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ON MONODROMY IN FAMILIES OF ELLIPTIC CURVES

OVER C

SERGE LVOVSKI

Abstract. We show that if we are given a smooth non-isotrivial family
of curves of genus 1 over C with a smooth base B for which the general
fiber of the mapping J : B → A1 (assigning j-invariant of the fiber to a
point) is connected, then the monodromy group of the family (acting on
H1(·, Z) of the fibers) coincides with SL(2, Z); if the general fiber has
m > 2 connected components, then the monodromy group has index at
most 2m in SL(2, Z). By contrast, in any family of hyperelliptic curves
of genus g > 3, the monodromy group is strictly less than Sp(2g, Z).

Some applications are given, including that to monodromy of hyper-
plane sections of Del Pezzo surfaces.
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Introduction

It is believed that if fibers in a family of algebraic varieties “vary enough” then
the monodromy group acting on the cohomology of the fiber should be in some sense
big. Quite a few results have been obtained in this direction. See for example [4]
for families of elliptic curves, [10] for families of hyperelliptic curves, [2] for families
of abelian varieties (see also [11] for abelian varieties in the arithmetic situation).
In the cited papers cohomology means “étale cohomology with finite coefficients”.
In this paper we address the question of “big monodromy” for families of elliptic
curves over C and singular cohomology.

The main result of the paper (Proposition 4.2) asserts that if π : X → B is a
smooth non-isotrivial family of curves of genus 1 over C and if the general fiber
of its “J-map” JX : B → A1 (assigning to each point of the base the j-invariant
of the fiber) is connected, then the monodromy group of the family X is the entire
group SL(2, Z), and if the general fiber has m > 2 connected components, then the
monodromy group of the family X is a subgroup of index at most 2m in SL(2, Z).
Here, by monodromy group we mean the image of the natural mapping π1(B, b)→
SL(H1(Xb, Z)), where b ∈ B is a general enough point and Xb is the fiber.
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An immediate consequence of this proposition is that in any non-isotrivial fam-
ily of curves of genus 1, the monodromy group has finite index in SL(2, Z) (Corol-
lary 4.4). This requires some comments.

The above assertion is similar to a well-known result about elliptic curves over
number fields, that is, to Serre’s Theorem 3.2 from Chapter IV of [14]. It is possible
that one can prove our Corollary 4.4 by imitating, mutatis mutandis, Serre’s proof of
this theorem or even derive it from Serre’s theorem or similar arithmetical results.
One merit of the approach presented in this paper is that the proofs are very
simple and elementary. One should add that the similarity between arithmetic
and geometric situations is not absolute. For example, Theorem 5.1 from [10] could
suggest that, over C, the monodromy group for some families of hyperelliptic curves
of genus g should be the entire Sp(2g, Z). However, as we show in Proposition 5.2,
for any family of hyperelliptic curves of genus g > 3 over C the monodromy group
acting on H1(·, Z) of the fiber is a proper subgroup of Sp(2g, Z).

Our main result has three simple consequences, which are presented in Section 4.
First, any smooth family of curves of genus 1 over a smooth base with commutative
fundamental group, must be isotrivial (Proposition 4.5). Second, for non-isotrivial
families we obtain an upper bound on the index of the monodromy group in SL(2, Z)
in terms of the number of generators of π1 of the base (Proposition 4.6). Third,
in the case of smooth elliptic surfaces we use Miranda’s results from [13] to obtain
an upper bound on the index of monodromy group in terms of singular fibers (see
Proposition 4.10). It should be noted that if all the singular fibers are of the type I1,
then the monodromy group is the entire SL(2, Z), see the book [7] by R. Friedman
and J. W. Morgan (Chapter II, Theorem 3.8).

In Section 5 we prove the above mentioned result about families of hyperelliptic
curves of genus 3 or higher.

In Section 6, we derive from our main result that the hyperplane monodromy
group of a smooth Del Pezzo surface (or, for Del Pezzos of degree 2, the monodromy
group acting on H1(·, Z) of smooth elements of the anticanonical linear system)
is the entire SL(2, Z) (Proposition 6.1). Observe that, in view of Proposition 5.2,
Proposition 6.1 cannot be extended to surfaces with hyperelliptic hyperplane sec-
tions.

Sections 1 through 3 are devoted to auxiliary material.

Acknowledgements. I am grateful to Yuri Burman, Andrey Levin, Sergey Ry-
bakov, Ossip Schwarzman, and Yuri Zarhin for useful discussions. I would like to
thank the anonymous referee for numerous useful suggestions.

Notation and conventions. All algebraic varieties are defined over C, the only
exception being the discussion of quadratic twists in Section 3. If X is an algebraic
variety, then Xsm and Xsing are its smooth and singular loci.

When we say “a general X has property Y ”, this always means “property Y
holds for a Zariski open and dense set of X’s”. The word “generic” is used in the
scheme-theoretic sense.

If B is an algebraic variety and π : X → B is a proper and flat morphism such
that a general fiber of π is a smooth curve of genus 1, we will say that π is a family
of curves of genus 1. If, in addition, the morphism f is smooth, we will say that
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π (or just X if there is no danger of confusion) is a smooth family, or a family of
smooth varieties. If π : X → B is a family over B and f : B′ → B is a morphism,
then by p′ : XB′ → B′ we mean the pullback of X along f .

By π1 of an algebraic variety over C we always mean the fundamental group in
the classical (complex) topology.

As usual, we put Γ(2) = {A ∈ SL(2, Z) : A ≡ I (mod 2)}, where I is the identity
matrix.

Following Miranda [13], we distinguish between curves of genus 1 and elliptic
curves: by elliptic curve over a field K we mean a smooth projective curve over K
of genus 1 with a distinguished K-rational point.

Similarly, by a smooth family of curves of genus 1 we will mean a smooth family
π : X → B such that its fibers are curves of genus 1, and by a smooth family of
elliptic curves we mean a pair (X , s), where X → B is a smooth family of curves
of genus 1 and s : B → X is a section.

