 1

4M
C(4N+M + 4N+M )(|�x | + |�y|) = 22N+1C(|�x | + |�y|).

��
This statement immediately implies that for every Cauchy sequence (xi , yi ) the sequence

fC (xi , yi ) is a Cauchy sequence as well. Thus fC can be extended to a continuous function
on the set of non-negative real numbers. In what follows fC denotes this extension.

From the properties of f and continuity of fC we infer the important homogeneity prop-
erty:

Proposition 6.4

fC (2x, 2y) = 8 fC (x, y).

6.3 Solution to the dual problem

In this section we prove our main duality result. Namely, let us set

F(a, b, c) = f (a, b) + f (b, c) + f (c, a)

and

FC (x, y, z) = fC (x, y) + fC (y, z) + fC (z, x).

We show that function 1
8 FC solves the dual problem.Note that Theorem 3.2 does not establish

existence of a solution to the dual problem. In this concrete example we construct it explicitly.
The following theorem is the main result of this section.

Theorem 6.5 Function FC satisfies

FC (x, y, z) ≤ 8xyz.

The case of equality FC (x, y, z) = 8xyz holds if and only if (x, y, z) belongs to the closure
of the set

x ⊕ y ⊕ z = 0.

In particular, the triple 1
8 fC (x, y), 1

8 fC (x, z), 1
8 fC (y, z) solves problem (6.1).
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Proof See Corollary 6.7 and Proposition 6.11. ��

Proposition 6.6 Function F(a, b, c) satisfies inequality

F(a, b, c) ≤ 8abc.

The equality case

F(a, b, c) = 8abc (6.11)

can hold only if a + b + c ≡ 0 (mod 2).

In particular, continuity of fC implies

Corollary 6.7

FC (x, y, z) ≤ 8xyz.

Proof Let us prove the claim by induction. Base of induction is easy to check. Note that
F(a, b, c) = f (a, b) + f (b, c) + f (c, a) ≡ (a + b) + (b + c) + (c + a) ≡ 0 (mod 2)
because of (6.7). The latter implies F(a, b, c) ≤ 8abc − 2 provided F(a, b, c) < 8abc.

To prove the induction step we consider several cases.

• All of a, b, c are even. From (6.3) we infer F(a, b, c) = 8F( a2 , b
2 , c

2 ). By induction
hypothesis F(a, b, c) = 8F( a2 , b

2 , c
2 ) ≤ 8 · 8 · a

2 · b
2 · c

2 = 8abc.
• Assume that one of the numbers a, b, c (say, a) is odd and the other are even. We need

to check

F(a, b, c) ≤ 8abc − 2, (6.12)

because a + b + c ≡ 1 (mod 2). Applying (6.3) one gets

F(a, b, c) = f (a, b) + f (a, c) + f (b, c)

=
[

4

(

f

(
a − 1

2
,
b

2

)

+ f

(
a + 1

2
,
b

2

))

+ 3

]

+
[

4

(

f

(
a − 1

2
,
c

2

)

+ f

(
a + 1

2
,
c

2

))

+ 3

]

+ 8 f

(
b

2
,
c

2

)

= 4

(

F

(
a − 1

2
,
b

2
,
c

2

)

+ F

(
a + 1

2
,
b

2
,
c

2

))

+ 6.

One of the triples
( a−1

2 , b
2 , c

2

)
,
( a+1

2 , b
2 , c

2

)
admits even sum of elements, hence satisfies

(6.12).
Therefore we can write:

4

(

F

(
a − 1

2
,
b

2
,
c

2

)

+ F

(
a + 1

2
,
b

2
,
c

2

))

+ 6

≤ 4((a − 1)bc + (a + 1)bc − 2) + 6 = 8abc − 2.

• Assume that there are exactly two odd numbers among a, b, c. Without loss of generality
they are a and b. Check that F(a, b, c) ≤ 8abc, because a+b+c ≡ 0 (mod 2). Applying
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(6.3) one gets

F(a, b, c) = f (a, b) + f (b, c) + f (c, a)

=
⎡

⎣2
∑

�a,�b∈{−1,1}
f

(
a + �a

2
,
b + �b

2

)

+ 2

⎤

⎦

+
⎡

⎣4
∑

�b∈{−1,1}
f

(
b + �b

2
,
c

2

)

+ 3

⎤

⎦

+
⎡

⎣4
∑

�a∈{−1,1}
f

(
a + �a

2
,
c

2

)

+ 3

⎤

⎦

= 2
∑

�a,�b∈{−1,1}
F

(
a + �a

2
,
b + �b

2
,
c

2

)

+ 8.

