®

Check for
updates

Bar-Hillel Theorem Mechanization in Coq

1(=) 4

Sergey Bozhko , Leyla Khatbullina?, and Semyon Grigorev®:

! Max Planck Institute for Software Systems (MPI-SWS), Saarbriicken, Germany

sbozhko@mpi-sws.com
2 St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
leila.xr@gmail.com
3 St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, Russia
s.v.grigoriev@spbu.ru
* JetBrains Research, Universitetskaya emb., 7-9-11/5A, St. Petersburg, Russia
semen.grigorev@jetbrains.com

Abstract. Formal language theory has a deep connection with such
areas as static code analysis, graph database querying, formal verifica-
tion, and compressed data processing. Many application problems can
be formulated in terms of languages intersection. The Bar-Hillel theo-
rem states that context-free languages are closed under intersection with
a regular set. This theorem has a constructive proof and thus provides
a formal justification of correctness of the algorithms for applications
mentioned above. Mechanization of the Bar-Hillel theorem, therefore, is
both a fundamental result of formal language theory and a basis for the
certified implementation of the algorithms for applications. In this work,
we present the mechanized proof of the Bar-Hillel theorem in Cogq.

Keywords: Formal languages - Coq + Bar-Hillel theorem - Closure -
Intersection + Regular language + Context-free language

1 Introduction

Formal language theory has a deep connection with different areas such as static
code analysis [25,29,35,36,39-41], graph database querying [19,20,23,42], for-
mal verification [9,12], and others. One of the most frequent uses is to formulate
a problem in terms of languages intersection. In verification, one language can
serve as a model of a program and another language describe undesirable behav-
iors. When the intersection of these two languages is not empty, one can conclude
that the program is incorrect. Usually, the only concern is the decidability of the
languages intersection emptiness problem. But in some cases, a constructive rep-
resentation of the intersection may prove useful. This is the case, for example,
when the intersection of the languages models graph querying: a language pro-
duced by intersection is a query result and to be able to process it, one needs
the appropriate representation of the intersection result.

The research was supported by the Russian Science Foundation, grant Ne 18-11-00100.

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
R. Iemhoff et al. (Eds.): WoLLIC 2019, LNCS 11541, pp. 1-18, 2019.
https://doi.org/10.1007/978-3-662-59533-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-59533-6_17&domain=pdf
http://orcid.org/0000-0002-7966-0698
https://doi.org/10.1007/978-3-662-59533-6_17

2 S. Bozhko et al.

Let us consider several applications starting with the user input validation.
The problem is to check if the input provided by the user is correct with respect
to some validation template such as a regular expression for e-mail validation.
User input can be represented as a one word language. The intersection of such
a language with the language specifying the validation template is either empty
or contains the only string: the user input. If the intersection is empty, then the
input should be rejected.

Checking that a program is syntactically correct is another example. The
AST for the program (or lack thereof) is just a constructive representation of
the intersection of the one-word language (the program) and the programming
language itself.

Graph database regular querying serves as an example of the intersection of
two regular languages [1,2,23]. Next and one of the most comprehensive cases
with decidable emptiness problem is an intersection of a regular language with
a context-free language. This case is relevant for program analysis [36,39,40],
graph analysis [17,20,42], context-free compressed data processing [26], and
other areas. The constructive intersection representation in these applications
is helpful for further analysis.

The intersection of some classes of languages is not generally decidable. For
example, the intersection of the linear conjunctive and the regular languages,
used in the static code analysis [41], is undecidable while multiple context-free
languages (MCFL) is closed under intersection with regular languages and empti-
ness problem for MCFLs is decidable [38]. Is it possible to express any useful
properties in terms of regular and multiple context-free languages intersection?
This question is beyond the scope of this paper but provides a good reason for
future research in this area. Moreover, the history of pumping lemma for MCFG
shows the necessity to mechanize formal language theory. In this paper, we focus
on the intersection of regular and context-free languages.

Some applications mentioned above require certifications. For verification
this requirement is evident. For databases it is necessary to reason about secu-
rity aspects and, thus, we should create certified solutions for query executing.
Certified parsing may be critical for secure data loading (for example in Web),
as well as certified regular expressions for input validation. As a result, there
is a significant number of papers focusing on regular expressions mechanization
and certification [14], and a number on certified parsers [5,15,18]. On the other
hand, mechanization (formalization) is important by itself as theoretical results
mechanization and verification, and there is a lot of work done on formal lan-
guages theory mechanization [4,16,32]. Also, it is desirable to have a base to
reason about parsing algorithms and other problems of languages intersection.

Context-free languages are closed under intersection with regular languages.
It is stated as the Bar-Hillel theorem [3] which provides a constructive proof
and construction for the resulting language description. We believe that the
mechanization of the Bar-Hillel theorem is a good starting point for certified
application development and since it is one of the fundamental theorems, it is
an important part of formal language theory mechanization. And this work aims
to provide such mechanization in Coq.

Bar-Hillel Theorem Mechanization in Coq 3

Our current work is the first step: we provide mechanization of theoretical
results on context-free and regular languages intersection. We choose the result
of Jana Hofmann on context-free languages mechanization [21] as a base for our
work. The main contribution of this paper is the constructive proof of the Bar-
Hillel theorem in Coq. All code is published on GitHub: https://github.com/
YaccConstructor/YC_in_Cogq.

