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Abst rac t .  Let G be a reductive algebraic group and let H be a reductive subgroup of G. We 
describe all pairs (G, H) such that, for any afline G-variety X with a dense G-orbit isomorphic 
to G/H, the number of G-orbits in X is finite. 

1. I n t r o d u c t i o n  

Let G be a connected reductive algebraic group over an algebraically closed field k 
of characteristic zero and let H be an algebraic subgroup of G. Recall that  a pointed 
irreducible algebraic G-variety X is called embedding of the homogeneous space G/H if 
the base point of X has the dense orbit and stabilizer H.  We denote this by G/H ~ X. 

Let B be a Borel subgroup of G. By definition, the complexity c(X) of a G-variety 
X is the codimension of a generic B-orbit  in X for the restricted action B : X,  see [V1] 
and [LV]. By Rosenlicht's theorem, c(X) is equal to the transcendence degree of the 
field k (X)  B of rational B-invariant functions on X. A normal G-variety X is called 
spherical if c(X) = 0, or, equivalently, k (X)  B = k. A homogeneous space G/H and a 
subgroup H C G are said to be spherical if G/H is a spherical G-variety with respect 
to the natural G-action. 

T h e o r e m  1. (Servedio [Se], Luna-Vust [LV], Akhiezer [Akh]) A space G/H is sphe- 
rical if and only if each embedding of G / H has finitely many G-orbits. 

To be more precise, F. J. Servedio proved that  any affine spherical variety contains 
finitely many G-orbits, D. Luna, Th. Vust and D. N. Akhiezer extended this result to 
an arbitrary spherical variety, and D. N. Akhiezer constructed a projective embedding 
with infinitely many G-orbits for any homogeneous space of positive complexity. 

Let us say that  an embedding G/H ~-+ X is a]fine if the variety X is anne .  In many 
problems of invariant theory, representation theory and other branches of mathematics, 
only a n n e  embeddings of homogeneous spaces are considered. Hence for a homogeneous 
space G/H it is natural to ask: does there exist an affine embedding G/H ~-+ X with 
infinitely many G-orbits? 
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Note that  a given homogeneous space G / H  admits an atfine embedding if and only 
if G/H is quasi-affine (as an algebraic variety), see [PV, Th. 1.6]. In this situation, the 
subgroup H is said to be observable in G. For a description of observable subgroups, 
see [Su], [PV, Th. 4.18]. By Matsushima's criterion, G/H is affine iff H is reductive. 
(For a simple proof, see [L1, w In particular, any reductive subgroup is observable. 
In the sequel, we suppose that  H is an observable subgroup of G. In this paper, we are 
concerned with the following problem: characterize all quasi-affine homogeneous spaces 
G/H of a reductive group G with the property: 

(AF) For any affine embedding G/H ~ X ,  the number of G-orbits in X is finite. 

E x a m p l e  1. For any spherical quasi-affine homogeneous space, property (AF) holds 
(Theorem 1). 

E x a m p l e  2. ([Po]) Property (AF) holds for any homogeneous space of the group SL(2). 
In fact, here dim X < 3, and only a one-parameter family of one-dimensional orbits can 
appear in X \ (G/H). But SL(2) contains no two-dimensional observable subgroups. 

E x a m p l e  3. Let T be a maximal torus in G and let V be a finite-dimensional G- 
module. Suppose that  a vector v E V is T-fixed. Then the orbit Gv is closed in V, see 
[Ko], [L2]. This shows that  property (AF) holds for any subgroup H such that  T C_ H. 

D e f i n i t i o n  1. An affine homogeneous space G / H  is called affinely closed if it admits 
only one affine embedding X = G/H. 

Homogeneous spaces G/H of Example 3 are affinely closed. Denote by Na(H) the 
normalizer of H in G. The following theorem generalizes Example 3: 

T h e o r e m  2. (Luna [L2]) Let H be a reduetive subgroup of a reduetive group G. The 
homogeneous space G /H is aJ:finely closed if and only if the group N ~(H ) / H  is finite. 

This theorem provides many examples of homogeneous spaces with property (AF). 
Let us note that  the complexity of the space G/T can be arbitrarily large, whence 
property (AF) cannot be characterized only in terms of complexity. 

