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DOUBLE AFFINE GRASSMANNIANS AND COULOMB
BRANCHES OF 3dN = 4 QUIVER GAUGE THEORIES

Michael Finkelberg

Abstract

We propose a conjectural construction of various slices for double affine Grass-
mannians as Coulomb branches of 3-dimensionalN = 4 supersymmetric affine quiver
gauge theories. It generalizes the known construction for the usual affine Grassman-
nians, and makes sense for arbitrary symmetric Kac-Mody algebras.

1 Introduction

1.1 Historical background. The geometric Satake equivalence Lusztig [1983],
Ginzburg [1995], Beilinson and Drinfeld [2000], and Mirković and Vilonen [2007]
proposed by V. Drinfeld for the needs of the Geometric Langlands Program proved very
useful for the study of representation theory of reductive algebraic groups (starting from
G. Lusztig’s construction of q-analogues of weight multiplicities). About 15 years ago,
I. Frenkel and I. Grojnowski envisioned an extension of the geometric Satake equivalence
to the case of loop groups. The affine Grassmannians (the main objects of the geometric
Satake equivalence) are ind-schemes of ind-finite type. Their loop analogues (double
affine Grassmannians) are much more infinite, beyond our current technical abilities.
We are bound to settle for some provisional substitutes, such as transversal slices to the
smaller strata in the closures of bigger strata. These substitutes still carry quite powerful
geometric information.

Following I. Frenkel’s suggestion, some particular slices for the double affine Grass-
mannians were constructed in terms of Uhlenbeck compactifications of instanton moduli
spaces on Kleinian singularities about 10 years ago. More recently, H. Nakajima’s ap-
proach to Coulomb branches of 3-dimensional N = 4 supersymmetric gauge theories,
applied to affine quiver gauge theories, paved a way for the construction of the most gen-
eral slices.
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1.2 Contents. We recall the geometric Satake equivalence in Section 2. The (gener-
alized) slices for the affine Grassmannians are reviewed in Section 3. The problem of
constructing (the slices for) the double affine Grassmannians is formulated in Section 4.
The mathematical construction of Coulomb branches of 3d N = 4 gauge theories and its
application to slices occupies Section 5. Some more applications are mentioned in Sec-
tion 6.

Acknowledgments. This report is based mostly on the works of A. Braverman
and H. Nakajima, some joint with the author. I was incredibly lucky to have an
opportunity to learn mathematics from them. Before meeting them, I was introduced
to some semiinfinite ideas sketched below by A. Beilinson, V. Drinfeld, B. Feigin,
V. Ginzburg and I. Mirković. It is also a pleasure to acknowledge my intellectual debt to
R. Bezrukavnikov, D. Gaiotto, D. Gaitsgory, J. Kamnitzer and V. Pestun.

2 Geometric Satake equivalence

LetO denote the formal power series ringC[[z]], and letK denote its fraction fieldC((z)).
Let G be an almost simple complex algebraic group with a Borel and a Cartan subgroup
G � B � T , and with the Weyl group Wfin of (G; T ). Let Λ be the coweight lattice, and
letΛ+ � Λ be the submonoid of dominant coweights. Let alsoΛ+ � Λ be the submonoid
spanned by the simple coroots ˛i ; i 2 I . We denote by G_ � T _ the Langlands dual
group, so that Λ is the weight lattice of G_.

The affine Grassmannian GrG = GK/GO is an ind-projective scheme, the unionF
�̄2Λ+ Gr�̄G of GO-orbits. The closure of Gr�̄G is a projective variety Gr�̄G =

F
�̄��̄ Gr

�̄
G .

The fixed point set GrTG is naturally identified with the coweight lattice Λ; and �̄ 2 Λ lies
in Gr�G iff �̄ 2 Wfin�̄.

One of the cornerstones of the Geometric Langlands Program initiated by V. Drinfeld
is an equivalence S of the tensor category Rep(G_) and the category PervGO

(GrG) of
GO-equivariant perverse constructible sheaves on GrG equipped with a natural monoidal
convolution structure ? and a fiber functor H �(GrG ; �) Lusztig [1983], Ginzburg [1995],
Beilinson and Drinfeld [2000], and Mirković and Vilonen [2007]. It is a categorification
of the classical Satake isomorphism betweenK(Rep(G_)) = C[T _]Wfin and the spherical
affine Hecke algebra of G. The geometric Satake equivalence S sends an irreducible G_-
module V �̄ with highest weight �̄ to the Goresky-MacPherson sheaf IC(Gr�̄G).

In order to construct a commutativity constraint for (PervGO
(GrG); ?), Beilinson and

Drinfeld introduced a relative version GrG;BD of the Grassmannian over the Ran space
of a smooth curve X , and a fusion monoidal structure Ψ on PervGO

(GrG) (isomorphic
to ?). One of the main discoveries of Mirković and Vilonen [2007] was a Λ-grading of
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the fiber functor H �(GrG ; F ) =
L

�̄2Λ Φ�̄(F ) by the hyperbolic stalks at T -fixed points.
For a G_-module V , its weight space V�̄ is canonically isomorphic to the hyperbolic stalk
Φ�̄(SV ).

Various geometric structures of a perverse sheaf SV reflect some fine representation
theoretic structures of V , such as Brylinski-Kostant filtration and the action of dynamical
Weyl group, see Ginzburg and Riche [2015]. One of the important technical tools of study-
ing PervGO

(GrG) is the embedding GrG ,! GrG into Kashiwara infinite type scheme
GrG = GC((z�1))/GC[z] Kashiwara [1989] and Kashiwara and Tanisaki [1995]. The quo-
tientGC[[z�1]]nGrG is the moduli stack BunG(P 1) ofG-bundles on the projective line P 1.
TheGC[[z�1]]-orbits onGrG are of finite codimension; they are also numbered by the dom-
inant coweights of G, and the image of an orbit Gr�̄

G in BunG(P 1) consists of G-bundles
of isomorphism type �̄ Grothendieck [1957]. The stratifications GrG =

F
�̄2Λ+ Gr�̄G and

GrG =
F

�̄2Λ+ Gr�̄
G are transversal, and their intersections and various generalizations

thereof are the subject of the next section.

3 Generalized slices

3.1 The dominant case. We denote by K1 the first congruence subgroup of GC[[z�1]]:
the kernel of the evaluation projection ev1 : GC[[z�1]] � G. The transversal slice W�̄

�̄

(resp. W�̄
�̄) is defined as the intersection of Gr�̄G (resp. Gr�̄G) and K1 � �̄ in GrG . It is

known that W�̄
�̄ is nonempty iff �̄ � �̄, and dimW�̄

�̄ is an affine irreducible variety of
dimension h2�̄_; �̄ � �̄i. Following an idea of I. Mirković, Kamnitzer, Webster, Weekes,
and Yacobi [2014] proved that W�̄

�̄ =
F

�̄��̄��̄ W�̄
�̄ is the decomposition of W�̄

�̄ into
symplectic leaves of a natural Poisson structure.

