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Abstract: Our present study is devoted to the constructive study of the modulational instability
for the Korteweg-de Vries (KdV)-family of equations ut + sup ux + uxxx (here s = ±1 and p > 0 is
an arbitrary integer). For deducing the conditions of the instability, we first computed the nonlinear
corrections to the frequency of the Stokes wave and then explored the coefficients of the corresponding
modified nonlinear Schrödinger equations, thus deducing explicit expressions for the instability
growth rate, maximum of the increment and the boundaries of the instability interval. A brief
discussion of the results, open questions and further research directions completes the paper.
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1. Introduction

Our present study is devoted to the constructive study of the modulational instability for the class
of the generalized Korteweg-de Vries (gKdV) equations of the general form

ut + sup ux + uxxx = 0, s = ±1, (1)

where p > 0 is an arbitrary integer. They describe weakly nonlinear dispersive waves met in various
physical problems of fluid mechanics, plasma, astrophysics, oceanography and studied in numerous
books and papers, only a few of them can be cited further on. Two fundamental equations of this
class with p = 1 and p = 2 are well studied and known to be integrable. Higher-order versions of the
Equation (1) with p > 2 appear in hydrodynamics of stratified fluid [1,2]. There are two interesting
examples of KdV-type equation in plasma with resonant electrons (p = 1/2) [3], and in bi-modular
elastic media (p = 0 and ux is replaced by |u|x) [4]. Also the log-KdV equation used for solitary waves
in Fermi-Pasta-Ulam lattices can be mentioned, e.g., [5–7]. In all papers cited above the main attention
is paid to soliton dynamics, its stability and interactions. The solitons of classical KdV equations
(p = 1 and p = 2) are stable and interact elastically due to integrability of these equations. Solitons of
higher-order KdV equations with p ≥ 4 (critical and supercritical KdV) are unstable and blow up; see
for instance [8–11].

Dynamics of modulated wave packets in KdV systems is less studied. If the wave amplitude
is small compared to the dispersion (the case of weak nonlinearity), a standard way to investigate
the stability of weakly modulated wave train is the deriving the nonlinear Schrödinger equation
(NLS) and determining its type. For the canonic KdV equation (p = 1), the corresponding NLS
equation is defocusing and therefore the wave packet is stable [12]. In the case of the modified KdV
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with s = +1 a wave train is modulationally unstable and this leads to the generation of so-called
rogue waves [13–17]. Dynamical energy cascades (triggered by the modulational instability) were
introduced and studied analytically in the frame of the modified NLS equations [18–21], while the
cascade formation governed by the focusing modified KdV equations was studied numerically [22,23].

An alternative way to investigate the modulational instability of wave packets is based on the
Whitham’s modulational theory and is presented e.g., in [24–27]. This approach is valid for weakly
modulated waves of arbitrary shape, not only for quasi-monochromatic waves, and can be applied
directly to the generalized KdV equation; see [25] and references herein. In particular, it is demonstrated
that the cnoidal waves in the canonic KdV equation with p = 1 are stable, and in the modified KdV
equation with p = 2 the cnoidal waves are unstable if s = 1. The same result can also be deduced
from the NLS-based approach. In fact, the wave dynamics in the frame of the mKdV equation is
rich and depends on additional parameter in periodic solution of mKdV having physical sense as
a pedestal. Simple change of variables aiming to delete a pedestal in mKdV yields the KdV equation
with combined quadratic and cubic nonlinearity, it is known as the Gardner equation. Analysis of
modulational stability and instability for the Gardner equation demonstrates that instability may occur
in different frequency intervals depending on the pedestal [13,15–17].