2 Bar-Hillel Theorem

In this section, we provide the Bar-Hillel theorem and sketch the proof which
we use as the base of our work. We also provide some additional lemmas which
are used in the proof of the main theorem.

Lemma 1. If L is a context-free language and € ¢ L then there is a grammar
in Chomsky Normal Form that generates L.

Lemma 2. If L # @ and L is reqular then L is the union of regular language
Aq,..., A, where each A; is accepted by a DFA with precisely one final state.

Theorem 1 (Bar-Hillel). If Ly is a context-free language and Lo is a regular
language, then Ly N Lo is context-free.

Sketch of the proof.

1. By Lemmal we can assume that there is a context-free grammar Gong in
Chomsky normal form, such that L(Gonr) = Ly

2. By Lemma 2 we can assume that there is a set of regular languages {41 ... 4, }
where each A; is recognized by a DFA with precisely one final state and
Lo=AU...UA,

3. For each A; we can explicitly define a grammar of the L(Gong) N 4;

4. Finally, we join them together with the union operation

As far as Bar-Hillel theorem operates with arbitrary context-free languages
and the selected proof requires grammar in CNF, it is necessary to implement
a certified algorithm for the conversion of an arbitrary CF grammar to CNF.
We wanted to reuse existing mechanized proof for the conversion. We chose the
one provided in Smolka’s work and discussed it in the context of our work in
Sect. 3.1.

3 Bar-Hillel Theorem Mechanization in Coq

In this section, we describe in detail all the fundamental parts of the proof. We
also briefly describe the motivation to use the chosen definitions. In addition, we
discuss the advantages and disadvantages of using third-party proofs.

The overall goal of this section is to provide a step-by-step algorithm which
constructs the context-free grammar of the intersection of two languages. The
final formulation of the theorem can be found in the last subsection.

https://github.com/YaccConstructor/YC_in_Coq
https://github.com/YaccConstructor/YC_in_Coq

4 S. Bozhko et al.

3.1 Hofmann’s Results Generalization

A substantial part of this proof relies on the work of Hofmann [21]! from which
many definitions and theorems were taken. Namely, the definition of a gram-
mar, the definitions of a derivation in grammar, some auxiliary lemmas about
the decidability of properties of grammar and derivation. We also use the theo-
rem that states that there always exists the transformation from a context-free
grammar to a grammar in Chomsky Normal Form.

However, the proof of the existence of the transformation to CNF had one
major flaw that we needed to fix: the representation of terminals and nonter-
minals. In the definition of the grammar, a terminal is an element of the set
of terminals—the alphabet of terminals. It is sufficient to represent each termi-
nal by a unique natural number—conceptually, the index of the terminal in the
alphabet.

The same observation is correct for nonterminals. Sometimes it is useful
when the alphabet of nonterminals bears some structure. For the purposes of
our proof, nonterminals are better represented as triples. We decided to make
terminals and nonterminals to be polymorphic over the alphabet. We are only
concerned that the representation of symbols is a type with decidable relation
of equality. Namely, let Tt and Vt be such types, then we can define the types
of terminals and nonterminals over Tt and Vit respectively.

Fortunately, the proof of Hofmann has a clear structure, and there was only
one aspect of the proof where the use of natural numbers was essential. The
grammar transformation which eliminates long rules creates new nonterminals.
In the original proof, it was done by taking the maximum of the nonterminals
included in the grammar. It is not possible to use the same mechanism for an
arbitrary type.

To tackle this problem, we introduced an additional assumption on the
alphabet types for terminals and nonterminals. We require the existence of the
bijection between natural numbers and the alphabet of terminals as well as
nonterminals.

Another difficulty is that the original work defines grammar as a list of rules
and does not specify the start nonterminal. Thus, in order to define the language
described by a grammar, one needs to specify the start terminal explicitly. It
leads to the fact that the theorem about the equivalence of a CF grammar and
the corresponding CNF grammar is not formulated in the most general way,
namely, it guarantees equivalence only for non-empty words.

The predicate “is grammar in CNF” as defined in Hofmann [21] does not
treat the case when the empty word is in the language. That is, with respect to
the definition in [21], a grammar cannot have epsilon rules at all.

The question of whether the empty word is derivable is decidable for both the
CF grammar and the DFA. Therefore, there is no need to adjust the definition

! Jana Hofmann, Verified Algorithms for Context-Free Grammars in Coq.
Related sources in Coq: https://www.ps.uni-saarland.de/~hofmann/bachelor/
coqg-src.zip. Documentation: https://www.ps.uni-saarland.de/~hofmann/bachelor/
coq/toc.html. Access date: 10.10.2018.

https://www.ps.uni-saarland.de/~hofmann/bachelor/coq_src.zip
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq_src.zip
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/toc.html
https://www.ps.uni-saarland.de/~hofmann/bachelor/coq/toc.html

Bar-Hillel Theorem Mechanization in Coq 5

of the grammar (and subsequently all proofs). It is possible just to consider two
cases (1) when the empty word is derivable in the grammar (and acceptable by
DFA) and (2) when the empty word is not derivable. We use this feature of CNF
definition to prove some of the lemmas presented in this paper.

3.2 Basic Definitions

In this section, we introduce the basic definitions used in the paper, such as
alphabets, context-free grammar, and derivation.

