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A B S T R A C T

Three Lagrangian invariants are shown to exist for flows in the equatorial region in the β - plane approximation.
They extend the Cauchy invariants to a non-rotating fluid. The relationship between these generalized invariants
and the results following from Kelvin's and Ertel's theorems is ascertained. Explicit expressions of the invariants
for equatorially trapped waves and equatorial Gerstner waves are presented.

1. Introduction

Lagrangian variables are rarely used in geophysical hydrodynamics.
There is even no formulation of equations in Lagrangian form in the
classical book (Pedlosky, 1987). At the same time, quite recently
Constantin (2012b) used the Lagrangian approach in the -plane ap-
proximation and made an exact analytical description of equatorially
trapped waves generalizing the classical Gerstner solution (Gerstner,
1809; Lamb, 1932; Constantin, 2011). That result stimulated an in-
creasing interest in Lagrangian description of wave motions in an
equatorial region (see Constantin, 2013, 2014; Constantin and
Germain, 2013; Henry, 2013, 2016, 2017; Hsu, 2014; Ionescu-Kruse,
2016; Constantin and Monismith, 2017; Kluczek, 2017; Rodrguez-
Sanjurjo, 2017 and references therein). In the present paper, I address
Lagrangian invariants of such flows.

In a Lagrangian description, the coordinates X Y Z, , of a fluid
particle are considered to be functions of their labels q s r, , . The con-
tinuity equation for an incompressible fluid is written in the form

= =D X Y Z
D q s r

D X Y Z
D q s r

S q s r( , , )
( , , )

( , , )
( , , )

( , , ).0 0 0
0 (1)

Here, S0 is a time independent function. If we take as labels the
original particle coordinates X Y Z, ,0 0 0, then =S 10 . In a general case, S0
depends on coordinate labeling. According to the requirement of one-
to-one mapping of the Euler and Lagrangian variables, it will not vanish
to zero in the flow region. The function S0 is an integral of motion or a
Lagrangian invariant. It is present in the basic equations but its explicit
form is found from the solution, which is a specific feature of
Lagrangian description.

In 1815, Cauchy pointed to the existence of three more Lagrangian
invariants related to the equations of fluid motion. They are currently

referred to as the Cauchy invariants (Abrashkin et al., 1996; Zakharov
and Kuznetsov, 1997; Bennett, 2006; Kuznetsov, 2006; Frisch and
Villone, 2014; Besse and Frisch, 2017). The constancy of the Cauchy
invariants is less known than the famous Kelvin's theorem about con-
servation of velocity circulation. However, both conservation laws have
the same meaning. The difference between them is that Kelvin's the-
orem concerns conservation of the integral quantity, i.e. velocity cir-
culation, whereas the Cauchy invariant is local but expressing the same
constancy.

Cauchy invariants were rediscovered more than once. The back-
ground of the problem can be found in detail in (Frisch and Villone,
2014; see also Salmon, 1988). The conservation of these invariants is a
consequence of special symmetry – the so-called relabeling symmetry
(Salmon, 1988; Zakharov and Kuznetsov, 1997; Bennett, 2006) im-
plying a change of labels q s r, , for each fluid particle. It is apparent,
however, that no change of labels can affect the dynamics of a fluid.
The role of such a symmetry was first realized in the works of Eckart
(1938, 1960) and Newcomb (1967) and was presented in detail by
Salmon (1988). Its consequences are the Thomson (Kelvin) theorem
about the conservation of circulation, the frozen vortex theorem, and
the Ertel theorem.

The goal of the present paper is to find generalizations of the
Cauchy invariants for a nonuniformly rotating fluid in an equatorial
plane. The paper is organized as follows. In Section 2 equations in La-
grangian form are derived and explicit expressions for generalized
Cauchy invariants are found. Their relationship with Kelvin's and Ertel's
theorems is considered in Sections 3 and 4, respectively. The form of
the invariants for equatorially trapped and Gerstner waves is found in
the concluding section.
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2. Governing Lagrangian equations and their invariants

Choose a rotating framework with the origin at a point on the
Earth's surface. Let X Y Z, , be Cartesian coordinates, with the spatial
variable X corresponding to longitude, the variable Y to latitude, and
the variable Z to the local vertical, respectively. The momentum
equations for the -plane approximation in the equatorial region have
the following form (Pedlosky, 1987; Constantin, 2012a, 2012b):

+ =du
dt

w Yv p2 1 ,X (2)

+ =dv
dt

Yu p1 ,Y (3)

=dw
dt

u p g2 1 ,Z (4)

where t is time, is the speed of eastward rotation of the Earth (taken
to be a sphere of radius R) round the polar axis, = R2 / , g is grav-
itational acceleration, is water density, p is pressure, and u v w, , are
fluid velocity components.