The goal of this paper is to fill a gap between predictions of the Whitham modulational theory
and NLS equation theory for the generalized KdV Equation (1) with integer p. Following our first and
very brief presentation [28], we will derive the explicit form of the NLS equation from the generalized
KdV equation. We will demonstrate constructively that for p > 2 the weakly modulated wave train is
described by the high-order NLS equation whose solutions are stable for s = −1. Steady-state solutions
of Equation (1) are studied in general form in the phase plane in Section 2. In particular, we assert that
though the solution in quadratures can be written out, it is not always possible to obtain an explicit
analytical presentation analogous to cnoidal waves in the classical KdV equation. Further on we use
the perturbation technics similar to the method that is widely used in fluid dynamics for computing
the nonlinear corrections to the frequency of the Stokes wave, both for symmetrical and asymmetrical
solutions of (1), in Section 3 and in Section 4 consequently. After the corrections are constructed,
in Section 5 we explore the coefficients of (m)NLS equations obtained for each case, and give explicit
expressions for the instability growth rate, maximum of the increment and the boundaries of the
instability interval. A brief discussion concludes the paper.

2. Traveling Wave: Phase Plane Analysis

Let us consider (1) and its traveling wave solution as function of argument θ = ωt− k x. In this
case Equation (1) can be transformed to

ω
du
dθ
− k3 d3u

dθ3 =
s k

p + 1
dup+1

dθ
. (2)

After integrating (2) twice over θ we get

ωu− k3 d2u
dθ2 =

sk
(p + 1)

up+1 − C1

2
, (3)

k3(
du
dθ

)2 −ωu2 +
2sk

(p + 1)(p + 2)
up+2 = C1u + C2, (4)

and the general solution to (1) can readily be written out in quadratures as

θ − θ0 = ±k3/2
∫ du√

C1u + C2 + ωu2 − 2sk
(p+1)(p+2)up+2

. (5)
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Here C1 and C2 are constants. To facilitate the understanding of the character of the solution (5)
let us regard in on the phase plane and re-write Equation (4) as

k3(
du
dθ

)2 + V(u) = C2, (6)

where
V(u) = −C1u−ωu2 +

2sk
(p + 1)(p + 2)

up+2. (7)

Accordingly, it is easy to see that the function V(u) may be regarded as potential energy, while the
constant C2 plays the role of total energy (defined by initial conditions, see above). In fact, the potential
energy has only two free parameters—C1 and frequency ω, while the wave number k can be eliminated
by scaling. The meaning of the parameter C1 is also evident. If C1 6= 0, the term C1u in the potential
V(u) shifts its local extremum from zero to some nonzero level called pedestal. Further on we will only
study the waves which are oscillating about zero, otherwise, a suitable scaling could be performed in
the initial equation. Accordingly, without loss of generality we may put C1 = 0 which yields

V(u) = −ωu2 +
2sk

(p + 1)(p + 2)
up+2. (8)

For waves with a small amplitude the second term can be neglected and (8) describes a linear
case if the linear dispersion relation ω = −k3 is valid (i.e., frequency should be negative), with the
obvious solution u = a cos θ.

If the second term in (8) is taken into account, this equation describes an anharmonic oscillator
(the frequency is still regarded to be negative) and the form of the potential depends on the sign of the
nonlinearity s and on whether p is odd or even.

Indeed, if p = 2n and s = +1, the potential has a parabolic-like shape shown in Figure 1, upper
panel, with all solutions being periodic and symmetric. The amplitude of the nonlinear wave can be
found from the condition

V(u) = C2, (9)

which determines two real roots a and −a and 2(n− 1) imaginary roots. If s = −1 and p is still even,
the potential function changes its parabolic shape to a more complicated one, similar to a two-humped
camel’s back shown in Figure 1, middle panel. In this case, the pit in the middle corresponds to the
case of small amplitudes and the humps on the sides—to big amplitudes. Accordingly, waves do exist
only for bounded magnitudes of amplitudes that can be found from the condition

V(u)max < C2. (10)

In this case, there are four real roots of the Equation (9) but the amplitude is defined by those two
roots that are in the neighborhood of the axes u = 0.

Figure 1. Shape of of the potential V(u) = −ωu2 + 2sk
(p+1)(p+2)up+2. Left panel: s = +1, p = 2n.

