Research and Exposition in Mathematics
Volume 25 (2002) 121-126
© 2002 Heldermann Verlag Berlin

Invariant subalgebras and affine embeddings of
homogeneous spaces

Ivan V. Arzhantsev*

1. Invariant subalgebras.

Let G be a connected semisimple complex Lie group, and let C[G] be
the algebra of polynomial functions on G. For any integral commutative complex
algebra A denote by Q(A) its quotient field and by tr.deg Q(A) the transcendency
degree of this field over C. If M is a set with a G-action, then MG denotes the
subset of G-fixed points.

Theorem 1.1. Let Ac C [G] be a G-invariant finitely generated subalgebra and
I <9 A be a G-invariant prime ideal. Then

tr.deg (Q(A/1))° < %(dimG—rkG)—l. (1)

Moreover, there ezist a subalgebra A and an ideal I such that (1) is an equality.

The proof of Theorem 1.1 is based on some properties of affine embeddings
of homogeneous spaces.

2. Embeddings of homogeneous spaces.

Let G be a connected reductive algebraic group over an algebraically closed
field k of characteristic zero, and let H be an algebraic subgroup of G. A pointed
irreducible algebraic G-variety X is said to be an embedding of the homogeneous
space G/H if the base point of X has the dense orbit and stabilizer H. We
shall denote this by G /H — X. For an algebraic G-variety Z the closure of a
G-orbit on Z is an embedding of this orbit. Thus the study of embeddings can be
considered as a starting point for the theory of algebraic transformation groups.

The general theory of embeddings of homogeneous spaces was developed
in the famous work of D. Luna and Th. Vust [8]. The notion of complexity
plays here the key role. Let B be a Borel subgroup of G. By definition, the
complexity ¢(X) of a G-variety X is the codimension of a generic B-orbit for
the restricted action B : X, see [12] and [8]. By Rosenlicht’s theorem, ¢(X) =
tr.deg k(X)B. The classification of embeddings of a given homogeneous space
G/H is known if ¢(G/H) < 1, see (4] and [11].

A normal G-variety X is called spherical if ¢(X) = 0, or, equivalently,
k(X)® = k. A homogeneous space G/H and a subgroup H C G are said to
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be spherical if G/H is a spherical G-variety. It was proved by F. J. Servedio,
D. Luna, Th. Vust and D. N. Akhiezer that a space G/H is spherical if and only
f each embedding of G /H has finitely many G -orbits.

More generally, the modality of an action G : X is the integer

mod(X) = max tr.deg k(Y)C,
IR

where Y runs through G-stable irreducible subvarieties of X. (This notion
appeared in works of V. L Arnold on singularities). The modality is equal to
the maximal number of parameters in a family of G-orbits of the same dimension
on X . In particular, mod(X) = 0 iff the number of G-orbits on X is finite. It
was shown by E. B. Vinberg (12] that mod(X) < ¢(X)-

Denote by m(G/H) the maximum of mod(X), where X runs through all
embeddings G/H < X. D. N. Akhiezer (1] proved that m(G/H) = c(G /H).

3. Affine embeddings.

An embedding G/H <= X is called affine if the variety X is affine. In
many problems of invariant theory, representation theory and other branches
of mathematics, only affine embeddings appear. Hence they deserve a special
consideration. On the other hand, there are some interesting properties that hold
for affine embeddings only. Some examples will be considered in this section.

Note that a given homogeneous space G/H admits an affine embedding
iff G/H is quasiaffine (as an algebraic variety), see [9, Th. 1.6]. In this situation,
the subgroup H is said to be observable in G. For a description of observable
subgroups, see (10}, [9, Th. 4.18]. By Matsushima’s criterion, G/H is affine iff H
s reductive. In particular, any reductive subgroup is observable.

Let us say that an embedding G/H— X 18 trivial if X = G/H. 1t is
well-known that any embedding of G/H is trivial iff H is a parabolic subgroup of
G . The following result due to D. Luna is an affine version of this fact. Denote by
Ng(H) the normalizer of H in G and by W(H ) the quotient group Ne(H)/H.
(The group W (H) can be identified with the group Autg(G/H) of G-equivariant
automorphisms of G/H ). Then any affine embedding of G/H is trivial iff H is
reductive and W (H) is finite [7]. For example, this is the case if H is a reductive
subgroup containing a maximal torus of G.

