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Abstract—We describe the class of graphs whose every subgraph has the next property: The
maximal number of disjoint 4-paths is equal to the minimal cardinality of sets of vertices such that
every 4-path in the subgraph contains at least one of these vertices. We completely describe the set
of minimal forbidden subgraphs for this class. Moreover, we present an alternative description of the
class based on the operations of edge subdivision applied to bipartite multigraphs and the addition
of the so-called pendant subgraphs, isomorphic to triangles and stars.
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INTRODUCTION

Let X be a set of graphs. An arbitrary set G of pairwise vertex disjoint induced subgraphs in G
isomorphic to graphs in X is called an X -packing of G. An arbitrary subset of vertices in a graph G
covering all induced subgraphs of G isomorphic to graphs in X is called a vertex cover G with respect
toX or simplyX -cover. In other words, each induced subgraph in G isomorphic to a graph inX contains
a vertex of an X -cover. A graph is called König with respect to X if, in its every induced subgraph, the
greatest size of an X -packing is equal to the least size of an X -cover (see [1]). The class of all König
graphs with respect to X is denoted by K(X ). If the set X consists of a single graph H then we speak
of H-packings, H-covers, and König graphs with respect to H .

Note that, in the literature, a X -cover is often understood as a set of vertices of a graph G covering
all (not necessarily induced) subgraphs of G isomorphic to graphs in X (see, for example, [2, 3]). We will
call such X -covers weak. By analogy, by weak X -packings we mean the sets of all (not necessarily
induced) pairwise vertex disjoint subgraphs isomorphic to graphs in X .

The X -packing and X -cover problems of a graph are the topics of many works, especially as regards
their algorithmic aspects (for example, see [4–6]). In particular, some studies are devoted to the packing
and cover problems for paths of different lengths. It is known that the weak Pk-cover problem is
polynomially solvable in the class of trees and NP-hard in general for k ≥ 2 [7, 8], and the weak Pk-
packing problem is polynomially solvable for k = 2 [9] and NP-complete for k ≥ 3 in the general case
(see [10]) and in 3-regular graphs [11]. Moreover, for k ≥ 4 the weak Pk-packing problem is APX-
complete; i.e., under the assumption that P �= NP, there is no approximate algorithm for it with arbitrary
constant approximation coefficient (see [12]).

Nevertheless, it is known that the Pk-packing problem (both in the weak and “induced” cases) is
solved in linear time in the class of forests for every k [11]. Moreover, a description is known of several
graph classes on which the Pk-packing problem and the Pk-cover problem are solved in polynomial time
for various k (for example, see [13–16] for the weak case and [13, 17] for the “induced” case).
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Let 〈H〉 denote the set of all spanning supergraphs of a graph H ; i.e., the set of graphs obtained from
H by addition of edges. In particular,

〈P4〉 = {P4, C4, 3-pan,K4 − e,K4},
where the 3-pan is the graph obtained from P4 by adding an edge joining it to a vertex of degree 2 not
adjacent to it and K4 − e is the graph obtained from K4 by removing an edge.

It is not hard to see that if H is a subgraph in a graph G then the subgraph induced by its vertices is
isomorphic to one of the graphs in 〈H〉. Therefore, it is true that every weak H-packing of the graph G is
its 〈H〉-packing, and every weak H-cover is its 〈H〉-cover. Thus, for an arbitrary H , the class K(〈H〉)
can be characterized as the set of graphs in whose each induced subgraph the greatest size of a weak
H-packing is equal to the least size of a weak H-cover.

For an arbitrary H , the class K(〈H〉) is hereditary; i.e., it is closed under vertex removal. It is known
that a hereditary class can be characterized by the set of forbidden induced subgraphs; i.e., by the graphs
minimal with respect to inclusion of the vertices not lying in the class. A detailed description is given,
for example, in [18] for the class K(C), where C is the class of all simple cycles, and in [13], for the class
K(〈P3〉).

This article is devoted to describing the class of König graphs with respect to 〈P4〉. We show that this
class is monotone, i.e., closed under the removal not only of vertices but also edges. It is known that
every monotone class can be characterized by the set of minimal (not necessarily induced) forbidden
subgraphs; i.e., inclusion minimal vertices and edges of the graphs not belonging to this class. All such
graphs for the class K(〈P4〉) are described in Section 2. Moreover, in Sections 3 and 4, we describe
the class of ST-graphs obtained from bipartite multigraphs by applying the procedure of edge subdivision
and the addition of pendant subgraphs, and prove that it coincides with the class K(〈P4〉).