Middle panel: s = −1, p = 2n. Right panel: s = +1, p = 2n + 1.
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Now, let us consider the case when p = 2n + 1 and s = +1 displayed in Figure 1, lower panel.
In this case periodic solutions in the form of traveling waves do exist for the bounded magnitude
of amplitudes satisfying (10). Indeed, Equation (9) has three real roots a1 > 0, a2 < 0, a3 < 0,
and oscillations take place a1 and a2. Last case with s = −1 and p = 2n + 1 is easily obtained from the
above by the mirrored reflection about the vertical axis yielding change of signs in all roots, and are
not shown in Figure 1.

Completing this section we conclude that

(a) solutions to (1) in the form of periodic traveling waves do exist for an arbitrary sign of the
nonlinearity in (1); and

(b) they are symmetric with respect to horizontal axes for even powers of the nonlinearity, i.e.,
p = 2n, n = 1, 2, . . ., and asymmetric for odd powers of the nonlinearity, p = 2n− 1.

For the well-known Korteweg-de Vries equation (p = 1) and the modified Korteweg-de Vries
equation (p = 2), the (5) can be computed explicitly, e.g., for p = 1 the solution reads

u(θ) = a
[1−m

m
− E(m)

m K(m)
+ cn2

(K(m) θ

π
; m
)]

,

ω

k
=

s a
3

[2−m
m
− 3 E(m)

m K(m)

]
,

where a is a wave amplitude, cn(x; m) is the Jacobian elliptic function of modulus m, 0 < m < 1,
which is double periodic in θ, and K(m) is elliptic integral of the first order.

However, usually we can substantiate with some nice analytical expression neither the shape of
the traveling wave nor the dispersion function which governs it from (5). Therefore, further on we
introduce a small parameter and use the perturbation technics which allows construction of an explicit
form of the approximate solution to (1), under the assumption that the nonlinearity is small.

Expansions like this have been rigorously justified in many contexts, e.g., in the framework of the
reduced Ostrovsky equation with quadratic and cubic nonlinearity, see details in [29].

3. Frequency Correction, Symmetric Case

In this section we compute the nonlinear frequency correction Ω which appearing in the dispersion
of a symmetric traveling wave due to the weak nonlinearity in the even power, i.e., for p = 2n. Let us
first regard even values of p where p = 2n, n = 1, 2, . . .. As our goal is to investigate weakly nonlinear
wave packets, we can rewrite (1) using a small parameter 0 < ε� 1 as follows

ut + uxxx = −ε s u2n ux = − s ε

2n + 1
u2n+1

x (11)

and look for a solution in the form

u(θ) = a cos θ + εu1(θ) +O(ε2) + . . . ; (12)

θ = ωt− k x; (13)

ω = −k3 + ε Ω +O(ε2) + . . . , (14)

where a and k are wave amplitude and wave vector of linear monochromatic wave while other terms
are induced by the small nonlinearity.

Let us substitute (12) into (11) and make equal the terms of the first order on small parameter ε.
This yields the ordinary differential equation of the second order:

− k3(
d2u1

dθ2 + u1) = −a Ω cos θ +
s k a2n+1

2n + 1
cos2n+1 θ, (15)



Fluids 2019, 4, 54 5 of 13

where constant of integration is chosen to be zero providing no perturbation for a = 0. Now we
substitute the Fourier series of the function cos2n+1 θ into the differential equation above; the result
may be written out as

cos2n+1 θ =
1

22n

[(2n + 1
n

)
cos θ +

n−1

∑
m=0

(
2n + 1

m

)
cos [(2n− 2m + 1)θ]

]
, (16)

where (n
m) are binomial coefficients (here and below we use the standard series presentations from [30]).

The term with cos θ is separated from the other sum to facilitate the standard Poincaré procedure of
eliminating of the resonance terms in a nonlinear ordinary differential equation (ODE) (for more detail
see e.g., [31], p. 8).

The right hand side (RHS) of (15) is a superposition of Fourier harmonics with numbers
1, 2, · · · , (2n + 1), however the left hand side (LHS) may have resonance only with the first harmonics.
Accordingly, the first harmonic term in the RHS of (15) will induce the secular grow of nonlinear
correction u1. Taking into account the uncertainty of the frequency correction Ω, we choose to eliminate
resonance terms in (15) which yields

Ω =
s k

(2n + 1)22n

(
2n + 1

n

)
a2n = s Bn k a2n, (17)

where

Bn =
(2n)!