By analogy with the previous section, we associate with any quasiaffine
homogeneous space G/H the integer

a(G/H) = max mod(X),
where X runs through all affine embeddings of G /H . It is clear that a(G/H) <
m(G/H).

Theorem 3.1. Let H be a reductive subgroup of G.
(1) If the group W (H) is finite, then a(G/H)=0.
(2) If W(H) is infinite, then

a(G/H) = max ¢(G/Hy),
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where H, runs through all non-trivial extensions of H by a one-dimensional
subtorus of Ng(H). In particular, a(G/H) = c¢(G/H) or c(G/H) - 1.

In the case a(G/H) = 0, we obtain

Corollary 3.2.[2, Theorem 3] For a reductive subgroup H of G, following con-
ditions are egquivalent:

(1) for any affine embedding G/H — X, the number of G-orbits in X 1is
finite;

(2) either W(H) is finite or any non-trivial extension of H by a one-
dimensional torus of Ng(H) is spherical in G.

4. Proof of Theorem 3.1.

Here we follow the scheme of the proof of Theorem 3 from [2].

Proposition 4.1. Let H be an observable subgroup of G. Suppose that there is
a non-trivial one-parameter subgroup X : k* — W(H) and let H, be the preimage
of A(k*) in Ng(H). Then there egists an affine embedding G/H — X with
mod(X) > ¢(G/H,).

The idea of the proof is to apply Akhiezer’s construction [1] to the homo-

geneous space G/H; and to consider the affine cone over a projective embedding
X' of G/H, with mod(X’) = ¢c(G/H.).

Lemma 4.2. Let H C G be an observable subgroup and H; be the extension of H
by a one-dimensional torus A(k*) C W(H). Then there ezists a finite-dimensional
G -module V and an H, -eigenvector v € V' such that

(1) the orbit G(v) of the line (v) in the projective space P(V) is isomorphic
to G/Hl,'

(2) H fizes v;

(3) Hi acts transitively on k*v;

(4) mod(Gv)) = c(G/Hy).

Proof. (1)-(3) By Chevalley’s theorem, there exists a G-module V' and a vector
v’ € V' having property (1). Let us denote by x the character of H at v'. Since
H is observable in G, every finite-dimensional H-module can be embedded in a
finite-dimensional G-module [3]. In particular, there exists a finite-dimensional
G-module V” containing H -eigenvectors of character —x. Choose among them a
H;-eigenvector v" and put V =V'® V" and v = v’ ® v . Properties (1) and (2)
are satisfied.

If condition (3) also holds, then we are done. Otherwise, consider any G-
module W having a vector with stabilizer H. Take an H, -eigenvector w € wH
with nontrivial character, and replace V by V®W and v by v®w. Now properties
(1)—(3) are satisfied.
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(4) By aresult due to Akhiezer [1], we may choose (V',0) so that properties
(1) and (4) are satisfied. Then we proceed as in (1)-(3) to obtain the couple (V,v).
The closure G(v) C P(V) is contained in the image of the Segre embedding

P(V’) x P(V") = B(V),  or P(V") x P(V") x P(W) = B(V),

and projects G -equivariantly onto Gy CP(V'). This implies (4) for (V; v). ®

Proof. (Proposition 4.1) Let (V, v) be the couple from Lemma 4.2. Denote
by H' the stabilizer G, of the vector v and set X = Gv. By (1)-(3) and since
Hy/H is isomorphic to k*, H ! is a finite extension of H. By (3), the closure of
Gv in V is a cone, so by (4) we have mod(X) > ¢(G/Hy)- .

Consider the morphism G * G T determines an embedding
k[G/H'] € k[G/H]. Let A be the integral closure of the subalgebra k[X] €
k[G/H'] in the field k(G/H). We have the following commutative diagrams:

A < Kk[G/H] < k(G/H) Spec A « G/H
T T ! l
k[X] < k[G/H'] < k(G/H") X oo oG

The affine variety X = Spec A with a natural G -action can be considered as
an affine embedding of G /H. The embedding k[X] C A defines a finite (surjective)
morphism X — X and therefore, mod(X) = mod(X) = ¢(G/ H,y). =

We shall use some results due to F. Knop.