1. DEFINITIONS AND NOTATIONS

In the article, we use the standard notations Kn, Pn, and Cn for complete graphs, simple paths, and
simple cycles on n vertices respectively.

Denote by Sn the tree on n + 1 vertices n of which are leaves. Denote the greatest number of elements
in a 〈P4〉-packing of a graph G by μ〈P4〉(G) and designate the minimal number of vertices in its 〈P4〉-
cover by β〈P4〉(G). Refer to a subgraph isomorphic to one of the graphs in 〈P4〉 as a quartet. Denote
by (v1, v2, v3, v4) the quartet consisting of vertices v1, v2, v3, and v4. Denote by V (G) the vertex set
of a graph G. The set of vertices adjacent to the vertex v will be denoted by N(v).

Let G be a graph and let A ⊆ V (G). Denote by G \ A the graph obtained from G by removing all
vertices of A.

Considering a cycle Cn, we assume that the vertices of Cn are enumerated along the cycle with the
numbers 0, 1, . . . , n − 1. In addition, the arithmetic operations with the numbers of vertices are carried
out modulo n. Refer to each of the sets of its vertices with numbers in a given residue class modulo 4 as
a 4-class.

Note that for every graph G we have

μ〈P4〉(G) ≤ β〈P4〉(G).

Therefore, for proving that these quantities are equal, it suffices to present for G a 〈P4〉-packing and
a 〈P4〉-cover of the same size.

2. FORBIDDEN SUBGRAPHS

If F is a minimal graph as regards the inclusion of vertices and edges not contained in K(〈P4〉) then
we call it a minimal forbidden subgraph of this class.

It is easy to show by a straightforward check that the graphs net, co-twin-house, and longhorn
depicted in the figure do not belong to the class K(〈P4〉). For each of them,

μ〈P4〉(G) = 1, β〈P4〉(G) = 2,

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 13 No. 1 2019
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The three forbidden graphs for the class K(〈P4〉).

and each of them consists of at most 7 vertices. Moreover, each proper subgraph in each of these graphs
is König with respect to 〈P4〉. Thus, we have

Lemma 1. The net, co-twin-house, and longhorn are the minimal forbidden graphs for K(〈P4〉).

It was proved in [17] that each forest is a König graph with respect to P4. Since a forest contains
no other subgraphs isomorphic to graphs in 〈P4〉 but P4, we have

Lemma 2. Each forest is a König graph with respect to 〈P4〉.

Consider the infinite series of minimal forbidden subgraphs for the class K(〈P4〉). Obviously,

μ〈P4〉(C4k) = μ〈P4〉(C4k+1) = μ〈P4〉(C4k+2) = μ〈P4〉(C4k+3) = k,

β〈P4〉(C4k) = β〈P4〉(C4k−1) = β〈P4〉(C4k−2) = β〈P4〉(C4k−3) = k.

Therefore, by Lemma 2, we have

Lemma 3. A cycle Cn belongs to the classK(〈P4〉) if n = 3 or n divides by 4, and Cn is a minimal
forbidden graph for K(〈P4〉) if n > 3 and n does not divide by 4.

Consider the graph obtained from Cn by adding two vertices not adjacent to each other and each of
which is joined with a single vertex in the cycle. Denote this graph by A(n, k), where k is the distance
between the vertices of the cycle adjacent to the added vertices.

Lemma 4. If n divides by 4 and k does not divide by 2 then A(n, k) is a minimal forbidden
graph in K(〈P4〉).

Proof. Let n = 4t. Then |V (A(n, k))| = 4t + 2. Obviously, μ〈P4〉(A(n, k)) = t. Suppose that there
exists a 〈P4〉-cover C of A(n, k) of size t. Then it is included in a cycle Cn of this graph and is its least
〈P4〉-cover, and hence its 4-class. Since k is odd, one of the vertices adjacent to the vertices of degree 1
in A(n, k) is adjacent also to a vertex in C. But then the distance to the other closest vertex of C is
equal to 3. Hence, this vertex, the adjacent vertex of degree 1, and two more vertices of the cycle induce
a quartet not covered by C. Consequently,

β〈P4〉(A(n, k)) > t and A(n, k) /∈ K(〈P4〉).