To each curve C of genus 1 over a filed K, charK = 0, one can assign its j-
invariant j(C) ∈ K; recall that if C is (the smooth projective model of) the curve
defined by the Weierstrass equation y2 = x3 + px+ q, then

j(C) = 1728 · 4p3

4p3 + 27q2
. (1)

Two curves of genus 1 over C are isomorphic if and only if their j-invariants are
equal.

We say that a family over B is isotrivial if it becomes trivial after a pullback
along a generically finite morphism B1 → B. For families of curves of genus 1 this
is equivalent to the condition that j-invariants of all fibers are the same.

1. Generalities on Monodromy Groups

Suppose that B is an irreducible variety and π : X → B is a family of smooth
varieties.

If b ∈ Bsm, k ∈ N, and G is an abelian group, then the fundamental group
π1(Bsm, b) acts on Hk(p−1(b), G).

Definition 1.1. The image of π1(Bsm, b) in Aut(Hk(p−1(b), G)) (corresponding
to this action) will be called monodromy group of the family X at b and denoted
Mon(X , b) (we suppress the mention of k and G; there will be no danger of confu-
sion).

Since B is irreducible, Bsm is path connected. Hence, if we fix once and for
all the group A = Aut(Hk(p−1(b0), G)) for some b0 ∈ Bsm, then all the groups
Mon(X , b) are conjugate in A; any such subgroup will be denoted by Mon(X ).

In the sequel we will be working with families of smooth curves of genus g (in
most cases g will be equal to 1) as fibers and monodromy action on H1 of the fiber.
Since monodromy preserves the intersection form, the subgroups Mon(X ), where X
is such a family, will be defined up to an inner automorphism of the group Sp(2g, Z)
(SL(2, Z) if g = 1).

If π : X → B is a non-smooth family, then by Mon(X ) we mean Mon(X|U ),
where U ⊂ B is the Zariski open subset over which π is smooth.
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Proposition 1.2. Suppose that B is an irreducible variety, U ⊂ B is a non-empty
Zariski open subset, and X is a smooth family over B. Then Mon(X|U ) = Mon(X ).

Proof. The result follows from the fact that, for any b ∈ U ∩ Bsm, the natural
homomorphism π1(U ∩ Bsm, b) → π1(Bsm, b) is epimorphic (see for example [8,
0.7(B) ff.]). �

Proposition 1.3. Suppose that B′ and B are smooth irreducible varieties and X
is a smooth family over B. If f : B′ → B is a dominant morphism such that a
general fiber of f has m connected components, then Mon(XB′) is conjugate to a
subgroup of Mon(X ), of index at most m. In particular, if f : B′ → B is a dominant
morphism such that a general fiber of f is connected, then Mon(XB′) is conjugate
to Mon(X ).

Proof. Immediate from the fact that f is a locally trivial bundle in the complex
topology over a Zariski open subset of B (see [16, Corollary 5.1]). �

2. Some Remarks on 3-Braids

In this section, all topological terms will refer to the classical (complex) topology.
We begin with some remarks on 3-braids (see for example [9]).
If C(3) is the configuration space of unordered triples of distinct points in the

complex plane, then π1(C(3)) ∼= B3 (the braid group with 3 strands). If (u, v, w) ∈
C(3), we will write B3(u, v, w) instead of π1(C(3), (u, v, w)).

For any triple (u, v, w) ∈ C(3), we denote by Xu,v,w the elliptic curve which is the
smooth projective model of the curve with the equation y2 = (x−u)(x−v)(x−w).

Any braid γ ∈ B3(u, v, w) can be represented by a homeomorphism ϕγ : P1 → P1

(where P1 = C ∪ {∞} ⊃ C) such that ϕγ({u, v, w}) = {u, v, w} and ϕγ(∞) =∞.
If π : Xu,v,w → P1 ⊃ C is induced by the projection (x, y) 7→ x, then there exists
a unique homeomorphism ϕ̃γ : Xu,v,w → Xu,v,w such that π ◦ ϕ̃γ = ϕγ ◦ π and ϕγ
fixes π−1(∞). The automorphism ϕ̃∗γ : H1(Xu,v,w, Z) → H1(Xu,v,w, Z) does not
depend on the choice of the ϕγ representing γ; we put µ(γ) = ϕ̃∗γ .

Proposition 2.1. If Γ ∈ B3(u, v, w) is the braid represented by the loop in C(3)

defined by the formula t 7→ (ue2πit, ve2πit, ve2πit), t ∈ [0; 1], then µ(Γ) =
(−1 0

0 −1
)
.

Proof. Choose the points u, v, w ∈ C as in Figure 1. Now let A and B be the
braids corresponding to the following closed paths in C(3): in the path defining A,
the point w stays where it is while u and v are swapped, u and v moving along
small arcs close to the segment [p, q] so that the composition of paths traveled by
u and v defines a positively oriented simple closed curve. The braid B is defined
similarly, with the point u staying put and the points v and w being exchanged;
see Figure 1. The group B3(u, v, w) is generated by A and B, with the relation
ABA = BAB.

For a basis in H1(Xu,v,w, Z) we choose the 1-cycles α and β that are obtained
by lifting the closed paths α and β on Fig. 2 from C to Xu,v,w. Observe that the
lifts of α and β are closed cycles indeed since analytic continuation of a germ of the
function

√
(x− u)(x− v)(x− w) along the path α results in the same germ, and

similarly for β.
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u v w u v w

A B

Figure 1. Two generators of B3(u, v, w). One may assume that
homeomorphisms of C representing these braids are identity out-
side the dashed ovals.

u v wα β

P

Q

Figure 2. Projections of the cycles α and β to C. Point P cor-
responds to their intersection point on Xu,v,w, point Q is just an
apparent intersection point.

Denoting the action of A and B on H1(Xu,v,w, Z) by the same letters A and B,
it is clear that A(α) = α and B(β) = β. Since A and B preserve the intersection
pairing on H1(Xu,v,w, Z), it is clear that, in the basis (α, β), the action of A and
B on H1 is given by matrices of the form

A =

(
1 a
0 1

)
, B =

(
1 0
b 1

)
, a, b ∈ Z.

