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In recent years considerable progress has been observed in the development
of credit risk models. The Revised Framework on International Conver-
gence of Capital Measurement and Capital Standards (2004) (Basel II)
raised the standards of risk management to a new level. The validation
methodologies of internal rating-based systems have emerged as an impor-
tant issue for the implementation of Basel II. One of the less examined prob-
lems is the theoretical investigation of maturity effects and the probability
of default time structure. The Basel Committee recommendations include
maturity adjustment for capital requirements. However, the complete
derivation of the proposed adjustment formula remains undisclosed. In this
paper the authors describe a method of maturity adjustment calculation
directly from open data published by rating agencies. In addition, analytical
expressions revealing the probability of default time structure are proposed.
In order to validate the Basel II recommendation a comparison of the results
found with the Basel maturity adjustment formula is performed. The char-
acter of the presented dependences is close enough, but it was discovered
that for low probabilities of default (for high ratings) and maturities of two
to three years there may exist considerable underestimation of risk capital.

The unknown credit losses a bank will suffer can be represented by two components:
expected loss and unexpected loss. While a bank can forecast the average level of
expected loss and manage it, unexpected losses are peak losses that exceed expected
levels. Economic capital is needed to cover the risks of such peak losses, and
therefore it has a loss-absorbing function.

In June 2004, the Basel Committee issued the first version of the Revised Frame-
work on International Convergence of Capital Measurement and Capital Standards
(or Basel II) (see Basel Committee on Banking Supervision (2004)). In this document
the Basel II internal ratings-based approach was introduced. This approach is built
on the following main parameters of credit risk: probability of default (PD), loss
given default (LGD), exposure at default (EAD) and effective maturity (M). Under
the advanced internal ratings-based approach, institutions are allowed to use their

1

Revised Proof Ref: JRMV3(3)Petrov/42198e August 19, 2009



PR
O

O
F

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

2 D. Petrov and M. Pomazanov

own internal models for these base risk parameters as primary inputs to the capital
requirement calculation.

Banks generally employ a one-year planning horizon. The majority of well known
portfolio models (CreditPortfolioView, CreditRisk+, CreditPortfolioManager, Cred-
itMetrics, etc) as well as Basel II, agree that the value of the credit portfolio is only
observed with respect to a predefined time horizon (typically one year). In fact this
time horizon generally does not correspond with the actual maturity of loans in the
credit portfolio. It is obvious that long-term credits are riskier. With respect to a three-
year term loan, for example, taking account of the one-year horizon could mean that
more than two-thirds of the credit risk is potentially ignored. So maturity is one of the
most important parameters of risk. As a consequence, it is necessary to account for a
real risk horizon to estimate precisely multi-year probability of default, unexpected
loss and consequently sufficient capital requirement.

The topic of maturity effects has been widely discussed in recent literature.
A number of authors have worked on multi-horizon economic capital allocation
on the basis of the mark-to-market paradigm (Kalkbrener and Overbeck (2002);
Barco (2004); Grundke (2003)). Under these, the models changes in portfolio value
are caused by changes in credit spreads, which in their turn strongly depend on
credit rating migration. Although the Markov assumption for probability of default
time dependence is not proved, there are many works on Markov chain application
for maturity effects (see, for example, Jarrow et al (1997), Inamura (2006) and
Frydman and Schuermann (2005)). Bluhm and Overbeck (2007) do not reject the
Markov assumption but adopt it by dropping the homogeneity assumption with non-
homogeneity continuous-time Markov chains. For models based on the default-mode
paradigm there exists little literature analyzing the accounting of long risk horizons
(Gurtler and Heithecker (2005)).

The Basel risk weight functions used for the calculation of supervisory capital
charges are based on a specific one-factor model adopted by the Basel Committee on
Banking Supervision (2005). This model relies on the results of Merton (1974) and
Vasicek (2002).

To account for the maturity effect the Basel Committee proposes a special
maturity adjustment formula (Basel Committee on Banking Supervision (2005)).
However, there is no available detailed explication and no initial data used for its
deviation.

Thus the following process of validation on the basis of open data is considered:

1) The Merton-type one-factor model of Vasicek is considered. The capital
requirement formula is adjusted to account for maturities longer than one year.

2) Cumulative default rates published by rating agencies are analyzed.
3) Special functions are proposed to approximate continuously cumulative

default rates.
4) An appropriate maturity adjustment is calculated.
5) The maturity adjustment found is compared with the Basel maturity

adjustment.
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Validation method of maturity adjustment formula for Basel II capital requirement 3

CAPITAL REQUIREMENT CALCULATION

We briefly consider the derivation of the capital requirement formula. It should be
noted that in contrast to Basel II the one-year time horizon is not fixed. Voluntary
maturity T is considered.

