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Abstract

There exist two known concepts of ultrafilter extensions of first-order models, both in
a certain sense canonical. One of them [1] comes from modal logic and universal algebra, and
in fact goes back to [2]. Another one [3, 4] comes from model theory and algebra of ultrafilters,
with ultrafilter extensions of semigroups [5] as its main precursor. By a classical fact of general
topology, the space of ultrafilters over a discrete space is its largest compactification. The
main result of [3, 4], which confirms a canonicity of this extension, generalizes this fact to
discrete spaces endowed with an arbitrary first-order structure. An analogous result for the
former type of ultrafilter extensions was obtained in [6]. Results of such type are referred to
as extension theorems.

After a brief introduction to this area, we offer a uniform approach to both types of
extensions. It is based on the idea to extend the extension procedure itself. We propose
a generalization of the standard concept of first-order models in which functional and relational
symbols are interpreted rather by ultrafilters over sets of functions and relations than by
functions and relations themselves, and an appropriate semantic for generalized models of
this form. We provide two specific operations which turn generalized models into ordinary
ones, establish necessary and sufficient conditions under which the latter are the two canonical
ultrafilter extensions of some ordinary models, and provide a topological characterization
of generalized models. Defining a natural concept of homomorphisms between generalized
models, we generalize a restricted version of the extension theorem to generalized models.
To formulate the full version, we provide even a wider concept of ultrafilter interpretations
together with their semantic based on limits of ultrafilters, and show that the former concept
can be identified, in a certain way, with a partial case of the latter; moreover, the new concept
absorbs the ordinary concept of models. We provide two more specific operations which turn
generalized models in the narrow sense into ones in the wide sense, and establish necessary
and sufficient conditions under which generalized models in the wide sense are the images
of ones in the narrow sense under these operations, and also are two canonical ultrafilter
extensions of some ordinary models. Finally, we define homomorphisms between generalized
models in the wide sense, and establish for them three full versions of the extension theorem.

The results of first three sections of this paper were partially announced in [7].
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1. Introduction

In this section, we recall main definitions and facts concerning ultrafilter extensions of arbitrary
maps, relations, and first-order models. All results mentioned here are established in various
previous papers, so we omit their proofs. The section provides also some (of necessity incomplete)
historical information.

Fix a first-order language and consider an arbitrary model A in the language:

A “ pX,F, . . . , R, . . .q

with the universe X, operations F, . . . , and relations R, . . . . Let us define an abstract ultrafilter
extension of A as a model A1 in the same language of form

A1 “ pββX,F 1, . . . , R 1, . . .q

where ββX is the set of ultrafilters over X (one lets X Ď ββX by identifying each x P X with the
principal ultrafilter given by x), and operations F 1, . . . and relations R 1, . . . on ββX extend F, . . .

and R, . . . , respectively. There are essentially two known ways to extend relations by ultrafilters,
and one to extend maps. Partial cases of these extensions were discovered by various authors in
different time and different areas, typically, without a knowledge of parallel studies in adjacent
areas.

Recall that ββX carries a natural topology generated by basic open sets

rA “ tu P ββX : A P uu

for all A Ď X. Easily, the sets are also closed, so the space ββX is zero-dimensional. Moreover,
ββX is compact, Hausdorff, extremally disconnected (the closure of any open set is open), and
the largest compactification of the discrete space X. This means that X is dense in ββX and
every (trivially continuous) map h of X into any compact Hausdorff space Y uniquely extends
to a continuous map rh of ββX into Y :

ββX
rh

''◆
◆◆◆◆◆◆

X

OO

h // Y

by letting for all u P ββX,
rhpuq “ y where tyu “

č

APu

clY h“A.

(As usual, clSA is the closure of A in S, and f“A is the image of A under f .) The largest
compactification of Tychonoff spaces was discovered independently by Čech [8] and M. Stone [9];
then Wallman [10] did the same for T1 spaces (by using ultrafilters on lattices of closed sets);
see [5, 11, 12] for more information.

The ultrafilter extension of a unary relation R on a set X is exactly the basic (cl)open set rR,
and the ultrafilter extension of a unary map F : X Ñ Y , where Y is a compact Hausdorff space
(for operations F on X we let Y “ ββX as X Ď ββX), is exactly its continuous extension rF . Thus
in the unary case, the procedure gives classical objects known since 1930s. As for maps and
relations of greater arities, several instances of their ultrafilter extensions were discovered only in
1960s.
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Ultrafilter extensions of maps. Studying ultraproducts, Kochen [13] and Frayne, Morel, and
Scott [14] considered a “multiplication” of ultrafilters, which actually is the ultrafilter extension of
the n-ary operation of taking n-tuples. They shown that the successive iteration of ultrapowers by
ultrafilters u1, . . . , un is isomorphic to a single ultrapower by their “product”. This has leaded to
the general construction of iterated ultrapowers, invented by Gaifman and elaborated by Kunen,
which has become common in model theory and set theory (see [15, 16]).

Ultrafilter extensions of semigroups appeared in 1960s as subspaces of function spaces; the first
explicit construction of the ultrafilter extension of a group is due to Ellis [17]. In 1970s Galvin and
Glazer applied them to give an easy proof of what now known as Hindman’s Finite Sums Theorem;
the key idea was to use ultrafilters that are idempotent w.r.t. the extended operation. Then
the method was developed by Bergelson, Blass, van Douwen, Hindman, Protasov, Strauss, and
many others, and provided numerous Ramsey-theoretic applications in number theory, algebra,
topological dynamics, and ergodic theory. The book [5] is a comprehensive treatise of this area,
with an historical information. This technique was recently applied for obtaining analogous
results for certain non-associative algebras (see [18, 19]).