The relation ABA = BAB implies that either a = b = 0 or ab = −1. The first case
is impossible since the action of B3 is non-trivial (see for example [1]). So, one of
the integers a and b is equal to 1 and the other is equal to −1. Since Γ = (AB)3,
the result follows. �

3. Quadratic Twists and Monodromy

In this and the following section we will be studying monodromy groups acting
on H1(·, Z) of fibers in families of smooth curves of genus 1. In such families, the
monodromy group acting on H1 of the fiber is contained in SL(2, Z).

If p : X → B is a smooth family of elliptic curves, then the morphism B → A1

assigning the j-invariant j(p−1(b)) to a point b ∈ B, will be denoted by JX . Follow-
ing Miranda [13, Lecture V], we will say that JX is the J-map of the family X (in
Kodaira’s paper [12], the morphism JX is called analytic invariant of the family X ).
If b0 ∈ B, then the monodromy representation π1(B, b0)→ SL(H1(Xb0 , Z)) will be
denoted by ρχ.

Suppose now that the base B is smooth and connected. Since the fiber over the
generic point of B is an elliptic curve over the field of rational functions C(B), and
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since this elliptic curve can be reduced to the Weierstrass normal from, there exists
a Zariski open subset U ⊂ B such that the restriction X|U is isomorphic to the
family

w2 = z3 + Pz +Q, (2)

where P and Q are regular functions on U , the fiber over b ∈ B being the smooth
projective model of the curve defined by the equation w2 = z3 +P (b)z+Q(b), and
discriminant of the right-hand side of (2) does not vanish on U . Proposition 1.2
shows that Mon(X ) = Mon(X|U ), so, as far as monodromy groups are concerned,
we may and will assume that U = B and that the family is defined by (2) with
non-vanishing discriminant.

Any such family of the form (2) defines a morphism BrX : B → C(3) assigning
to each point b ∈ B the collection of roots of z3 + P (b)z + Q(b). If b0 ∈ B and if
{u, v, w} is the set of roots of the polynomial z3+P (b)z+Q(b), then the morphism
BrX induces a homomorphism brX : π1(B, b0)→ B3(u, v, w). If Xb0 is the fiber of
X over b0, and if

µ : B3(u, v, w)→ SL(H1(Xb0), Z)) = SL(2, Z)

is the homomorphism defined in Section 2, then the diagram

π1(B, b0)
ρχ //

brχ ""

SL(H1(Xb0), Z))

B3

µ

<<

is commutative.
Suppose that p1 : X1 → B and p2 : X2 → B are two families of elliptic curves

over a base B. One says that X1 and X2 differ by a quadratic twist if their scheme-
theoretic generic fibers (which are elliptic curves over the field of rational functions
K = C(B)) are isomorphic over a quadratic extension of K, that is, there exists a
morphism B′ → B of degree 2 such that (X1)B′ and (X2)B′ are isomorphic smooth
families. If the families X1 and X2 differ by a quadratic twist, then they can be
represented by Weierstrass equations

X1 : y2 = x3 + Px+Q,

X2 : y2 = x3 +D2 · Px+D3 ·Q,
(3)

where D is a rational function on B (see [15, Chapter X, Proposition 5.4]).
Being interested only in the monodromy groups Mon(X1) and Mon(X2), we can,

replacing B by a Zariski open subset if necessary, assume that the families X1 and
X2 are smooth; in particular, this implies that D is a regular function on B without
zeroes.

Suppose that B is a smooth algebraic variety, D is a regular function on B
without zeroes, and b0 ∈ B is a point. In the definition that follows we regard B
as a complex manifold and D as a holomorphic function on B.

Definition 3.1. In the above setting, by χD : π1(B, b) → {±1} we denote the
homomorphism defined as follows. If B0 ∈ B, γ ∈ π1(B, b0), we put χD(γ) = −1 if
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the function
√
D changes after the analytic continuation along a loop representing

γ, and we put χD(γ) = 1 otherwise. In other words, if a loop representing γ is of
the form t 7→ ϕ(t), t ∈ [0; 1], then χD(γ) = (−1)k, where k is the number of times
the loop D ◦ ϕ winds around the origin.

We will say that χD is the quadratic character associated to D.

Proposition 3.2. In the above setting, suppose that X1 and X2 are smooth families
of elliptic curves that differ by a quadratic twist as in (3). Then the monodromy ho-
momorphism ρχ2 : π1(B)→ SL(2, Z) differs from χDρχ1 by an inner automorphism
of SL(2, Z).

Proof. Suppose that X1 and X2 are defined by the equations (3), where D has no
zeroes or poles on B and discriminants of the left-hand sides of never vanish. If
u(b), v(b), and w(b) are the roots of the polynomial x3+P (b)x+Q(b), where b ∈ B,
then roots of the polynomial x3 +D(b)2P (b)x+D(b)3Q(b) are D(b)u(b), D(b)v(b),
and D(b)w(b).

Choose a base point b0 ∈ B and fix a path τ in C(3) joining the points (un-
ordered triples) (D(b0)u(b0), D(b0)v(b0), D(b0)w(b0)) and (u(b0), v(b0), w(b0)). If
γ ∈ π1(B, b0), then

brX2(γ) = τ brX1(γ)δτ−1,

where δ ∈ B3(u(b0), v(b0), w(b0)) is the loop defined by the formula

t 7→ D(γ(t))

|D(γ(t))|
· γ(t)

(if λ ∈ C∗ and α = (u, v, w) ∈ C(3), then λ · α = (λu, λv, λw)).
If the loop δ winds k times around the origin, then Proposition 2.1 implies that

µ(δ) = (−1)kI = χD(γ)I (I is the identity matrix), whence the result. �

Lemma 3.3. Suppose that Π is a group and that ρ : Π → SL(2, Z) and χ : Π →
{±1} are homomorphisms. Put G1 = Im ρ, G2 = Im(χρ). Then one of the following
cases holds:

(i) G1 = G2;
(ii) there exists a subgroup H ⊂ G1, (G1 : H) = 2, such that G2 = H ∪

(−I)(G1 \H);
(iii) G2 is the subgroup of SL(2, Z) generated by G1 and −I.