In this paper, we show that  the union of two condit ions--the sphericity and the 
finiteness of Nc (H)~H--is very close to characterizing all affine homogeneous spaces of 
a reductive group G with property (AF). Our main result is 

T h e o r e m  3. For a reduetive subgroup H C_ G, (AF) holds iff either NG(H)/H is finite 
or any extension of H by a one-dimensional torus in Na(H) is spherical in G. 

C o r o l l a r y  1. For an aJ:fine homogeneous space G /H of complexity > 1, (AF) holds iff 
G / H is affinely closed. 

C o r o l l a r y  2. An affine homogeneous space G /H of complexity 1 has (AF) iff either 
N a ( H ) / H  is finite or rkNG(H)/H = 1 and NG(H) is spherical. 

The proofs of Theorem 3 and its corollaries are given in Sections 2, 4. 
For simple G, there is a list of all affine homogeneous spaces of complexity one [Pal. 

We immediately deduce from this list and Corollary 2 that  for simple G, there exists only 
one series of affine homogeneous spaces of complexity one that  admit affine embeddings 
with infinitely many G-orbits. Namely, G = SL(n), n > 4, and H ~ = SL(n - 2) x k*, 
where SL(n - 2) is embedded in SL(n) as the stabilizer of the first two basis vectors 
el and e2 in the tautological representation of SL(n), and k* acts on el and e2 with 
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weights O~ 1 and a2 such that  OL 1 + O~ 2 = 2 - -  f t ,  O! 1 r O~2, and acts on (e3,.. . ,e,~} by 
scalar multiplications. 

Acknowledgements. We are grateful to M. Brion, D. I. Panyushev and E. B. Vinberg 
for useful discussions. Special thanks are due to the referees for a simplification of the 
proof of Theorem 4, for Example 4, and for numerous remarks improving the text. 
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(Vienna, Austria). We wish to thank these institutions for invitation and hospitality. 

Notation and conventions. 
G is a connected reductive group; 
H is an observable subgroup of G; 
T _C B are a maximal torus and a Borel subgroup of G; 
U is the maximal unipotent subgroup of B; 
Na(H) is the normalizer of H in G; 
W(H) is the quotient group Na(H)/H;  
7 :  Na(H) --+ W(H)  is the quotient homomorphism; 
k* is the multiplicative group of nonzero elements of the base field k; 
L ~ is the identity component of an algebraic group L; 
Z(L) is the center of L, 3(L) is its Lie algebra; 
X L is the set of L-fixed points in an L-variety X; 
Lx is the isotropy subgroup of x C X; 
E(G)+ is the semigroup of all dominant weights of G; 
Vv is an irreducible G-module with highest weight #. 
k[X] is the algebra of regular functions and k (X)  is the field of rational functions on 

an algebraic variety X.  Spec A is the affine variety corresponding to a finitely generated 
algebra A without nilpotent elements. Algebraic groups are denoted by uppercase Latin 
letters and their Lie algebras by the respective lower case Gothic letters. 

2. E m b e d d i n g s  wi th  infinitely many  orbits 

T h e o r e m  4. Let H be an observable subgroup in a reductive group G. Suppose that 
there is a non-trivial one-parameter subgroup )~ : k* -+ W(H) such that the subgroup 
H1 = 7-1(~(k*)) is not spherical in G. Then there exists an aJ:fine embedding G / H c-+ X 
with infinitely many G-orbits. 

We shall prove this theorem in the next section. The idea of the proof is to apply 
Akhiezer's construction for the nonspherical homogeneous space G/H1 and to consider 
the affine cone over a projective embedding of G/H1 with infinitely many G-orbits. 

Proof of Corollary 1. The assertion follows from Theorem 2 and Theorem 4, which is 
a part  of Theorem 3 (for reductive H).  Indeed, reductivity of H implies reductivity of 
W(H) [L2]. If W(H) is not finite, then it contains a non-trivial one-parameter subgroup 
A(k*). For H1 = 7-1(A(k*)), we have c(G/H1) _> 1 whenever c(G/H) > 1. 

Corollary 3. Let G be a reduetive group with infinite center Z(G) and let H be an 
observable subgroup in G that does not contain Z(G) ~ Then property (AF) holds for 
for G /H  if and only if H is a spherical subgroup of G. 
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Pro@ As H does not contain Z(G) ~ there exists a non-trivial one-parameter subgroup 
A(k*) in Z(G) with finite intersection with H. The corresponding extension HI is 
spherical iff H is spherical in G. 