We use the Lagrangian framework for the description of the flow.
The equations of motion (2)–(4) in Lagrangian variables are written as

+ + + + =

+ + + + =

+ + + + =

X X Y Y Z Z Z YY X YX Y X Z
p

gZ

X X Y Y Z Z Z YY X YX Y X Z
p

gZ

X X Y Y Z Z Z YY X YX Y X Z
p

gZ

(2 ) 2 ,

(2 ) 2 ,

(2 ) 2 .

tt q tt q tt q t t q t q t q
q

q

tt s tt s tt s t t s t s t s
s

s

tt r tt r tt r t t r t r t r
r

r

Here, we use = = =u X v Y w Z, ,t t t. By cross differentiation of this
system it is possible to exclude the pressure:

+ + + + =

+ + + + =

+ + + + =

t
D X X
D s r

D Y Y
D s r

D Z Z
D s r

D Z X
D s r

Y D X Y
D s r

t
D X X
D r q

D Y Y
D r q

D Z Z
D r q

D Z X
D r q

Y D X Y
D r q

t
D X X
D q s

D Y Y
D q s

D Z Z
D q s

D Z X
D q s

Y D X Y
D q s

( , )
( , )
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( , )

2 ( , )
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( , )

0,
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( , )
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( , )

( , )
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( , )

( , )
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( , )
( , )

( , )
( , )

( , )
( , )

2 ( , )
( , )

( , )
( , )

0.

t t t

t t t

t t t

Thus, we have three integrals of motion

+ + + + =D X X
D s r

D Y Y
D s r

D Z Z
D s r

D Z X
D s r

Y D X Y
D s r

S q s r( , )
( , )

( , )
( , )

( , )
( , )

2 ( , )
( , )

( , )
( , )

( , , ),t t t
1

(5)

+ + + +

=

D X X
D r q

D Y Y
D r q

D Z Z
D r q

D Z X
D r q

Y D X Y
D r q

S q s r

( , )
( , )

( , )
( , )

( , )
( , )

2 ( , )
( , )

( , )
( , )

( , , ),

t t t

2 (6)

+ + + +

=

D X X
D q s

D Y Y
D q s

D Z Z
D q s

D Z X
D q s

Y D X Y
D q s

S q s r

( , )
( , )

( , )
( , )

( , )
( , )

2 ( , )
( , )

( , )
( , )

( , , ).

t t t

3 (7)

Direct differentiation of Eqs. (5)–(7) demonstrates that

+ + =S
q

S
s

S
r

0,1 2 3

i.e. divergence of the vector S S S S{ , , }1 2 3 in Lagrangian coordinates is
zero. This means that an expression for invariants cannot be specified
arbitrarily.

If there is no rotation = =;( 0 0), then the system reduces to the
following set of equations

+ + =

+ + =

+ + =

D X X
D s r

D Y Y
D s r

D Z Z
D s r

S q s r

D X X
D r q

D Y Y
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D r q
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The subscript “0” indicates that the invariants are calculated in a
non-rotating fluid. Those expressions were discovered by Cauchy, and
the functions S S S, ,10 20 30 are referred to as the Cauchy invariants
(Abrashkin et al., 1996; Zakharov and Kuznetsov, 1997; Bennett, 2006;
Kuznetsov, 2006; Frisch and Villone, 2014; Besse and Frisch, 2017).