4nn!(n + 1)!
. (18)

Obviously, Bn > 0 for arbitrary n and accordingly the sign of the nonlinear correction to the wave
frequency coincides the sign of s.

Direct substitution of (17) into (13) yields a bounded solution for u1 to the basic wave of the form

u1(cos θ) =
n−1

∑
m=0

Am cos [(2n + 1− 2m)θ], (19)

where

Am =
s a2n+1

k2
(2n)!

4n Tm, (20)

Tm =
1

m!(2n + 1−m)![(2n + 1− 2m)2 − 1]
.

Thus, the first order frequency correction of the weakly nonlinear wave is completely defined.
Some straightforward considerations allow us to make some qualitative estimations the Fourier

spectrum (19). Indeed, for integers m, n the coefficient Tm < 1, ∀m ≤ n− 1. Moreover, regard the ratio
of two consequent Fourier coefficients Am/Am+1:

ρm =
Am

Am+1
=

Tm

Tm+1

=
(m + 1)!(2n + 1− (m + 1))![(2n + 1− 2(m + 1))2 − 1]

m!(2n + 1−m)![(2n + 1− 2m)2 − 1]

=
(m + 1)[(2n + 1− 2(m + 1))2 − 1]
(2n + 1−m)[(2n + 1− 2m)2 − 1]

=
(m + 1)

(2n + 1−m)

(2n + 1− 2(m + 1))2 − 1
(2n + 1− 2m)2 − 1

. (21)

The first fraction in (21) is increasing from 1/(2n + 1) to n/(n + 2) and at the same time staying
less than 1. The second fraction in (21) is also less than 1 while 2n + 1− 2(m + 1) < 2n + 1− 2m.
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Accordingly, for fixed n coefficients Am in (19) increase with the increasing of m, namely Am <

Am+1, ∀m ≤ n − 1. This means that the amplitudes of the excited harmonics of the higher order
(small m) decrease when increasing the number of harmonics.

4. Frequency Correction, Asymmetric Case

In this section we compute the nonlinear frequency correction Ω appearing in asymmetric
solutions to (1) with p = 2n − 1. Let p = 2n − 1 and introduce a small parameter 0 < ε � 1 as
above, then (1) can be rewritten as

ut + uxxx = −ε s u2n−1 ux = − ε s
2n

u2n
x (22)

and using the phase presentation as above, θ = ωt− kx, one can easily deduce an ODE similar to (15)
which after integration over θ yields

ω
du
dθ
− k3 d3u

dθ3 =
ε s k
2n

u2n. (23)

Now the wave traveling solution is searched for in the form

u(θ) = U(θ) + εu1(θ) + ε2u2(θ) +O(ε3) + . . . , (24)

U(θ) = a cos θ, (25)

ω = −k3 + εΩ1 + ε2Ω2 +O(ε3) + . . . (26)

Beginning with equaling terms in the first order on ε we deduce

−k3
[d2u1

dθ2 + u1

]
=

s k
2n

U2n −Ω1U

=
s k
2n

a2n cos2n θ −Ω1a cos θ. (27)

The general reasoning in this section is analogous to the approach described above. However,
as in this case first order terms do not generate secular terms, we have to consider also terms of the
second order on ε.