C o r o l l a r y  4. Let H be a connected reductive subgroup in a reduetive group G. Suppose 
that there exists a reductive nonspherical subgroup H1 in G such that H C H1 and 
dim H1 = dim H + 1. Then property (AF) does not hold for G /H .  

Proof. Under these assumptions, there exists a non-trivial one-parameter subgroup of 
/71 with finite intersection with H which normalizes (and even centralizes) H. 

3. P r o o f  o f  T h e o r e m  4 

L e m m a  1. If property (AF) holds for a homogeneous space G / H ,  then it holds for any 
homogeneous space G / H  ~, where H ~ is an overgroup of H with (H~) ~ = H ~ 

Proof. Suppose that  there exists an affine embedding G / H  ~ ~-+ X with infinitely many 
G-orbits. Consider the morphism G / H  ~ G / H  r. The dual algebra homomorphism 
yields an embedding k[G/H'] C_ k[G/H]. Let A be the integral closure of the subalgebra 
k[X] C_ k[G/H'] in the field of rational functions k ( G / H ) .  We have the following 
commutative diagrams: 

A ~ k [ a / H ]  ~ k ( C / H )  SpecA ~ G / H  
$ r I" , $ $ 

k[X] ~-+ k[G/H'] r k (G/H' )  X +-~ G/H '  

The affine variety Spec A with a natural G-action can be considered as an affine 
embedding of G/H.  The embedding k[X] C_ A defines a finite (surjective) morphism 
Spec A --+ X ,  and therefore Spec A contains infinitely many G-orbits. This contradiction 
completes the proof. 

Remark 1. The converse statement does not hold. Indeed, set G = SL(3) and H = 
(t,t ,  t -2) C T C SL(3). We can extend H by a one-parameter subgroup (t, t -1, 1). 
Then H1 = T is not a spherical subgroup in SL(3) and, by Theorem 4, property (AF) 
does not hold here. On the other hand, one can extend H to H t by a finite non-cyclic 
subgroup of W ( H )  ~- PSL(2) .  The group W(H' )  is finite and, by Theorem 2, property 
(AF) holds for G/H' .  

L e m m a  2. (a) Let H C G be an observable subgroup and H1 the extension of H by a 
one-dimensional torus A(k*) C W ( H). Then there exists a finite-dimensional G-module 
V and an Hl-eigenvector v E V such that 

(1) the orbit G{v} of the line {v} in the projective space F(V) is isomorphic to G/H1; 
(2) H fixes v; 
(3) H1 acts transitively on k*v. 

(b) If H1 is not spherical in G, then a couple (V, v) in (a) may be chosen so that 
(4) the closure of G{v} in IP(V) contains infinitely many G-orbits. 

(c) If H is reductive, then one may suppose that Gv = H. 

Proof. (a) By Chevalley's Theorem, there exists a G-module V ~ and a vector v r E V r 
having property (1). Let us denote by X the character of H at v ~. Since H is observable 
in G, every finite-dimensional H-module can be embedded in a finite-dimensional G- 
module [BHM]. In particular, there exists a finite-dimensional G-module V" containing 
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H-eigenvectors of character -X- Choose among them a HFeigenvector v" and put 
V = V' | V"  and v = v' | v". Properties (1) and (2) are satisfied. 

If condition (3) also holds, then we are done. Otherwise, consider any G-module W 
having a vector with stabilizer H.  Take an H~-eigenvector w C W g with non-trivial 
character, and replace V by V |  and v by v |  Now properties (1)-(3) are satisfied. 

(b) Since H1 is not spherical in G, by a result due to Akhiezer [Akh], we may choose 
(V', v') in (a) so that  properties (1) and (4) are satisfied. Then we proceed as in (a) to 
obtain the couple (V, v). The closure G{v} C_ P(V) is contained in the image of the Segre 
embedding ~(V')  • P(V") ~ P(V) or IP(V') • P(V") • P(W) ~-~ ]P(V), and projects 
G-equivariantly onto G{v'} C P(V'). This implies (4) for (V, v}. 

(c) Let w be a fundamental weight of the group H1/H.  Suppose that  H 1 / H  acts 
at the vector v constructed above by a character kw. Since Hi  is reductive (and, in 
particular, is observable), there exists a G-module W / and an Hl-eigenvector w t E W tH 
with weight (1 - k)w [BHM]. It remains to replace V by V | W' and v by v | w'. 