Considering a subgraph in A(n, k) obtained by removing a vertex of degree 1 or an edge incident
to it. Its connected component, which is not an isolated vertex, consists of a cycle with an added vertex
of degree 1. For this graph, obviously,

μ〈P4〉(G) = β〈P4〉(G) = t;

therefore, it is König with respect to 〈P4〉.
The remaining subgraphs in A(n, k) are forests or are isomorphic to the cycle C4t, and, by Lemmas 2

and 3, they are all König with respect to 〈P4〉. Lemma 4 is proved.
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Let F stand for the set of all forbidden graphs in Lemmas 1, 3, and 4:

F = {net, co-twin-house, longhorn}
∪ {Cn | n > 3 does not divide by 4} ∪ {A(n, k) | n divides by 4, k is odd}.

Since every quartet consists of 4 vertices, each graph G satisfies the inequality

4μ〈P4〉(G) ≤ |V (G)|.
Note also that every graph H ∈ F enjoys the inequality

|V (H)| ≤ 4μ〈P4〉(H) + 3;

i.e., the value of the parameter μ〈P4〉 is maximal in H for the given number of vertices. Let H ′ be a spaning
supergraph of H . Obviously, every set of vertices in H that induces a quartet also generates a quartet
in H ′. Then

β〈P4〉(H) ≤ β〈P4〉(H
′), μ〈P4〉(H) ≤ μ〈P4〉(H

′).

Since |V (H ′)| = |V (H)| and μ〈P4〉(H) is maximal for the given number of vertices, we have

μ〈P4〉(H
′) = μ〈P4〉(H) < β〈P4〉(H) ≤ β〈P4〉(H

′).

Hence, H ′ /∈ K(〈P4〉).
Suppose that a graph G has a subgraph H isomorphic to one of the graphs of F . Then G has H or

one of its spanning supergraphs as an induced subgraph, i.e., is not König with respect to 〈P4〉. Thus,
we can formulate a corollary to Lemmas 1, 3, and 4:

Corollary 2. No graph of class K(〈P4〉) has subgraphs isomorphic to graphs in F .

3. ST-GRAPHS

Describe the procedure of ST-extension and the class of ST-graphs and prove that the ST-extension
of bipartite multigraphs always gives König graphs with respect to 〈P4〉.

Definition 1. Refer to a connecting subgraph H in a graph G as pendant if there is a vertex
c ∈ V (G \H) such that H is not a connected component of the graph G \ {c}. Refer to c as the contact
vertex of the pendant subgraph H .

Definition 2. Let H be a bipartite multigraph. The procedure of the ST-extension of H is as follows:
(1) Subdivide each cyclic edge (each edge belonging to a cycle including of length 2) of H by a vertex.

All vertices except for those added in subdividing will be called old.
(2) Add to graphs several pendant subgraphs isomorphic to C3 or Sk, where k are arbitrary nonnega-

tive integers so that the contact vertex of each of them is old.
Refer to the obtained graph as an ST-extension of the multigraph H . Refer as an ST-graph to a graph

presenting an ST-extension of an arbitrary bipartite multigraph.

Observe that if we allow subdivisions of noncyclic edges of H in item (1) of the definition of an ST-
extension then the graph class remains unchanged since as a result we obtain an ST-extension of the
graph obtained from H by subdividing the corresponding edges.

Theorem 1. Every ST-graph is a König graph with respect to 〈P4〉.

Proof. Let G be the graph obtained by an ST-extension of an arbitrary bipartite multigraph H . The
above remark implies that each subgraph in G is also an ST-graph. Thus, for proving the theorem,
it suffices to show that μ〈P4〉(G) = β〈P4〉(G).

It is not hard to see that a graph is König with respect to 〈P4〉 if and only if each of its connected
components is a König graph with respect to 〈P4〉. Thus, we can assume without loss of generality that
G is connected.

Proceed by induction on the number of vertices in G. If G is isomorphic to one of the graphs K1, C3,
and Sk, where k ∈ N, then G contains no quartets and μ〈P4〉(G) = β〈P4〉(G) = 0.
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Suppose that G contains at least one quartet and μ〈P4〉(G
′) = β〈P4〉(G

′) for its every induced
subgraphs G′.