Note that triples of the type ( a+�a
2 , b+�b

2 , c
2 ) there are exactly two with even sum of

elements, so by induction hypothesis for at most two triples (6.11) holds.
Hence

2
∑

�a,�b∈{−1,1}
F

(
a + �a

2
,
b + �b

2
,
c

2

)

+ 8 ≤ 2((2a)(2b)c − 2 · 2) + 8 = 8abc.

• Finally let us assume that all a, b, c are odd. Thus a + b + c ≡ 1 (mod 2), so we need
to check F(a, b, c) ≤ 8abc − 2. Again, (6.3) implies

F(a, b, c) = f (a, b) + f (b, c) + f (c, a)

=
⎡

⎣2
∑

�a,�b∈{−1,1}
f

(
a + �a

2
,
b + �b

2

)

+ 2

⎤

⎦

+
⎡

⎣2
∑

�b,�c∈{−1,1}
f

(
b + �b

2
,
c + �c

2

)

+ 2

⎤

⎦

+
⎡

⎣2
∑

�c,�a∈{−1,1}
f

(
c + �c

2
,
a + �a

2

)

+ 2

⎤

⎦

=
∑

�a,�b,�c∈{−1,1}
F

(
a + �a

2
,
b + �b

2
,
c + �c

2

)

+ 6.

Counting the equality cases and repeating the arguments from above one gets

∑

�a,�b,�c∈{−1,1}
F

(
a + �a

2
,
b + �b

2
,
c + �c

2

)

+ 6

≤ (2a)(2b)(2c) − 2 · 4 + 6 = 8abc − 2.

Step of induction is verified in all possible cases. ��
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6.4 Some nice identities

Here we prove some other useful identities for f (a, b) and their continious analogues for
fC (x, y).

Proposition 6.8 Let 0 ≤ a, b ≤ 2n. Then

f (2n + a, 2n + b) = 2 · 8n + 6 · 4n(a + b) + f (a, b).

Proof Apply induction by n. The case n = 0 is easy to check.
Let a and b be even. Then

f (2n + a, 2n + b) = 8 f

(

2n−1 + a

2
, 2n−1 + b

2

)

= 8

(

2 · 8n−1 + 6 · 4n−1 a + b

2
+ f

(
a

2
,
b

2

))

= 2 · 8n + 6 · 4n(a + b) + f (a, b).

Let exactly one of the numbers a or b be odd. Without loss of generality assume that a is
odd. Then

f (2n + a, 2n + b)

= 4

(

f

(

2n−1 + a + 1

2
, 2n−1 + b

2

)

+ f

(

2n−1 + 2n−1 + a − 1

2
,
b

2

))

+ 3

= 4

[

2 · 8n−1 + 6 · 4n−1 a + b + 1

2
+ f

(
a + 1

2
,
b

2

)]

+ 4

[

2 · 8n−1 + 6 · 4n−1 a + b − 1

2
+ f

(
a − 1

2
,
b

2

)]

+ 4

[

f

(
a + 1

2
,
b

2

)

+ f

(
a − 1

2
,
b

2

)]

+ 3

= 2 · 8n + 6 · 4n(a + b) + f (a, b).

Let both of a and b be odd. Similarly by the induction hypothesis:

f (2n + a, 2n + b) = 2
∑

�a,�b∈{−1,1}
f

(

2n−1 + a + �a

2
, 2n−1 + b + �b

2

)

+ 2

= 2
∑

�a,�b∈{−1,1}

[

2 · 8n−1 + 6 · 4n−1 a+b+�a+�b

2
+ f

(
a+�a

2
,
b + �b

2

)]

+2

= 2 · 8n + 6 · 4n(a + b) + 2
∑

�a,�b∈{−1,1}
f

(
a + �a

2
,
b + �b

2

)

+ 2

= 2 · 8n + 6 · 4n(a + b) + f (a, b).