The only T -fixed point of W�̄
�̄ is �̄. We consider the cocharacter 2�̄ : C� ! T , and

denote by R�̄
�̄ � W�̄

�̄ the corresponding repellent: the closed affine subvariety formed by
all the points that flow into �̄ under the action of 2�̄(t), as t goes to 1. Let r stand for
the closed embedding of R�̄

�̄ into W�̄
�̄, and let � stand for the closed embedding of �̄ into

R�̄
�̄. Then the hyperbolic stalk Φ�̄

�̄F of a T -equivariant constructible complex F on W�̄
�̄

is defined as �!r�F , see Braden [2003] and Drinfeld and Gaitsgory [2014].
Recall that the geometric Satake equivalence takes an irreducible G_-module V �̄ to

the IC-sheaf IC(Gr�̄G), and the weight space V �̄
�̄ is realized as V �̄

�̄ = Φ�̄IC(Gr�̄G) =

Φ�̄
�̄IC(W�̄

�̄). The usual stalks of both IC(Gr�̄G) and IC(W�̄
�̄) at �̄ are isomorphic up to

shift to the associated graded grV �̄
�̄ with respect to the Brylinski-Kostant filtration.
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3.2 The general case. If we want to reconstruct the whole of V �̄ from the various
slices W�̄

�̄, we are missing the weight spaces V �̄
�̄ with nondominant �̄. To take care of

the remaining weight spaces, for arbitrary �̄ we consider the moduli space W�̄
�̄ of the

following data:
(a) A G-bundle P on P 1.
(b) A trivialization � : PtrivjP1nf0g

∼
�! P jP1nf0g having a pole of degree � �̄ at 0 2 P 1

(that is defining a point of Gr�̄G).
(c) A B-structure � on P of degree w0�̄ with the fiber B� � G at 1 2 P 1 (with

respect to the trivialization � of P at 1 2 P 1). Here G � B� � T is the Borel subgroup
opposite to B , and w0 2 Wfin is the longest element.

This construction goes back to Finkelberg and Mirković [1999]. The space W�̄
�̄ is

nonempty iff �̄ � �̄. In this case it is an irreducible affine normal Cohen-Macaulay
variety of dimension h2�̄_; �̄ � �̄i, see Braverman, Finkelberg, and Nakajima [2016a]. In
case �̄ is dominant, the two definitions of W�̄

�̄ agree. At the other extreme, if �̄ = 0,
then W0

�˛ is nothing but the open zastava space
ı

Z�w0˛ . The T -fixed point set (W�̄
�̄)

T is
nonempty iff the weight space V �̄

�̄ is not 0; in this case (W�̄
�̄)

T consists of a single point
denoted �̄. We consider the repellent R�̄

�̄ � W�̄
�̄. It is a closed subvariety of dimension

h�̄_; �̄ � �̄i (equidimensional). We have V �̄
�̄ = Φ�̄IC(Gr�̄G) = Φ�̄

�̄IC(W�̄
�̄), so that V �̄ =L

�̄2Λ Φ�̄
�̄IC(W�̄

�̄) (see Krylov [2017]). Similarly to Braverman and Gaitsgory [2001],
one can introduce a crystal structure on the set of irreducible components

F
�̄2Λ IrrR�̄

�̄

(see Krylov [2017]), so that the resulting crystal is isomorphic to the integrable crystal
B(�̄) (for a beautiful survey on crystals, see Kashiwara [1995]).

3.3 Beilinson-Drinfeld slices. Let �̄ = (�̄1; : : : ; �̄N ) be a collection of dominant
coweights of G. We consider the moduli space W

�̄
�̄ of the following data:

(a) A collection of points (z1; : : : ; zN ) 2 AN on the affine line A1 � P 1.
(b) A G-bundle P on P 1.
(c) A trivialization � : PtrivjP1nfz1;:::;zN g

∼
�! P jP1nfz1;:::;zN g with a pole of degree �PN

s=1 �̄s � zs on the complement.
(d) A B-structure � on P of degree w0�̄ with the fiber B� � G at 1 2 P 1 (with

respect to the trivialization � of P at 1 2 P 1).
W

�̄
�̄ is nonempty iff �̄ � �̄ :=

PN
s=1 �̄s . In this case it is an irreducible affine normal

Cohen-Macaulay variety flat over AN of relative dimension h2�̄_; �̄ � �̄i, see Braverman,
Finkelberg, and Nakajima [2016a]. The fiber over N � 0 2 AN is nothing but W�̄

�̄. We
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can consider the Verdier specialization Sp IC(W�̄
�̄) to the special fiber W�̄

�̄. It is a per-
verse sheaf on W�̄

�̄ � AN smooth along the diagonal stratification of AN . We denote by

ΨIC(W�̄
�̄) its restriction to W�̄

�̄ � z where z is a point of AN
R such that z1 > : : : > zN .

Then
ΨIC(W�̄

�̄) '
M

�̄��̄��̄; �̄2Λ+

M
�̄
�̄ ˝ IC(W�̄

�̄);

where M
�̄
�̄ is the multiplicity HomG_(V �̄ ; V �̄1 ˝ : : : ˝ V �̄N ).

3.4 Convolution diagram over slices. In the setup of Section 3.3 we consider the mod-
uli space fW�̄

�̄ of the following data:
(a) A collection of points (z1; : : : ; zN ) 2 AN on the affine line A1 � P 1.
(b) A collection of G-bundles (P1; : : : ; PN ) on P 1.
(c) A collection of isomorphisms �s : Ps�1jP1nfzsg

∼
�! PsjP1nfzsg with a pole of degree

� �̄s at zs . Here 1 � s � N , and P0 := Ptriv.
(d) A B-structure � on PN of degree w0�̄ with the fiber B� � G at 1 2 P 1 (with

respect to the trivialization �N ı : : : ı �1 of PN at 1 2 P 1).
A natural projection $ : fW�̄

�̄ ! W
�̄
�̄ sends (P1; : : : ; PN ; �1; : : : ; �N ) to (PN ; �N ı

: : : ı �1). We denote $�1(W�̄
�̄) by fW�̄

�̄. Then $ : fW�̄
�̄ ! W�̄

�̄ is stratified semismall,
and

$�IC(fW�̄
�̄) =

M
�̄��̄��̄; �̄2Λ+

M
�̄
�̄ ˝ IC(W�̄

�̄):

4 Double affine Grassmannian

In this section G is assumed to be a simply connected almost simple complex algebraic
group.