The following cases are possible:

1. The graph G has a pendant subgraph T isomorphic to C3 with contact vertex y. Then the vertices
V (T ) ∪ {y} form a quartet. Consider the graph G′ obtained from G by removing the vertices of this
quartet. Let M be a greatest 〈P4〉-packing and let C be a least 〈P4〉-cover of G′. By the induction
assumption, |M | = |C|. Adding a quartet composed of vertices from V (T )∪ {y} to M , we obtain a 〈P4〉-
packing of size |M | + 1. Adding the vertex y to C, we obtain a 〈P4〉-cover of G of the same size.

2. The graph G has a pendant subgraph T isomorphic to Sk, where k ≥ 2, with contact vertex y;
moreover, y is adjacent to at least one leaf of T . Then all quartets containing vertices from V (T ) ∪ {y}
pass through y. Let x1 be a leaf of T adjacent to y, let x2 be its central vertex, and let x3 be its another
leaf. Then (x1, x2, x3, y) is a quartet. Consider the graph G′ obtained from G by removing the vertices
of this quartet. Let M be a greatest 〈P4〉-packing and let C be a least 〈P4〉-cover of G′. By the induction
assumption, |M | = |C|. Now, M ∪ {(x1, x2, x3, y)} is a 〈P4〉-packing while C ∪ {y} is 〈P4〉-cover of G
of the same size.

3. The graph G has a pendant subgraph T1 isomorphic to Sk with k ≥ 1 and a pendant subgraph T2

isomorphic to Sl with l ≥ 1, or to the graph K1 with common contact vertex y. Then all quartets
containing vertices from V (T1)∪ V (T2)∪ {y} pass through y. Let x1 and x2 be vertices of the graphs T1

and T2 respectively adjacent to y. Let x3 be a vertex of T1 different from x1. Then (x1, x2, x3, y) is
a quartet. Consider the graph G′ obtained by all vertices of this quartet from G. Let M be a greatest
〈P4〉-packing and let C be a least 〈P4〉-cover of G′. By the induction assumption, |M | = |C|. Now,
M ∪ {(x1, x2, x3, y)} is a 〈P4〉-packing and C ∪ {y} is a 〈P4〉-cover of G of the same size.

4. The graph G satisfies none of the conditions of Cases 1–3 but has a pendant subgraph T
isomorphic to Sk, where k ≥ 1, whose contact vertex y is cyclic in the multigraph H ; moreover, if
k ≥ 2 then y is adjacent to only one of its central vertices. Then all quartets containing vertices
from V (T ) ∪ {y} pass through y. Let x1 be a central vertex of T and let x2 be its leaf. Let z be
a cyclic vertex of G \ T adjacent to y and added in subdividing a cyclic edge of the multigraph H . Then
(x2, x1, y, z) is a quartet. Since y is a cyclic vertex in H , it is also a cyclic vertex in G. Consider one of the
cycles containing y and z and enumerate its vertices along the cycle with 0, 1, . . . , 4n − 1 so that y have
number 0 and z have number 1. Note that all vertices with odd numbers have degree 2.

Consider the graph G′ obtained from G by removing the vertices x1, x2, and y. Let M be a greatest
〈P4〉-packing and let C be a least 〈P4〉-cover of G′. Note that if a quartet of G′ contains an enumerated
vertex with odd number then it also contains one of its adjacent vertices with even number. Moreover,
if the quartet contains vertices 2i − 1 and 2i + 1 then it also contains 2i and one of the vertices 2i − 2
and 2i + 2. Thus, the number of enumerated vertices belonging to the quartets of the 〈P4〉-packing with
even numbers is not less that those with odd numbers.

Suppose that M includes a quartet containing z. Then the enumerated vertices contain the vertex
with number 2i + 1, where 1 ≤ i ≤ 2n − 1, belonging to no quartet of M . Take i such that all vertices
with odd (and hence with even) numbers less than 2i + 1 are contained in quartets of M . Then there
exists a quartet q ∈ M containing vertices 2i − 1 and 2i. Suppose that q does not contain vertex 2i − 2;
i.e., q = (2i − 1, 2i, v1, v2), where v1 is a nonenumerated vertex. Then

M \ {(2i − 1, 2i, v1, v2)} ∪ {(2i, 2i + 1, v1, v2)}
is also a greatest 〈P4〉-packing of G′ and the vertex with number 2i − 1 belongs to none of its quartets.
Otherwise, q = (2i − 3, 2i − 2, 2i − 1, 2i). Then

M \ {(2i − 3, 2i − 2, 2i − 1, 2i)} ∪ {(2i − 2, 2i − 1, 2i, 2i + 1)}
is also a greatest 〈P4〉-packing of G′ and the vertex with number 2i − 3 belongs to none of its quartets.
Observe that the minimal number of a vertex belonging to no quartet of a greatest 〈P4〉-packing has
decreased. Using several such “shifts,” we can obtain a 〈P4〉-packing none of whose quartets contains
the vertex z with number 1.