��

Proposition 6.9 For 0 ≤ a, b ≤ 2n one has

f (2n + a, b) = −8n − 6 · 4na + 4n+1b + 8 · 2nab + f (a, b).
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Proof The proof is similar to the proof of Proposition 6.8. Apply the induction by n. The
base for n = 0 can be checked by an easy computation.

Consider n ≥ 1. Set g1(n, a, b) = −8n , g2(n, a, b) = 6 · 4na, g3(n, a, b) = 4n+1b,
g4(n, a, b) = 8 ·2nab. For induction step it is sufficient to check that the following identities
hold:

gi (n, a, b) = 8gi

(

n − 1,
a

2
,
b

2

)

,

gi (n, a, b) = 4gi

(

n − 1,
a − 1

2
,
b

2

)

+ 4gi

(

n − 1,
a + 1

2
,
b

2

)

,

gi (n, a, b) = 4gi

(

n − 1,
a

2
,
b − 1

2

)

+ 4gi

(

n − 1,
a

2
,
b + 1

2

)

,

gi (n, a, b) = 2
∑

�a,�b∈{−1,1}
gi

(

n − 1,
a + �a

2
,
b + �b

2

)

.

Next we prove the desired identity by considering four different cases: a is odd(even), b
is odd(even) and applying an appropriate identity for all summands in the right hand side.
For any of 8n , 4na, 4nb and 2nab these properties are obviously true. ��

Clearly, the continious analogues of these identities look as follows.

Proposition 6.10 Let 0 ≤ x, y ≤ 1
2 . Then:

fC

(
1

2
+ x,

1

2
+ y

)

= 1

4
+ 3

2
(x + y) + fC (x, y),

fC

(
1

2
+ x, y

)

= −1

8
− 3

2
x + y + 4xy + fC (x, y).

6.5 Case of equality

Proposition 6.11 The relation x ⊕ y ⊕ z = 0 implies FC (x, y, z) = 8xyz.

Proof Assume the opposite and consider the maximum of 8xyz− FC (x, y, z) on the closure
S of the set of points (x, y, z) satisfying x ⊕ y⊕ z = 0. This maximum C exists since the set
is compact and 8xyz− FC (x, y, z) is continuous. It is sufficient to show that C is not strictly
positive. Find a point (x0, y0, z0) with z0 = x0 ⊕ y0 such that 8x0y0z0 − FC (x0, y0, z0) >

C/2.
The first numbers in the binary representations of x0, y0, z0 contains either all zeroes of

exactly two units, because x0 ⊕ y0 ⊕ z0 = 0. If they all are zeroes, then 2x0 ⊕2y0 ⊕2z0 = 0.
Thus 8(2x0)(2y0)(2z0) − FC (2x0, 2y0, 2z0) > 4C > C , this contradicts to the choice of
C . If the numbers contain two units, without loss of generality assume x0 = y0 = 1. Set
x0 = 1

2 + x1, y0 = 1
2 + y1. The identities (6.10) imply

8x0y0z0 − FC (x0, y0, z0) = 8

(

x1 + 1

2

) (

y1 + 1

2

)

z0 − FC

(

x1 + 1

2
, y1 + 1

2
, z0

)

= 8x1y1z0 + 4x1z0 + 4y1z0 + 2z0

− fC

(

x1 + 1

2
, y1 + 1

2

)

− fC

(

x1 + 1

2
, z0

)

− fC

(

y1 + 1

2
, z0

)

= 8x1y1z0 + 4x1z0 + 4y1z0 + 2z0 −
[
1

4
+ 3

2
(x1 + y1) + fC (x1, y1)

]
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−
[

−1

8
− 3

2
x1 + z0 + 4x1z0 + fC (x1, z0)

]

−
[

−1

8
− 3

2
y1 + z0 + 4y1z0 + fC (y1, z0)

]

= 8x1y1z0 − FC (x1, y1, z0).

Note that x1 ⊕ y1 ⊕ z0 = 0, moreover, the function 8xyz − FC (x, y, z) takes at the point
(x1, y1, z0) the same value C/2. Note that x1, y1, z0 ≤ 1

2 , but we have already shown that
this is impossible. We got a contradiction. ��

7 Integral representation of fC(a,b)

The solution to the dual problem in ourmain example has a simple relation to the (cumulative)
distribution function

I (a, b) =
∫ a

0

∫ b

0
x ⊕ y dydx, a, b ∈ R+.

of the measure x ⊕ y dxdy. This function admits the following properties:

Property 7.1 Symmetry: I (a, b) = I (b, a).