3. The physical meaning of the invariants

Consider the generalized Cauchy invariants corresponding to
0, 0. Let us replace in Eqs. (5)–(7) the derivatives of X Y Z, ,t t t

with respect to q s r, , by the derivatives with respect to X Y Z, , :

+ + + + =D Y Z
D s r

D Z X
D s r

Y D X Y
D s r

S( , )
( , )

( 2 ) ( , )
( , )

( ) ( , )
( , )

,1 (8)

+ + + + =D Y Z
D r q

D Z X
D r q

Y D X Y
D r q

S( , )
( , )

( 2 ) ( , )
( , )

( ) ( , )
( , )

,2 (9)

+ + + + =D Y Z
D q s

D Z X
D q s

Y D X Y
D q s

S( , )
( , )

( 2 ) ( , )
( , )

( ) ( , )
( , )

,3 (10)

where = ( , , ) is the vorticity vector with the components

= = =w v u w v u, , .Y Z Z X X Y

Let us take as an example a closed curve bounding in the sr plane a
rectangle having sides s and r at the moment of time =t 0 and des-
ignate by A B C, , the areas of its projections onto the coordinate planes
at the time moment t :

= × =

= × =

= × =

A dY dZ D Y Z
D s r

s r

B dZ dX D Z X
D s r

s r

C dX dY D X Y
D s r

s r

( , )
( , )

,

( , )
( , )

,

( , )
( , )

.

Then Eq. (8) may be written in the form

+ + + + =A B Y C S s r( 2 ) ( ) .1

This expression describes constancy of the vector flow + *
(where = Y* *(0,2 , ) through an infinitely small moving contour
formed by s r particles. Analogously, we can show that Eq. (9) defines
the condition of a constant flow through contour r q, and Eq. (10)
through contour q s. The combination of these results leads us to the
conclusion that the vector flow + * around an arbitrary, moving
closed contour persists to be constant. Or, according to the Stokes for-
mula, circulation around a closed contour is retained, which is the
same.

Our considerations may be reversed by deriving from the condition
of time-independent functions S S S, ,1 2 3 Kelvin's theorem about circu-
lation around a closed contour. Indeed, let us choose Lagrangian vari-
ables so that the particles forming the fluid contour should lie, for ex-
ample, in the plane of s r, variables. Then, by virtue of the invariance of
S1, the circulation speed around it will persist to be constant.

The same result may be obtained using Euler variables. Eqs. (2)–(4)
in vector form are written as

+ + × =V
t

V V V p( ) * ,

where =V V u v w( , , ) is velocity. By applying the curl operator and
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making simple transformations we obtain

+ = +d
dt

V( *) (( *) ) . (11)

Eq. (11) is a generalization of the Helmholtz equation to the case of
fluid motion in an equatorial region. Instead of the flow vorticity
vector, (11) contains an absolute vortex, that is a sum of vorticity and
vector * related to the action of the Coriolis force. Expression (11)
represents the condition of absolute vortex freezing into a moving fluid,
from which follows that the frozen-in vortex flow remains constant
(Lamb, 1932; Kochin et al., 1964).

Thus, an absolute vortex in a nonuniformly rotating fluid is analo-
gous to vorticity, and the physical meaning of the generalized in-
variants S S S, ,1 2 3 is identical to that for the Cauchy invariants.

4. The relation to Ertel's theorem

Consider labeling variables as functions of Euler coordinates:

= = =q q X Y Z s s X Y Z r r X Y Z( , , ), ( , , ), ( , , ).

By solving the system of equations

+ + =
+ + =
+ + =

q X q Y q Z
q X q Y q Z
q X q Y q Z

1,
0,
0,

X q Y q Z q

X s Y s Z s

X r Y r Z r

we find

= = =q S D Y Z
D s r

q S D Z X
D s r

q S D X Y
D s r

( , )
( , )

, ( , )
( , )

, ( , )
( , )

.X Y Z0
1

0
1

0
1

here S0 is the Jacobian (1) value. With these relations taken into con-
sideration, expression (8) is written as

= +S S q(( *) ).1 0 (12)

Two other invariants are represented analogously:

= + = +S S S S(( *) s), (( *) r).2 0 3 0 (13)

The labels q s r, , of a single fluid particle do not change in the
course of its motion; therefore, the structure of Eqs. (12), (13) is ana-
logous to Ertel's theorem for potential vorticity (Pedlosky, 1987;
Truesdell, 1951; Viudez, 1999). However, in our formulas we use an
absolute vortex instead of conventional vorticity.