Thus, there exists a greatest 〈P4〉-packing such that the vertex z belongs to none of its quartets.
Assume without loss of generality that M is such a 〈P4〉-packing.
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By the induction assumption, |M | = |C|. Now, M ∪ {(x1, x2, y, z)} is a 〈P4〉-packing and C ∪ {y}
is a 〈P4〉-cover of the same size of G.

5. The graph G satisfies none of the conditions of Cases 1–4; then every quartet in G contains at least
one vertex that is not a vertex in a pendant subgraph isomorphic to C3 and Sk or the contact vertex
of such pendant subgraphs; moreover, every cyclic vertex can be the contact vertex only for pendant
subgraphs isomorphic to K1.

Consider a block X in G such that |X| ≥ 4 and at most one junction in it has a neighbor of degree 1
in G \ X (if we consecutively remove all pendant vertices from G then X corresponds to one of the
leaves of the block and junction tree of the obtained graph). Denote such a junction, if it exists, by v0.
Otherwise, denote by v0 an arbitrary vertex of the block X not added in subdividing. Each of the vertices
in X is cyclic.

Denote by X0 the subgraph in the multigraph H from which the graph X is obtained by subdivision
and construct in it a greatest matching M0 and a least vertex cover C0. Since X0 contains only cyclic
edges; therefore, fixing one of the parts of the multigraph X0, with each edge mi ∈ M0 we can associate
an edge m′

i having a common vertex with mi in the chosen part. Obviously, m′
i /∈ M0 and m′

i �= m′
j for

i �= j. During the procedure of ST-extension, each edge of the subgraph X0 is subdivided by a single
vertex. For each mi ∈ M0, take a quartet consisting of the vertices incident to mi and the vertices added
in subdividing the edges mi and m′

i. The so-obtained set of quartets M1 constitutes a 〈P4〉-packing
of X.

It is easy that C0 is a 〈P4〉-cover of X; moreover, |C0| = |M1|. Note that C0 is also a 〈P4〉-cover of
the subgraph in G constituted by the vertices of X and of the pendant subgraphs having their contact
vertices in X.

If v0 belongs to a least vertex cover of X0 then as C0 we take such a 〈P4〉-cover.

Suppose that v0 belongs to no least vertex cover of X0 but one of the edges in M0 is incident to v0

(note that such a matching always exists).

Consider the set A of the vertices of the same part of X0 as v0 incident to no edges in M0. Note that
A is not empty; otherwise, the entire part containing v0 would be the least vertex cover containing v0.
Since v0 belongs to no least vertex cover of X0, there exists an alternating path to v0 from at least
one vertex a ∈ A (here by an alternating path we mean a path in which the edges belonging and not
belonging to M0 alternate). This follows from the proof of König’s Theorem (see, for example, [19]).
Replacing the edges of the path not belonging to M0 with the edges of the same path not belonging
to M0, we obtain a greatest matching M ′

0 in X0. With each new edge mi ∈ M ′
0, associate an edge m′

i
of this alternating path directed from the vertex v0, and with an edge incident to a, associate another
edge incident to the same vertex. Thus, v0 is not covered by M ′

0 and one of the edges incident to v0

is associated with no edge of the matching. Denote by v1 the vertex subdividing it in the process of
ST-extension.

Denote by X ′ the subgraph in G consisting of X and all pendant vertices of G added to X. Note that
since G contains no other pendant subgraphs with contact vertices in X but K1, C0 is a 〈P4〉-cover also
for X ′.

Consider the graph G′ obtained from G by removing the vertices of the subgraph X ′ if v0 belongs
to some least vertex cover of X0 and by removing the vertices of the subgraph X ′ \ {v0, v1} otherwise.
Let M be a greatest 〈P4〉-packing and let C be a least 〈P4〉-cover of G′. By the induction assumption,
|M | = |C|. The set M ∪ M1 is a 〈P4〉-packing, and C ∪ C0 is a 〈P4〉-cover of G. Since |C0| = |M1|,
we have μ〈P4〉(G) = β〈P4〉(G).