Lemma 4.3. ([5, 7.3.1], see also [2, Lemma 3]) Let X be an irreducible G -variety,
and v be a G-invariant valuation of k(X)/k with residue field k(v). Then k(v)B
is the residue field of the restriction of v to k(X 3

Definition 4.4. [6, §7] Let X be a normal G-variety. A discrete Q-valued G-
invariant valuation of k(X) is called central if it vanishes on k(X)B\ {0}. A
source of X is a non-empty G-stable subvariety Y € X which is the center of a
central valuation of k(X By

The following lemma is an easy consequence of results from (6], for more
details see [2, Lemma 4].

Lemma 4.5. If X isa normal affine G -variety containing a pToper Source, then
there exists a one-dimensional torus S Autg(X) such that k(X)B C k(X NS,

Now we are able to prove Theorem 3.1 Statement (1) follows from Luna’s
Theorem. To prove (2), one can use Proposition 4.1. Since H is reductive, the
group W (H) is reductive and contains a one-dimensional subtorus A(k*). Hence
a(G/H) 2 ¢(G/Hy) = o(G/H) — 1 for the extended subgroup Hi. If there is a
one-dimensional torus in W (H) such that ¢(G/H) = c(G /H,), then there exists
an affine embedding of G /H of modality ¢(G/H).

Conversely, suppose that G/H — X is an affine embedding of modality
¢(G/H). We need to find a one-dimensional subtorus Ak*) € W(H ) such that
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c(G/H,) = ¢(G/H). By the definition of modality, there exists a proper G-
invariant subvariety ¥ C X, such that the codimension of generic G-orbit in Y
is ¢(G/H). Therefore, ¢(Y) = ¢(G/H ). Consider a G-invariant valuation v of
k(X) with the center Y. For the residue field k(v) we have tr.deg k(v)? >
trdeg k(Y)”, hence trdeg k(v)3 = tr.deg k(X)B. If the restriction of v
to k(X)? is not trivial, then by Lemma 4.3, tr.deg k(v)? < tr.deg k(X)2, a
contradiction. Thus v is central, and Y is a source of X. A one-dimensional
subtorus S C Aute(X) C Aute(G/H) = W(H) provided by Lemma 4.5 yields
the extension of H of the same complexity. This completes the proof.

Remark 4.6. If H is an observable subgroup and W(H) contains non-trivial *
subtorus, then the formula a(G/H) = maxg, ¢(G/H;) can be obtained by the
same arguments. If W(H) is either finite or unipotent, then our proof gives the
inequality a(G/H) < ¢(G/H) — 1.

In this context we would like to present a reformulation of a problem firstly
posed in [2].

Problem. Let V be a finite-dimensional G-module and v be a vector in V.
Suppose that the group Autg(G) is finite. Is it true that Gv is closed in V ?

If Gv is affine then the answer is positive by Luna’s theorem. Hence the

problem is to prove that if W(H ) is finite for an observable subgroup H then H
is reductive.

5. Proof of Theorem 1.1.

The inclusion A C C[G] induces a dominant morphism of affine vari-
eties G — Spec A. Hence Spec A can be considered as an affine embedding
of a homogeneous space G/H. The quotient A/I is the algebra of polynomial
functions on a G-invariant closed irreducible subvariety ¥ C Spec A. Thus
tr.deg (Q(A/I))¢ < mod(X) and mod(X) < a(G/H). We shall prove that
a(G/H) < 3(dimG — 1k G) — 1 and this estimate is exact.

Note that ¢(G/{e}) = 1(dim G — rk G). Consider three possible cases.
1) H is finite and W (H) is finite. Here a(G/H) =0.

2) H is finite and W(H) is infinite. For any one-dimensional subtorus
T, C Ng(H) there exists a Borel subgroup B of G which does not contain 77 and
there is a B-orbit of dimension dim B on G /(HT). This implies ¢(G/ (HTY)) =
c(G/{e}) — 1. By Theorem 3.1, we have a(G/H) = ¢(G/{e}) — 1.

3) dim H is positive. In this case a(G/H) < ¢(G/H) < ¢(G/{e}) — 1.
The proof is completed.
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