Ultrafilter extensions of arbitrary n-ary maps have been introduced independently in recent
works by Goranko [1] and Saveliev [3, 4]. For a map F : X1 ˆ . . . ˆ Xn Ñ Y , the extended map
rF : ββX1 ˆ . . . ˆ ββXn Ñ ββY is defined by letting

rF pu1, . . . , unq “ 
A Ď Y : tx1 P X1 : . . . txn P Xn : F px1, . . . , xnq P Au P un . . .u P u1

(
.

One can simplify this cumbersome notation by introducing ultrafilter quantifiers. For every
ultrafilter u over a set X and formula ϕpx, . . .q with parameters x, . . . valuated over X, let

p@ uxqϕpx, . . .q mean tx : ϕpx, . . .qu P u.

In fact, such quantifiers are a special kind of second-order quantifiers: p@ uxq is equivalent to
p@A P uqpDx P Aq, and also (since u is ultra) to pDA P uqp@x P Aq. Note also that ultrafilter
quantifiers are self-dual, i.e. @ u and D u coincide; they generally do not commute with each other,
i.e. p@ uxqp@ vyq and p@ vyqp@ uxq are generally not equivalent; and if u is the principal ultrafilter
given by a P X then p@ uxqϕpx, . . .q is reduced to ϕpa, . . .q.

Now the definition above can be rewritten as follows:

rF pu1, . . . , unq “
 
A Ď Y : p@ u1x1q . . . p@ unxnq F px1, . . . , xnq P A

(
.

The map rF can be also described as the composition of the ultrafilter extension of taking
n-tuples, which maps ββX1 ˆ . . . ˆ ββXn into ββpX1 ˆ . . . ˆXnq, and the continuous extension of F
considered as a unary map, which maps ββpX1 ˆ . . . ˆ Xnq into ββY .

Ultrafilter extensions of relations. One type of ultrafilter extensions of relations goes back
to a seminal paper by Jónsson and Tarski [2] where they have been appeared implicitly, in terms
of representations of Boolean algebras with operators. For binary relations, their representation
theory was rediscovered in modal logic by Lemmon [20] who credited much of this work to
Scott (see footnote 6 on p. 204); see also [21]. Goldblatt and Thomason [22] (where Section 2
was entirely due to Goldblatt) used this to characterize modal definability; the term “ultrafilter
extension” has been coined probably in the subsequent work by van Benthem [23] (for modal
definability see also [24, 25]). Later Goldblatt [26] considered the extension of n-ary relations in
the context of universal algebra and model theory.
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Let us give a definition that is equivalent to one appeared in [1] (or [2] and [26]): for a relation
R Ď X1 ˆ . . . ˆ Xn, the extended relation R˚ Ď ββX1 ˆ . . . ˆ ββXn is defined by letting

R˚pu1, . . . , unq iff

p@A1 P u1q . . . p@An P unqpDx1 P A1q . . . pDxn P Anq Rpx1, . . . , xnq.

Another type of ultrafilter extensions of n-ary relations has been recently discovered in [3, 4]:

rRpu1, . . . , unq iff 
x1 P X1 : . . . txn P Xn : Rpx1, . . . , xnq P Au P un . . .

(
P u1,

or rewritting this via ultrafilter quantifiers,

rRpu1, . . . , unq iff p@ u1x1q . . . p@ unxnq Rpx1, . . . , xnq.

By decoding ultrafilter quantifiers, this also can be rewritten by

rRpu1, . . . , unq iff

p@A1 P u1qpDx1 P A1q . . . p@An P unqpDxn P Anq Rpx1, . . . , xnq,

whence it is clear that
rR Ď R˚.

If R is a unary relation, both extensions, rR and R˚, coincide with the basic open set given by R

(and with clββXR, the closure of R in the space ββX). If a binary relation R is functional, then R˚

(but not rR) coincides with the above-defined extension of R as a unary map; this fact does not
for relations of bigger arities. An easy instance of the r -extensions, where R are linear orders,
was studied in [27].

A systematic comparative study of both extensions (for binary R) is undertaken in [6]. In
particular, there is shown that the ˚ - and the r -extensions have a dual character w.r.t. relation-
algebraic operations: the ˚ -extension commutes with composition and inversion but not Boolean
operations except for union, while the r -extension commutes with all Boolean operations but
neither composition nor inversion. Also [6] provides topological characterizations of rR and R˚ in
terms of appropriate closure operations and in terms of Vietoris-type topologies (regarding R as
multi-valued maps).

Ultrafilter extensions of models. Ultrafilter extensions of arbitrary first-order models were
defined and studied for the first time independently in [1] and in [3] with two distinct versions of
extended relations: Goranko considered models with the ˚ -extensions of relations and Saveliev
with their r -extensions. Here we shall consider both types of extensions; for a given model A
denote them by A˚ and ĂA , respectively.1 Thus for an arbitrary model A “ pX,F, . . . , R, . . .q we
let

A˚ “
`
ββX, rF , . . . , R˚, . . .

˘
and ĂA “

`
ββX, rF , . . . , rR, . . .

˘
.

Since for any relation R we have rR Ď R˚, the following observation is obvious:

1 Another notation was used in [1] where A˚ was denoted by UpAq and in [3, 4, 28] where ĂA was denoted
by ββ A.
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Theorem 1. For any model A with the universe X the identity map on ββX is a homomorphism
of ĂA onto A˚:

ĂA id // A˚

A

__❄❄❄❄❄❄❄❄

??⑦⑦⑦⑦⑦⑦⑦⑦

The following theorem has been appeared in [3] and called the First Extension Theorem in [4]:

Theorem 2. Let A and B be two models in the same signature. If h is a homomorphism between
A and B, then the continuous extension rh is a homomorphism between ĂA and ĂB :

ĂA rh //❴❴❴❴❴❴ ĂB

A
h //

OO

B

OO

Theorem 2 on the r -extensions is a precise counterpart of Theorem 3 on the ˚ -extensions,
a principal result of [1]:

Theorem 3. Let A and B be two models in the same signature. If h is a homomorphism between
A and B, then the continuous extension rh is a homomorphism between A˚ and B˚:

A˚ rh //❴❴❴❴❴❴ B˚

A
h //

OO

B

OO

Moreover, both theorems remain true for isomorphic embeddings and some other model-
theoretic interrelations (see [1, 3, 4]). It was shown in [28] that Theorem 2 does not hold for
elementary embeddings, moreover, the ultrafilter extensions of a model and an its elementary
submodel can be even non-elementarily equivalent.