Remark 2. For an arbitrary observable subgroup, statement (c) Lemma 2 does not hold. 
For example, let G be the group SL(3) and H = U be a maximal unipotent subgroup 
normalized by T. Consider the subtorus T ~ = diag(t 2, t, t -3) in iF as a one-parameter 
subgroup A(k*). Any H-stable vector in a finite-dimensional G-module is a sum of 
highest weight vectors. The restriction of any dominant weight to T '  has a non-trivial 
kernel and the stabilizer of such a vector contains H as a proper subgroup. 

Proof of Theorem 4. Let (V, v) be the couple from Lemma 2. Denote by H t the sta- 
bilizer G~ of the vector v. By (1)-(3) and since H I / H  is isomorphic to k*, H '  is an 
overgroup of H with (H') ~ = H ~ By (3), the closure of Gv in V is a cone, so by (4) 
the property (AF) does not hold for G / H q  Lemma 1 completes the proof. 

4. P r o o f  o f  T h e o r e m  3 

Let H be a reductive subgroup of G. If there exists a nonspherical extension of H by 
a one-dimensional torus, then (AF) fails for G/H by Theorem 4. To prove the converse, 
we begin with the following: 

L e m m a  3. ([K1, 7.3.1]) Let X be an irreducible G-variety, and v a G-invariant valua- 
tion of k ( X ) / k  with residue field k(v). Then k(v) B is the residue field of the restriction 
of v to k ( x )  ~. 

Proof. For completeness, we give the proof in the case where X is affine (the only case 
we need below). It suffices to prove that  any B-invariant element of k(v) is the residue 
class of a B-invariant rational function on X.  

For any f l ,  f2 E k(X) ,  we shall write f l  -= f2 if v ( f l ) =  v(f2) < v ( f l -  f2). Such "con- 
gruences" are G-stable and may be multiplied term by term, as numerical congruences. 

Assume f = p/q, p, q E k[X], v ( f )  = 0, and the residue class of f belongs to k(v) B. 
Then v(p) = v(q) = d, and bf =- f ,  Yb E B,  i.e., bp. q - p .  bq. 

Let M be a complementary G-submodule to {h e k [ X ] l v ( h  ) > d} in {h e k [X] l  
v(h) > d}, and Po, q0 be the projections of p, q on M. Then bpo'q =- bp.q =- p.bq -- p'bqo, 
Yb ~ B. By the Lie-Kolchin theorem, we may choose finitely many bi E B, Ai E k so 
that  ql = ~ Aibiqo is a B-eigenfunction in M of some weight #. Put  Pl = ~ Aibipo. 
T h e n p l . q  = P ' q l ,  w h e n c e p l / q l  - f =- bf  =- bpl/p(b)ql,  Vb ~ B. It follows that  
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bpl - #(b)pl, hence bpl = #(b)pl, because pl C M. Thus Pl, ql are B-eigenfunctions of 
the same weight, and f l  = Pl/ql E k(X) B has the same residue class in k(v) as f .  

Def in i t ion  2. ([K2, w Let X be a normal G-variety. A discrete Q-valued G-invariant 
valuation of k(X) is called central if it vanishes on k(X) B \ {0}. A source of X is a 
nonempty G-stable subvariety Y C_ X which is the center of a central valuation of k (X). 

For affine X, central valuations are described in a simple way. Consider the isotypic 
decomposition k[X] = ( ~ ( x ) +  k[X]~, where the rank semigroup Z(X)+ C •(G)+ is 
the set of all dominant weights # such that  k[X],  r 0. For any ),, # E E(X)+, we have 

(,) k[X]  k[X]. c @ 

where T~,u (X) is a finite set of positive integral linear combinations of positive roots, 
and the inclusion fails for all proper subsets of 7~,u(X). 

Let E(X) be a sublattice spanned by E(X)+ in the weight lattice of G, and E(X)Q = 
E(X) | Q. Define the "cone of tails" T(X) to be the convex cone in E(X)Q spanned 
by the union of all T~,~(X). 