5. Application to exact solutions

The results of the general theory will be tested on an example of the
known exact solutions for equatorial waves. Suppose that a fluid par-
ticle is moving in the =Y s plane. Then, the equations of hydro-
dynamics (1), (5)–(7) may be written as

=
t

D X Z
D q r

( , )
( , )

0,
(14)

+ + =
t

D X X
D r q

D Z Z
D r q

D Z X
D r q

( , )
( , )

( , )
( , )

2 ( , )
( , )

0,t t

(15)

+ + =
t

D X X
D s r

D Z Z
D s r

D Z X
D s r

sX( , )
( , )

( , )
( , )

2 ( , )
( , )

0,t t
r

(16)

+ + + =
t

D X X
D q s

D Z Z
D q s

D Z X
D q s

sX( , )
( , )

( , )
( , )

2 ( , )
( , )

0.t t
q

(17)

The first of them is the continuity equation. For the sake of sim-
plicity, the order of following of the equations of motion are changed.
Eqs. (14), (15) do not contain differentiation with respect to s. The third
term in Eq. (15) coincides, to an accuracy of the constant multiplier,
with Eq. (14) and may be omitted. Then the system of two Eqs. (14),

(15) will coincide with the equations of plane motion of a perfect in-
compressible fluid, but the functions X Z, will still depend on the third
coordinate s.

Constantin (2012b) found an exact solution to the system of Eqs.
(14)–(17):

= = = +X q
k

e sin Y s Z r
k

e cos1 , , 1 , (18)

= = =
+

=
+

r f s k q ct f s
kc

s c

kg
k

[ ( )], ( ), ( )
2( 2 )

,

.

2

2

This solution describes equatorial surface waves traveling eastward
with speed c; in (18) k is wave number. They are periodic spatial waves
whose amplitude decreases exponentially in meridional direction. That
is why they are called trapped waves.

The expressions for generalized invariants of the Cauchy waves (18)
have the following form

=
= +

S
S kc e

0,
2 2( ) ,

1

2
2 (19)

= +
+

S s kc
kc

e1 2( )
2

.3
2

The zonal component of vector S is equal to zero. The vorticity for
the waves (18) in this case is defined by (Constantin, 2012b):

=
=

S skc g e sin kce skc g e cos e
S e

{ , 2 , ( ) },
1 .
0

1 2 1 2 2 1 2

0
2 (20)

All of its three components are non-zero, and the zonal and vertical
components depend on time. Comparison of expressions (19) and (20)
demonstrates the difference between the vorticity vector (vector of
absolute vorticity *) and the vector of Lagrangian invariants.

Expression (18) is a unique example of an exact solution of equa-
tions of fluid motion in an equatorial region. This solution permits
generalization to the case of a uniform zonal near-surface flow (Henry,
2013, 2016) and may be used for describing not only surface gravity
waves but also internal waves affecting thermocline dynamics
(Constantin, 2013; Constantin and Germain, 2013; Constantin, 2014).

The case = 0 corresponds to the f -plane approximation and Eqs.
(14), (15) are equivalent to the equations of two-dimensional hydro-
dynamics. In this case, solution (18) describes equatorial Gerstner
waves that differ from waves in a fluid at rest only by the form of
dispersion relation, hence by the propagation velocity (see the last
equation in (18)). The generalized Cauchy invariants for Gerstner
waves have the form

= = = +S S S kc e0, 2 2( ) ,1 3 2
2

and the vorticity components are defined by

= = = kce
e

0, 2
1

.X Z Y
2

2

Comparisons of these relations shows that for plane waves the
vector of the generalized invariants and the vorticity vector are quali-
tatively similar: their zonal and vertical components are equal to zero,
and the meridional components are time independent.

The solution for equatorial Gerstner waves may be extended to the
case of uniform zonal and arbitrary meridional current (Kluczek, 2017),
as well as to the case of a two-layer fluid (Hsu, 2014; Rodrguez-
Sanjurjo, 2017). It is worthy of note that different generalizations of
Gerstner's solution are also used in the studies of zonal waves in middle
and higher geographical latitudes (Constantin and Monismith, 2017;
Vitek, 1969, 1993).

Lagrangian invariants in the approximate model of the atmospheric
front were used by Vitek (1993) for assessing its characteristics. This
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example is a good reason to believe that the obtained theoretical result
will find practical application.

6. Conclusions

A system of equations in Lagrangian form has been derived for
equatorial flows in the -plane approximation. It has been shown that
the system has three integrals of motion referred to as the generalized
Cauchy invariants. The properties of the invariants have been studied
on an example of known exact solutions for equatorial waves.
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