Proof. If χ is trivial, then G2 = G1; otherwise Kerχ is a subgroup of index 2 in Π.
If Ker ρ ⊂ Kerχ, then the character χ factors through the group G1 and G2 =

H∪(−I)(G1\H), where H is the kernel of the induced homomorphism G1 → {±1}.
If Ker ρ 6⊂ Kerχ, then G1 = ρ(Kerχ) = ρ(Π \Kerχ), so G2 is generated by G1

and −I. �

Suppose now that X1 and X2 are smooth families of elliptic curves over the same
base B. If we fix a base point b ∈ B, we can identify (not canonically) first integer
cohomology groups of the fibers (X1)b and (X2)b and identify them both with Z2.
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Proposition 3.4. Suppose that X1 and X2 are smooth families of elliptic curves
over the same base B and that X1 and X2 differ by a quadratic twist with a non-
vanishing regular function D as in (3). Put Gi = Mon(Xi, b) ⊂ SL(2, Z) (these
subgroups are only defined up to a conjugation). Then:

(i) Either G1 and G2 are conjugate, or one of these groups contains a subgroup
of index 2 that is conjugate to the other subgroup, or each Gi contains a
subgroup Hi of index 2 and the subgroups H1 and H2 are conjugate.

(ii) If G1 = SL(2, Z), then G2 = SL(2, Z).

Proof. Put Π = π1(B). Proposition 3.2 implies that, conjugating the subgroups if
necessary, one may assume that there exist homomorphisms ρ : Π→ SL(2, Z) and
χ : Π→ {±1} such that G1 = Im(ρ), G2 = Im(χρ).

Now part (i) follows immediately from Lemma 3.3.
To prove part (ii), one has only to account for case (ii) of Lemma 3.3. To that

end observe that SL(2, Z) contains a unique subgroup H of index 2: this follows
from the fact that the abelianization of SL(2, Z) is Z/12Z. Since the corresponding
epimorphism ϕ : SL(2, Z) → Z/12Z maps −I to 6 mod 12, one has −I ∈ H and
G2 = G1 = SL(2, Z). �

Corollary 3.5 (from the proof). Suppose that X1 and X2 are families of elliptic
curves over the same smooth base that differ by a quadratic twist. Then

(i) if the monodromy group Mon(X1) has finite index in SL(2, Z), then either
the indices (SL(2, Z) : Mon(X1)) and (SL(2, Z) : Mon(X2)) are equal or
one of them is twice greater than the other ;

(ii) the images of Mon(X1) and Mon(X2) in PSL(2, Z) are conjugate. �

Proposition 3.6. Suppose that X and Y are smooth families of elliptic curves
over the same base B and that their J-maps JX , JY : B → A1 are equal and non-
constant. Then

(i) either (SL(2, Z) : Mon(X )) = (SL(2, Z) : Mon(Y)) or one of these indices
is twice greater than the other (we allow indices of subgroups to be infinite
and assume that 2 · ∞ =∞);

(ii) the images of Mon(X ) and Mon(Y) in PSL(2, Z) are conjugate;
(iii) if Mon(X ) = SL(2, Z) then Mon(Y) = SL(2, Z).

Proof. The (scheme-theoretic) generic fibers of the families X and Y over SpecK,
where K = C(B) (the field of rational functions), have the same j-invariant JX =
JY ∈ C(B), and this j-invariant is not equal to 0 or 1728 since JX = JY is not
constant. Hence, these elliptic curves differ by a quadratic twist (see [15, Chapter X,
Proposition 5.4]), and so do the corresponding families. �

4. Main Result and Applications

We begin with a folklore result.

Proposition 4.1. Suppose that π : X → B is a smooth family of curves of genus 1,
where B is an algebraic variety. Then the mapping from B to C that assigns j-
invariant j(f−1)(b) to a point b ∈ B, is induced by a morphism from B to A1.
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Proof. If π has a section, see [6, § 5]; the general case is treated by passing to the
relative Picard. �

Proposition 4.2. Suppose that π : X → B is a smooth family of curves of genus 1
over a smooth and connected base B (the ground field is C); let JX : B → A1 be the
J-map, attaching to any point a ∈ B the j-invariant of the fiber of X over a.

(i) If the morphism JX is not constant and its general fiber is connected, then
Mon(X) = SL(2, Z).

(ii) If the morphism JX is not constant and its general fiber has m > 2 con-
nected components, then Mon(X ) is a subgroup of index at most 2m in
SL(2, Z) and the image of Mon(X ) in PSL(2, Z) is a subgroup of index at
most m in PSL(2, Z).

Proof. If the family π : X → B does not have a section, replace it by the relative
Picard π′ : X ′ = Pic0(X/B) → B, which will not affect the J-map or the index
(SL(2, Z) : Mon(X )). Assuming now that X has a section, put

V = {(p, q) ∈ A2 : 4p3 + 27q2 6= 0}
and consider the smooth family of elliptic curves B → V in which the fiber over
(p, q) is the smooth projective model Cp,q of the curve with equation y2 = x3+px+q
and the section assigns to (p, q) the “point at infinity” of this model. It is well
known (see for example [1, Corollary to Theorem 1]) that Mon(B) = SL(2, Z).

Now put A1
0 = A1 \ {0}, A1

0,1728 = A1 \ {0, 1728} and

V ′ = J−1B (A1
0,1728) = {(p, q) ∈ A2 : 4p3 + 27q2 6= 0, p 6= 0, q 6= 0}.

Let B′ be the restriction of the family B to V ′; put B′ = J−1X (A1
0,1728), and let X ′

be the restriction of X to B′. Proposition 1.2 implies that Mon(X ′) = Mon(X ) and
Mon(B′) = Mon(B) = SL(2, Z).