4.1 The affine group and its Langlands dual. We consider the minimal integral even
positive definite Wfin-invariant symmetric bilinear form (�; �) on the coweight lattice Λ. It
gives rise to a central extension bG of the polynomial version GC[t˙1] of the loop group:

1 ! C�
! bG ! GC[t˙1] ! 1:

The loop rotation groupC� acts naturally onGC[t˙1], and this action lifts to bG. We denote
the corresponding semidirect productC�ËbG byGaff. It is an untwisted affine Kac-Moody
group ind-scheme.
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We denote byG_
aff the corresponding Langlands dual group. Note that ifG is not simply

laced, then G_
aff is a twisted affine Kac-Moody group, not to be confused with (G_)aff.

However, we have a canonical embedding G_ ,! G_
aff.

We fix a Cartan torus C� � T � C� � Gaff and its dual Cartan torus C� � T _ � C� �

G_
aff. Here the first copy ofC� is the centralC�, while the second copy is the loop rotation

C�. Accordingly, the weight lattice Λaff of G_
aff is Z ˚ Λ ˚ Z: the first copy of Z is the

central charge (level), and the second copy is the energy. A typical element � 2 Λaff will
be written as � = (k; �̄; n). The subset of dominant weights Λ+

aff � Λaff consists of all the
triples (k; �̄; n) such that �̄ 2 Λ+ and h�̄; �̄_i � k. Here �̄_ =

P
i2I ai ˛

_

i is the highest
root of G � B � T . We denote by Λ+

aff;k � Λ+
aff the finite subset of dominant weights

of level k; we also denote by Λaff;k � Λaff the subset of all the weights of level k. We
say that � � � if � � � is an element of the submonoid generated by the positive roots
of G_

aff (in particular, � and � must have the same level). Finally, let !̄i ; i 2 I , be the
fundamental coweights of G, and � := (1; 0; 0) +

P
i2I (ai ; !̄i ; 0) 2 Λaff.

The affine Weyl group Waff is the semidirect product Wfin Ë Λ. For k 2 Z>0, we also
consider its version Waff;k = Wfin ËkΛ; it acts naturally on Λaff;k = fkg�Λ˚Z (trivially
on Z). Every Waff;k-orbit on Λaff;k contains a unique representative in Λ+

aff;k . It follows
that if we denote by Γk the group of roots of unity of order k, then there is a natural
isomorphism Λ+

aff;k/Z = Waff;knΛ ∼
�!Hom(Γk ; G)/AdG .

4.2 The quest. We would like to have a double affine Grassmannian GrGaff and a ge-
ometric Satake equivalence between the category of integrable representations Rep(G_

aff)

and an appropriate category of perverse sheaves on GrGaff . Note that the affine Satake
isomorphism at the level of functions is established in Braverman and Kazhdan [2013]
and Braverman, Kazhdan, and Patnaik [2016] (and in Gaussent and Rousseau [2014] for
arbitrary Kac-Moody groups).

Such a quest was formulated by I. Grojnowski in his talk at ICM-2006 in Madrid. At
approximately the same time, I. Frenkel suggested that the integrable representations of
level k should be realized in cohomology of certain instanton moduli spaces on A2/Γk .
Here Γk acts on A2 in a hyperbolic way: �(x; y) = (�x; ��1y).

Note that the set of dominant coweights Λ+ is well ordered, which reflects the fact
that the affine Grassmannian GrG is an ind-projective scheme. However, the set of affine
dominant coweights Λ+

aff is not well ordered: it does not have a minimal element. In fact,
it has an automorphism group Z acting by the energy shifts: (k; �̄; n) 7! (k; �̄; n + n0)

(we add a multiple of the minimal imaginary coroot ı). This indicates that the sought for
double affine Grassmannian GrGaff is an object of semiinfinite nature.

At the moment, the only technical possibility of dealing with semiinfinite spaces is via
transversal slices to strata. Following I. Frenkel’s suggestion, in the series Braverman and
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Finkelberg [2010, 2012, 2013] we developed a partial affine analogue of slices of Section 3
defined in terms of Uhlenbeck spaces UG(A2/Γk).

4.3 Dominant slices via Uhlenbeck spaces. The Uhlenbeck spaceUd
G(A2) is a partial

closure of the moduli space Bund
G(A2) of G-bundles of second Chern class d on the

projective plane P 2 trivialized at the infinite line P 1
1 � P 2, see Braverman, Finkelberg,

and Gaitsgory [2006]. It is known that Bund
G(A2) is smooth quasiaffine, and Ud

G(A2) is a
connected affine variety of dimension 2dh_

G (where h_

G is the dual Coxeter number of G).
Conjecturally, Ud

G(A2) is normal; in this case Ud
G(A2) is the affinization of Bund

G(A2).
The group G � GL(2) acts naturally on Ud

G(A2): the first factor via the change of
trivialization at P 1

1, and the second factor via its action on (P 2; P 1
1). The group Γk is

embedded into GL(2). Given � = (k; �̄; m) 2 Λ+
aff;k we choose its lift to a homomor-

phism from Γk to G; thus Γk embeds diagonally into G � GL(2) and acts on Bund
G(A2).

The fixed point subvariety Bund
G(A2)Γk consists ofΓk-equivariant bundles and is denoted

Bund
G;�(A

2/Γk); another choice of lift above leads to an isomorphic subvariety. Since
0 2 A2 is a Γk-fixed point, for any Γk-equivariant G-bundle P 2 Bund

G;�(A
2/Γk) the

group Γk acts on the fiber P0. This action defines an element of Hom(Γk ; G)/AdG to be
denoted [P0].

Now given � = (k; �̄; l) 2 Λ+
aff;k we define Bun�

G;�(A
2/Γk) as the subvariety of

Bund
G;�(A

2/Γk) formed by all P such that the class [P0] 2 Hom(Γk ; G)/AdG is the

image of �, and d = k(l � m) + (�̄;�̄)�(�̄;�̄)
2

. It is a union of connected components of
Bund

G;�(A
2/Γk). Conjecturally, Bun�

G;�(A
2/Γk) is connected. This conjecture is proved

if G = SL(N ), or k = 1, or k is big enough for arbitrary G and fixed �̄; �̄.
Finally, we define the dominant slice W�

� as the closure U�
G;�(A

2/Γk) of
Bun�

G;�(A
2/Γk) in the Uhlenbeck space Ud

G(A2).