It is assumed that a loan defaults if the value of the borrower’s assets at the loan
maturity T falls below the contractual value B of its obligations payable. Let A be
the value of borrower’s assets, described by the Wiener process:

dA = µAdt + σAdx

Here the asset value at T can be represented as:

log A(T ) = log(A) + µT − 1

2
σ 2T + σ

√
TX

where X is a standard normal variable.
The probability of default on risk horizon T (PDT ) then equals the probability

that assets fall below the level of the borrower’s obligations:

PDT = P[A(T ) < B] = P[X < c] = N(c)

where:

c = log B − log A − µT + 1
2σ 2T

σ
√

T

and N(·) is a cumulative normal distribution function.
The variable X is standard normal and can therefore be represented as:

X = Y
√

ρ + Z
√

1 − ρ

where Y , Z are mutually independent standard normal variables. The variable Y can
be interpreted as a common factor, such as an economic index, over the interval
(0, T ). Then ρ represents correlation of a borrower with the state of the economy.
The term Y

√
ρ is the company’s exposure to the common factor and the term

Zi

√
1 − ρ represents the company’s specific risk.

The probability of default is evaluated as the expectation over the common
factor Y . When it is fixed, the conditional probability of default is:

pd(Y ) = P[A(T ) < B | Y ] = P[X ≤ c | Y ] = P[Y
√

ρ + Z
√

1 − ρ ≤ c | Y ]

= P
[
Z ≤ c − Y

√
ρ√

1 − ρ

]
= P

[
Z ≤ N−1(PDT ) − Y

√
ρ√

1 − ρ

]

= N

(
N−1(PDT ) − Y

√
ρ√

1 − ρ

)

For the worst economical scenario the common factor takes the magnitude given
by −N−1(α) with some confidence level α (α = 0.999 under Basel II). Then the
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4 D. Petrov and M. Pomazanov

worst conditional probability of default is:

pd(α) = N

(
N−1(PDT ) + N−1(α)

√
ρ√

1 − ρ

)

Under this worst case scenario the losses will also be the most serious. The capital
requirement for a loan is then given by:

Capital requirement(PDT , α, ρ, EAD, LGD)

= Worst loss − Expected loss

= EAD · LGD · pd(α) − EAD · LGD · PDT

= EAD · LGD ·
(

N

(
N−1(PDT ) + N−1(α)

√
ρ√

1 − ρ

)
− PDT

)

= EAD · LGD · (FDaR(T , α, ρ) − PDT ) (1)

where FDaR(T , α, ρ) = N((N−1(PDT ) + N−1(α)
√

ρ)/
√

ρ).
Thus, given the probability of default on time horizon T , the capital requirement

could be calculated on the same time horizon.
Figure 1 (see page 5) illustrates the dependence of capital requirement on

probability of default for a maturity of one year. For simplicity, EAD and LGD
equal one.

BASEL MATURITY ADJUSTMENT

The Basel II capital requirement formula includes a component responsible for
maturity (Basel maturity adjustment). It is noted that this adjustment follows from
the regression of the output of the KMV Portfolio ManagerTM.

By its sense this adjustment is a penalty for the exceeding of one-year maturity.
The dependence on maturity is linear for changes of risk horizon from one to five
years and has the following form:

Basel maturity adjustment = 1 + (T − 2.5) · b(PD)

1 − 1.5 · b(PD)

b(PD) = (0.11852 − 0.05478 log(PD))2 (2)

where PD is one-year probability of default.
Figure 2(a) (see page 6) illustrates the dependence of Basel maturity adjustment

on one-year probability of default. Maturity is fixed to three years. The maturity
effect is stronger for higher probabilities of default than for lower probabilities
of default. Figure 2(b) (see page 6) illustrates how the Basel maturity adjustment
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Validation method of maturity adjustment formula for Basel II capital requirement 5

FIGURE 1 Dependence of Basel capital requirement on one-year probability of
default.
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formula changes with maturity. One-year probabilities of default equal 0.1%, 1%
and 10%. The adjustment is linear and increasing with the maturity.

Probability of default time structure

From cumulative default rates published by major rating agencies, such as Fitch
Ratings (2006), Moody’s (2006) and Standard and Poor’s (2007), it directly follows
that probability of default increases with the increase of risk horizon (Table 1, see
page 7; Figure 3, see page 8). So we need to perform an adjustment in one-year
probability of default if we want to take into account maturities longer than one year.
Consequently, adjustment in capital requirement is necessary when the one-year time
horizon is exceeded.

It should be noted that similar results can be found on the basis of data provided
by all of the rating agencies mentioned earlier. However, Moody’s statistical data is
mainly considered in this paper (see Table 1 on page 7).