Observe that there exists an isomorphism g : V → A1
0 × A1

0,1728 such that the
diagram

V ′
g //

JX′ !!

A1
0 × A1

0,1728

pr2}}
A1

0,1728

is commutative. Indeed, one can define g by the formula (p, q) 7→ (q/p, j(Cp,q)),
and the inverse morphism will be

(λ, j) 7→

(
λ2

4
27

(
1728
j − 1

) , λ3

4
27

(
1728
j − 1

)) .
Hence, in the fibered product

W
f //

u

��

V ′

JB′

��
B′

JX′
// A1

0,1728
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the variety W is isomorphic to (A1
0) × B′ (in particular, W is smooth and irre-

ducible) and fibers of f are isomorphic to fibers of JX0
. Thus, the hypothesis

implies that a general fiber of the morphism JX0
has m connected components. On

the other hand, any fiber of the morphism u is irreducible since it is isomorphic to
A1

0. Now Proposition 1.3 implies that for the pullback families B′W and X ′W on W ,
the group Mon(B′W ) is a subgroup of index at most m in Mon(B) = SL(2, Z) and
Mon((X0)W ) = Mon(X0) (up to a conjugation).

Since JB′
W

= JB′ ◦ f = JX ′ ◦ u = JX ′
W

, Proposition 3.6 implies the result. �

Remark 4.3. I do not know whether the bound in this proposition can be improved
to (PSL(2, Z) : Mon(X )) 6 m for m > 1.

Corollary 4.4. If X → B is a non-isotrivial smooth family of curves of genus 1,
then its monodromy group is a subgroup of finite index in SL(2, Z).

Here is the first application of what we proved.

Proposition 4.5. If B is a smooth algebraic variety with abelian fundamental
group, then any smooth family π : X → B of curves of genus 1 must be isotrivial.

Proof. Suppose that π1(B) = G is abelian. If the J-map JX : B → A1 is not
constant, then Corollary 4.4 asserts that the group Mon(X ) has finite index in
SL(2, Z). Since Γ(2) has finite index in SL(2, Z), one has (Γ(2) : Γ(2)∩Mon(X )) <
∞. If G is the image of Γ(2)∩Mon(X ) in Γ(2)/{±I}, then G is an abelian subgroup
of finite index in Γ(2)/{±I}, which is impossible since the latter is isomorphic to
the free group with two generators. �

For the case of non-commutative π1 of the base, one can obtain an upper bound
on the index of monodromy groups in non-isotrivial families.

Proposition 4.6. Suppose that X → B is a smooth non-isotrivial family of curves
of genus 1 over a smooth base B and that π1(B) can be generated by r > 2 elements.
Then (SL(2, Z) : Mon(X )) 6 12(r − 1).

Corollary 4.7. If X → C is a non-isotrivial family of elliptic curves over a smooth
curve of genus g, with s degenerate fibers, then (SL(2, Z) : Mon(X )) 6 12(2g+s−1).

Proposition 4.6 is a consequence of the following elementary lemma.

Lemma 4.8. Suppose that G ⊂ SL(2, Z) is a subgroup of finite index and that G
can be generated by r elements. Then (SL(2, Z) : G) 6 12(r − 1).

Proof of the lemma. Throughout the proof, the free group with m generators will
be denoted by Fm.

Since G can be generated by r elements, there exists an epimorphism π : Fr � G.
Putting H = p−1(G ∩ Γ(2)), one obtains the following commutative diagram of
embeddings and surjections:

H
p′
// //

� _

index=d

��

G ∩ Γ(2)
� _

index=d

��

� � // Γ(2)
� _

index=6

��
Fr p

// // G �
�

i
// SL(2, Z)

j
// // SL(2, Z)/Γ(2) ∼= S3.

(4)
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If d 6 6 is the order of Im(j ◦ i), then (G : G ∩ Γ(2)) = (Fr : H) = d, so by
Schreier’s theorem H ∼= Fd(r−1)+1. Since the morphism p′ is surjective, the group
G ∩ Γ(2) can be generated by d(r − 1) + 1 elements. Put F = Γ(2)/{±I}, and
let π : Γ(2) → F be the natural projection. The subgroup π(G ∩ Γ(2)) ⊂ F can
be also generated by d(r − 1) + 1 elements; since F ∼= F2, Schreier’s theorem
implies that π(G ∩ Γ(2)) ∼= Fm, where m 6 d(r − 1) + 1. Applying Schreier’s for
the third time, we obtain that (F : π(H ∩ Γ(2))) = m − 1 6 d(r − 1), whence
(Γ(2) : G ∩ Γ(2)) 6 2(m− 1) 6 2d(r − 1). It follows from the right-hand square of
the diagram (4) that

(SL(2, Z) : G) =
(SL(2, Z) : Γ(2)) · (Γ(2) : G ∩ Γ(2))

(G : G ∩ Γ(2))
6

12d(r − 1)

d
,

whence the result. �

Proof of Proposition 4.6. Put Mon(X ) = G ⊂ SL(2, Z). Since π1(B) can be gen-
erated by r elements, the same is true for G; now Corollary 4.4 implies that
(SL(2, Z) : G) < +∞, and Lemma 4.8 applies. �

Using Proposition 4.2 one can obtain other lower bounds for monodromy groups.
Observe first that the named proposition immediately implies the following corol-
lary.

Corollary 4.9. If π : X → C is a family of curves of genus 1 over a smooth
projective curve C and if JX : C 99K A1 is its J-map, and if JX is not constant,
then (SL(2, Z) : Mon(X )) 6 2 deg JX .

If X is smooth and π has a section, one can be more specific.

Proposition 4.10. Suppose that π : X → C is a minimal smooth elliptic surface
with section (it means that X is a smooth projective surface, C is a smooth projective
curve, the general fiber of π is a smooth curve of genus 1, no fiber of π contains a
rational (−1)-curve, and p has a section) and that JX is not constant.