Property 7.2 Homogeneity with respect to factor 2: I (2a, 2b) = 8I (a, b).

Proof Note that for almost all x , y and integer number n one has 2nx ⊕ 2n y = 2n(x ⊕ y).
This yields

I (2a, 2b) =
∫ 2a

0

∫ 2b

0
x ⊕ y dydx =

[
x = 2u

y = 2v

]

= 4
∫ a

0

∫ b

0
2u ⊕ 2v dvdu = 8I (a, b).

��
Property 7.3 For all 0 ≤ a ≤ 1

I (a, 1) = a

2
.

Proof To this end we need the following lemma:

Lemma 7.4 For every couple 0 ≤ x, y ≤ 1, where neither x nor y is binary rational, the
following relation holds: x ⊕ y + x ⊕ (1 − y) = 1.

Proof Note that for a = x ⊕ y and b = x ⊕ (1 − y) the i-th digits satisfy ai = xi ⊕ yi ,
bi = xi ⊕ yi . Clearly, ai ⊕ bi = 0. ��

This can be used for computation of I (a, 1):

I (a, 1) =
∫ a

0

∫ 1

0
x ⊕ y dydx

= 1

2

∫ a

0

∫ 1

0
(x ⊕ y + x ⊕ (1 − y)) dydx = 1

2

∫ a

0

∫ 1

0
1 dydx = a

2
.

��
Applying homogeneity property one immediately gets
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Corollary 7.5 For every 0 ≤ a ≤ 1
2n

I

(

a,
1

2n

)

= a

22n+1 .

In the following proposition we establish a recurent relation for fC :

Proposition 7.6 For all 0 ≤ a, b ≤ 1
2 the following identity holds:

I

(
1

2
+ a, b

)

= 1

2
ab + 1

8
b + I (a, b).

Proof Represent the integral as a sum of two parts

I

(
1

2
+ a, b

)

=
∫ 1

2+a

0

∫ b

0
x ⊕ y dydx

=
∫ 1

2+a

1
2

∫ b

0
x ⊕ y dydx +

∫ 1
2

0

∫ b

0
x ⊕ y dydx .

Making the change of variable x = 1
2 + t one gets

∫ 1
2+a

1
2

∫ b

0
x ⊕ y dydx =

∫ a

0

∫ b

0

(
1

2
+ t

)

⊕ y dydt

=
∫ a

0

∫ b

0

(

t ⊕ y + 1

2

)

dydt = 1

2
ab + I (a, b).

Hence

I (a, b) = 1

2
ab + I (a, b) + I

(
1

2
, b

)

= 1

2
ab + 1

8
b + I (a, b).

��
Let us prove another similar relation

Proposition 7.7 For every 0 ≤ a, b ≤ 1
2 one has

I

(
1

2
+ a,

1

2
+ b

)

= 1

16
+ 3

8
a + 3

8
b + I (a, b).

Proof Similarly to the arguments of the previous proposition one obtains

I

(
1

2
+ a,

1

2
+ b

)

=
∫ 1

2+a

0

∫ 1
2+b

0
x ⊕ y dydx

=
∫ 1

2

0

∫ 1
2

0
x ⊕ y dydx +

∫ 1
2+a

1
2

∫ 1
2

0
x ⊕ y dydx

+
∫ 1

2

0

∫ 1
2+b

1
2

x ⊕ y dydx +
∫ 1

2+a

1
2

∫ 1
2+b

1
2

x ⊕ y dydx .

Clearly

∫ 1
2

0

∫ 1
2

0
x ⊕ y dydx = I

(
1

2
,
1

2

)

= 1

16
.
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To compute the second integral let us make the variables change x = 1
2 + t :

∫ 1
2+a

1
2

∫ 1
2

0
x ⊕ y dydx =

∫ a

0

∫ 1
2

0

(
1

2
+ t

)

⊕ y dydt

=
∫ a

0

∫ 1
2

0

(
1

2
+ t ⊕ y

)

dydt = 1

4
a + I

(
1

2
, a

)

= 1

4
a + 1

8
a = 3

8
a.

In the same way one gets the following formula for the third integral:

∫ 1
2

0

∫ 1
2+b

1
2

x ⊕ y dydx = 3

8
b.