4.4 (Hyperbolic) stalks. The Cartan torus Taff = C� � T � C� maps into G �GL(2).
Here the first copy of C� goes to the diagonal torus of SL(2) � GL(2), while the sec-
ond copy of C� goes to the center of GL(2). So Taff acts on W�

�, and we denote by
� 2 W�

� the only fixed point. The corresponding repellent R�
� is the closed affine sub-

variety formed by all the points that flow into � under the action of 2�(t), as t goes to
1. The corresponding hyperbolic stalk Φ�

�IC(W�
�) is conjecturally isomorphic to the

weight space V �
� of the integrable G_

aff-module V � with highest weight �. In type A this
conjecture follows from the identification of W�

� with a Nakajima cyclic quiver variety
and I. Frenkel’s level-rank duality between the weight multiplicities and the tensor prod-
uct multiplicities Frenkel [1982], Nakajima [2002, 2009], and Braverman and Finkelberg
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[2010]. In type ADE at level 1 this conjecture follows from Braverman, Finkelberg, and
Nakajima [2016b]. Also, as the notation suggests, the hyperbolic stalk Φ�

�IC(W�
�) is

isomorphic to the vanishing cycles of IC(W�
�) at � with respect to a general function van-

ishing at� Finkelberg and Kubrak [2015]. The usual stalk of IC(W�
�) at� is conjecturally

isomorphic to the associated graded of V �
� with respect to the the affine Brylinski-Kostant

filtration Slofstra [2012]. At level 1, this conjecture follows from the computation of the
IC-stalks of Uhlenbeck spaces in Braverman, Finkelberg, and Gaitsgory [2006].

The affine analogs of generalized slices of Sections 3.2, 3.3, 3.4 were constructed in
type A in Braverman and Finkelberg [2012, 2013] in terms of Nakajima cyclic quiver
varieties mentioned above. For arbitrary G, the desired generalized slices are expected
to be the Uhlenbeck partial compactifications of the moduli spaces of Γk-equivariant Gc-
instantons (where Gc � G is a maximal compact subgroup) on multi Taub-NUT spaces
(for a physical explanation via a supersymmetric conformal field theory in 6 dimensions,
see Witten [2010]). Unfortunately, we are still lacking a modular definition of the Uh-
lenbeck compactification Baranovsky [2015], and the existing ad hoc constructions are
not flexible enough. Another approach via the Coulomb branches of framed affine quiver
gauge theories following Nakajima [2016a] and Braverman, Finkelberg, and Nakajima
[2016c,a, 2017] is described in the remaining sections. For a beautiful short introduction
to the Coulomb branches, the reader may consult Nakajima [2016b, 2015].

5 Coulomb branches of 3d N = 4 quiver gauge theories

5.1 General setup. Let N be a finite dimensional representation of a complex con-
nected reductive group G (having nothing to do with G of previous sections). We con-
sider the moduli space RG;N of triples (P ; �; s) where P is a G-bundle on the formal disc
D = SpecO; � is a trivialization of P on the punctured formal disc D� = SpecK; and s

is a section of the associated vector bundle Ptriv
G
�N on D� such that s extends to a regular

section of Ptriv
G
�N on D, and �(s) extends to a regular section of P G

�N on D. In other
words, s extends to a regular section of the vector bundle associated to theG-bundle glued
from P and Ptriv on the non-separated formal scheme glued from 2 copies of D along D�

(raviolo). The group GO acts on RG;N by changing the trivialization � , and we have
an evident GO-equivariant projection RG;N ! GrG forgetting s. The fibers of this pro-
jection are profinite dimensional vector spaces: the fiber over the base point is N ˝ O,
and all the other fibers are subspaces in N ˝ O of finite codimension. One may say that
RG;N is a GO-equvariant “constructible profinite dimensional vector bundle” over GrG.
The GO-equivariant Borel-Moore homology H

GO
� (RG;N) is well-defined, and forms an

associative algebra with respect to a convolution operation. This algebra is commutative,
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finitely generated and integral, and its spectrum MC (G;N) = SpecH
GO
� (RG;N) is an ir-

reducible normal affine variety of dimension 2 rk(G), the Coulomb branch. It is supposed
to be a (singular) hyper-Kähler manifold Seiberg and Witten [1997].

Let T � G be a Cartan torus with Lie algebra t � g. Let W = NG(T)/T be the
corresponding Weyl group. Then the equivariant cohomology H �

GO
(pt) = C[t/W]

forms a subalgebra of H
GO
� (RG;N) (a Cartan subalgebra), so we have a projection

˘ : MC (G;N) ! t/W.
Finally, the algebra H

GO
� (RG;N) comes equipped with quantization: a C[„]-

deformation C„[MC (G;N)] = H
C�ËGO
� (RG;N) where C� acts by loop rotations, and

C[„] = H �
C�(pt). It gives rise to a Poisson bracket on C[MC (G;N)] with an open

symplectic leaf, so that ˘ becomes an integrable system: C[t/W] � C[MC (G;N)] is a
Poisson-commutative polynomial subalgebra with rk(G) generators.

5.2 Flavor symmetry. Suppose we have an extension 1 ! G ! G̃ ! GF !

1 where GF is a connected reductive group (a flavor group), and the action of G on
N is extended to an action of G̃. Then the action of GO on RG;N extends to an ac-
tion of G̃O , and the convolution product defines a commutative algebra structure on
the equivariant Borel-Moore homology H

G̃O
� (RG;N). We have the restriction homomor-

phism H
G̃O
� (RG;N) ! H

GO
� (RG;N) = H

G̃O
� (RG;N) ˝H �

GF
(pt) C. In other words,

MC (G;N) := SpecH G̃O
� (RG;N) is a deformation of MC (G;N) over SpecH �

GF
(pt) =

tF /WF .
We will need the following version of this construction. Let Z � GF be a torus em-

bedded into the flavor group. We denote by G̃Z the pullback extension 1 ! G ! G̃Z !

Z ! 1. We define MZ
C (G;N) := SpecH G̃Z

O
� (RG;N): a deformation of MC (G;N) over

z := SpecH �
Z (pt).