We define a symbol as either a terminal or a nonterminal. Next, we define a
word and a phrase as lists of terminals and symbols respectively. One can think
that word is an element of the language defined by the grammar, and a phrase
is an intermediate result of derivation. Also, a right-hand side of any derivation
rule is a phrase.

The notion of nonterminal does not make sense for DFA, but in order to
construct the derivation in grammar, we need to use nonterminals in intermediate
states. For phrases, we introduce a predicate that defines whenever a phrase
consists of only terminals. If it is the case, the phrase can be safely converted to
the word.

We inherit the definition of CFG from [21]. The rule is defined as a pair of
a nonterminal and a phrase, and a grammar is a list of rules. Note, that this
definition of a grammar does not include the start nonterminal, and thus does
not specify the language by itself.

An important step towards the definition of a language specified by a gram-
mar is the definition of derivability. Proposition der(G, A, p) means that the
phrase p is derivable in the grammar G starting from the nonterminal A.

Also, we use the proof of the fact that every grammar is convertible into CNF
from [21] because this fact is important for our proof.

We define the language as follows. We say that a phrase (not a word) w
belongs to the language generated by a grammar G from a nonterminal A, if w
is derivable from nonterminal A in grammar G and w consists only of terminals.

3.3 General Scheme of the Proof

A general scheme of our proof is based on the constructive proof presented
in [8]. This proof does not use push-down automata explicitly and operates with
grammars, so it is pretty simple to mechanize it. Overall, we will adhere to the
following plan.

1. We consider the trivial case when DFA has no states.

2. We state that every CF language can be converted to CNF.

3. We show that every DFA can be presented as a union of DFAs with the single
final state.

4. We construct an intersection of grammar in CNF with DFA with one final
state.

5. We prove that the union of CF languages is CF language.

6 S. Bozhko et al.

6. We putting everything mentioned above together. Additionally, we handle the
fact that the initial CF language may contain the € word. By the definition
which we reuse from [21], the grammar in CNF has no epsilon rules, but
we still need to consider the case when the empty word is derivable in the
grammar. We postpone this consideration to the last step. Only one of the
following statements is true: € € L(G) and € € L(dfa) or —¢ € L(G) or —¢ €
L(dfa). So, we should just check emptiness of languages as a separated case.

3.4 Trivial Cases

First, we consider the case when the number of the DFA states is zero. In this
case, we immediately derive a contradiction. By definition, any DFA has an
initial state. It means that there is at least one state, which contradicts the
assumption that the number of states is zero.

It is worth to mention, that in the proof [8] cases when the empty word is
derivable in the grammar or a DFA specifies the empty language are discarded
as trivial. It is assumed that one can carry out themselves the proof for these
cases. In our proof, we include the trivial cases in the corresponding theorems.

3.5 Regular Languages and Automata

In this section, we describe definitions of DFA and DFA with exactly one final
state, we also present the function that converts any DFA to a set of DFAs
with one final state and lemma that states this split in some sense preserves the
language specified.

We assume that a regular language is described by a DFA. We do not impose
any restrictions on the type of input symbols and the number of states in DFA.
Thus, the DFA is a 5-tuple: (1) a type of states, (2) a type of input symbols, (3)
a start state, (4) a transition function, and (5) a list of final states.

Next, we define a function that evaluates the finish state of the automaton
if it starts from the state s and receives a word w.

We say that the automaton accepts a word w being in state s if the function
(final_state s w) returns a final state. Finally, we say that an automaton accepts
a word w, if the DFA starts from the initial state and stops in a final state.

The definition of the DFA with exactly one final state differs from the defi-
nition of an ordinary DFA in that the list of final states is replaced by one final
state. Related definitions such as accepts and dfa_language are slightly modified.

We define functions s_accepts and s_dfa_language for DFA with one final
state in the same fashion. In the function s_accepts, it is enough to check for
equality the state in which the automaton stopped with the finite state. Function
s_dfa_language is the same as dfa_language except for that the function for a
DFA with one final state should use s_accepts instead of accepts.

Now we can define a function that converts an ordinary DFA into a set of
DFAs with exactly one final state. Let d be a DFA. Then the list of its final
states is known. For each such state, one can construct a copy of the original
DFA, but with one selected final state.

Bar-Hillel Theorem Mechanization in Coq 7

As a result prove the theorem that the function of splitting preserves the
language.

Theorem 2. Let dfa be an arbitrary DFA and w be a word. Then the fact
that dfa accepts w implies that there exists a single-state DFA s_dfa, such
that s_dfa € split_dfa(dfa) and s_dfa accepts w. And vice versa, for any
s_dfa € split_dfa(dfa) the fact that s_dfa accepts a word w implies that df a
also accepts w.

3.6 Chomsky Induction

Many statements about properties of words in a language can be proved by
induction over derivation structure. Although a one can get a phrase as an
intermediate step of derivation, DFA only works on words, so we can not simply
apply induction over the derivation structure. To tackle this problem, we created
a custom induction principle for grammars in CNF.