Then

(SL(2, Z) : Mon(X )) 6 2 ·
∑
s∈C

e(s), (5)

where e(s) = n if the fiber over s is a cycle of n smooth rational curves or the
nodal rational curve if n = 1 (type In in Kodaira’s classification [12], [13]), e(s) =
n if the fiber over s consists of n + 5 smooth rational curves with intersection
graph isomorphic to the extended Dynkin graph D̃n+4, n > 1 (type I∗n in Kodaira’s
classification), and e(s) = 0 otherwise.

Proof. In view of Corollary 4.9 the index in the left-hand side of (5) is less or equal to
2 deg JX , and deg JX equals

∑
s∈C e(s) by virtue of Corollary IV.4.2 from [13]. �

Similarly, one can express deg JX (and obtain a lower bound for Mon(X )) using
the information about the points where j-invariant of the fiber (smooth or not)
equals 0 or 1728, see for example [13, Lemma IV.4.5, Table IV.3.1] (in the notation
of [13], j-invariant is 1728 times less than that defined by (1)).
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5. A Remark on Families of Hyperelliptic Curves

Proposition 5.1. If π : X → B is a smooth family of hyperelliptic curves of
genus g > 2, then

(Sp(2g, Z) : Mon(X )) >
2g

2

(22g − 1)(22(g−1) − 1) · · · (22 − 1)

(2g + 2)!
.

Corollary 5.2. If π : X → B is a smooth family of hyperelliptic curves of genus g >
2, then Mon(X ) is a proper subgroup of Sp(2g, Z).

Proof of Proposition 5.1. In this proof, Mon(X , Z) will denote the monodromy
group acting on the integer H1 of a fiber of X , and Mon(X , Z/2Z) will stand
for the monodromy group acting on H1(fiber, Z/2Z).

The natural surjection Sp(2g, Z)→ Sp(2g, Z/2Z) implies that

(Sp(2g, Z) : Mon(X , Z)) > (Sp(2g, Z/2Z) : Mon(X , Z/2Z)),

so it suffices to show that

(Sp(2g, Z/2Z) : Mon(X , Z/2Z)) >
2g

2

(22g − 1)(22(g−1) − 1) · · · (22 − 1)

(2g + 2)!
. (6)

To that end, let X be a hyperelliptic curve of genus g > 2 that is a fiber of X ; denote
its Weierstrass points by P1, . . . , P2g+2. It is well known (see for example [5,
Lemma 2.1]) that the 2-torsion subgroup (Pic(X))2 ⊂ Pic(X) is generated by
classes of divisors Pi − Pj . Since Pic(X)2 ∼= H1(X, Z/2Z), the action of π1(Bsm)
on H1(X, Z/2Z) is completely determined by the permutations of the Weierstrass
points P1, . . . , P2g+2 it induces. Thus, order of Mon(X , Z/2Z) is at most (2g+2)!.
Since

(Sp(2g, Z/2Z) : 1) = 2g
2

(22g − 1)(22(g−1) − 1) · · · (22 − 1),

the proposition follows. �

Remark 5.3. The bound in Proposition 5.1 is sharp, which follows from A’Campo’s
paper [1]. To wit, if B is the space of polynomials P (x) = x2g+2 + a2gx

2g + · · · +
a1x + a0 without multiple roots (here, g > 2), and if X → B is the family in
which the fiber over P is the smooth projective model of the curve with equation
y2 = P (x) (which is hyperelliptic of genus g), then the corollary on page 319 of [1]
contains the assertion that the index (Sp(2g, Z) : Mon(X )) is equal to the right-
hand side of (6). A description of the group Mon(X ) can be found in the appendix
to [3], which (the appendix) is devoted to the exposition of results of A.Varchenko.

6. Example: An Application to Del Pezzo Surfaces

Not much is known about hyperplane monodromy groups of (embedded) pro-
jective varieties, even surfaces. The classification of surfaces for which this group
is trivial was found by Zak [17]: it turned out that surfaces with this property are
either ruled or have hyperplane sections of genus 0. In this section we treat the
case of surfaces for which the genus of hyperplane sections is 1.
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Proposition 6.1. If X ⊂ Pn is a Del Pezzo surface embedded by (a subsystem
of ) the anticanonical linear system |−KX |, then the monodromy group acting on
H1(·, Z) of its smooth hyperplane sections is the entire SL(2, Z).

First recall some notation and definitions.
If X is an algebraic variety and R is a coherent sheaf of reduced OX -algebras,

we denote its relative spectrum (which is a scheme over X) by SpecR (under our
assumptions SpecR is an algebraic variety and the canonical morphism SpecR →
X is finite).

If p ∈ Pn is a point and L ⊂ Pn is a linear subspace, then p, L denotes the linear
span of {p} ∪ L.

If A1, . . . , A4 are points on the affine line with coordinates a1, . . . , a4, then by
their cross-ratio we mean

[A1, A2, A3, A4] =
a3 − a1
a3 − a2

/
a4 − a1
a4 − a2

.

If X ⊂ Pn is a smooth projective variety and X∗ ⊂ (Pn)∗ is its projective dual,
one can define the “universal smooth hyperplane section of X”, that is, the family

UX = {(x, α) ∈ X × ((Pn)∗ \X∗) : x ∈ Hα}, (7)

where Hα ⊂ Pn is the hyperplane corresponding to the point α ∈ (Pn)∗. The
morphism π : (x, α) 7→ α makes X a smooth family of n-dimensional projective
varieties over (Pn)∗ \ X∗; for any natural d, this family induces a monodromy
action of π1((Pn)∗ \ X∗) on Hd(Y, Z), where Y is a smooth hyperplane section
of X.

In the above setting, the image of π1((Pn)∗ \ X∗) in the group Aut(Hn(Y, Z))
will be called hyperplane monodromy group of X.

Lemma 6.2. Suppose that X ⊂ Pn is a smooth projective variety and p ∈ Pn \X
is a point such that the projection with center p induces an isomorphism πp : X →
X ′ ⊂ Pn−1. If H 3 p is a hyperplane that is transversal to X, then, after identifying
Y = X ∩ H with Y ′ = πp(Y ) = X ′ ∩ πp(H), the hyperplane monodromy groups
acting on H∗(Y, Z) and H∗(Y ′, Z) are the same.