To compute the last integral, let us set x = 1
2 + t , y = 1

2 + u:

∫ 1
2+a

1
2

∫ 1
2+b

1
2

x ⊕ y dydx =
∫ a

0

∫ b

0

(

t + 1

2

)

⊕
(

u + 1

2

)

dudt

=
∫ a

0

∫ b

0
t ⊕ u dudt = I (a, b).

Finally,

I

(
1

2
+ a,

1

2
+ b

)

= 1

16
+ 3

8
(a + b) + I (a, b).

��
It remains to relate fC and I .

Theorem 7.8 For all non-negative x, y ∈ R+ the following relation holds:

fC (x, y) = 8I (x, y) − 2I (x, x) − 2I (y, y).

Proof By homogeneity fC (x, y) and I (x, y) it is sufficent to prove this relation on [0, 1]2.
Set f1(x, y) = 8I (x, y)−2I (x, x)−2I (y, y). We prove that f1 satifies the same relation

as fC (see Proposition 6.10). Indeed, for all, 0 ≤ x, y ≤ 1
2 :

f1

(
1

2
+ x, y

)

= 8I

(
1

2
+ x, y

)

− 2I

(
1

2
+ x,

1

2
+ x

)

− 2I (y, y)

= 4xy + y + 8I (x, y) − 2

(
1

16
+ 3

8
(x + x) + I (x, x)

)

− 2I (y, y)

= −1

8
− 3

2
x + y + 4xy + f1(x, y),

f1

(
1

2
+ x,

1

2
+ y

)

= 8I

(
1

2
+x,

1

2
+y

)

−2I

(
1

2
+x,

1

2
+x

)

− 2I

(
1

2
+ y,

1

2
+ y

)

= 1

2
+ 3x + 3y + 8I (x, y) − 2

(
1

16
+ 3

8
(x + x) + I (x, x)

)

−2

(
1

16
+ 3

8
(y + y) + I (y, y)

)

= 1

4
+ 3

2
(x + y) + f1(x, y).
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It remains to show that M = sup0≤x≤1,0≤y≤1 | f − f1| = 0. Note that the supremum

is attained on
[
0, 1

2

]2
, because f − f1 is invariant with respect to the shifts x → x + 1

2 ,
y → y+ 1

2 . IfM is larger than zero and attained at some point (x0, y0), where 0 ≤ x0, y0 ≤ 1
2 ,

then the value of | f − f1| at (2x0, 2y0) equals 8M . We obtained a contradiction. ��
Applying the above result we obtain the following integral representation theorem for our

solution to the dual problem.

Theorem 7.9 The function

F(x, y) =
∫ x

0

∫ y

0
s ⊕ t dsdt − 1

4

∫ x

0

∫ x

0
s ⊕ t dsdt − 1

4

∫ y

0

∫ y

0
s ⊕ t dsdt

solves the dual problem
∫

[0,1]2
F(x, y)dxdy +

∫

[0,1]2
F(x, z)dxdz +

∫

[0,1]2
F(y, z)dydz → max,

F(x, y) + F(x, z) + F(y, z) ≤ xyz

to the primal (3, 2)-Kantorovich problem
∫

xyzdπ → min, (x, y, z) ∈ [0, 1]3,
considered on the space of measure which projections onto principal hyperplanes are
Lebesgue measures on [0, 1]2.

8 Concluding remarks

Numerical experiments visually reveal fractal structure of the solutions to (3,2)-Kantorovich
problem for other cost functions and projections. This happens even under absence of symme-
try, which, in turn, means that the solutions do not posess dyadic structure. Which properties
of our main example are preserved in general case? Here we discuss several natural hypothe-
ses.

Question 8.1 Consider the (3, 2)-Kantorovich problem on the set X × Y × Z, where

X = {x0 < x1 · · · < x2n−1},
Y = {y0 < y1 · · · < y2n−1},
Z = {z0 < z1 · · · < z2n−1}.

As usual, c = xyz and the projections are supposed to be uniform. We want to maximize∫
xyzdπ .
Is it true that unifrom measure concentrated on the points (xi , y j , zk) with i ⊕ j ⊕ k = 0

is optimal?