The current definition of derivability does not imply the ability to “reverse”
the derivation back. That is, nothing about the rules of the grammar or proper-
ties of derivation follows from the fact that a phrase w is derived from a nontermi-
nal A in a grammar G. Because of this, we introduce an additional assumption
on derivations that is similar to the syntactic analysis of words. Namely, we
assume that if the phrase w is derived from the nonterminal A in grammar G,
then either there is a rule A — w € G or there is a rule A — rhs € G and w is
derivable from rhs.

Any word derivable from a nonterminal A in the grammar in CNF is either
a solitary terminal or can be split into two parts, each of which is derived from
nonterminals B and C, when the derivation starts with the rule A — BC'. Note
that if we naively take a step back, we can get a nonterminal which derives some
substring in the middle of the word. Such a situation does not make any sense
for DFA.

By using induction, we always deal with subtrees that describe a substring
of the word.

To put it more formally:

Lemma 3. Let G be a grammar in CNF. Consider an arbitrary nonterminal
N € G and phrase which consists only of terminals w. If w is derivable from N
and |w| > 2, then there exists two nonterminals N1, N2 and two phrases w1, wa
such that: N — N1 N2 € G, der(G, N1,w1), der(G, N2, wz), |wi| > 1,
|lwa| > 1 and wy ++ we = w.

Lemma 4. Let G be a grammar in CNF. And P be a predicate on nonterminals
and phrases (i.e. P : var — phrase — Prop). Let’s also assume that the
following two hypotheses are satisfied: (1) for every terminal production (i.e. in
the form N — a) of grammar G, P(r,[r]) holds and (2) for every N, N1, N2
such that: N — N1N2 € G and two phrases that consist only of terminals
wi, W2, Zf P(Nl, wl), P(Nz, ’wg), der(G, Nl, 'wl) and de’r(G, Ng, ’wz) then
P(N,wy ++wsz). Then for any nonterminal N and any phrase consisting only
of terminals w, the fact that w is derivable from N implies P(N,w).

8 S. Bozhko et al.

3.7 Intersection of CFG and Automaton

Since we already have lemmas about the transformation of a grammar to CNF
and the transformation of a DFA to a DFA into a set of DFA’s with exactly
one accepting state, further we assume that we only deal with (1) DFA with
exactly one final state—dfa and (2) grammar in CNF—G. In this section, we
describe the proof of the lemma that states that for any grammar in CNF and
any automaton with exactly one state there is a grammar for an intersection of
the languages.

Construction of Intersection. We present the adaptation of the algorithm
given in [8].

Let Gynr be the grammar of intersection. In Gy, nonterminals are pre-
sented as triples (from x var X to) where from and to are states of dfa, and var
is a nonterminal of G.

Since G is a grammar in CNF it has only two types of productions: (1) N — a
and (2) N — N1 Nj, where N, N1, Ny are nonterminals and «a is a terminal.

For every production N — N; Ny in G we generate a set of productions of the
form (from, N, to) — (from, N1, m)(m, Na,to) where: from, m, to enumerate all
df a states.

For every production of the form N — a we add a set of productions of
the form (from, N, (dfa_step(from,a))) — a where from enumerates all dfa
states and df a_step (from, a) is the state in which the df a appears after receiving
terminal a in the state from.

Next, we join the functions above to get a generic function that works for
both types of productions.

Note that at this point we do not conduct any manipulations with the start
nonterminal. Nevertheless, the hypothesis of the uniqueness of the final state
of the DFA helps to define the start nonterminal of the grammar of intersec-
tion unambiguously. The start nonterminal for the intersection grammar is the
following nonterminal: (start, S, final) where: start—the start state of DFA, S—
the start nonterminal of the initial grammar, and final—the final state of DFA.
Without the assumption that the DFA has only one final state it is not clear
how to unequivocally define the start nonterminal over the alphabet of triples.

Correctness of Intersection. In this subsection, we present a high-level
description of the proof of correctness of the intersection function.

In the interest of clarity of exposition, we skip some auxiliary lemmas and
facts like that we can get the initial grammar from the grammar of intersection
by projecting the triples back to the corresponding terminals/nonterminals. Also
note that grammar remains in CNF after the conversion, since the transformation
of rules does not change the structure of them, but only replaces their terminals
and nonterminals with attributed ones.

Next, we prove the following lemmas. First, the fact that a word can be
derived in the initial grammar and is accepted by s_dfa implies it can be derived

Bar-Hillel Theorem Mechanization in Coq 9

in the grammar of the intersection. And the other way around, the fact that a
word can be derived in the grammar of the intersection implies that it is derived
in the initial grammar and is accepted by s_dfa.

Let G be a grammar in CNF. In order to use Chomsky Induction, we also
assume that syntactic analysis is possible.

Theorem 3. Let s_dfa be an arbitrary DFA, let r be a nonterminal of grammar
G, let from and to be two states of the DFA. We also pick an arbitrary word—
w. If it is possible to derive w from r and the s_dfa starting from the state
from finishes in the state to after consuming the word w, then the word w
is also derivable in grammar (convert_rules G next) from the nonterminal
(from,r,to).

On the other side, now we need to prove the theorems of the form “if it is
derivable in the grammar of triples, then it is accepted by the automaton and is
derivable in the initial grammar”.

We start with the DFA.

Theorem 4. Let from and to be states of the automaton, var be an arbitrary
nonterminal of G. We prove that if a word w is derived from the nontermi-
nal (from,var,to) in the grammar (convert_rules G), then the automaton
starting from the state from accepts the word w and stops in the state to.