Theorem 1 is proved.
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4. COMPLETE DESCRIPTION OF THE GRAPHS OF CLASS K(〈P4〉)

Let us show that every König graph with respect to 〈P4〉 is an ST-extension of a bipartite multigraph
and prove that the forbidden subgraphs described in Section 2 completely describe this graph class.

Theorem 2. The following are equivalent for a graph G :
(1) G is a König graph with respect to 〈P4〉;
(2) G contains no subgraphs from F ;
(3) G is an ST-extension of a bipartite multigraph.

Proof. By Corollary 2, (1) ⇒ (2). It follows from Theorem 1 that (3) ⇒ (1). Show that (2) ⇒ (3).
Let G be a connected graph not containing subgraphs from F . Let G0 denote the subgraph of G

obtained by removing all its pendant subgraphs isomorphic to C3 and also those pendant subgraphs
isomorphic to Sk, where k ≥ 1, in which the contact vertex is adjacent with at least two vertices one
of which is a central vertex of Sk.

If two such pendant subgraphs intersect but contained in one another then it is not hard to see G is
either a subgraph in K4 or a graph C3 to one or two vertices of which graphs S0 are attached. In each of
the indicated cases, G is an ST -extension of a bipartite multigraph. Therefore, we may assume that all
pendant graphs removed from G are pairwise vertex disjoint.

Show that G0 has no triangles. Suppose that G0 contains a triangle. Let x, y, and z denote the
vertices of a triangle in this graph. Consider the following cases:

1. There exists a vertex u in G adjacent to all vertices of the triangle. Since none of the triangles
consisting of vertices of {x, y, z, u} is a pendant subgraph in G, at least two of these vertices are adjacent
to other vertices of this graph. Suppose that v is adjacent to x and w is adjacent to y in G. If v = w then
G has a subgraph C5. Otherwise, G has a subgraph A(4, 1).

2. There exist pairwise distinct vertices u, v, and w such that (u, x), (v, y), and (w, z) are edges of G.
Then G contains a subgraph net.

3. There are distinct vertices u and v such that (u, x), (u, y), and (v, z) are the edges of G. Since the
triangle u, x, y is not pendant in G, there exists a vertex w /∈ {u, x, y, z} adjacent to one of the vertices
of this triangle. If w = v then G contains a subgraph C5. If w does not coincide with v and is adjacent
to u then G contains a subgraph co-twin-house. Otherwise, G contains a subgraph net.

4. The vertex z has no other neighbors but x and y. Since none of the subgraphs induced by the sets
of vertices {x, y}, {x, z}, {y, z}, or {x, y, z} is pendant in G, there are distinct vertices u and v such
that (u, x) and (v, y) are edges of G. It is not hard to see that the vertices u, x, and z induce a subgraph
isomorphic to S2 with central vertex x. The star with central vertex x is not a pendant subgraph in G.
Hence, there exists a vertex s �= y adjacent to one of the leaves of this star. The case when this leaf is
a neighbor of y was already examined in Case 3. Assume without loss of generality that the vertex s is
adjacent to u and s �= v; otherwise, G contains a subgraph C5. By analogy, there exists a vertex t /∈ {y, u}
adjacent to v. If s = t then G contains a subgraph C5; otherwise, G contains a subgraph longhorn.

Thus, G0 has no triangles. Let Z be a block of size greater than 2 in G0. Each of its vertices is cyclic.
Lemma 3 implies that the length of each cycle in Z divides by 4. Let x be a vertex in Z having degree
greater than 2 in G if such a vertex exists and its arbitrary vertex otherwise. Then all vertices in Z whose
distance from x is odd have degree 2 in G; otherwise, G contains a forbidden subgraph of type A(n, k).
Call such vertices passable in G0.

Construct a multigraph H by replacing each passable vertex in all cycles of G0 by a single edge
joining its neighboring vertices. Obviously, G0 is obtained from H by subdividing each cyclic edge and
G is an ST-extension of H . Since all cycles in G0 have length divisible by 4, all cycles in H have even
length, and hence the Multigraph H is bipartite. Theorem 2 is proved.

Corollary 3. The class K(〈P4〉) is monotone and completely defined by the set of its minimal
forbidden subgraphs F .
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