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Abstract. We consider a classic Resource-Constrained Project Scheduling Problem (RCPSP)
which is known to be NP-hard. For defined project deadline 7', each task of the project can be
associated with its temporal domain — a time interval in which this task can be processed. In this
research, we adopt existing resource-based methods of task domain propagation to generalized
statement with time-dependent resource capacity and show how to improve its propagation effi-
ciency. We also present new polynomial-time algorithms (propagators) to tighten such temporal
task domains in order to make the optimization problem easier to solve. Moreover, we show how
these propagators can be used to calculate lower bound on project makespan.

Introduction

The Resource Constrained Project Scheduling Problem (RCPSP) is a well-known scheduling
theory problem. This problem is strongly NP-hard [8]. This paper is focused on constraint pro-
gramming resource-based methods to solve RCPSP.

Constraint programming approaches are widely used to solve scheduling problems including
RCPSP. This approach is used in well-known solvers, i.e. IBM ILOG CP Optimizer, Choco,
MiniZinc, Gecode, etc. Propagators can also be used as a powerful data pre-processing tool, to
make task domains tighter and add new precedence relations.

This paper is organized as follows. In the section P] the existing resource-based propagators
for RCPSP are reviewed. Problem statement and data preprocessing procedures are presented
in sections 3| and [4 respectively. In the section [J we show how to adapt existing propagators
to generalized RCPSP statement with time-dependent resource capacity. In sections p| and
approaches to bound resource capacity function and project makespan are presented. By the
section 8] we conclude.



State of the Art

There is a wide range of Constrained Programming techniques which can be applied to find an
optimal /suboptimal solution of RCPSP or to make the problem easier to solve.

Some methods allow to add new precedence relations between tasks. In [I8] and [5] the term
of disjunctive graph was introduced and used to solve scheduling problems.

This research is focused on resource-based constraints. Let us briefly list them, the discussion
of the most important for us will be given in section [5] A lot of constraints can be obtained
by considering Cumulative Scheduling Problem (CuSP) — a single-resource version of RCPSP.
Calculation of compulsory parts [12], time-tables [I3], resource profile [7], resource histogram [6]
allow to clarify resource usage by tasks under any feasible schedule. Time tabling sweep algorithms
([2], [3], [14]) can be used to adjust release times and tails of tasks. In [4] the application of rectangle
placement problem to improve Time Tabling technique is presented. Filtering Time Table sweep
algorithm with the best theoretical complexity was suggested in [9].

Edge-Finding algorithms ([I6], [20], [II]) can be used to make task domains tighter and to
avoid resource overloads on time intervals. This approach can be improved by using Extended-
Edge-Finding algorithms presented by [15].

One of the advantages of constraint programming method is the possibility to combine different
algorithms for more efficient propagation. The synergy of Edge-Finding, Extended Edge Finding
and Time Tabling gave very good results obtained in [17].

For other results of using constraint programming to solve scheduling problems, we refer to [I].

Problem Statement

We consider a generalized statement of RCPSP. There is a project which should be finalized
in the time horizon T'. There is a set of project tasks N, and sets of resources R. In the classic
statement the capacity of resource r € R equals to constant value ¢,. In this paper we consider
task domain propagation methods developed for the classic statement and expand them to the
generalized statement of RCPSP, where the capacity of any resource r € R is defined by some
non-negative capacity function ¢, (t). For any task j € N the following attributes are given:

® p; — processing time;

e r; — release time, the earliest possible time when the task j can start the processing;

e h; — tail, which should separate task completion time and project completion time;

® aj, — required amount of resource r € R.

As usual the first and the last tasks of the project are dummy with zero processing times and
without any resource requirements, i.e. pg = ppe1 = 0, 79 = i1 = 0, hg = hpyr = 0, agr =
api1r = 0 for any £ € R. Precedence relations with time lags are given by weighted directed
acyclic graph G = (N, E) where E — is the set of edges, defined bu triplets {1, j, e;;}, where e;; is
the time lag between processing of tasks ¢ € N and j € N.

Schedule m defines start times S;(7) for each task j € N. Completion time of any task j € N
under schedule 7 can be calculated by the formula C;(m) = S;(7)+p;. Schedule 7 is called feasible
if the following constraints are satisfied.