Next, we prove the similar theorem for the grammar.

Theorem 5. Let from and to be the states of the automaton, let var be an
arbitrary nonterminal of grammar G. We prove that if a word w is derivable
from the nonterminal (from,var,to) in the grammar (convert_rules G),
then w is also derivable in the grammar G from the nonterminal var.

In the end, one needs to combine both theorems to get a full equivalence. By
this, the correctness of the intersection is proved.

3.8 Union of Languages

During the previous step, we constructed a list of context-free grammars. In this
section, we provide a function which constructs a grammar for the union of the
languages.

First, we need to make sure the sets of nonterminals for each of the gram-
mars under consideration have empty intersections. To achieve this, we label
nonterminals. Each grammar of the union receives a unique ID number and all
nonterminals within one grammar will have the same ID as the grammar. In
addition, it is necessary to introduce a new start nonterminal of the union.

10 S. Bozhko et al.

The function that constructs the union grammar takes a list of grammars,
then, it (1) splits the list into head [h] and tail [¢l], (2) labels [length tl] to h, (3)
adds a new rule from the start nonterminal of the union to the start nonterminal
of the grammar [h], finally (4) the function is recursively called on the tail [¢]]
of the list.

Proof of Languages Equivalence. We prove that the function gram-
mar_union constructs a correct grammar of the union language. Namely, we
prove the following theorem.

Theorem 6. Let grammars be a sequence of pairs of starting nonterminals
and grammars. Then for any word w, the fact that w belongs to the language
of the union is equivalent to the fact that there exists a grammar (st,gr) €
grammars such that w belongs to the language generated by (st, gr).

3.9 Putting All Parts Together

Now we can put all previously described lemmas together to prove the main
statement of this paper (Fig.1).

Theorem grammar_of_intersection_exists:
exists
(NewNonterminal: Type)
(IntersectionGrammar: Ogrammar Terminal NewNonterminal) St,
forall word,
dfa_language dfa word /\ language G S (to_phrase word) <->
language IntersectionGrammar St (to_phrase word) .

Fig. 1. Final theorem

Theorem 7. Let Tt and Nt be a decidable types. Tt and Nt is types of ter-
minals and nonterminals correspondingly. If there exists a bijection from Nt to
N and syntactic analysis in the sense of definition is possible, then for any DFA
df a that define language over Tt and any context-free grammar G, there exists
the context-free grammar Ginr, such that L(Gynt) = L(G) N L(dfa).

Bar-Hillel Theorem Mechanization in Coq 11

4 Related Works

There is a large number of contributions in the mechanization of different parts
of formal languages theory and certified implementations of parsing algorithms
and algorithms for graph database querying. These works use various tools, such
as Coq, Agda, HOL4, and are aimed at different problems such as the theory
mechanization or executable algorithm certification. We discuss only a small part
which is close enough to the scope of this work.

4.1 Formal Language Theory in Coq

The massive amount of work was done by Ruy de Queiroz who formalized dif-
ferent parts of formal language theory, such as pumping lemma [31,33], context-
free grammar simplification [34] and closure properties [30] in Coq. The work
on closure properties contains mechanization of such properties as closure under
union, Kleene star, but it does not contain mechanization of the intersection
with a regular language. All these results are summarized in [32].

Gert Smolka et al. also provide a large number of contributions on regular
and context-free languages formalization in Coq [10,11,21,22]. The paper [21]
describes the certified transformation of an arbitrary context-free grammar to the
Chomsky normal form which is required for our proof of the Bar-Hillel theorem.
Initially, we hoped to reuse these both parts because the Bar-Hillel theorem is
about both context-free and regular languages, and it was the reason to choose
results of Gert Smolka as the base for our work. But the works on regular and on
context-free languages are independent, and we are faced with the problems of
reusing and integration, so in the current proof, we use only results on context-
free languages.

4.2 Formal Language Theory in Other Languages

In the parallel with works in Coq there exist works on formal languages mecha-
nization in other languages and tools such as Agda [13] or HOL4 [6].

Firstly, there are works of Denis Firsov who implements some parts of the
formal language theory and parsing algorithms in Agda. In particular, Firsov
implements CYK parsing algorithm [13,15] and Chomsky Normal Form [16],
and some other results on regular languages [14].

There are also works on the formal language theory mechanization in HOL-
4 [4,6,7] by Aditi Barthwal and Michael Norrish. This work contains basic def-
initions and a big number of theoretical results, such as Chomsky normal form

12 S. Bozhko et al.

and Greibach normal form for context-free grammars. As an application of the
mechanized theory authors, provide certified implementation of the SLR parsing
algorithm [5].

5 Conclusion

We present mechanized in Coq proof of the Bar-Hillel theorem, the fundamental
theorem on the closure of context-free languages under intersection with the
regular set. By this, we increase mechanized part of formal language theory and
provide a base for reasoning about many applicative algorithms which are based
on language intersection. We generalize the results of Gert Smolka and Jana
Hofmann: the definition of the terminal and nonterminal alphabets in context-
free grammar were made generic, and all related definitions and theorems were
adjusted to work with the updated definition. It makes previously existing results
more flexible and eases reusing. All results are published at GitHub and are
equipped with automatically generated documentation.