Since MC (G;N) is supposed to be a hyper-Kähler manifold, its flavor deformation
should come together with a (partial) resolution. To construct it, we consider the obvious
projection �̃ : RG̃;N ! GrG̃ ! GrGF

. Given a dominant coweight �F 2 Λ+
F � GrGF

,
we set R�F

G̃;N
:= �̃�1(�F ), and consider the equivariant Borel-Moore homology

H
G̃Z

O
� (R�F

G̃;N
). It carries a convolution module structure over H

G̃Z
O

� (RG;N). We

consider fMZ;�F

C (G;N) := Proj(
L

n2N H
G̃Z

O
� (Rn�F

G̃;N
))

$
�! MZ

C (G;N). We denote

$�1(MC (G;N)) by fM�F

C (G;N). We have fM�F

C (G;N) = Proj(
L

n2N H
GO
� (Rn�F

G̃;N
)).
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More generally, for a strictly convex (i.e. not containing nontriv-
ial subgroups) cone V � Λ+

F , we consider the multi projective spec-

tra fMZ;V
C (G;N) := Proj(

L
�F 2V H

G̃Z
O

� (R�F

G̃;N
))

$
�! MZ

C (G;N) andfMV
C (G;N) := Proj(

L
�F 2V H

GO
� (R�F

G̃;N
))

$
�! MC (G;N).

5.3 Quiver gauge theories. Let Q be a quiver with Q0 the set of vertices, and Q1 the
set of arrows. An arrow e 2 Q1 goes from its tail t(e) 2 Q0 to its head h(e) 2 Q0. We
choose a Q0-graded vector spaces V :=

L
j 2Q0

Vj and W :=
L

j 2Q0
Wj . We set G =

GL(V ) :=
Q

j 2Q0
GL(Vj ). We choose a second grading W =

LN
s=1 W (s) compatible

with the Q0-grading of W . We set GF to be a Levi subgroup
QN

s=1

Q
j 2Q0

GL(W (s)
j ) of

GL(W ), and G̃ := G � GF . Finally, we define a central subgroup Z � GF as follows:
Z :=

QN
s=1 ∆

(s)
C� �

QN
s=1

Q
j 2Q0

GL(W (s)
j ), where C� Š ∆

(s)
C� �

Q
j 2Q0

GL(W (s)
j )

is the diagonally embedded subgroup of scalar matrices. The reductive group G̃ acts
naturally on N :=

L
e2Q1

Hom(Vt(e); Vh(e)) ˚
L

j 2Q0
Hom(Wj ; Vj ).

The Higgs branch of the corresponding quiver gauge theory is the Nakajima quiver
variety MH (G;N) = M(V; W ). We are interested in the Coulomb branch MC (G;N).

5.4 Back to slices in an affine Grassmannian. Let now G be an adjoint simple simply
laced algebraic group. We choose an orientation Ω of its Dynkin graph (of type ADE),
and denote by I its set of vertices. Given an I -graded vector space W we encode its
dimension by a dominant coweight �̄ :=

P
i2I dim(Wi )!̄i 2 Λ+ of G. Given an I -

graded vector space V we encode its dimension by a positive coroot combination ˛ :=P
i2I dim(Vi )˛i 2 Λ+. We set �̄ := �̄ � ˛ 2 Λ. Given a direct sum decomposition

W =
LN

s=1 W (s) compatible with the I -grading of W as in Section 5.3, we set �̄s :=P
i2I dim(W

(s)
i )!̄i 2 Λ+, and finally, �̄ := (�̄1; : : : ; �̄N ).

Recall the notations of Section 5.2. Since the flavor group GF is a Levi subgroup of
GL(W ), its weight lattice is naturally identified with ZdimW . More precisely, we choose
a basis w1; : : : ; wdimW of W such that any Wi ; i 2 I , and W (s); 1 � s � N , is spanned
by a subset of the basis, and we assume the following monotonicity condition: if for
1 � a < b < c � dimW we have wa; wb 2 W (s) for certain s, then wb 2 W (s) as
well. We define a strictly convex cone V = f(n1; : : : ; ndimW )g � Λ+

F � ZdimW by the
following conditions: (a) if wk 2 W (s); wl 2 W (t), and s < t , then nk � nl � 0; (b) if
wk ; wl 2 W (s), then nk = nl . The following isomorphisms are constructed in Braverman,
Finkelberg, and Nakajima [2016a] (notations of Section 3):

W�̄
�̄

∼
�! MC (G;N); W

�̄
�̄

∼
�! MZ

C (G;N);
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(we learned of their existence from V. Pestun). We also expect the following isomor-
phisms: fW�̄

�̄
∼

�! fMZ;V
C (G;N); fW�̄

�̄
∼

�! fMV
C (G;N):

In case G is an adjoint simple non simply laced algebraic group, it can be obtained
by folding from a simple simply laced group G̃ (i.e. as the fixed point set of an outer
automorphism of G̃). The corresponding automorphism of the Dynkin quiver of G̃ acts
on the above Coulomb branches, and the slices for G can be realized as the fixed point
sets of these Coulomb branches.

5.5 Back to slices in a double affine Grassmannian. We choose an orienta-
tion of an affine Dynkin graph of type A(1); D(1); E(1) with the set of vertices
Ĩ = I t fi0g, and repeat the construction of Section 5.4 for an affine dominant
coweight � =

P
i2Ĩ dim(Wi )!i = (k; �̄; 0) 2 Λ+

aff, a positive coroot combination
˛ =

P
i2Ĩ dim(Vi )˛i 2 Λaff;+, and � := � � ˛ = (k; �̄; n) 2 Λaff.

We define the slices in GrGaff (where G is the corresponding adjoint simple simply
laced algebraic group) as

W�
� := MC (G;N); W

�
� := MZ

C (G;N); fW�
� := fMZ;V

C (G;N); fW�
� := fMV

C (G;N):

If � is dominant, the slices W�
� conjecturally coincide with the ones of Section 4.3. In

type A this conjecture follows from the computation Nakajima and Takayama [2017] of
Coulomb branches of the cyclic quiver gauge theories and their identification with the
Nakajima cyclic quiver varieties.

Note that �0(RG;N) = �0(GrGL(V )) = �1(GL(V )) = ZĨ , so that H
GO
� (RG;N) =

C[MC (G;N)] = C[W�
�] is ZĨ -graded. We identify ZĨ with the root lattice of Taff �

Gaff : ZĨ = Zh˛_

i ii2Ĩ . Then the ZĨ -grading on C[W�
�] corresponds to a Taff-action on

W�
�. Composing with the cocharacter 2� : C� ! Taff, we obtain an action of C� on W�

�.
Conjecturally, the fixed point set (W�

�)
C� is nonempty iff the V �

� ¤ 0, and in this case
the fixed point set consists of a single point denoted by �. We consider the corresponding
repellent R�

� � W�
� and the hyperbolic stalk Φ�

�IC(W�
�).