A central valuation v is constant on each k[X]u and defines a linear function u E 
Hom(E(X),Q) = E(X)~ so that  (u,#) = v(.f), f e k[X],  \ {0}. By definition of a 
valuation, we must have (u,a) _< 0 for Vc~ C Tx,~(X), A,# E E(X)+. Conversely, 
each linear function u E Hom(E(X), Q) which is nonpositive on T ( X )  defines a central 
valuation v of k(X) by the formula v( f )  = min{(u, #) ] f ,  r 0}, where f ,  is the 
projection of f C k[X] on k[X],. The valuation v has a center on X iff u is nonnegative 
on E(X)+, and the respective source Y C X is determined by a G-stable ideal I (Y )  = 
(~(,,u)>0 k[X],  < k[X]. Central valuations of k(X),  identified with respective linear 
functions on E(X)Q, form a solid convex cone Z(X)  C_ -Z(X)~, namely the dual cone 
to - T ( N ) .  Knop proved [K1, 9.2], [K2, 7.4] that  Z ( X )  is a fundamental domain for 
a finite group W x  C Aut E(X) (the little Weyl group of X) acting on E(X)~ as a 
crystallographic reflection group. 

The following lemma is an easy consequence of results of Knop [K2]. 

L e m m a  4. If X is a normal affine G-variety containing a proper source, then there 
exists a one-dimensional torus S C_ Aura(X) such that k(X) B C_ k(X) s. (Here 
Auto(X)  denotes the group of G-equivariant automorphisms of X.)  

Proof. If X is as above, then Knop has shown that  the algebra k[X] admits a non-trivial 
G-invariant grading, whose homogeneous components are sums of isotypic components 
of the G-module k[X], see [K2, 7.9] and its proof. This grading is constructed as 
follows. Under the above assumptions, there is a central valuation v of k(X) such that  
the respective linear function v on ~(X)Q lies in Z(X)  A - N ( X ) ,  hence ~ vanishes 
on T(X) .  In view of (*), this u defines a grading of k[X] such that  isotypic components 
k[X],  are homogeneous of degree (L,, #). 

Let S C_ Auta(X)  be the one-dimensional torus corresponding to this grading. Take 
any f C k(X) B, f = p/q, p,q E k[X]. By the Lie-Kolehin theorem, we may choose 
finitely many bi C B, Ai C k so that  q0 = ~ Aibiq is a B-eigenfunetion of some weight 
# C E(X)+. Then P0 = ~ Aibip is a B-eigenfunction of the same weight, and f = Po/qo. 
Since Po,qo ~ k[X],,  the torus S acts on them by the same weight (t,,#), thence 
f C k(X) s. This shows the inclusion k(X) B _C k(X) s. 
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Proof of Theorem 3. It remains to prove that  (AF) holds for G/H whenever any exten- 
sion of H by a one-dimensional torus is spherical. As H is reductive, W(H) is reductive 
too. If there exists no one-parameter extension of H at all, then W(H) is finite and 
G/H is affinely closed by Theorem 2. Otherwise c(G/H) < 1. As the spherical case is 
clear, we may suppose c(G/H) = 1. 

Let X be an affine embedding of G/H. To prove that  X has finitely many G- 
orbits, we may assume that  X is normal. If X contains a proper source, then a one- 
dimensional torus S C Au to (X)  C_ Auto(G/H) = W(H) provided by Lemma 4 yields 
a nonspherical extension of H.  Indeed, if H1 is the preimage of S in No(H), then 
k(G/H1) B = k(G/H) Bxs = k(X)  Bxs  = k(X)  B ~ k, since c(X) = 1. This implies 
c(G/H1) = 1, a contradiction. 

If X contains no proper source, then any proper G-stable subvariety Y C X is the 
center of a noncentral G-invariant valuation v. There is an inclusion of residue fields 
k(Y) C_ k(v) ~ k(Y) B C_ k(v) B. By Lemma 3, k(v) B is the residue field of the 
restriction of v to k(G/H) B, which is the field of rational functions in one variable. As 
v is noncentral, k(Y) B = k(v) B = k, thence Y is spherical. It follows that  X has finitely 
many orbits. (Otherwise, a one-parameter family of G-orbits provides a nonspherical 
G-subvariety.) 
Proof of Corollary 2. The reductive group W(H) acts on k(G/H) B, which is the field of 
rational functions on a projective line. If the kernel of this action has positive dimension, 
then it contains a one-dimensional torus extending H to a nonspherical subgroup. 

Otherwise, either W(H) is finite or r k W ( H )  = 1 and each subtorus of W(H) has a 
dense orbit on the projective line. The corollary follows. 

Remark 3. In the proof of Theorem 3, we have used reductivity of H only in the follow- 
ing assertion: If W(H) contains no subtori, then it is finite, and G/H is affinely closed. 
In fact, we need this assertion only if c(G/H) > 1. Theorem 3 holds for quasi-affine 
G/H of complexity < 1. 