Theorem 2 is actually a partial case of a much stronger result of [3], called the Second
Extension Theorem in [4]. To formulate this, we need the following concepts introduced in [3].

Let X1, . . . ,Xn, Y be topological spaces, and let A1 Ď X1, . . . , An´1 Ď Xn´1. An n-ary
function F : X1 ˆ . . . ˆ Xn Ñ Y is right continuous w.r.t. A1, . . . , An´1 iff for each i, 1 ď i ď n,
and every a1 P A1, . . . , ai´1 P Ai´1 and xi`1 P Xi`1, . . . , xn P Xn, the unary map

x ÞÑ F pa1, . . . , ai´1, x, xi`1, . . . , xnq

of Xi into Y is continuous. An n-ary relation R Ď X1 ˆ . . .ˆXn is right open (right closed , right
clopen, etc.) w.r.t. A1, . . . , An´1 iff for each i, 1 ď i ď n, and every a1 P A1, . . . , ai´1 P Ai´1 and
xi`1 P Xi`1, . . . , xn P Xn, the set

 
x P Xi : Rpa1, . . . , ai´1, x, xi`1, . . . , xnq

(

is open (closed, clopen, etc.) in Xi.
Theorem 4 ([3, 4]) describes topological properties of the r -extensions and serves as a base of

Theorem 5, the Second Extension Theorem of [4]. (A very partial case of the latter theorem, in
which the models under consideration are semigroups, has been appeared in [29], Theorem 4.5.3.)
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Theorem 4. Let A be a model. In the extension ĂA , all operations are right continuous and all
relations right clopen w.r.t. the universe of A.

Theorem 5. Let A and C be two models in the same signature, h a homomorphism of A into C,
and let C be endowed with a compact Hausdorff topology in which all operations are right contin-
uous, and all relations are right closed, w.r.t. the image of the universe of A under h. Then rh is
a homomorphism of ĂA into C:

ĂA
rh

&&▼
▼

▼▼▼▼
▼

A

OO

h // C

Theorem 2 (for homomorphisms) easily follows: take ĂB as such a C. The main meaning of
Theorem 5 is that it generalizes the mentioned classical Čech–Stone result to the case when the
underlying discrete space X carries an arbitrary first-order structure.

A natural question is whether the ˚ -extensions are also canonical in a similar sense. The
answer is positive; two following theorems are counterparts of Theorems 4 and 5, respectively
(essentially both have been proved in [6]). Recall that a set is regular closed iff it is the closure
of an open set.

Theorem 6. Let A be a model. In the extension A˚, all relations are regular closed, namely, the
closures of the relations in A (while all operations are right continuous w.r.t. the universe of A
as before).

Theorem 7. Let A and C be two models in the same signature, h a homomorphism of A into C,
and let C be endowed with a compact Hausdorff topology in which all operations are right con-
tinuous w.r.t. the image of the universe of A under h, and all relations are closed. Then rh is
a homomorphism of A˚ into C.

A˚

rh

''❖
❖❖❖❖❖❖

A

OO

h // C

Similarly, Theorem 3 (for homomorphisms) follows from Theorem 7. The latter also gener-
alizes the Čech–Stone result for discrete spaces to discrete models but with a narrow class of
target models C: having relations rather closed than right closed in Theorem 5. In the sequel,
we shall refer to Theorems 2 and 3 as the First Extension Theorems, and to stronger Theorems
5 and 7 as the Second Extension Theorems, for the ˚ - and r -types of ultrafilter extensions, re-
spectively. Let us point out that in all these extension theorems the converse implication “if rh is
a homomorphism of an ultrafilter extension A1 then h is a homomorphism of A ” is also true but
trivial since A is a submodel of A. We note also that the Second Extension Theorems are based
on an “abstract extension theorem” describing certain conditions on models, their submodels,
homomorphisms, and topological properties, under which such a homomorphism lifts from such
a submodel to the whole model. The theorem will be used in our paper, too; we shall formulate
it later on (Theorem 45).

We end this introductory section with topological characterizations of both types of ultrafilter
extensions of relations and ultrafilter extensions of maps into discrete spaces and into compact
Hausdorff spaces.
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Theorem 8. Let X1, . . . ,Xn, Y be discrete spaces, Z a compact Hausdorff space, and let the sets
ββX1, . . . , ββXn, Y be endowed with the standard topology on ultrafilters, and ββX1 ˆ . . .ˆββXn with
the usual product topology. Then

(i) Q Ď ββX1ˆ. . .ˆββXn is rR for some R Ď X1ˆ. . .ˆXn iff Q is right clopen w.r.t. X1, . . . ,Xn´1;

(ii) Q Ď ββX1 ˆ . . . ˆ ββXn is R˚ for some R Ď X1 ˆ . . . ˆ Xn iff Q is regular closed;

(iii) G : ββX1 ˆ . . . ˆ ββXn Ñ ββY is rF for some F : X1 ˆ . . . ˆ Xn Ñ Y iff G is right continuous
and right open w.r.t. X1, . . . ,Xn´1;

(iv) G : ββX1 ˆ . . . ˆ ββXn Ñ Z is rH for some H : X1 ˆ . . . ˆ Xn Ñ Z iff G is right continuous
w.r.t. X1, . . . ,Xn´1.