1. Release times and tails should be satisfied, i.e. for any j € N

[Sj(m), Cj(m)) C [ry, T — hy).



2. For any resource k € R capacity function is not violated for any t, i.e.

Z ajk S Ck(t).

JEN[te[S;(m),Cj())

3. Precedence relations with time lags should be satisfied. Therefore, any value e;; € E implies
that for start times of tasks ¢ and j the inequality S;(m)+e;; < S;(7) holds. Note that values
e;; and ej; can both belong to F.
The set of all feasible schedules is defined by II(N, R).

For any j € N we denote the earliest starting time, the earliest completion time, the latest
starting time and the latest completion time by est;, ect;, lst; and lct; respectively. By the
problem formulation we know that the task j should be processed in the time interval [r;, T'— h;),
therefore [est;, lct;) C [r;,T — h;). Introduced notations are more useful, since values r; and h;
are given and est;, ect;, st;, lct; can be dynamically changed during task domain propagation.

Data Preprocessing

In this part, we make a list of procedures which can improve the efficiency of most of the
propagators. From the complexity point of view, it is more efficient to prepare data by applying
procedures 1-5 before using propagators. Procedures 4 and 5 can also be used as other propagators:
it is reasonable to execute these procedures if something changed to get more adjusted results.

1. For any resource r € R we can create set of tasks N, C N which require this resource, i.e.

N, ={j € Nl|a;, > 0}.

2. Longest paths calculation. This takes O(n|E| 4+ n?logn) operations, where |E| — number of
edges in graph G, using algorithm presented in [10].

3. Find the earliest/latest starting/completion times using the formulae est; = r;, ect; = r;+pj,
Ist; =T — hj — pj, lct; =T — h;.

4. If Ist; < ect; for any task j € N, interval [lst;, ect;) sets a compulsory part of j. This term
was firstly proposed by [12]. The complexity of this procedure is O(1) for one task and O(n)
for all tasks of the set N. If all compulsory parts of tasks are calculated we can create a set
of tasks NYF C N which compulsory parts are not empty, i.e. N = {j € N|ist; < ect;}.
During the process of using domain propagators, est; and lct; can be changed and the set
NCP can be supplemented.

5. Calculate highest possible amount of resource » € R which can be used by non-compulsory
parts of tasks ¢”(¢). This function can be calculated by the formula

gty =ct)— Y. a

JEN:Ist;<t<ect;

For this procedure algorithm presented by [7] can be applied adjusted for piecewise constant
resource capacity function. The complexity of this procedure is O(n, + m) operations for
single resource where n, — number of tasks which require resource r during the processing
and m — number of breakpoints of ¢.(t). If for any task from the set N, compulsory part
[[st;, ect;) is updated, it is reasonable to recalculate function ¢*(¢) to obtain more tight bound
on available resource.



Adapting Existing Propagators to Piecewise-Constant Capacity Function

There are a lot of methods of task domain propagation which are based on resource overload.
In this section, we present an adaptation of existing algorithms for the RCPSP generalization with
piecewise-constant capacity function and show that in some cases it can improve the efficiency of
existing techniques. Presented methods are focused on bounding the earliest starting time, but
can be symmetrically used to propagate the latest completion time.

Edge-Finding

The idea of the Edge-Finding algorithm was firstly proposed in [16]. This method can be
divided into two parts. In the first part, specific precedence relations 2 < j for any 2 C N and
j ¢ Q are introduced. ) < j means that under any feasible schedule w € II(N, R) the completion
time of j is not smaller than the completion time of all tasks of 2, i.e.

Cji(m) > max Ci(m).
Fast algorithm to detect all such precedences was presented by Vilim [20]. In the second part for
each pair (€2, ) the following idea is used to tighten the domain of j. Let us consider [este, lcte)
— the domain of any © C 2, where estg = min;ce est; and lctg = min;ee lct;. €2 < j leads to the
fact that all tasks of © have to be completed before C;(7) which implies that amount of resource
ajr can not be consumed by the tasks of © in the interval [S;(7), lcte). Let A, =, g air — total
amount of resource r required to process ©. Therefore (Fig. [1] a)

Aoy — (¢ — a;,f)(lct@ - est@)} (1)

and the earliest starting time can be updated: est; := max{est;,t'}.
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Figure 1. Edge-Finding for a) constant resource capacity, b) piecewise constant resource capacity.