The first open question is the integration of our results with other results on
formal languages theory mechanization in Coq. There are two independent sets
of results in this area: works of Ruy de Queiroz and works of Gert Smolka. We
use part of Smolka’s results in our work, but even here we do not use existing
results on regular languages. We believe that theory mechanization should be
unified and results should be generalized. We think that these and other related
questions should be discussed in the community.

One direction for future research is mechanization of practical algorithms
which are just implementation of the Bar-Hillel theorem. For example, context-
free path querying algorithm, based on CYK [20,42] or even on GLL [37] parsing
algorithm [17]. Final target here is the certified algorithm for context-free con-
strained path querying for graph databases.

Another direction is mechanization of other problems on language intersec-
tion which can be useful for applications. For example, the intersection of two
context-free grammars one of which describes finite language [28]. It may be
useful for compressed data processing [24] or speech recognition [27]. And we
believe all these works should share the common base of mechanized theoretical
results.

A Coq Listing

This listing contains main theorems and definitions from our work.

Bar-Hillel Theorem Mechanization in Coq 13

Inductive ter : Type := | T : Tt —> ter.
Inductive var : Type := | V : Vt -> var.

Lemma language_normal_form (G:grammar) (A: var) (u: word):
u <> [] -> (language G A u <-> language (normalize G) A u).

Inductive symbol : Type :=
| Ts : ter -> symbol
| Vs : var -> symbol.

Definition word := list ter.

Definition phrase := list symbol.

Inductive rule : Type := | R : var -> phrase -> rule.
Definition grammar := list rule.

Inductive der (G : grammar) (A : var) : phrase —-> Prop :=
| vDer : der G A [Vs A]
| tDer 1 : (RA 1) e1 G ->der G A1
| repIN Buw v :
der G A (u ++ [Vs Bl ++ w) ->
der G Bv ->der G A (u ++ v ++ w).

Definition language (G : grammar) (A : var) (w : phrase) :=
der G A w /\ terminal w.

Context {State T: Type}.

Record dfa: Type :=
mkDfa {
start: State;
final: list State;
next: State -> ter T -> State;
}.

Fixpoint final_state (next_d: dfa_rule) (s: State) (w: word): State :=
match w with

| nil => s
| h :: t => final_state next_d (next_d s h) t
end.

Record s_dfa : Type :=
s_mkDfa {
s_start: State;
s_final: State;
s_next: State -> (Gter T) -> State;
}.

Fixpoint split_dfa_list (st_d : State) (next_d : dfa_rule)

14 S. Bozhko et al.

(f_list : list State): list (s_dfa) :=
match f_list with
[nil => nil
[h :: t => (s_mkDfa st_d h next_d) :: split_dfa_list st_d next_d t
end.

Definition split_dfa (d: dfa) :=
split_dfa_list (start d) (next d) (final d).

Lemma correct_split:
forall dfa w,
dfa_language dfa w <->
exists sdfa, In sdfa (split_dfa dfa) /\ s_dfa_language sdfa w.

Definition syntactic_analysis_is_possible :=
forall (G : grammar) (A : var) (w : phrase),
der G Aw —> (R A w|\in G \/ (exists rhs, R A rhs \lin G /\ derf G rhs w).

Definition convert_nonterm_rule_2 (r rl r2: _) (statel state2 : _) :=
map (fun s3 => R (V (s1, r, s3))
[Vs (V (s1, r1, s2)); Vs (V (82, r2, s3))])
list_of_states.

Definition convert_nonterm_rule_1 (r r1 r2:) (s1 : _) :=
flat_map (convert_nonterm_rule_2 r rl r2 si) list_of_states.

Definition convert_nonterm_rule (r rl r2: _) :=
flat_map (convert_nonterm_rule_1 r rl r2) list_of_states.

Definition convert_terminal_rule
(next: _) (r: _) (t: _): list TripleRule :=
map (fun s1 => R (V (s1, r, next sl t)) [Ts t]) list_of_states.

Definition convert_rule (mext: _) (r: _) :=

match r with

| Rr [Vs rl; Vs r2] =>
convert_nonterm_rule r rl r2

| Rr [Ts t] =>
convert_terminal_rule next r t

[_ =1 (* Never called *)

end.

Definition convert_rules
(rules: list rule) (mext: _): list rule :=
flat_map (convert_rule next) rules.

Bar-Hillel Theorem Mechanization in Coq 15

Definition convert_grammar grammar s_dfa :=
convert_rules grammar (s_next s_dfa).

Inductive labeled_Vt : Type :=
| start : labeled_Vt
| 1V : nat -> Vt -> labeled_Vt.

Definition label_var (label: nat) (v: @var Vt): Qvar labeled_Vt :=
V (1V label v).

Definition label_grammar_and_add_start_rule label grammar :=
let ’(st, gr) := grammar in
(R (V start) [Vs (V (1V label st))]) :: label_grammar label gr.

Fixpoint grammar_union (grammars : seq (Q@var Vt * (@grammar Tt Vt)))
Ogrammar Tt labeled_Vt :=
match grammars with
[0 =10
| (g::t) => label_grammar_and_add_start_rule (length t)
g ++ (grammar_union t)
end.

Variable grammars: seq (var * grammar) .