Moreover, all the four extension operations: R ÞÑ rR, R ÞÑ R˚, F ÞÑ rF , H ÞÑ rH, are bijections.

This theorem shows that Theorems 4 and 6 in fact characterize the ˚ - and r -extensions via
their topological properties (and the same will follow from Theorems 28 and 29 later).

The subsequent text is organized as follows.
In Section 2, we develop a topological technique that allows us to define an ultrafilter extension

of the procedure of ultrafilter extension itself. This concept is crucial for our article. Based on it,
we provide a uniform approach to both types of ultrafilter extensions of relations (Theorem 15),
and furthermore, in Section 3, we define an ultrafilter interpretation of first-order syntax, under
which functional and relational symbols are interpreted rather by ultrafilters over sets of functions
and relations than by their elements. We define generalized models using ultrafilter evaluations
of variables and ultrafilter interpretations and an appropriate semantic for them. We provide two
specific operations, e and E, which turn generalized models into ordinary ones, establish necessary
and sufficient conditions under which the latter are two canonical ultrafilter extensions of some
ordinary models (Theorem 28), and give a topological characterization of generalized models
(Theorem 29). Defining a natural concept of homomorphisms between generalized models, we
establish the First Extension Theorem for generalized models (Theorem 32) and a stronger variant
of it (Theorem 33).

In Section 4, we define an even wider concept of generalized models together with their
semantic based on limits of ultrafilters, and show that this new concept absorbs the ordinary
concept of models with the usual semantic (Theorem 34) as well as our previous concept of
generalized models with their semantic (Theorem 35). We provide two more specific operations,
i and I, which turn generalized models in the narrow sense into ones in the wide sense, show
how they relate to the operations e and E via their limits in appropriate topologies (Theorems
37 and 43), and establish necessary and sufficient conditions under which generalized models
in the wide sense are the images of ones in the narrow sense under i and I, and also are two
canonical ultrafilter extensions of some ordinary models (Theorems 39 and 44). Finally, we
define homomorphisms between generalized models in the wide sense, and establish for them an
“abstract extension theorem” (Theorem 46) and two Second Extension Theorems (Theorems 48
and 50). In Section 5, we conclude the article by posing some problems and tasks.

A part of the results mentioned in Sections 1–3 was announced in [7]; here we provide complete
proofs of all our results.2

2In [7], it was erroneously stated that the set of right continuous maps forms a compact Hausdorff space w.r.t. the
pointwise convergence topology; actually, the intended topology was a restricted pointwise convergence topology,
as explained in details below.
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2. Extending the ultrafilter extension procedure

A purpose of this section is to provide a uniform approach to both types of ultrafilter extensions:
the smaller r -extensions and larger ˚ -extensions. For this, we shall develop some ideas and
machinery which will lead us in the next section to certain structures, called there generalized
models, generalizing ultrafilter extensions of each of the two types.

We shall give an alternative description of the ˚ -extension of relations in terms of the basic
(cl)open sets and the continuous extension of maps. The crucial idea is to consider continuous
extension of the procedure of ultrafilter extension itself, i.e. a self-application of the procedure.
Let us clarify what is the idea precisely. For simplicity, consider firstly unary maps, for which
the ultrafilter extensions are just the continuous extensions. To make the notation easier, let
us denote the operation of continuous extension of maps by ext; i.e. extpfq is another notation
for rf :

extpfq “ rf .
So if we consider (unary) maps of X into Y , then ext is a map of Y X into CpββX, ββY q, the set
of all continuous functions of ββX into ββY . If CpββX, ββY q would be endowed with some compact
Hausdorff topology, then we could extend the map ext to a (unique) continuous map Ăext of ββpY Xq
into CpββX, ββY q:

ββ
`
Y X

˘

Ąext

))❘❘❘❘❘❘❘❘

Y X

OO

ext // CpββX, ββY q

We are going to show that such a topology on CpββX, ββY q exists, and in fact, is a weaker version
of the pointwise convergence topology (while the standard full version of the topology is not
compact, as explained in the first remark after Lemma 12). Furthermore, as we shall see, the
same approach will work in the case of n-ary maps (and relations, which can be reduced to maps).

Restricted pointwise convergence topology. Let X and Y be topological spaces and A Ď X.
Define a topology on the set Y X of all maps of X into Y by letting the family of sets Oa,B “
tf P Y X : fpaq P Bu for all a P A and all B Ď Y which are open in Y , as an open subbase.
We shall call it the A-pointwise convergence topology. Clearly, if A “ X then it is the usual
pointwise convergence topology, which, as well-known (see e.g. [12]), coincides with the standard
(Tychonoff) product topology.

If we consider Y X1ˆ...ˆXn as the set of n-ary maps, and choose subsets A1 Ď X1, . . . , An Ď Xn,
the topology with an open subbase consisting of sets

Oa1,...,an,B “
 
f P Y X1ˆ...ˆXn : fpa1, . . . , anq P B

(

for all a1 P A1, . . . , an P An and all B Ď Y which are open in Y , will be called the pA1, . . . , Anq-
pointwise convergence topology. Although it is the same that the set of unary maps of X1 ˆ . . .ˆ
Xn into Y endowed with the A1 ˆ . . . ˆ An-pointwise convergence topology, we shall use this
terminology to emphasize when we shall say about n-ary maps.

Let 1 ď i ď j ď n. For any f : X1ˆ. . .ˆXn Ñ Y , a P X1ˆ. . .ˆXi´1, and u P Xj`1ˆ. . .ˆXn,
the map

fu

a : Xi ˆ . . . ˆ Xj Ñ Y

is defined by letting
fu

a px1, . . . , xj´i`1q “ fpa, x1, . . . , xj´i`1,uq
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for all x1 P X1, . . . , xj´i`1 P Xj´i`1. We omit the sub- and superscripts whenever the sequences
a and u respectively are empty.