There are some potential errors in this data (see Credit MetricsTM (1997)):

• Output cumulative default likelihoods violate proper rank order. For instance,
Table 1 shows that Aaas have defaulted more often at the 10-year horizon than
have Aas. This is true also for B1 and Ba3 ratings.
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6 D. Petrov and M. Pomazanov

FIGURE 2(a) Dependence of Basel maturity adjustment on one-year probability of
default.
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FIGURE 2(b) Dependence of Basel maturity adjustment on maturity.
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8 D. Petrov and M. Pomazanov

FIGURE 3 Average cumulative issue-weighted corporate default rates (Moody’s
data).
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• Limited historical observation yields “granularity” in estimates. For instance,
the Aaa row in Table 1 is supported by a limited number of firm-years worth
of observation. In 1997 it was only 1,658 firm-years. This is enough to yield
a “resolution” of 0.06% (ie, only probabilities in increments of 0.06% – or
1/1658 – are possible).

• This lack of resolution may erroneously suggest that some probabilities are
identically zero. For instance, if there were truly a 0.01% chance of Aaa
default, then we would have to wait another 80 years before there would be
a 50% chance of tabulating a non-zero Aaa default probability.

In spite of these slight errors we suppose that the presented statistical data reflects
well the time structure of the probability of default except, probably, for several first
ratings for the reasons mentioned earlier.
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Validation method of maturity adjustment formula for Basel II capital requirement 9

TABLE 2 Fitting results.

Alphanumeric Numeric
rating rating PD one-year (%) PDn a b R2

Aaa 1 0.000 0.000 0.364 0.404 0.915
Aa1 2 0.000 0.000 0.012 0.019 0.899
Aa2 3 0.000 0.027 0.000 0.006 0.975
Aa3 4 0.019 0.010 0.019 0.030 0.983
A1 5 0.003 0.033 0.040 0.060 0.970
A2 6 0.026 0.112 0.000 0.004 0.965
A3 7 0.037 0.063 0.000 0.016 0.951
Baa1 8 0.166 0.230 0.002 0.002 0.978
Baa2 9 0.161 0.157 0.041 0.252 0.998
Baa3 10 0.335 0.538 0.103 0.584 0.993
Ba1 11 0.753 1.072 0.084 1.106 0.996
Ba2 12 0.780 1.472 0.101 0.714 0.995
Ba3 13 2.069 4.117 0.162 0.762 0.986
B1 14 3.223 5.928 0.209 0.864 0.978
B2 15 5.457 7.325 0.297 1.252 0.992
B3 16 10.460 11.430 0.355 1.226 0.996
Caa-C 17 20.982 19.970 0.619 0.619 0.998

First, Moody’s cumulative probabilities are fitted with a special parametric
function for every rating:

PDT = F(PDn, a, b, T )

=
[

PDn

100
·
(

1 − exp(−T · a)

1 − exp(−a)

)

+
{(

1 − exp(−T · a)

1 − exp(−a)

)
−

(
1 − exp(−T · b)

1 − exp(−b)

)}
· 1 − exp(−b)

100 · b
]

(3)

The fitting function depends on three parameters, PDn, a and b, which are different
for every rating.

The actual form of this function is chosen to satisfy several essential properties:

• For the maturity of one year, parameter PDn is equivalent to one-year proba-
bility of default taken as a percentage.

• For zero maturity PDT equals zero.
• The function has an asymptotic value for large terms, which is not equivalent to

100%. This property follows from the notion that over time companies either
default rather fast or attain higher ratings. So with time we have some kind of
stabilization. The property is satisfied when parameter a is greater than b for
every rating.

• The function has a change in shape (for low probabilities of default we have
concavity, for high probabilities of default we have convexity). This property
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10 D. Petrov and M. Pomazanov

FIGURE 4 Results of cumulative default rates fitting (solid curves) and Moody’s data
(dots).
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follows from the notion that companies with high ratings pass several lower
ratings before default. So there exists some initial period where cumulative
probability of default does not grow very fast (concavity). Companies with
low ratings can come to default rather fast so we cannot observe such an effect
and cumulative probability of default grows immediately (salience).

For proof, numerical ratings corresponding to alphanumeric ratings are intro-
duced. The highest rating Aaa corresponds to the first numeric rating; Aa1 to the
second, etc.
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Validation method of maturity adjustment formula for Basel II capital requirement 11

FIGURE 5 Transition from rating grades to continuous one-year probability of
default.
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Of course, the proposed function is not unique, but it shows very good fitting
results (see Table 2 on page 9 and Figure 4 on page 10).

In Table 2 the set of received data is presented for every rating: for three
parameters of the fitting function and one-year probabilities. R-squared shows that
the proposed function precisely takes into account the particularities of the used data.