For generalized statement with capacity function this approach can be used in the same way
but with some changes in (1)) (Fig. [1]b).



Aoy + aj,(lcte — este) + felgt@ c.(t)dt
Si(m) > t' = max{este - ” © }. (2)

If capacity function is piecewise-constant value felscf: ¢, (t)dt can be calculated in O(m) operations,
where m — number of breakpoints in the interval [este, Ictg).

Extended Edge-Finding

Extended Edge-Finding rule was presented in [15]. It can be formulated as follows. Suppose
that the task j starts at est;, [est;, ect;) overlaps the interval [estq, lctg). Then if total amount of

resource required to process j and € in the interval [estq, lctq) is higher than ¢, (Ictq — estq), then
2 < j holds, i.e. (Fig. [2/a)

(estq € [estj, ect;)) N (Aqr + ajr(ect; — estq) > Cp(lctg — estq)) = Q < . (3)
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Figure 2. Extended-Edge-Finding for a) constant resource capacity, b) piecewise constant resource capacity.

For generalized statement with capacity function ¢,(¢) this rule can be written as (Fig. [2| b)
leto
(estq € [estj, ect;)) N (Aqr + ajr(ect; — estq) > / o (t)dt) = Q < j. (4)
esto

Time Tabling

Time Tabling rule ([7]) bases on calculation resource profile — an aggregation of compulsory
parts [lst;, ect;) of tasks j € N which holds Ist; < ect;

Fety= Y a

JEQ|te(lst; ect;)



Then the sweep technique of [3] is used to check resource overloads (Fig. |3| a)
(ect; > t) A(er < aje + fr(N\ ], ) = est); > t.

The similar approach can be used to update lct;. This method was later improved in [14] and [4].
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Figure 3. Time Tabling for a) constant resource capacity, b) piecewise constant resource capacity.

In terms of generalized statement this method can be written as (Fig. 3| b)
(ect; > t) A(ce(t) < aje + f(N\ j,7,t)) = est) > t.

Note that if in the original algorithm we need to check overloads only in breakpoints of the function
fr(N\ j,t), which belong to the interval [est;, ect;). In this case, any breakpoint ¢’ € [est;, ect;) of
the function C,(t) is also have to be checked to get maximum domain propagation of j € N.

Time Table Extended-Edge-Finding

Extended-Edge-Finding method was enhanced in [2I] and [I9] by combining it with Time
Tabling. Let AéT — amount of resource r € R required to process tasks of the set {2 plus amount
of resource used by compulsory parts of tasks of the set N \ 2 over the interval [estq, lctg), i.e.

lcto

Al = Ag, + F(N\Q,r t)dt.

esto

Substituting Aq, by A{zr in and gives Time-Table Extended-Edge-Finding rules.
This rules can be adopted for generalized statement by substituting Ag, by A{)r in and .

Strengthening Time-Table Edge-Finding

The following two rules can be used to make Time-Table Edge-Finding algorithm more efficient.
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Figure 4. Strengthening Edge-Finding by considering ¢”(¢) on the interval [t1,#5) and a task i € Q.

1. Let us consider ¢ (t) = ¢,(t) — f.(N,t) — the highest possible amount of resource which can
be used by non-compulsory parts of tasks. In section 4| we showed how to calculate this
function. Edge-Finding rule can be enhanced by adding the following rules for set 2 C N
and task j € N such that 2 < j.

If for any ¢ € [t1,t2) such that [t1,t) € [estq,lctq) \ |ect;, st;) holds ¢(t) — ajr < 0 and
there is a task ¢ € €2 such that ect; > t;, then the earliest starting time of j can be updated:
est’ := ty (Fig. .

2. Suppose there is a set © C  and moment of time ¢’ € [este, lcte) \ [ect;,Ist;), such that

c(t') < aj, holds. Then if amount of resource required to process non-compulsory parts of

all tasks of the set © is more then fld@ ¢ (t) — ajdt) and, then est; can be updated. Le.

esto
t/
Aoy — Zair(Hlsti, ect;) N [este,t')]) > / (¢, (t) — ajr)dt
i€O este
then est; :=t' (Fig ).
This new rules can be combined with Time-Tabling Edge-Finding technique more powerful and
give additional adjustments.