Similarly to Section 5.4, in case G is an adjoint simple non simply laced group, the
Dynkin diagram of its affinization can be obtained by folding of a Dynkin graph of type
A(1); D(1); E(1), and the above slices for G are defined as the fixed point sets of the cor-
responding slices for the unfolding of G. The repellents and the hyperbolic stalks are thus
defined for arbitrary simple G too, and we expect the conclusions of Sections 3.2, 3.3, 3.4
to hold in the affine case as well.
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5.6 Warning. In order to formulate the statements about multiplicities for fusion and
convolution as in 3.3 and 3.4, we must have closed embeddings of slices W�0

� ,! W�
� for

�0 � � 2 Λ+
aff. Certainly we do have the natural closed embeddings of generalized slices in

GrG : W�̄0

�̄ ,! W�̄
�̄; �̄0 � �̄ 2 Λ+, but these embeddings have no manifest interpretation

in terms of Coulomb branches (see Section 6.4 below for a partial advance, though). For
a slice in GrG , the collection of closures of symplectic leaves in W�̄

�̄ coincides with the
collection of smaller slices W�̄0

�̄ � W�̄
�̄; �̄ � �̄0 � �̄; �̄0 2 Λ+. However, in the

affine case, in general there are more symplectic leaves in W�
� than the cardinality of

f�0 2 Λ+
aff : � � �0 � �g. For example, if k = 1, and � = 0, so that W�

� ' Ud
G(A2),

the symplectic leaves are numbered by the partitions of size � d : they are all of the form
S � Bund 0

G (A2) where 0 � d 0 � d , and S is a stratum of the diagonal stratification of
Symd�d 0

A2.
Thus we expect that the slice W�0

� for �0 2 Λ+
aff; � � �0 � �, is isomorphic to

the closure of a symplectic leaf in W�
�. We also do expect the multiplicity of IC(W�0

� )

in ΨIC(W�
�) = $�IC(fW�

�) to be M
�

�0 = HomG_
aff
(V �0

; V �1 ˝ : : : ˝ V �N ) for any
�0 2 Λ+

aff such that � � �0 � �. However, it is possible that the IC sheaves of other sym-
plectic leaves’ closures also enter ΨIC(W�

�) = $�IC(fW�
�) with nonzero multiplicities.

We should understand the representation-theoretic meaning of these extra multiplicities,
cf. Nakajima [2009, Theorem 5.15 and Remark 5.17(3)] for G of type A.

Also, the closed embeddings of slices (for Levi subgroups of Gaff) seem an indispens-
able tool for constructing a g_

aff-action on
L

� Φ�
�IC(W�

�) or a structure of g_
aff-crystal onF

� Irr(R�
�) (via reduction to Levi subgroups), cf. Krylov [2017].

5.7 Further problems. Note that the construction of Section 5.5 uses no specific prop-
erties of the affine Dynkin graphs, and works in the generality of arbitrary graphQ without
edge loops and the corresponding Kac-Moody Lie algebra gQ. We still expect the conclu-
sions of Sections 3.2, 3.3, 3.4 to hold in this generality, see Braverman, Finkelberg, and
Nakajima [2016a, 3(x)].

The only specific feature of the affine case is as follows. Recall that the category
Repk(G

_
aff) of integrable G_

aff-modules at level k 2 Z>0 is equipped with a braided bal-
anced tensor fusion structure Moore and Seiberg [1989] and Bakalov and Kirillov [2001].
Unfortunately, I have no clue how this structure is reflected in the geometry of GrGaff . I
believe this is one of the most pressing problems about GrGaff .

6 Applications
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6.1 Hikita conjecture. We already mentioned in Section 5.5 that in case V �
� ¤ 0 we

expect the fixed point set (W�
�)

Taff to consist of a single point �. This point is the sup-
port of a nilpotent scheme � defined as follows: we choose a Taff-equivariant embedding
W�

� ,! AN into a representation of Taff, and define� as the scheme-theoretic intersection
of W�

� with the zero weight subspace AN
0 inside AN . The resulting subscheme � � W�

�

is independent of the choice of a Taff-equivariant embedding W�
� ,! AN . According

to the Hikita conjecture Hikita [2017], the ring C[�] is expected to be isomorphic to the
cohomology ring H �(M(V; W )) of the corresponding Nakajima affine quiver variety,
see Section 5.3. This is an instance of symplectic duality (3d mirror symmetry) between
Coulomb and Higgs branches. The Hikita conjecture for the slicesW�̄

�̄ in GrG and the cor-
responding finite type Nakajima quiver varieties is proved in Kamnitzer, Tingley, Webster,
Weekes, and Yacobi [2015] for types A; D (and conditionally for types E).

6.2 Monopole formula. We return to the setup of Section 5.1. Recall that RG;N is a
union of (profinite dimensional) vector bundles over GO-orbits in GrG. The correspond-
ing Cousin spectral sequence converging to H

GO
� (RG;N) degenerates and allows to com-

pute the equivariant Poincaré polynomial (or rather Hilbert series)

(1) P
GO
t (RG;N) =

X
�2Λ

+

G

td� �2h�G;�iPG(t ; �):

Here deg(t) = 2; PG(t ; �) =
Q
(1 � tdi )�1 is the Hilbert series of the equivariant coho-

mology H �
StabG(�)

(pt) (di are the degrees of generators of the ring of StabG(�)-invariant
functions on its Lie algebra), and d� =

P
�2Λ_

G
max(�h�; �i; 0) dimN�. This is a slight

variation of themonopole formula of Cremonesi, Hanany, and Zaffaroni [2014]. Note that
the series (1) may well diverge (even as a formal Laurent series: the space of homology
of given degree may be infinite-dimensional), e.g. this is always the case for unframed
quiver gauge theories. To ensure its convergence (as a formal Taylor series with the con-
stant term 1) one has to impose the so called ‘good’ or ‘ugly’ assumption on the theory. In
this case the resultingN-grading onH

GO
� (RG;N) gives rise to aC�-action onMC (G;N),

making it a conical variety with a single (attracting) fixed point.
Now recall the setup of Sections 5.3, 5.4; in particular, the isomorphism

W�̄
�̄

∼
�! MC (G;N). In case �̄ is dominant, the slice W�̄

�̄ � GrG is conical with respect
to the loop rotation C�-action. However, this action is not the one of the previous
paragraph. They differ by a hamiltonian C�-action (preserving the Poisson structure).
The Hilbert series of W�̄

�̄ graded by the loop rotation C�-action is given by

(2) Pt (C[W�̄
�̄]) =

X
�2Λ

+

G

td� �2h�G;�i� 1
2 �̄��detNhor+

1
2 �̄��C �˛PG(t ; �):
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Here deg(t) = 1; ˛ = �̄ � �̄ 2 Λ+ = NI ; �̄ is the class of � 2 ΛG = ΛGL(V ) in
�0GrGL(V ) = ZI ; �̄� is the transposed row-vector; C is the I � I Cartan matrix of G;
and Nhor =

L
i!j 2Ω Hom(Vi ; Vj ) is the “horizontal” summand of GL(V )-module N, so

that detNhor is a character of GL(V ), i.e. an element of ZI .
Finally, we consider a double affine Grassmannian sliceW�

� with dominant� as in Sec-
tion 4.3. The analogue of the loop rotation action of the previous paragraph is the action
of the second copy of C� (the center of GL(2)) in Section 4.4. We expect that the Hilbert
series of W�

� graded by this C�-action is given by the evident affine analogue of the for-
mula (2) (with the Ĩ � Ĩ Cartan matrix Caff of Gaff replacing C ). In particular, in case of
level 1, this gives a formula for the Hilbert series of the coordinate ring C[Ud

G(A2)] of the
Uhlenbeck space proposed in Cremonesi, Mekareeya, Hanany, and Ferlito [2014]. Note
that the latter formula works for arbitrary G, not necessarily simply laced one. In type A

it follows from the results of Nakajima and Takayama [2017].