Let cur be the currying (or evaluation) map taking any f : X1 ˆ . . . ˆ Xn Ñ Y with n ě 2
to the map curpfq : Xn Ñ Y X1ˆ...ˆXn´1 such that

curpfqpxq “ fx.

(A more precise term would be the right currying but we prefer the shorter one.) Clearly, the
map cur is bijective.

Let for any positive n ă ω, topological spaces X1, . . . ,Xn, Y , and sets A1 Ď X1, . . . , An´1 Ď
Xn´1,

RCA1,...,An´1
pX1, . . . ,Xn, Y q

denote the set of n-ary maps f : X1 ˆ . . .ˆXn Ñ Y that are right continuous w.r.t. A1, . . . , An´1,
which we consider with the topology of pA1, . . . , Anq-pointwise convergence.

Lemma 9. If f P RCA1,...,An´1
pX1, . . . ,Xn, Y q then

curpfq P C
`
Xn, RCA1,...,An´2

pX1, . . . ,Xn´1, Y q
˘
.

Proof. By definition of currying, curpfq maps Xn into RCA1,...,An´2
pX1, . . . ,Xn´1, Y q. Let us

verify that it is continuous. Pick any a P X1 ˆ . . . ˆ Xn´1, open set B in Y , and consider
the subbasic open set Oa,B “ th P RCA1,...,An´2

pX1, . . . ,Xn´1, Y q : hpaq P Bu in the space
RCA1,...,An´1

pX1, . . . ,Xn, Y q. We have:

curpfqpuq P Oa,B iff curpfqpuqpaq P B iff fapuq P B.

The set curpfq´1pOa,Bq “ pfaq´1pBq is open since the map fa is continuous.

Lemma 10. For any positive n ă ω, topological spaces X1, . . . ,Xn, their dense subsets D1 Ď
X1, . . . ,Dn Ď Xn, and Hausdorff space Y ,

(i) if maps f, g P RCD1,...,Dn´1
pX1, . . . ,Xn, Y q coincide on D1 ˆ . . . ˆ Dn, then they coincide

everywhere,

(ii) the space RCD1,...,Dn´1
pX1, . . . ,Xn, Y q endowed with the pD1, . . . ,Dn´1q-pointwise conver-

gence topology, is Hausdorff.

Proof. For brevity, let us denote the space RCD1,...,Dk´1
pX1 . . . ,Xk, Y q by RCk. We argue by

induction on n. For induction basis, see [12], Theorem 2.1.9. Assume we have already proven
the claim for n “ k. Let us prove this for n “ k ` 1.

Let maps f, g P RCk`1 coincide on D1 ˆ . . .ˆDk`1. Then for each a P Dk`1 the maps fa and
ga coincide on D1 ˆ . . . ˆ Dk and are right continuous w.r.t. the Di. By induction hypothesis,
fa “ ga. Hence, the maps curpfq, curpgq : Xk`1 Ñ RCk coincide on Dk`1. By Lemma 9,
the maps are continuous, while by induction hypothesis the space RCk is Hausdorff. Hence,
curpfq “ curpgq again by [12], Theorem 2.1.9. Therefore, f “ g since cur is bijective.

Furthermore, this shows that the space RCk`1 is Hausdorff. Indeed, let f, g P RCk`1 and
f ‰ g. Then, by the just proven fact, fpaq ‰ gpaq for some a P D1 ˆ . . . ˆ Dk`1. Since Y is
Hausdorff, pick any disjoint open neighborhoods A,B Ď Y of fpaq and gpaq. Then the sets
F “ th P RCk`1 : hpaq P Au and G “ th P RCk`1 : hpaq P Bu are disjoint open neighborhoods
of f P F and g P G.
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Lemma 11. Let X1, . . . ,Xn be discrete spaces and Y a compact Hausdorff space. The set

RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q

of n-ary maps of ββX1ˆ. . .ˆββXn into Y which are right continuous w.r.t. X1, . . . ,Xn´1, endowed
with the pX1, . . . ,Xnq-pointwise convergence topology, is homeomorphic to the space Y X1ˆ...ˆXn

endowed with the usual pointwise convergence topology. Therefore, the space is compact Hausdorff;
moreover, it is zero-dimensional iff so is Y .

Proof. Let us verify that the map ext, which takes each n-ary f in Y X1ˆ...ˆXn to its extension
extpfq “ rf in RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q, is a homeomorphism. The fact that ext is injective
is trivial, and that ext is surjective follows from Lemma 10 (since each Xi is dense in ββXi and
Y is Hausdorff): whenever g P RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q and f “ g æ pX1 ˆ . . . ˆ Xnq,

then rf “ g. Finally, the fact that it preserves in both directions open sets belonging to the
subbases of the spaces, is immediate by the definition of the pX1, . . . ,Xnq-pointwise convergence
topology. Therefore, the space is homeomorphic to the usual product space of Y , hence, by the
Tychonoff theorem, is compact Hausdorff, and moreover, the zero-dimensionality iff so is Y (see
e.g. [12]).

Lemma 12. Let X1, . . . ,Xn be discrete spaces, Y a compact Hausdorff space, and S Ď Y dense
in Y . Then the set

 rf : f P SX1ˆ...ˆXn
(
is dense in the space RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q
endowed with the pX1, . . . ,Xnq-pointwise convergence topology.

Proof. Let k ă ω, pick for all i ă k arbitrary ai P X1 ˆ . . .ˆXn and Bi Ď Y open in Y , and show
that, whenever the basic open set

Ş
iăk Oai,Bi

is nonempty, then it contains a point rf for some
f P SX1ˆ...ˆXn . Note that if some of the ai coincide, say, ai “ aj for all i, j P A and some A Ď k,
then

Ş
iPABi is nonempty whenever so is

Ş
iăk Oai,Bi

. So we can assume w.l.g. that all the ai

are distinct. Then any f P SX1ˆ...ˆXn satisfying fpaiq P Bi X S for all i ă k, is as required.