Theorem correct_union:
forall word,
language (grammar_union grammars)
(V (start Vt)) (to_phrase word) <->
exists s_1,
language (snd s_1) (fst s_1) (to_phrase word) /\ In s_l1 grammars.

Theorem grammar_of_intersection_exists:
exists
(NewNonterminal: Type)
(IntersectionGrammar: Ogrammar Terminal NewNonterminal) St,
forall word,
dfa_language dfa word /\ language G S (to_phrase word) <->
language IntersectionGrammar St (to_phrase word) .

References

1. Abiteboul, S., Vianu, V.: Regular path queries with constraints. J. Comput.
Syst. Sci. 58(3), 428-452 (1999). http://www.sciencedirect.com/science/article/
pii/S0022000099916276

2. Alkhateeb, F.: Querying RDF(S) with Regular Expressions. Theses, Univer-
sité Joseph-Fourier - Grenoble I, June 2008. https://tel.archives-ouvertes.fr/tel-
00293206

3. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Sprachtypologie und Universalienforschung 14, 143-172 (1961)

http://www.sciencedirect.com/science/article/pii/S0022000099916276
http://www.sciencedirect.com/science/article/pii/S0022000099916276
https://tel.archives-ouvertes.fr/tel-00293206
https://tel.archives-ouvertes.fr/tel-00293206

16

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.

S. Bozhko et al.

Barthwal, A.: A formalisation of the theory of context-free languages in higher
order logic. Ph.D. thesis, College of Engineering & Computer Science, The Aus-
tralian National University, December 2010

Barthwal, A., Norrish, M.: Verified, executable parsing. In: Castagna, G. (ed.)
ESOP 2009. LNCS, vol. 5502, pp. 160-174. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00590-9-12

Barthwal, A., Norrish, M.: A formalisation of the normal forms of context-free
grammars in HOL4. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp.
95-109. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-
411

Barthwal, A., Norrish, M.: Mechanisation of PDA and grammar equivalence for
context-free languages. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC 2010. LNCS
(LNAI), vol. 6188, pp. 125-135. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13824-9_11

Beigel, R., Gasarch, W.: A Proof that if L = L1 N Ly where L; is CFL and Lz is
Regular then L is Context Free Which Does Not use PDAs. http://www.cs.umd.
edu/~gasarch/ BLOGPAPERS/cfg.pdf/

Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135-150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0-10

Doczkal, C., Kaiser, J.-O., Smolka, G.: A constructive theory of regular languages
in Coq. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 82-97.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1_6

Doczkal, C., Smolka, G.: Regular language representations in the constructive type
theory of Coq. J. Autom. Reason. 61(1), 521-553 (2018). https://doi.org/10.1007/
s10817-018-9460-x

Emmi, M., Majumdar, R.: Decision problems for the verification of real-time soft-
ware. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp.
200-211. Springer, Heidelberg (2006). https://doi.org/10.1007/11730637_17
Firsov, D.: Certification of Context-Free Grammar Algorithms (2016)

Firsov, D., Uustalu, T.: Certified parsing of regular languages. In: Gonthier, G.,
Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 98-113. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1_7

Firsov, D., Uustalu, T.: Certified CYK parsing of context-free languages. J. Log.
Algebraic Methods Program. 83(5-6), 459468 (2014)

Firsov, D., Uustalu, T.: Certified normalization of context-free grammars. In: Pro-
ceedings of the 2015 Conference on Certified Programs and Proofs, pp. 167-174.
ACM (2015)

Grigorev, S., Ragozina, A.: Context-free path querying with structural representa-
tion of result. arXiv preprint arXiv:1612.08872 (2016)

Gross, J., Chlipala, A.: Parsing Parses A Pearl of (Dependently Typed) Program-
ming and Proof (2015)

Hellings, J.: Conjunctive Context-Free Path Queries (2014)

Hellings, J.: Querying for paths in graphs using context-free path queries. arXiv
preprint arXiv:1502.02242 (2015)

Hofmann, J.: Verified Algorithms for Context-Free Grammars in Coq (2016)
Kaiser, J.O.: Constructive formalization of regular languages. Ph.D. thesis, Saar-
land University (2012)

https://doi.org/10.1007/978-3-642-00590-9_12
https://doi.org/10.1007/978-3-642-00590-9_12
https://doi.org/10.1007/978-3-642-15205-4_11
https://doi.org/10.1007/978-3-642-15205-4_11
https://doi.org/10.1007/978-3-642-13824-9_11
https://doi.org/10.1007/978-3-642-13824-9_11
http://www.cs.umd.edu/~gasarch/BLOGPAPERS/cfg.pdf/
http://www.cs.umd.edu/~gasarch/BLOGPAPERS/cfg.pdf/
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/978-3-319-03545-1_6
https://doi.org/10.1007/s10817-018-9460-x
https://doi.org/10.1007/s10817-018-9460-x
https://doi.org/10.1007/11730637_17
https://doi.org/10.1007/978-3-319-03545-1_7
http://arxiv.org/abs/1612.08872
http://arxiv.org/abs/1502.02242

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Bar-Hillel Theorem Mechanization in Coq 17

Koschmieder, A., Leser, U.: Regular path queries on large graphs. In: Ailamaki, A.,
Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 177-194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31235-9_12

Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4, 241-299 (2012)