One might hope that  the situation described in the above assertion never occurs for 
nonreductive H,  i.e., W(H) always contains a subtorus. Unfortunately, W(H) ~ may be 
a non-trivial unipotent group, as the following example (suggested by a referee) shows. 

E x a m p l e  4. Let e be a regular nilpotent in the Lie algebra s[(3), G = SL(3) x SL(3), 
and H the two-dimensional unipotent subgroup with the Lie algebra generated by 
(e,e 2) and (e2,e). Then the Lie algebra of the normalizer of H is the linear span 
of (e, 0), (e 2,0), (0, e) and (0, e2). Hence the "group W(H) ~ is two-dimensional and 
unipotent. (Another example was suggested by E. A. Tevelev.) 

We are not able to characterize quasi-affine, but not affine, homogeneous spaces that  
have the property (AF). In this context we would like to formulate the following. 

C o n j e c t u r e .  If H C_ G is observable, but not reductive, then W(H) is infinite. 

5. V e r y  s y m m e t r i c  e m b e d d i n g s  

The group of G-equivariant automorphisms of a homogeneous space G/H is isomor- 
phic to W(H). (The action W(H) : G/H is induced by the action No(H) : G/H by 
right multiplication.) Let G/H ~ X be an attine embedding. The group Auto  X of 
G-equivariant automorphisms of X is a subgroup of W(H). 
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Def in i t i on  3. An embedding G/H ~+ X is said to be very symmetric if W(H) ~ C_ 
Auta  X. 

Any spherical affine variety is very symmetric. In fact, for a spherical homogeneous 
space G/H, any isotypic component k[G/H]u of the G-algebra k[G/H] is an irreducible 
G-module (see [Se] or [VK, Th.2]), and W(H) acts on k[G/H]~ by scalar multiplications. 
This shows that  any G-invariant subalgebra in k[G/H] is also W(H)-invariant. 

In the case of affine SL(2)/{e}-embeddings, only the embedding X = SL(2) is very 
l 

symmetric; in all other cases the group AUraL(2)X is isomorphic to a Borel subgroup 
in SL(2), see [Kr, III.4.8, Satz 1]. More generally, if X is an affine embedding of the 
homogeneous space G/{e}, then X is very symmetric if and only if" the action G : X 
can be extended to an action of the group G x G with an open orbit isomorphic to 
(G • G)/H, where H is the diagonal in G • G. Hence X can be considered as an 
affine (G x G)/H-embedding. Theorem 2 implies that  if G is a semisimple group, then 
X = (G x G)/H; for other proofs see [Wa] and IV2, Prop. 1]. 

If G is a reductive group, then the set of all very symmetric embeddings of the 
homogeneous space G/{e} is exactly the set of all affine algebraic monoids with G as 
the group of units [V2]. The classification of reductive algebraic monoids is obtained 
in [V2] and [Rit]. 

Put  0 = GxW(H)  ~ N = ~/-I(W(H)~ a n d H  = {(n, nH) ln E N} (the ~diagonal" 
embedding of N). Any very symmetric affine embedding of G/H may be considered as 

A 

an embedding of G/H. 

P r o p o s i t i o n  1. Under assumptions of Theorem 4, if A(k*) is central in W(H) ~ then 
there exists a very symmetric affine embedding G/H ~ X with infinitely many G-orbits. 

Proof. We follow the  proof of Theorem 4. Put  H1 = H �9 A(k*); then /~1 N G = HI. 
We modify the proof of Lemma 2 (b) to obtain a G-module V and an Arl-eigenvector 

v E V such that  G(v) = ~rl, G~ is a finite extension of /~ ,  and G<v} C P(V) contains 

infinitely many G- (not G-) orbits. Arguing as in the proof of Theorem 4, we see that  
the closure X of Gv = Gv C_ V is G-stable and has infinitely many G-orbits. (Observe 
that  G may be not reductive, but Lemma 1, required in the proof, does not use the 
reductivity assumption.) 

To construct couple (V, v), it suffices, in the notation of Lemma 2, to construct a 
G-module V' and a vector v' e V' such that  G(v') = G(v') ~ G/H1 and G(v') has 
infinitely many G-orbits. Then we proceed as in Lemma 2 (a), replacing G by G. (Note 
that  the reductivity of G is not essential in Lemma 2 (a).) It remains to construct a 
couple (V ~, v'). For this purpose, we refine Akhiezer's construction [Akh], 

By assumption, c(G/H1) > 0, hence there exists a character ~ : H1 -+ k* such that 
for the associated line bundle L~ on G/Hi, the multiplicity of a certain simple G-module 
V, in H~ L~) is greater than one [VK, Th. 1]. 