6.3 Zastava. Let us consider the Coulomb branch MC (G;N) of an unframed quiver
gauge theory for anADE type quiver: Wi = 08i 2 I , so thatN = Nhor. An isomorphism
MC (G;N) ∼

�!
ı

Z˛ with the open zastava1 (themoduli space of degree ˛ basedmaps from
the projective line P 1 3 1 to the flag varietyB 3 B� of G, where ˛ =

P
i2I (dimVi )˛i ),

is constructed in Braverman, Finkelberg, and Nakajima [2016a] (we learned of its exis-
tence from V. Pestun). As the name suggests, the open zastava is a (dense smooth sym-
plectic) open subvariety in the zastava spaceZ˛ , a normal Cohen-Macaulay affine Poisson
variety.

Note that there is another version of zastava Z˛ that is the solution of a moduli problem
(G-bundles on P 1 with a generalized B-structure and an extra U�-structure transversal at
1 2 P 1) Braverman, Finkelberg, Gaitsgory, and Mirković [2002] given by a scheme
cut out by the Plücker equations. This scheme is not reduced in general (the first example
occurs in typeA4) E. Feigin andMakedonskyi [2017], andZ˛ is the corresponding variety:
Z˛ := Z˛

red.
We already mentioned that the open zastava is a particular case of a generalized slice:

ı

Z˛ = W0
w0˛ . The zastava space Z˛ is the limit of slices in the following sense: for

any �̄ � �̄ such that w0�̄ � w0�̄ = ˛, there is a loop rotation equivariant regular
birational morphism s�̄

�̄ : W�w0�̄
�w0�̄ ! Z˛ , and for any N 2 N and big enough dom-

inant �̄, the corresponding morphism of the coordinate rings graded by the loop rota-
tions (s�̄

�̄)
� : C[Z˛] ! C[W�w0�̄

�w0�̄] is an isomorphism in degrees � N (both C[Z˛] and
C[W�w0�̄

�w0�̄] for dominant �̄ are positively graded).

1Zastava = flags in Croatian.
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Now C[Z˛] is obtained by the following version of the Coulomb branch construc-
tion. Given a vector space U we define the positive part of the affine Grassmannian
Gr+

GL(U ) � GrGL(U ) as the moduli space of vector bundles U on the formal disc D =

Spec(O) equipped with trivialization � : UjD�
∼

�! U ˝ OD� on the formal punctured
disc D� = Spec(K) such that � extends through the puncture as an embedding � : U ,!

U ˝ OD . Since G = GL(V ) =
Q

i2I GL(Vi ), we have GrGL(V ) =
Q

i2I GrGL(Vi ),
and we define Gr+GL(V ) =

Q
i2I Gr

+
GL(Vi )

. Finally, we define R+
G;N as the preimage of

Gr+GL(V ) � GrGL(V ) underRG;N ! GrGL(V ). ThenH
GO
� (R+

G;N) forms a convolution sub-

algebra of H
GO
� (RG;N), and an isomorphism M+

C (G;N) := SpecH
GO
� (R+

G;N)
∼

�! Z˛

is constructed in Braverman, Finkelberg, and Nakajima [2016a].
An analogue of the monopole formula (2) gives the character of the T � C�-module

C[Z˛]:

(3) �(C[Z˛]) =
X
Λ

++

G

z�̄ td� �2h�G;�i� 1
2 �̄��detN+ 1

2 �̄��C �˛PG(t ; �):

Here Λ++
G is the set of I -tuples of partitions; i -th partition having length at most dimVi

(recall that the cone of dominant coweightsΛ+
G is formed by the I -tuples of nonincreasing

sequences (�(i)
1 � �

(i)
2 � : : : � �

(i)
dimVi

) of integers, and for Λ++
G � Λ+

G we require these
integers to be nonnegative). Also, z denotes the coordinates on the Cartan torus T � G

identified with (C�)I via zi = ˛_

i .
The character of the T � C�-module C[Z˛] for G of type ADE was also computed

in Braverman and Finkelberg [2014]. Namely, it is given by the fermionic formula of B.
Feigin, E. Feigin, Jimbo, Miwa, and Mukhin [2009], and the generating function of these
characters for all ˛ 2 Λ+ is an eigenfunction of the q-difference Toda integrable system. It
would be interesting to find a combinatorial relation between the monopole and fermionic
formulas.

In the affine case, the zastava spaceZ˛
gaff

was introduced in Braverman, Finkelberg, and
Gaitsgory [2006]. It is an irreducible affine algebraic variety containing a (dense smooth
symplectic) open subvariety

ı

Z˛
gaff

: the moduli space of degree ˛ based maps from the
projective line P 1 to the Kashiwara flag scheme Flgaff . Contrary to the finite case, the
open subvariety

ı

Z˛
gaff

is not affine, but only quasiaffine, and we denote by
ı

Z˛
gaff

its affine
closure. We do not know if the open embedding

ı

Z˛
gaff

,! Z˛
gaff

extends to an open em-
bedding

ı

Z˛
gaff

,! Z˛
gaff

: it depends on the normality property of Z˛
gaff

that is established
only for g of types A; C Braverman and Finkelberg [2014] and Finkelberg and Rybnikov
[2014] at the moment (but is expected for all types). For an A(1); D(1); E(1) type quiver
and an unframed quiver gauge theory with ˛ =

P
i2Ĩ (dimVi )˛i , we have an isomor-

phism MC (G;N) ∼
�!

ı

Z˛
gaff

Braverman, Finkelberg, and Nakajima [2016a]. If Z˛
gaff

is



1294 MICHAEL FINKELBERG

normal, this isomorphism extends to M+
C (G;N) ∼

�! Z˛
gaff

, and the fermionic formula for
the character �(C[Z˛]) holds true.