Question. Does this remain true, moreover, for the full pointwise convergence topology? The
answer is affirmative for unary maps, i.e. the set t rf : f P SXu is dense in CpββX, Y q. What
happens for binary maps? (Problem 1 in Section 5.)

Remarks. One may ask whether the usual (unrestricted) pointwise convergence topology on the
set RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q is compact, or equivalently, whether the set forms a closed
subspace of the compact Hausdorff space Y ββX1ˆ...ˆββXn with the Tychonoff product topology.
If this would be the case, we could use this more standard topology for our purpose. Let us show
that the answer is in the negative, even for unary maps.

1. The set CpββX, ββY q endowed with the pointwise convergence topology is not compact.
It suffices to verify that for an arbitrary map h : ββX Ñ ββY there exists an ultrafilter f

over CpββX, ββY q converging to h (to recall related facts the reader can look at the beginning of
Section 4). Since w can be discontinuous, this will show that CpββX, ββY q is not closed in ββY ββX .
Consider the family

F “
 
O

u, rS : u P ββX and hpuq P rS
(

“
 

tf P CpββX, ββY q : S P fpuqu : u P ββX and S P hpuq
(
.

Let us check that F is centered. It suffices to show that for any positive n P ω, ultrafilters
u0, . . . , un´1 over X, and non-empty subsets S0, . . . , Sn´1 of X, there exists a map f P CpββX, ββY q
satisfying

S0 P fpu0q, . . . , Sn´1 P fpun´1q.
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To see, pick arbitrary pairwise disjunct sets A0, . . . , An´1 such that A0 P u0, . . . , An´1 P un´1,

elements s0 P S0, . . . , sn´1 P Sn´1, and consider a map g : X Ñ Y such that gpxq “ si whenever
x P Ai, i ă n, and gpxq “ y, where y is a fixed element of Y , otherwise. (Actually, g on the set
XzpA0 Y . . . Y An´1q could be defined arbitrarily.) Let f “ rg, so f P CpββX, ββY q. For each i ă n

we have Ai Ď g´1pSiq and Ai P ui, therefore, g
´1pSiq P ui, and so, Si P rgpuiq “ fpuiq. Thus the

map f witnesses that the family F is centered.
Now extend F to an ultrafilter f P ββ CpββX, ββY q. It is clear that f converges to the map h, as

required.
2. Since we know that CpββX, ββY q with theX-pointwise convergence topology is compact while

with the (full) pointwise convergence topology is not, we may ask what is the map f P CpββX, ββY q
such that the ultrafilter f defined above converges to f in the weaker (restricted) topology. It

is not difficult to show that f “ ĆhæX . Note that pββY qββX with the X-pointwise convergence
topology is compact (since it is compact even with the stronger pointwise convergence topology).
The map r of this compact space onto its compact subspace CpββX, ββY q, defined by letting for
all h P pββY qββX

rphq “ ĆhæX

is a natural retraction. However, pββY qββX with the X-pointwise convergence topology is not
Hausdorff nor even a T0-space since, whenever h P pββY qββX is discontinuous, then the points h and
rphq are distinct but have the same neighborhoods (it suffices to consider subbasic neighborhoods,
and for any a P X and open B Ď ββY we have h P Oa,B iff rphq P Oa,B).

3. These observations hold in a general setting, for n-ary maps into any compact Hausdorff
space Y : the full pointwise convergence topology on RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q is not com-
pact, while the pββX1, . . . , ββXnq-pointwise convergence topology on Y ββX1ˆ...ˆββXn is compact but
not T0, and the map r defined by letting for all h P Y ββX1ˆ...ˆββXn

rphq “ extphæpX1 ˆ . . . ˆ Xnqq

is a natural retraction of Y ββX1ˆ...ˆββXn onto RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q.

Self-application of the extension operation. Now we are ready to define the continuous
extension Ăext of the map ext in a general form. LetX1, . . . ,Xn be discrete spaces and Y a compact
Hausdorff space. Recall that for any n-ary map f ofX1ˆ. . .ˆXn into Y , extpfq is rf , the extension
of f to ultrafilters which is right continuous w.r.t. principal ultrafilters:

ext : ββpY X1ˆ...ˆXnq Ñ RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q.

By Lemma 11, the set RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q endowed with the pX1, . . . ,Xnq-pointwise

convergence topology is a compact Hausdorff space. Therefore, ext extends to a unique continuous
map Ăext on ultrafilters over the set Y X1ˆ...ˆXn :

ββ
`
Y X1ˆ...ˆXn

˘

Ąext

''◆
◆

◆
◆

◆
◆

◆

Y X1ˆ...ˆXn

OO

ext // RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q

Remark. Alternatively, we can first define Ăext on ultrafilters over the set of unary maps and then
extend it to Ăext on ultrafilters over the set of n-ary maps by induction on n by using currying.

For this, we first note that the one-to-one correspondence between the sets Y X1ˆ...ˆXnˆXn`1

and pY X1ˆ...ˆXnqXn`1 given by cur induces the one-to-one correspondence between the sets of
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ultrafilters over them, which takes each ultrafilter f P ββpY X1ˆ...ˆXnˆXn`1q to the ultrafilter f 1 “
tcur“A : A P fu P ββppY X1ˆ...ˆXnqXn`1q. Or else, f 1 can be defined via the continuous extension
of currying:

ββ
`
Y X1ˆ...ˆXn`1

˘ Ącur //❴❴❴ ββ
``
Y X1ˆ...ˆXn

˘Xn`1
˘

Y X1ˆ...ˆXn`1

OO

cur //
`
Y X1ˆ...ˆXn

˘Xn`1

OO

Since cur is a bijection, it is easily follows that so is Ăcur, and for all f P ββpY X1ˆ...ˆXnˆXn`1q we
have Ăcurpfq “ f 1.