The group W(H) ~ acts on H~ and on the isotypic component E = 
HD(G/H1, L~), by G-module automorphisms. 

Take a G-module M and a vector m E M such that  G(,~) = At1. Let Y be the closure 

of G(m) = G(m) in P(M). The natural rational map f :  Y --* I?(E*) is G-equivariant. 
Consider a decomposition E = Eo | ... �9 Ek into irreducible G-submodules and 

fix isomorphisms r : Vu -+ Ei. Choose a basis {s0 , . . . , em} of T-eigenvectors with 



AFFINE EMBEDDINGS WITH A FINITE NUMBER OF ORBITS 109 

weights #0 = ~ , ~ 1 , . . .  ,#m in V~, and put e~ i) = r  In projective coordinates, 

f ( g H i )  = [ c ~ ~  : c~k)(gH1):...: e ~ ) ( g H i ) :  . . .  : c~)(gH1)]. 

The closure Z of the graph of f in Y x ]?(E*) is G-stable. We claim that  Z contains 
infinitely many G-orbits. To prove it, take a strictly dominant one-parameter subgroup 

6 :  k* -+ T. If all e(oi)(gHi) 7~ O, then f ( 6 ( t ) g g l )  = [. . .  : t-<PJ'a>e~.i)(ggl) : . . .] = 

[. . .  : t("~ : . . . ]  ~ [c~~  : c~k ) (gH1) : . . .  : 0 : . . .  : 0] as 
t --~ 0, because #0 - Pj is a positive linear combination of positive roots for all j > 0. 

We may identify E* with V~ |  a+i and consider the Segre embedding ]?(V~*) x ]?k 

I?(E*). Then limt-+0 6(t ) f (ggm) = (<~;>,p) E ]P(V2) x ]?k, where {e~} is the dual basis 

to {cj}, and p = [e~~ . . .  : e~k)(ggi)] E ]?k. 

As the sections c~~ k) are linearly independent on G/H1, f ( Y )  intersects in- 
finitely many closed disjoint G-stable subvarieties F(V~*) x {p} ~-+ I?(E*), p E ~k. This 

proves the claim, because Z projects G-equivariantly onto f ( Y ) .  
Finally, a G-module V' = M | E* and a vector v' = m | e such that  f(<m>) = <e> 

are the desired, because G<v'> ~- Z. The proof is complete. 

Now we are interested in the following problem: when does any very symmetric attine 
embedding of a homogeneous space G / H  have finitely many G-orbits? The example of 
SL(3) /{e}-embeddings  shows that  the latter property is not equivalent to (AF). 

P r o p o s i t i o n  2. Let H be a reductive subgroup in a reductive group G. Every very 
symmetric a]flne embedding of G / H  has finitely many G-orbits iff either (AF) holds 
or W ( H )  ~ is semisimple. In the second case, there is only one very symmetric affine 
embedding, namely X = G / H. 

Proof. The Lie algebra of NQ(Lr) equals ~ +~, where ~" is the centralizer of s in ~. We 
have ~ = a(N) | a (W(H)~  and a(N) -- a(H) | a(W(H)~  

If W ( H )  ~ is semisimple, then ~" _C_ b C_ ~', and N 5 ( H )  is finite. Theorem 2 implies the 
assertion for this case. 

Now suppose that  W ( H )  ~ is not semisimple. If there exists a nonspherical extension 
of H by a one-dimensional torus S C_ Z ( N ) ,  then by Proposition 1, there exists a very 
symmetric atone embedding of G / H  with infinitely many G-orbits. 

Finally, suppose that  any extension of H by a one-dimensional torus in Z ( N )  is 
spherical. Then c ( G / H )  < 1. As the spherical case is clear, we may assume that  
c (G/H)  = 1. 

The connected kernel W0 of the action W ( H )  : k (G /H)  B acts on isotypic components 
of k[G/H] by scalar multiplications, whence W0 is diagonalizable and central in W ( H ) .  
By assumption, W0 = {e}. Hence W ( H )  ~ is a one-dimensional torus acting on k ( G / H )  B 
with finite kernel. By Corollary 2, (AF) holds for G / H .  The proof is complete. 

[Akh] 
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