The proof that is sketched below was suggested to me by Jason Starr.

Sketch of proof. Denote by Hp ⊂ (Pn)∗ the hyperplane corresponding to the point
p ∈ Pn. It is clear that Hp is naturally isomorphic to (Pn−1)∗ and that (X ′)∗ =
X∗∩Hp. Moreover, the hyperplane Hp is transversal to X∗ at any smooth point of
X∗ (indeed, if Hp is tangent to X∗ at a smooth point, then p ∈ (X∗)∗ = X, which
contradicts the hypothesis).

To prove the lemma it suffices to show that the natural mapping π1(Hp\(X ′)∗)→
π1((Pn)∗ \X∗) is a surjection. To that end observe that there exists a line ` ⊂ Hp

that is transversal to the smooth part of X∗∩Hp = (X ′)∗ and does not pass through
singular points of (X ′)∗ (a fortiori, ` is transversal to X∗, too). Now π1(` \ X∗)
surjects both onto π1(Hp \ (X ′)∗) and onto π1((Pn)∗ \ X∗), whence the desired
surjectivity. �
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Lemma 6.2 implies that when studying hyperplane monodromy groups one may
assume that the variety in question is embedded by a complete linear system.
Recall that if a Del Pezzo surface X ⊂ Pn is embedded by the complete linear
system |−KX | then degX = n 6 9; besides, if n > 3, p ∈ X is a general point,
and X̄ is the blow-up of X at p, then the projection πp : X 99K Pn−1 induces an

isomorphism π̄p : X̄ → X ′ = πp(X) ⊂ Pn−1 and X ′ ⊂ Pn−1 is a Del Pezzo surface
embedded by |−KX′ |.

Lemma 6.3. In the above setting, suppose that the hyperplane monodromy group
of X ′ is the entire SL(2, Z). Then the hyperplane monodromy group of X is the
entire SL(2, Z) as well.

Sketch of proof. Observe that if a hyperplane H 3 p is transversal to X, then
H ∩ X is isomorphic to H ′ ∩ X ′, where H ′ = πp(H) ⊂ Pn−1, so each smooth
hyperplane section of X ′ is a projection of hyperplane section of X. Now if variation
of hyperplanes transversal to X and passing through p produces the entire group
SL(2, Z), then this is the case for all hyperplanes transversal to X. A formal
argument is left to the reader. �

Projecting Del Pezzo surfaces in Pn, n > 3, consecutively from general points
on them, one arrives at a cubic in P3; Lemma 6.3 implies that it suffices to prove
Proposition 6.1 for this surface.

Suppose that X ⊂ P3 is a smooth cubic and p ∈ X is a general point. Let X̄
be the blow-up of X at p. The projection πp : P3 99K P2 induces a finite morphism
π̄p : X̄ → P2 of degree 2; the branch locus of this morphism is a smooth curve
C ⊂ P2 of degree 4. For α ∈ (P2)∗, denote the corresponding line by `α ⊂ P2.
If `α is transversal to C (i.e., α /∈ C∗), then π̄−1p (`α) is smooth, irreducible, and

isomorphic to X ∩ p, `α.
The proof of the following lemma is similar to that of Lemma 6.3.

Lemma 6.4. Put

X = {(α, x) ∈ ((P2)∗ \ C∗)× X̄ : π̄p(x) ∈ `α} (8)

and denote the morphism (α, x) 7→ α by X → (P2)∗\C∗. If Mon(X , Z) = SL(2, Z),
then the hyperplane monodromy group of X is also equal to SL(2, Z).

Our next lemma is valid over any algebraically closed field.

Lemma 6.5. Suppose that W is a smooth irreducible variety of dimension n, L
is a smooth irreducible curve (we do not assume that W or L is projective), and
ϕ : W → L is a proper and surjective morphism with (n − 1)-dimensional fibers.

Let W → Z
v−→ L be the Stein factorization of ϕ.

If there exists a point p ∈ L such that ϕ−1(p) is irreducible and the morphism ϕ
has maximal rank at a general point of ϕ−1(p), then v : Z → L is an isomorphism.

Proof. It is clear that Z is an irreducible and reduced curve. Since ϕ is proper
and ϕ−1(p) is connected, the stalk (ϕ∗OW )p is a local ring, so v−1(p) consists of
one point; denote this point by z. I claim that that z is a smooth point of Z
and the morphism v is unramified at z. Indeed, let τ ∈ OL,p be a generator of
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the maximal ideal. Its image v∗τ ∈ OZ,z can be represented by a regular function
f ∈ OW (ϕ−1(U)), where U ⊂ L is a Zariski neighborhood of p. Since the morphism
ϕ has maximal rank at a general point of ϕ−1(p), the function v∗τ vanishes on the
irreducible divisor ϕ−1(p) with multiplicity 1. Since regular functions on ϕ−1(U)
must be constant on the fibers of the proper morphism ϕ, any element of the
maximal ideal of the local ring OZ,z is representable by a regular function g ∈
OW (ϕ−1(V )), where V is a Zariski neighborhood of p, such that the zero locus of g
in ϕ−1(V ) coincides with u−1(z). Hence, v∗τ generates the maximal ideal of OZ,z,
which proves our claim.

Since v−1(p) = {z}, Z is smooth at z, and v is unramified at z, we conclude
that the finite morphism v has degree 1. Since L is smooth, Zariski main theorem
implies that v is an isomorphism. �

Proposition 6.6. Suppose that π : X → P2 is a finite morphism of degree 2
branched over a smooth quartic C ⊂ P2, where X is smooth. If J : (P2)∗ \C∗ → A1

is the morphism α 7→ j(π−1(`α)), where `α is the line in P2 corresponding to
α ∈ (P2)∗, then a general fiber of J is irreducible.