Question 8.2 Consider the dual (3, 2)-Kantorovich problem on the set [0, 1]3.
∫

F(x, y)dμxy +
∫

G(x, z)dμxz +
∫

H(y, z)dμyz → max,

F(x, y) + G(x, z) + H(y, z) ≤ xyz

for some triple of measures μxy, μxz, μyz .
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Is it true that F satisfies inequality

F(x + �x, y + �y) + F(x, y) − F(x + �x, y) − F(x, y + �y) ≥ 0

for every x, y,�x ≥ 0,�y ≥ 0? Equivalently, F has the representation

F(x, y) = m([0, x] × [0, y]) + f (x) + g(y)

for some nonnegative measure m and some functions f , g?

Numerical computations demonstrate that Question 8.2 has a negative answer. The answer
to Question 8.1 is negative in general, but remarkably the answer is affirmative for n = 2.

Example 8.3 Consider the discrete cube 8 × 8 × 8,

X = Y = Z = {0, ε, 2ε, 1 − 4ε, 1 − 3ε, 1 − 2ε, 1 − ε, 1}.
For sufficiently small ε, the uniformmeasure M ′, concentrated on the points (xi , y j , zk)with
i ⊕ j ⊕ k = 0, i, j, k ∈ {0, 1, . . . , 23 − 1}, is not optimal. Let us say that numbers 0, 1, 2 are
small. Other numbers are large. Consider the following competitor: measure M ′′ assigns to
a point (xi , y j , zk) the following value :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
3 , if all three indexes i, j and k are small;

0, if two indexes are small and one is large;

1
5 , if one index is small and two are large;

2
25 , if all three indexes i, j and k are large.

Integrals
∫
xyzdM ′ and

∫
xyzdM ′′ are the polynomials in ε. Their free terms are equal to

12 and 125 × 2
25 = 10 respectively. Thus

∫
xyzdM ′ >

∫
xyzdM ′′ for sufficiently small

epsilon.

Let I = [0, 1]3 be the unit cube and μ be arbitrary measure on I . We denote by Fμ the
distribution function of μ

Fμ(a, b, c) = μ([0, a] × [0, b] × [0, c]).
Lemma 8.4 Let μ be a measure on I . Then the following identity holds:

∫

I

(1 − x)(1 − y)(1 − z)dμ =
∫

I

Fμ(x, y, z)dxdydz.

Proof Let I ′ be the unit cube endowed with the uniform Lebesgue measure ω. One can
consider the product I × I ′ with the product measure dμ ⊗ dω. Set:

D = {(p, q) ∈ I × I ′ | p is not larger than qcoordinatewise}.
Let us find (μ ⊗ ω)(D). We apply to this end the Fubini theorem
∫

D

dμ ⊗ dω =
∫

(x,y,z)∈I

∫

(x1,y1,z1)∈I ′,
(x1,y1,z1)≥(x,y,z)

dωdμ =
∫

(x,y,z)∈I
(1 − x)(1 − y)(1 − z)dμ.
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On the other hand,
∫

(x,y,z)∈I
=

∫

(x,y,z)∈I ′

∫

(x1,y1,z1)∈I ,
(x1,y1,z1)≤(x,y,z)

dμdω =
∫

(x,y,z)∈I
Fμ(x, y, z)dω.

��
Let μxy, μyz, μzx be projections of μ onto the corresponding principal hyperplanes. On

can rewrite the integral as follows:
∫

I

(1 − x)(1 − y)(1 − z)dμ = 1 −
∫

Ixy

xy dμxy −
∫

Iyz

yz dμyz −
∫

Izx

zx dμzx

+
∫

Ixy

x dμxy +
∫

Iyz

y dμyz +
∫

Izx

z dμzx −
∫

I

xyz dμ

= C(μxy, μyz, μzx ) −
∫

I

xyz dμ,

whereC(μxy, μyz, μzx ) only depends on the projections ofμ onto the principal hyperplanes.
We want to find a measure π which minimizes

∫
xyzdπ on the set of all (3, 2)-stochastic

measures on X × Y × Z .
Finally, consider

X = {x0 < x1 · · · < x2n−1},
Y = {y0 < y1 · · · < y2n−1},
Z = {z0 < z1 · · · < z2n−1}.