So far we have used probabilities of default that correspond to discrete ratings.
However, probability of default is continuous by its nature. So it is necessary to
pass from discrete ratings (and corresponding one-year probabilities of default) to
continuous default probabilities.

To do that we smooth the PDn parameter, which corresponds to one-year proba-
bility of default. The generally accepted logit function is used. Linear dependence is
established between numeric ratings and the natural logarithm of PDn (see Figure 5).
The quality of this approximation is rather high: R-squared equals 0.974:

PDA(Numeric rating) = exp (0.561 · (Numeric rating) − 6.307) (4)

where PDA is the continuous approximation for the PDn.
To receive continuous dependency of cumulative default probabilities from one-

year probability of default and maturity we also need to smooth two other parameters
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FIGURE 6 Smoothed cumulative probabilities of default (surface) compared with
Moody’s data (dots).
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(a and b). After the analysis of the dependence of parameters on PDA the following
two fitting functions were proposed:

fa depends on two parameters (αa and βa):

fa(x) = αa · exp (βa · x)

fb depends on three parameters (αb, βb, γb):

fb(x) = αb · exp (−(βb · x + γb)
2)

Approximation of the parameters a and b gives the following results:

a(PD) = 0.080 · exp(0.639 · ln (100 · PD)) (5)

b(PD) = 1.278 · exp(−(0.293 · ln (100 · PD) − 0.938)2) (6)

The constraint on a and b (a has to be greater than b) is fulfilled.
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FIGURE 7 Dependence of maturity adjustment on correlation coefficient ρ.
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The formula that gives the probability of default (PDT ) for every one-year default
probability (PD) and maturity (T in years) follows from (3), (5) and (6):

PDT = F(PD, a(PD), b(PD), T ) (7)

Figure 6 (see page 12) illustrates the correspondence of received continuous
cumulative default probabilities (surface) with Moody’s statistical data.

MATURITY ADJUSTMENT

Now, when the dependence of probability of default PDT for every maturity is known
we can construct maturity adjustment for the capital requirement in the following
way:

Maturity Adjustment (PD, T ) = Capital requirement (PDT , α, ρ, EAD, LGD)

Capital requirement (PD, α, ρ, EAD, LGD)

= FDaR(T , α, ρ) − PDT

FDaR(1, α, ρ) − PD

where PDT is calculated from (7).
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FIGURE 8 Dependence of maturity adjustment on confidence level α.
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In addition, the dependence of maturity adjustment on the model parameters was
analyzed. The maturity adjustment does not change strongly with the change of
coefficient ρ (see Figure 7 on page 13). This fact confirms the absence of dependence
on correlation in the received adjustment, as in the Basel maturity adjustment.

The dependence of maturity adjustment on the confidence level α is rather strong,
particularly for low probabilities of default (see Figure 8). The level of adjustment
declines with the convergence of α to one. The confidence level used for the
derivation of the Basel maturity adjustment also remains undisclosed. However,
under the Basel Committee recommendation we work with high confidence levels
(α = 0.999 or even α = 0.9999).

Figure 9 (see page 15) illustrates the received maturity adjustment and the Basel
maturity adjustment for several maturities, so it is possible to compare them.

Although the form of maturity adjustments is close enough, there is a difference in
the Basel proposal and our results (see Figure 9). The received adjustment is higher
for small probabilities of default (high ratings) and for maturities of about two or
three years. It also reduces faster with the increase of one-year probability of default.
The higher level of adjustment for high ratings is partly explainable and follows
from the dependence of capital requirement on default probability (see Figure 1
on page 5). For small probabilities the slope of the curve is greater than for large
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FIGURE 9 Received maturity adjustment (solid curves) and Basel maturity adjust-
ment (dashed curves).
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probabilities, so the same change in probability with time gives the greater change
in capital requirement. However, at the moment there is no complete explanation
for the difference between these two adjustments. If more exact information about
methodology and data used for the Basel maturity adjustment were available it might
be possible to explain these disagreements.

CONCLUSION

In this paper the dependence of default probability on time was continuously param-
eterized using data provided by Moody’s. This approach gives results expressed
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analytically. The results correspond well with statistical data. The time structure of
the probability of default allows the calculation of the maturity adjustment (or a
penalty for excess of one-year maturity) for capital requirements.

The proposed approach of validation makes clearer the process of the maturity
adjustment calculation.

It was shown that the character of the Basel approach maturity adjustment
function can be explained rather well from open statistical data.

However, from the results found it follows that there exists the possibility to
underestimate risk with the Basel maturity adjustment function. It is shown that
the penalty is higher for assets with good rating (investment grade) and maturities
of about two years. The precise estimation of unexpected loss is critical for bank
stability. Although the Basel II recommendations are often regarded as rather
conservative, the possible underestimation of risk may be as high as 50%.
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