Proof. Let us show that the morphism J extends to a morphism

J1 : (P2)∗ \ (C∗)sing → P1 = A1 ∪ {∞}.

Indeed, if ` ⊂ P2 is a line and ` ∩C = {P1, P2, P3, P4}, then the curve π−1(`) is a
curve of genus 1 and

j(π−1(`)) = 256
(λ2 − λ+ 1)3

λ2(1− λ)2
, (9)

where λ is the cross-ratio [P1, P2, P3, P4], in no matter what order (see for exam-
ple [15, Chapter III, Proposition 1.7b]). If α is a smooth point of C∗ ⊂ (P2)∗, then
the line `α is tangent to C at exactly one point that is not an inflection point. Thus,
as the line ` tends to `α, exactly two intersection points from ` ∩ C merge, so the
cross-ratio of these four points tends to 0 (or 1, or ∞, depending on the ordering),
and formula (9) shows that j(π−1(`)) tends to ∞. This proves the existence of the
desired extension.

Our argument shows that J−11 (∞) = C∗ \ (C∗)sing; if we regard J1 as a rational
mapping from (P2)∗ to P1 and if

W

J2

""
σ

��
(P2)∗

J1 // P1

(10)

is a minimal resolution of indeterminacy for J1, then J−12 (∞) equals the strict
transform of C∗ with respect to σ.

Now I claim that, at a general point of J−12 (∞), the derivative of J2 has rank 1.
It suffices to prove this assertion for J1 and a general smooth point of C∗. To that
end it suffices to construct an analytic mapping γ : D → (P2)∗, where D is a disk
in the complex plane with center at 0, such that γ(D \ {0}) ⊂ (P2)∗ \C∗, γ(0) is a
smooth point of C∗, and |j(π−1(`γ(t)))| ∼ const/|t|.
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Suppose that a point c ∈ C is not an inflection point nor a tangency point of
a bitangent; if `α ⊂ P2 is the tangent line to C at c, then α s a smooth point
of C∗. Now choose affine (x, y)-coordinates in P2 so that c = (0, 0), the tangent
`α has equation y = 0, and `α ∩ C = {c, (C, 0), (D, 0)}, where C, D 6= 0 (so the
remaining two points of `α∩C are in the finite part of P2 with respect to the chosen
coordinate system). If `γ(t) is the line with affine equation y = t, then, for all small
enough t, one has `γ(t) ∩ C = {A(t), B(t), C(t), D(t)}, where the x-coordinates of

A(t) and B(t) are
√
t+ o(

√
|t|) (for both values of

√
t), while the x coordinates of

C(t) and D(t) tend to finite and non-zero numbers C and D. Hence,∣∣[C(t), A(t), B(t), D(t)]
∣∣ ∼ const√

|t|
as t→ 0;

formula (9) implies that |j(π−1(`t))| ∼ const/|t|, as desired.
Let

W
J2 //

u
��

P1

Z

v

@@

be the Stein factorization in which W is a blow-up of (P2)∗ (see (10)), Z =
Spec(J2)∗OW , and v is a finite morphism. Applying Lemma 6.5 with L = P1,
ϕ = J2, and p = ∞, we conclude that v is an isomorphism. Thus, fibers of J2
coincide with fibers of u; since the latter are connected, fibers of J2 are connected
as well. Bertini theorem implies that a general fiber of J2 is smooth; since it is
connected, it must be irreducible. This implies that a general fiber of J is irre-
ducible. �

Proof of Proposition 6.1. In view of Proposition 6.2 and Lemmas 6.3 and 6.4, it
suffices to prove that Mon(X ) = SL(2, Z), where X is the family defined by (8).
Proposition 6.6 shows that the family X defined by formula (8) satisfies the hy-
pothesis of Proposition 4.2(i), whence Mon(X ) = SL(2, Z). �

Remark 6.7. Our argument shows as well that ifX is a Del Pezzo surface of degree 2,
then the monodromy group acting on H1(·, Z) of non-singular elements of the
anticanonical linear system |−KX |, is SL(2, Z).

References

[1] N. A’Campo, Tresses, monodromie et le groupe symplectique, Comment. Math. Helv. 54

(1979), no. 2, 318–327. MR 535062
[2] S. Arias-de Reyna, W. Gajda, and S. Petersen, Big monodromy theorem for abelian varieties

over finitely generated fields, J. Pure Appl. Algebra 217 (2013), no. 2, 218–229. MR 2969246

[3] S. V. Chmutov, The monodromy groups of critical points of functions. II, Invent. Math. 73
(1983), no. 3, 491–510. MR 718943

[4] A. C. Cojocaru and C. Hall, Uniform results for Serre’s theorem for elliptic curves, Int.
Math. Res. Not. (2005), no. 50, 3065–3080. MR 2189500

[5] G. Cornelissen, Two-torsion in the Jacobian of hyperelliptic curves over finite fields, Arch.

Math. (Basel) 77 (2001), no. 3, 241–246. MR 1865865

http://www.ams.org/mathscinet-getitem?mr=535062
http://www.ams.org/mathscinet-getitem?mr=2969246
http://www.ams.org/mathscinet-getitem?mr=718943
http://www.ams.org/mathscinet-getitem?mr=2189500
http://www.ams.org/mathscinet-getitem?mr=1865865


ON MONODROMY IN FAMILIES OF ELLIPTIC CURVES OVER C 613

[6] P. Deligne, Courbes elliptiques: formulaire d’après J. Tate, Modular functions of one variable,

IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1975,
pp. 53–73. Lecture Notes in Math., Vol. 476. MR 0387292

[7] R. Friedman and J. W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der

Mathematik und ihrer Grenzgebiete (3), vol. 27, Springer-Verlag, Berlin, 1994. MR 1288304
[8] W. Fulton and R. Lazarsfeld, Connectivity and its applications in algebraic geometry, Alge-

braic geometry (Chicago, Ill., 1980), Lecture Notes in Math., vol. 862, Springer, Berlin-New

York, 1981, pp. 26–92. MR 644817
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