As

cos2n θ =
n

∑
m=0

Dm cos [2(n−m)θ] (28)

with positive coefficients given by

Dm =
1

22n−1

(
2n
m

)
, ∀m = 0, 1, . . . , n− 1; (29)

Dn =
1

22n

(
2n
n

)
. (30)

Notice that the Fourier series (28) does not contain terms which are in resonance with the LHS of
(27) and without loss of generality we may choose Ω1 = 0; this yields the bounded solution

u1 =
n

∑
m=0

Ãm cos [2(n−m)θ], (31)

Ãm =
s a2n

2nk2
Dm

4(n−m)2 − 1
. (32)
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It is important to notice that the sign of the Fourier coefficient Am coincides with the sign of s for
all m < n and is opposite if m = n. The last case corresponds to the mean level in the nonlinear wave
and is characterized as follows:

Ãn =
sa2n

6nk2 Dn. (33)

Notice that solution of (1) is defined up to the constant which can be easily excluded from
consideration, similar to what has been done in (7). On the other hand, this constant will affect the
nonlinear frequency correction. Therefore, first we regard waves with zero mean level omitting this
constant (pedestal) but at the end of this section we also compute the constant.

4.1. Case A: Zero Mean Level

After omitting Ãn, the Equation (31) is reduced to

u1 =
n−1

∑
m=0

Ãm cos [2(n−m)θ], (34)

and in the next order of perturbation theory we have

−k3
[d2u2

dθ2 + u2

]
= s k U2n−1u1 −ΩU

= s k a2n−1u1 cos2n−1 θ −Ωa cos θ. (35)

It follows from (31) and (32) that u1 contains s as a factor and as s2 = 1, we may omit s in (35).
The use of standard series

cos2n−1 θ =
n−1

∑
l=0

Fl cos[(2n− 2l − 1)θ], (36)

Fl =
1

4n−1

(
2n− 1

l

)
(37)

together with (31) allows us to rewrite the first term of the RHS of (35) cos θ as

k a2n−1u1 cos2n−1 θ = k a2n−1

×
n−1

∑
m=0

n−1

∑
l=0

ÃmFl cos [2(n−m)θ] cos[(2n− 2l − 1)θ]}

=
k a2n−1

2

n−1

∑
m=0

n−1

∑
l=0

Fm Ãl

× {cos[(4n− 2l − 2m− 1)θ] + cos[(2m− 2l + 1)θ]} (38)

Looking for the terms being in resonance with (38) in the form

k a2n−1

2
cos θ(

n−1

∑
m=0

Fm Ãm)

we rewrite them as

k a2n−1

2
cos θ · In, In =

n−1

∑
m=0

Fm Ãm. (39)

Accordingly, condition of the absence of resonance in (35) yields

Ω2,1 =
k a2n−2

2
In, (40)
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which is the nonlinear frequency correction for the periodic wave in the case of zero mean flow.
It follows from (33) and (39) that the sign of Ω2,1 coincides with the sign of s.

4.2. Case B: Non-Zero Mean Level

In this case, we have to consider not pure periodic waves but wave packets with amplitudes
slowly changing in time and in space. As a result, in the asymmetric case a flow is induced which
moves with the wave packet. For computing the induced flow let us first average (1) over wavelength:

< u >t +
s

p + 1
< up+1 >x= 0. (41)

Taking into account that u = a cos θ in the zero approximation, the mean value < up+1 >= 0
for even p = 2n and no induced wave packet occurs in the symmetrical case. On the other hand,
for p = 2n− 1 we get

< up+1 >= a2n < cos2n θ >= a2nDn (42)

and averaged wave amplitude is not constant anymore, < u >x 6= 0. In the first approximation,
the linear wave packet is moving with the linear group velocity cgr = −dω/dk = 3k2 and consequently
a = a(x− cgrt). This means that also induced wave packet Ãn is the function of the same variables, i.e.,

Ān = sÃn, Ãn = − a2n

3k2 Dn (43)

and the nonlinear frequency correction due to the non-zero mean level can only be computed as
follows (similar to the previous case):

Ω2,2 = − k a2n−2

2
a2n

3k2 Dn (44)

It is easy to see that Ω2,2 < 0 is always negative.