Now, for n “ 1, we extend ext : Y X Ñ CpββX, Y q to Ăext : ββpY Xq Ñ CpββX, Y q. And assuming
that Ăext has been already defined for n, we can define Ăextpfq by letting

Ăextpfqpu1, . . . , un, un`1q “ Ăext
`Ăextpf 1qpun`1q

˘
pu1, . . . , unq

since Ăext has been already defined on f 1 and Ăextpf 1qpun`1q by induction hypothesis.

Question. One can offer another, alternative way to extend the ultrafilter extension procedure
by considering it as the map not into the space of right continuous maps but into set of all maps
with the usual product topology. Thus for any discrete X1, . . . ,Xn and compact Hausdorff Y , let
ext be a map of the discrete space Y X1ˆ...ˆXn into Y ββX1ˆ...ˆββXn endowed with the usual product
topology (or equivalently, the usual, unrestricted pointwise convergence topology). As the range
is a compact Hausdorff space, the map ext continuously extends to Ăext (in the new sense):

ββ
`
Y X1ˆ...ˆXn

˘

Ąext

''❖
❖

❖
❖

❖
❖

❖

Y X1ˆ...ˆXn

OO

ext // Y ββX1ˆ...ˆββXn

Unlike the previous construction, now some ultrafilters f P ββpY X1ˆ...ˆXnq are mapped into maps
Ăextpfq P Y ββX1ˆ...ˆββXn that no longer are right continuous w.r.t. principal ultrafilters (as explained
in the remarks above). However, these maps Ăextpfq are still close to those: any neighborhood of
Ăextpfq contains some right continuous map; this is because

Ăext“ ββ
`
Y X1ˆ...ˆXn

˘
“ clY ββX1ˆ...ˆββXn

`
ext“ Y X1ˆ...ˆXn

˘
.

Is this version of Ăext surjective? This is the case iff the image of ext is dense in the space; see
the question after Lemma 12.

Can this version of Ăext lead to some interesting possibilities? (Problem 2 in Section 5.)

Lemma 13. For any positive n ă ω, discrete spaces X1, . . . ,Xn, and compact Hausdorff space Y ,
the continuous map Ăext of the space ββpY X1ˆ...ˆXnq into the space RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q
is surjective and, whenever at least one of the Xi is infinite, non-injective.

Proof. To simplify the notation, let RC denote the space RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q endowed

with the pX1, . . . ,Xnq-pointwise convergence topology. Pick any f P RC, let

Z “
 

pa, Bq : a P X1 ˆ . . . ˆ Xn , B is open in Y, and fpaq P B
(
,

and consider the following family F of subsets of Y X1ˆ...ˆXn :

F “
  

g P Y X1ˆ...ˆXn : gpaq P B
(
: pa, Bq P Z

(
.
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The family F is centered; this can be stated by arguments similar to those in the first remark
after Lemma 12. We are going to prove the following key property of the family F :

Ăextpfq “ f for all f P ββ
`
Y X1ˆ...ˆXn

˘
such that F Ď f.

The lemma will be deduced from this property: since the argument works for all f P RC, the
property shows that Ăext is surjective; and that Ăext is non-injective will be shown once two distinct
such ultrafilters f 1, f 2 will be constructed.

Let us verify the following equality:
č

APF

clRC

 
rg : g P A

(
“ tfu.

First note that by Lemma 12, for every A “ tg P Y X1ˆ...ˆXn : gpaq P Bu in F we have

clRCtrg : g P Au “ clRCth P RC : hpaq P Bu.

Therefore,
f P

č

APF

clRCtrg : g P Au.

Next, toward a contradiction, assume that there exists f 1 P RC such that f 1 ‰ f and f 1 PŞ
APF clRCtrg : g P Au. By Lemma 10, there exists b P X1 ˆ . . . ˆ Xn such that fpbq ‰ f 1pbq.

As Y is Hausdorff, pick disjoint open neighborhoods U and U 1 of the points fpbq and f 1pbq,
respectively. We have:

č

APF

clRCtrg : g P Au “
č

pa,BqPZ

clRCth P RC : hpaq P Bu

Ď clRC

 
h P RC : hpbq P U

(

Ď clRC

 
h P RC : hpbq P Y zU 1

(
“

 
h P RC : hpbq P Y zU 1

(
,

(where the last equality holds since the set th P RC : hpbq P Y zU 1u is the complement in RC of
the subbasic open set th P RC : hpbq P U 1u “ Ob,U 1). Therefore,

f 1 R
č

APF

clRCtrg : g P Au,

a contradiction. Thus we have verified that the equality is true.
Now the required key property of the family F , i.e. that we have Ăextpfq “ f whenever f Ě F ,

is clearly follows from this equality. As observed above, this property immediately implies that
Ăext is surjective; and to show that Ăext is also non-injective, it remains to construct two distinct
ultrafilters f 1, f 2 Ě F .

Pick a family tBa : a P X1 ˆ . . . ˆ Xnu of subsets of Y such that Ba ‰ Y and fpaq P Ba for
all a P X1 ˆ . . . ˆ Xn. The families

F 1 “ F Y
  

g P Y X1ˆ...ˆXn : p@a P X1 ˆ . . . ˆ Xnq gpaq P Ba

((
,

F 2 “ F Y
  

g P Y X1ˆ...ˆXn : pDa P X1 ˆ . . . ˆ Xnq gpaq R Ba

((

are both centered (the fact that F 2 is centered uses that one of the Xi is infinite). We extend
them to two (automatically distinct) ultrafilters f 1 and f 2, respectively. By the key property
of F , we obtain

Ăextpf 1q “ Ăextpf 2q “ f,
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thus showing that Ăext is not injective. Note also that, since f P RC was choosen arbitrary, we
have established a bit more: the preimage of each point in RC under the map Ăext consists of
more than one point.