Without loss of generality assume that X × Y × Z ⊂ I . Let μ⊕ be a measure on I which is
supported on X × Y × Z and defined by

μ⊕(xi , y j , zk) = 1

4n
,

if i ⊕ j ⊕ k = 0, and

μ⊕(xi , y j , zk) = 0

in the opposite case.

Theorem 8.5 Assume that |X | = |Y | = |Z | = 4. Let μ be arbitrary measure X × Y × Z
with uniform projections on X × Y , X × Z , Y × Z. Then

∫

xyz dμ ≥
∫

xyz dμ⊕.

Moreover,

Fμ⊕ ≥ Fμ

at every point.

Proof Since the projections ofμ andμ⊕ onto the hyperplanes are equal, one has the following
equivalence relation
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∫

I

xyz dμ ≥
∫

I

xyz dμ⊕ ⇔
∫

I

Fμ(x, y, z) dxdydz ≤
∫

I

Fμ⊕(x, y, z) dxdydz.

Let us prove that Fμ⊕ ≥ Fμ. Since the measures are discrete, it is suficient to check the
desired inequality at the points (xi , y j , zk) ∈ X × Y × Z . Without loss of generality let
i ≤ j ≤ k.

If k = 3, the distribution function satisfies Fμ⊕(xi , y j , z3) = Fμ(xi , y j , z3) = (i+1)( j+1)
16 .

This follows from the fact that μ and μ⊕ have uniform projections onto X × Y .
Let i = 0. Then Fμ⊕(x0, y j , zk) = 1

16 min( j+1, k+1) = j+1
16 . Indeed, for i = 0measure

μ⊕ is concentrated at the points (x0, yt , zt ), t ∈ {0, 1, 2, 3}. Hence Fμ⊕(x0, y j , zk) = 1
16#(t |

0 ≤ t ≤ j, 0 ≤ t ≤ k). On the other hand Fμ(x0, y j , zk) ≤ Fμ(x0, y j , z3) = j+1
16 .

It remains to consider the cases when every i, j, k equals 1 or 2.
Let k = 2. Compute Fμ⊕(xi , y j , z2). To this end we count all triples (a, b, c) satisfying

0 ≤ a ≤ i , 0 ≤ b ≤ j , 0 ≤ c ≤ 2 and a ⊕ b ⊕ c = 0. For every couple (a, b) there exists
the unique c having this property except for the case a ⊕ b = 3. This happens if and only if
{a, b} = {1, 2}. It is easy to check that amount of couples with this property is exactly the
number of indices i, j which takes value 2, i.e. i + j − 2. Thus the total amount of such
triples (a, b, c) equals (i + 1)( j + 1) − i − j + 2 = i j + 3. Hence Fμ⊕(xi , y j , z2) = i j+3

16 .
Represent the number Fμ(xi , y j , z2) as follows:

Fμ(xi , y j , z2) =
∑

x∈[0,xi ]
y∈[0,y j ]
z∈[0,z2]

μ(x, y, z) =
∑

x∈[0,xi ]
y∈[0,y j ]
z∈[0,z3]

μ(x, y, z) −
∑

x∈[0,xi ]
y∈[0,y j ]

μ(x, y, z3)

= Fμ(xi , y j , z3) −
∑

x∈[0,xi ]
y∈[0,y3]

μ(x, y, z3) +
∑

x∈[0,xi ]
y∈[y j+1,y3]

μ(x, y, z3),

where the sum is taken over the atoms of μ.
We know that Fμ(xi , y j , z3) = (i+1)( j+1)

16 , because the projection of μ onto X × Y is
uniform. Analogously, the same facts about projections onto X × Z and Y × Z imply

∑

x∈[0,xi ]
y∈[0,y3]

μ(x, y, z3) = i + 1

16
.

∑

x∈[0,xi ]
y∈[y j+1,y3]

μ(x, y, z3) ≤
∑

x∈[0,x3]
y∈[y j+1,y3]

μ(x, y, z3) = 3 − j

16
,

Hence

Fμ(xi , y j , z2) ≤ (i + 1)( j + 1)

16
− i + 1

16
+ 3 − j

16
= i j + 3

16
.

It remains to consider the case i = j = k = 1. One gets immediately Fμ⊕(xi , y j , zk) =
4
16 , and Fμ(xi , y j , zk) ≤ Fμ(xi , y j , z3) = (i+1)( j+1)

16 = 4
16 . ��
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