Capacity Function Adjustment

In the previous part, we showed how existing propagators can be adopted to generalized state-
ment with resource capacity function and presented two new resource-based propagators. All
mentioned propagators depend on the amount of resource available during the considered time in-
terval. Therefore if we consider two instances of problem with the same sets of tasks N! = N? with
the same precedence relations and different resource capacities ¢ (t), ¢2(t) such that cl(t) > c(t)
for any ¢ € [0,T), the efficiency of domain propagation in application to the second case will not
be worse than to the first one, since task domains will be the same or more tight. In this sec-
tion, an algorithm to clarify capacity function to improve the efficiency of existing resource-based

9
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Figure 5. Strengthening Edge-Finding by considering ¢”(t) and resource usage in [estg, ).

propagators is presented.

~V

Figure 6. Capacity function adjustment.

Let us consider the following function

gr(Q7t) = Z Ay (5>

JEQ|teest;,lcty)

g-(N,t) represents an upper bound on amount of resource, which can be consumed by the tasks
of N at moment of time ¢. Therefore if for any ¢ holds ¢,(N,t) < ¢,(t), then capacity function
¢,(t) can be replaced by ¢.(N,t) — the highest possible consumption of resource r € R by the tasks
of the set N (Fig. [6). If ¢,(¢) has a piecewise constant form with m breakpoints, the following
algorithm allows to calculate ¢/.(N,t) in O(n + m) operations.

10



Algorithm 1. Highest possible consumption bounding.

Input: Set of tasks NV, ¢,(t) with the set of breakpoints BP,.
Output: c.(N,1).

1: BP, = {;

2: t set g.(N,t) :=0;

3: for all j € N do

4:  Vt € [est;,lct;) increase g, (N,t)+ = ajy;
o: add est; and lct; to BP;;

6: end for

7: prevy = 0;

8:

(N, 0) = min{er(0), g,(N, 0)};

9: for all current, € BP, U BP; \ {0} in increasing order do

10: Vit € [prevy, currenty) set c.(N,t) := min{c,(prevs), g.(N, prevy) };
11:  prevy := currenty;

12: end for

13: Output ¢.(N, ).

Note that this algorithm can be also applied to the classic statement with constant resource
capacity. But as a result, the algorithm returns time-dependent piecewise constant highest pos-
sible consumption of resource. Therefore the existing methods are not able to be applied to the
considered problem statement and generalized Edge-Finding, Extended-Edge-Finding and Time
Tabling methods can be applied to propagate task domains.

Project Makespan Estimation

All presented methods can be used in obtaining destructive project makespan lower bound
defined by the following Theorem.

Theorem 1. If for any time horizon T after application of task domain and capacity function
propagators one of the following conditions holds, there is no feasible schedule with makespan
smaller or equal to T
1. If for any j € N task domain [est;, lct;) will be not enough to process j, i.e. lctq — estq <
ZjeQ Dj-
2. Any set Q C N does not have enough resource r € R to process all tasks of ) in its domain
[estq, lctq) i.e. elscfs o (t)dt <let; —esty < 3 icq(ajmp;)).
3. If for any resource r € R and time moment ¢ € [0,7) amount of resource r € R which can

be used by non-compulsory parts of tasks is smaller than 0, i.e. ¢'(t) < 0.

Using logarithmic search looking for the lowest possible time horizon 7™ for which all three
statements of the Theorem [1| are incorrect, makespan lower bound 7™ can be obtained. Note that
the search complexity and the quality of makespan lower bound depends on the considered sets ).
If we consider 2 =i € N, the search speed will be polynomial.

Conclusion

In this paper existing resource-based methods of task domain propagation are considered and
adopted to generalized statement of Resource-Constrained Project Scheduling Problem with time-
dependent resource capacity. We presented two new approaches to tightening task domains and an
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algorithm to clarify resource capacity function. These methods replenish the variety of constraint-
programming techniques, which can be applied to RCPSP. We denote the function ¢(t) which
represents an upper bound on the amount of resource r which can be consumed by non-compulsory
parts of tasks at time ¢, and presented an algorithm to calculate it in polynomial time. Well-known
method of finding destructive makespan lower bound is replenished by the additional rule, based
on c(t) verification.
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