Finally, for an arbitrary quiver Q without edge loops we can consider an unframed
quiver gauge theory, and a coroot ˛ :=

P
i2Q0

(dimVi )˛i of the corresponding Kac-
Moody Lie algebra gQ. The moduli space

ı

Z˛
gQ

of based maps from P 1 to the Kashiwara
flag scheme FlgQ

was studied in Braverman, Finkelberg, and Gaitsgory [2006]. It is a
smooth connected variety. We expect that it is quasiaffine, and its affine closure

ı

Z˛
gQ

is
isomorphic to the Coulomb branch MC (G;N). It would be interesting to find a modular
interpretation of M+

C (G;N) and its stratification into symplectic leaves. In the affine case
such an interpretation involves Uhlenbeck spaces Ud

G(A2).
The Jordan quiver corresponds to the Heisenberg Lie algebra. The computations

of Finkelberg, Ginzburg, Ionov, and Kuznetsov [2016] suggest that the Uhlenbeck
compactification of the Calogero-Moser phase space plays the role of zastava for the
Heisenberg Lie algebra.

6.4 Multiplication and quantization. The multiplication of slices in the affine Grass-
mannianW�̄

�̄�W�̄0

�̄0 ! W�̄+�̄0

�̄+�̄0 was constructed in Braverman, Finkelberg, and Nakajima
[2016a] via multiplication of scattering matrices for singular monopoles (we learned of its
existence from T. Dimofte, D. Gaiotto and J. Kamnitzer). The corresponding comultiplica-
tion C[W�̄+�̄0

�̄+�̄0 ] ! C[W�̄
�̄]˝ C[W�̄0

�̄0 ] can not be seen directly from the Coulomb branch

construction of slices. However, its quantization C„[W
�̄+�̄0

�̄+�̄0 ] ! C„[W
�̄
�̄] ˝ C„[W

�̄0

�̄0 ]

(recall from the end of Section 5.1 that C„[W
�̄
�̄] is the loop rotation equivariant Borel-

Moore homology of the corresponding variety of triples) already can be realized in terms
of Coulomb branches. The reason for this is that the quantized Coulomb branch C„[W

�̄
�̄]

is likely to have a presentation by generators and relations of a truncated shifted Yangian
Y �̄

�̄ ' C„[W
�̄
�̄] of Braverman, Finkelberg, and Nakajima [ibid., Appendix B]. Also, it

seems likely that the comultiplication of Finkelberg, Kamnitzer, Pham, Rybnikov, and
Weekes [2018] descends to a homomorphism ∆: Y �̄+�̄0

�̄+�̄0 ! Y �̄
�̄ ˝ Y �̄0

�̄0 . Finally, we ex-

pect that the desired comultiplication C[W�̄+�̄0

�̄+�̄0 ] ! C[W�̄
�̄] ˝ C[W�̄0

�̄0 ] is obtained by
setting „ = 0 in∆.

Returning to the question of constructing the closed embeddings of slices W�̄0

�̄ ,! W�̄
�̄

in terms of Coulomb branches (see the beginning of Section 5.6), we choose dominant
coweights �̄; �̄0; �̄0 such that �̄0 + �̄ = �̄0; �̄0 + �̄ = �̄0, and set �̄00 := �̄ � �̄0. Then
we have the multiplication morphism W�̄

�̄00 � W�̄0

�̄0 ! W�̄
�̄, and we restrict it to W�̄

�̄00 =

W�̄
�̄00 �f�̄0g ! W�̄

�̄ where �̄0 2 W�̄0

�̄0 is the fixed point. Then the desired closed subvariety
W�̄0

�̄ � W�̄
�̄ is nothing but the closure of the image of W�̄

�̄00 ! W�̄
�̄.
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The similar constructions are supposed to work for the slices in GrGaff . They are based
on the comultiplication for affine Yangians constructed in Guay, Nakajima, andWendlandt
[2017].

6.5 Affinization of KLR algebras. We recall the setup of Section 5.3, and set W = 0

(no framing). We choose a sequence j = (j1; : : : ; jN ) of vertices such that any vertex j 2

Q0 enters dimVj times; thus, N = dimV . The set of all such sequences is denoted J(V ).
We choose a Q0-graded flag V = V 0 � V 1 � : : : � V N = 0 such that V n�1/V n is a
1-dimensional vector space supported at the vertex jn for any n = 1; : : : ; N . It gives rise
to the following flag ofQ0-graded lattices in VK = V ˝K : : : : � L�1 � L0 � L1 � : : :,
where Lr+N = zLr for any r 2 Z; L0 = VO , and Ln/LN = V n � V = L0/LN for
any n = 1; : : : ; N . Let Ij � GO be the stabilizer of the flag L� (an Iwahori subgroup).
Then the Ij-module NO contains a submodule Nj formed by the K-linear homomorphisms
be : Vt(e);K ! Vh(e);K such that for any e 2 Q1 and r 2 Z; be takes Lr

t(e) to Lr+1
h(e)

.

We consider the following version of the variety of triples: Rj;j := f[g; s] 2 GK

Ij
�

Nj : gs 2 Njg, cf. Braverman, Etingof, and Finkelberg [2016] and Webster [2016, Sec-
tion 4]. Then the equivariant Borel-Moore homology Hj;j := H

C�ËIj
� (Rj;j) forms an

associative algebra with respect to a convolution operation. Moreover, if we take an-

other sequence j0 2 J(V ) and consider Rj0;j := f[g; s] 2 GK

Ij
� Nj : gs 2 Nj0g, then

Hj0;j := H
C�ËIj0
� (Rj;j0) forms a Hj0;j0 � Hj;j-bimodule with respect to convolution, and

we have convolutions Hj00;j0 ˝ Hj0;j ! Hj00;j. In other words, HV :=
L

j;j02J(V ) Hj0;j
forms a convolution algebra.

Furthermore, given j1 2 J(V ); j2 2 J(V 0), the concatenated sequence j1j2 lies in
J(V ˚ V 0), and one can define the morphisms Hj01;j1 ˝ Hj02;j2 ! Hj01j02;j1j2 summing up
to a homomorphism HV ˝ HV 0 ! HV ˚V 0 .

Similarly to the classical theory of Khovanov-Lauda-Rouquier algebras (see a beauti-
ful survey Rouquier [2012] and references therein), we expect that in case Q has no loop
edges, the categories of finitely generated graded projective HV -modules provide a cat-
egorification of the positive part U ++

Q of the quantum toroidal algebra UQ (where U ++
Q

is defined as the subalgebra generated by the positive modes of the positive generators
ej;r : j 2 Q0; r � 0).
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