4.3. Total Frequency Correction

A combination of (40) and (44) yields the final expression for the nonlinear correction Ω in the
asymmetric case

Ω2 = Ω2,1 + Ω2,2 =
k a2n−2

2
(In −

a2n

3k2 Dn) (45)

and our last task is to estimate whether Ω2 is positive or negative.
As the sign of Ω2,1 coincides with the sign of s and Ω2,2 is always negative, we conclude

immediately that nonlinear frequency correction for Ω2 is negative for p = 2n− 1 and s = −1.
On the other hand, from s = +1 it follows that each term of the sum In = ∑n−1

m=0 Fm Ãm is positive.
To define the sign of Ω2 let us compare a2n/3k2Dn with one term of this sum corresponding to
m = n− 1, i.e., Ãn−1Fn−1. The use of formulae (29) and (30) for Dm and Dn, expression (37) for Fm and
(43) for Ãn yields

a2n

3k2 Dn =
a2n

3k2
1
3

1
22n

(2n)!
n!n!

; (46)

Ãn−1Fn−1 =
a2n

3k2 Dn−1Fn−1 =
a2n

3k2
1

22n−1
(2n)!

(n− 1)!(n + 1)!
Fn−1 =

a2n

3k2
1

22n−1
n(2n)!

n!n!(n + 1)
(2n− 1)!
n(n− 1)

; (47)

Fn−1 Ãn−1 −
a2n

3k2 Dn =
a2n

3k2
1

22n
(2n)!
n!n!

[
2(2n− 1)!

(n− 1)(n + 1)
− 1

3
]. (48)
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Direct computation shows that for n = 1 function [2(2n− 1)!/(n− 1)(n + 1)] > 1 and according
to Stirling’s approximation

n! ∼
√

2πn
(n

e

)n
, (49)

this is a fast growing function of order of nn−3/2, i.e., the bracket (48) is always positive,

[
2(2n− 1)!

(n− 1)(n + 1)
− 1

3
] > 0 ∀n. (50)

Thus it was demonstrated that the nonlinear frequency correction Ω2 is positive for p = 2n− 1
and s = 1.

Ω2 = Ω2,1 + Ω2,2 =
k a2n−2

2
(In −

a2n

3k2 Dn) =

k a2n−2

2
(

n−1

∑
m=0

Fm Ãm −
a2n

3k2 Dn) =

k a2n−2

2
(

n−1

∑
m=0

Fm
s a2n

2nk2
Dm

4(n−m)2 − 1
− a2n

3k2 Dn) =

a4n−2

2 n k
(s

n−1

∑
m=0

Fm
1
2

Dm

4(n−m)2 − 1
− n

3
Dn) =

a4n−2

2 n k
(s

n−1

∑
m=0

1
22n−1

(
2n− 1

m

)
Dm

4(n−m)2 − 1
− n

3
Dn)⇒ Ω2 =

a4n−2

k
B̃n, (51)

where

B̃n = s
n−1

∑
m=0

1
n 22n−1

(
2n− 1

m

)
Dm

4(n−m)2 − 1
− 1

6
Dn. (52)

and Dm, Dn are given by (29) and (30).

5. Modified NLS Equations

The knowledge of the explicit form of the dispersion relation allows us to write out the
corresponding NLS equation without using an asymptotic procedure. Indeed,

ω−ω0 = cgr(k− k0) +
1
2

d2ω

dk2 (k− k2
0) + Ω. (53)

and the use of the standard operator equalities

aT ↔ i(ω−ω0)a, and aX ↔ −i(k− k0)a (54)

and the expression for Ω given by (17) allows us finally to obtain the modified NLS equation in general
form for the symmetrical case, i.e., for even power p = 2n:

i aT + 3k aXX + s k Bn|a|2na = 0, Bn =
(2n)!

4nn!(n + 1)!
. (55)

For n = 1 the equation above coincides with classical NLS equation which is focusing for s = 1
and defocusing otherwise.

The modified NLS equation in the asymmetric case, i.e., with p = 2n− 1, has the form

i aT + 3k aXX +
1
k

B̃n|a|4n−2a = 0 (56)
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with B̃n given by (52). In this case, s is hidden in B̃n and it was demonstrated above that B̃n > 0 if s = 1
and B̃n < 0 otherwise.

The Equation (56) looks quite similar to the Equation (55), differing only in the form of the
coefficients in front of the nonlinear term. Both equations have the same structure and their nonlinear
terms have both the even power.