Lu, Y., Shang, L., Xie, X., Xue, J.: An incremental points-to analysis with CFL-
reachability. In: Jhala, R., De Bosschere, K. (eds.) CC 2013. LNCS, vol. 7791, pp.
61-81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37051-9_4
Maneth, S., Peternek, F.: Grammar-based graph compression. Inf. Syst. 76, 1945
(2018). http://www.sciencedirect.com/science/article/pii/S0306437917301680
Nederhof, M.J., Satta, G.: Parsing non-recursive context-free grammars. In: Pro-
ceedings of the 40th Annual Meeting on Association for Computational Linguistics,
ACL 2002, pp. 112-119. Association for Computational Linguistics, Stroudsburg
(2002). https://doi.org/10.3115/1073083.1073104

Nederhof, M.J., Satta, G.: The language intersection problem for non-recursive
context-free grammars. Inf. Comput. 192(2), 172-184 (2004). http://www.
sciencedirect.com/science/article/pii/S0890540104000562

Pratikakis, P., Foster, J.S., Hicks, M.: Existential label flow inference via CFL
reachability. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 88-106. Springer,
Heidelberg (2006). https://doi.org/10.1007,/11823230_7

Ramos, M.V.M., de Queiroz, R.J.G.B.: Formalization of closure properties for
context-free grammars. CoRR abs/1506.03428 (2015). http://arxiv.org/abs/1506.
03428

Ramos, M.V.M., de Queiroz, R.J.G.B., Moreira, N., Almeida, J.C.B.: Formal-
ization of the pumping lemma for context-free languages. CoRR abs/1510.04748
(2015). http://arxiv.org/abs/1510.04748

Ramos, M.V.M., de Queiroz, R.J.G.B., Moreira, N., Almeida, J.C.B.: On the for-
malization of some results of context-free language theory. In: Vaanénen, J., Hir-
vonen, A., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 338-357.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8_21
Ramos, M.V., Almeida, J.C.B., de Queiroz, R.J., Moreira, N.: Some applications of
the formalization of the pumping lemma for context-free languages. In: Proceedings
of the 13th Workshop on Logical and Semantic Frameworks with Applications, pp.
43-56 (2018)

Ramos, M.V., de Queiroz, R.J.: Formalization of simplification for context-free
grammars. arXiv preprint arXiv:1509.02032 (2015)

Rehof, J., Fahndrich, M.: Type-base flow analysis: from polymorphic subtyping to
CFL-reachability. ACM SIGPLAN Not. 36(3), 5466 (2001)

Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1995, pp. 49-61. ACM,
New York (1995). https://doi.org/10.1145/199448.199462

Scott, E., Johnstone, A.: GLL parsing. Electron. Notes Theor. Comput. Sci.
253(7), 177-189 (2010)

Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free gram-
mars. Theor. Comput. Sci. 88(2), 191-229 (1991). http://www.sciencedirect.com/
science/article/pii/030439759190374B

Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-flow anal-
ysis. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 570-589. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6_30

https://doi.org/10.1007/978-3-642-31235-9_12
https://doi.org/10.1007/978-3-642-37051-9_4
http://www.sciencedirect.com/science/article/pii/S0306437917301680
https://doi.org/10.3115/1073083.1073104
http://www.sciencedirect.com/science/article/pii/S0890540104000562
http://www.sciencedirect.com/science/article/pii/S0890540104000562
https://doi.org/10.1007/11823230_7
http://arxiv.org/abs/1506.03428
http://arxiv.org/abs/1506.03428
http://arxiv.org/abs/1510.04748
https://doi.org/10.1007/978-3-662-52921-8_21
http://arxiv.org/abs/1509.02032
https://doi.org/10.1145/199448.199462
http://www.sciencedirect.com/science/article/pii/030439759190374B
http://www.sciencedirect.com/science/article/pii/030439759190374B
https://doi.org/10.1007/978-3-642-11957-6_30

18

40.

41.

42.

S. Bozhko et al.

Yan, D., Xu, G., Rountev, A.: Demand-driven context-sensitive alias analysis for
Java. In: Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ISSTA 2011, pp. 155-165. ACM, New York (2011). https://doi.org/
10.1145/2001420.2001440

Zhang, Q., Su, Z.: Context-sensitive data~-dependence analysis via linear conjunc-
tive language reachability. SIGPLAN Not. 52(1), 344-358 (2017). https://doi.org/
10.1145/3093333.3009848

Zhang, X., Feng, Z., Wang, X., Rao, G., Wu, W.: Context-free path queries on
RDF graphs. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 632—648.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_38

https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/3093333.3009848
https://doi.org/10.1145/3093333.3009848
https://doi.org/10.1007/978-3-319-46523-4_38

	Bar-Hillel Theorem Mechanization in Coq
	1 Introduction
	2 Bar-Hillel Theorem
	3 Bar-Hillel Theorem Mechanization in Coq
	3.1 Hofmann's Results Generalization
	3.2 Basic Definitions
	3.3 General Scheme of the Proof
	3.4 Trivial Cases
	3.5 Regular Languages and Automata
	3.6 Chomsky Induction
	3.7 Intersection of CFG and Automaton
	3.8 Union of Languages
	3.9 Putting All Parts Together

	4 Related Works
	4.1 Formal Language Theory in Coq
	4.2 Formal Language Theory in Other Languages

	5 Conclusion
	A Coq Listing
	References