Analysis of modulational instability for the focusing case s = 1 yields the explicit expression for
the instability increment

Γ =
√

3a0K
√

2nBna2n
0 − 3K2. (57)

Maximal increment Γmax,
Γmax = n Bna2n

0 , (58)

is achieved at the wave number Kmax,

Kmax =

√
n Bn

3
an

0 , (59)

and the boundary wave number of the envelope Kb is

Kb =
√

2Kmax. (60)

6. Discussion

• We have deduced the constructive condition for the occurrence of modulational instability in
the class of the higher order KdV equations ut + sup ux + uxxx = 0 with an arbitrary positive
integer p. We demonstrated constructively that for p > 2 the weakly modulated wave train is
described by the high-order NLS equation whose solutions are stable for both even and odd p if
s = −1. Notice that in the known literature examples of studying stability of solutions to specific
equations of this class by other methods, e.g., [25,28], yield results depending on the the sign of
a pedestal.
It is important to realize that in the frame of the KdV-family of equations, the Fourier mode An

describes the wave-induced mean flow term. In the symmetric case this fact does not influence
the form of the nonlinear frequency correction obtained in Section 3 while in the asymmetric case
it will contribute into the nonlinear term in the NLS equation. The influence of the zero harmonic
requires a special wave-mean flow analysis which has been explicitly performed in this paper.
Some other substantial differences between symmetric and asymmetric cases are
demonstrated below.

• For deducing the conditions of the instability, we first computed the nonlinear corrections to the
frequency of the Stokes wave and then explored the coefficients of (m)NLS equations obtained,
thus deducing explicit expressions for the instability growth rate, maximum of the increment
and the boundaries of the instability interval. These results can be used for planning numerical
and laboratory experiments similar to [15,16], and for explaining the available data, e.g., [22,23].
An important issue here would be to choose small parameters and initial amplitudes facilitating
these results which is not a simple problem. The approximations of a solution of gKdV equations
by solutions of gNLS equations are the subject of a few tedious mathematical studies (see e.g., [32]
and the bibliography therein), where it is rigorously proven that the quality of approximation
depends not only on p and s but also on the parameters of the initial excitation.

• We have shown that conditions of the modulational instability have different forms depending
on whether p is an even number (symmetric case) or odd number (asymmetric case) where the
words symmetric and asymmetric are used loosely referring to the form of the corresponding
solutions, as discussed in Section 2. An interesting mathematical fact is that the properties of the
corresponding NLS-family of equations are also different. Namely,
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(a) In the symmetric case the nonlinear terms have the same power p = 2n both in the initial
(m)KdV equation and corresponding (m)NLS equation; this means in particularly that
(m)NLS equations with an odd power of nonlinearity, for instance

i aT + 3k aXX + const|a|3a = 0 (61)

can not appear this way.
(b) in the asymmetric case starting with different higher order KdV equations one can come to

the same (m)NLS equation. Further on we call these couples of equations an associate pair.
The first trivial associate pair reads

ut + su ux + uxxx = 0, ut + su2 ux + uxxx = 0 (62)

and both equations are reduced to the classical NLS equation

i aT + 3k aXX + const|a|2a = 0. (63)

More interesting example of a non-trivial associated pair is given by equations

ut + su3 ux + uxxx = 0, ut + su6 ux + uxxx = 0 (64)

that can be reduced to
i aT + 3k aXX + const|a|6a = 0. (65)

An associated pair consist of one symmetric and one asymmetric (m)KdV equation.
(c) In asymmetric case, each (m)KdV equation belongs to some associated pair.
(d) In symmetric case, there are single (m)KdV equations which do not belong to any associated

pair, for example, equation
ut + su4 ux + uxxx = 0 (66)

is single and generates (m)NLS of the form

i aT + 3k aXX + const|a|4a = 0. (67)

All these properties point indicate an existence of different inner structures of the NLS-families
appearing in symmetrical and asymmetrical cases which deserves a special study.
The existence of associated pair might also imply a corresponding physical interpretation.
These issues are presently under study.
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