The lemma is proved.

Lemma 14. Let X1, . . . ,Xn be discrete spaces, Y a compact Hausdorff space, S Ď Y , and
R Ď SX1ˆ...ˆXn . Then Ăext maps the closure of R in the space ββpSX1ˆ...ˆXnq onto the closure of R
in the space RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q endowed with the pX1, . . . ,Xnq-pointwise convergence
topology:

Ăext“ clββpSX1ˆ...ˆXnqR “ clRCX1,...,Xn´1
pββX1,...,ββXn,Y q ext“R.

Proof. Again, to simplify notation, we temporarily let:

Z “ ββ
`
SX1ˆ...ˆXn

˘
,

RC “ RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q.

We consider Z with the standard topology on the space of ultrafilters, so it actually does not
depend on the topology on S as a subspace of Y . The fact that Y is compact Hausdorff is used
only to get the same properties of the topology on RC, which are essential to extend ext to Ăext.

To prove the inclusion
Ăext“ clZ R Ď clRC ext“R,

recall that by the general definition of continuous extensions of unary maps, for any f P Z we
have tĂextpfqu “

Ş
APf clRC ext“A. Therefore,

Ăext“ clZR “
 Ăextpfq : f P clZR

(
“

ď

fPclZR

č

APf

clRC ext“A.

But for any f P clZR we have R P f and hence
Ş

APf clRC ext“A Ď clRC ext“R, whence it follows

ď

fPclZR

č

APf

clRC ext“A Ď clRC ext“R,

which gives the required inclusion.
To prove the converse inclusion

clRC ext“R Ď Ăext“ clZR,

note that clRC
Ăext“R Ď Ăext“ clZR since the map Ăext : Z Ñ RC is closed as a continuous map

of a compact space into a Hausdorff space (see e.g. [12], Corollary 3.1.11), and that Ăext“R “
ext“R since R consists of principal ultrafilters over the set SX1ˆ...ˆXn (under our customary
identification of elements with principal ultrafilters given by them).

The lemma is proved.

Now we are ready to give the promised alternative description of the ˚ -extension of relations.
For simplicity, we formulate it only for the case when X1 “ . . . “ Xn “ X; nevertheless, this
formulation does not lose generality since for given Xi we can take their union as such an X.

Theorem 15. Let R Ď X ˆ . . . ˆ X be any n-ary relation on a set X. Then its extension
R˚ Ď ββX ˆ . . .ˆββX is (identified with) the image under Ăext of the basic set rR in the space ββpXnq
where R is considered as a unary relation on Xn:

R˚ “
 Ăextprq : R P r

(
“ Ăext“ rR.
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Proof. By Theorem 6, R˚ “ clββXˆ...ˆββXR. As usual, the product space ββX ˆ . . .ˆββX (n times)
is identified with pββXqn, so up to this identification we can let

R˚ “ clpββXqnR.

We are going to use Lemma 14 by choosing appropriate discrete X1, . . . ,Xm, a compact Haus-
dorff Y , and S Ď Y . Let m “ 1, let the space X1 be n with the discrete topology, so
ββX1 “ X1 “ n, let the space Y be ββX with the standard topology on the space of ultrafil-
ters, and let S be X, so we have:

ββ
`
SX1

˘
“ ββpXnq and CpX1, Y q “ pββXqn

(clearly, theX1-pointwise convergence topology on the latter set is the same that the full pointwise
convergence topology). Now Lemma 14 gives us

Ăext“ clββpXnqR “ clpββXqn ext“R.

But clββpXnqR “ rR where R is considered as a unary relation on Xn (recall that if Z is discrete

and A Ď Z, then the basic open set rA equals the closure clZA), and furthermore, ext“R “ R

(since rf “ f for all f P Y n as ββ n “ n). Putting all this together, we obtain:

R˚ “ clpββXqnR “ clpββXqn ext“R “ Ăext“ clββpXnqR “ Ăext“ rR,

as required.

Although this characterization of the ˚-extensions of relations is not simpler than one given by
Theorem 6, its interest lies in a connection of these larger extensions with the smaller r-extensions
of relations (by using also continuous extensions of maps). Other interrelations between the r-
and ˚-extensions of relations are established via Vietoris-type topologies in [6].

3. Ultrafilter interpretations

In this section, we define our main concepts: ultrafilter interpretations (of functional and rela-
tional symbols) and generalized models (involving ultrafilter evaluations and ultrafilter interpreta-
tions) together with their semantic. Then we provide two specific operations turning generalized
models into ordinary ones, establish necessary and sufficient conditions under which the latter
are two canonical ultrafilter extensions of some ordinary models, and give a topological charac-
terization of generalized models. Finally, we define homomorphisms of generalized models and
prove for them a version of the First Extension Theorem and an its refinement.

Generalized models. Using ultrafilters over maps in our previous considerations leads us to the
following concept. Given a signature, we define an ultrafilter (or generalized) interpretation as
a map ı that takes each n-ary functional symbol F to an ultrafilter over the set of n-ary operations
on X, and each n-ary predicate symbol R to an ultrafilter over the set of n-ary relations on X;
let also v be an ultrafilter valuation of variables, i.e. a valuation which takes each variable x to
an ultrafilter over a given set X:

vpxq P ββX, ıpF q P ββpXXˆ...ˆXq, ıpRq P ββ PpX ˆ . . . ˆ Xq.

We refer to the set pββX, ıpF q, . . . , ıpRq, . . .q as a generalized model . Now we are going to define
an appropriate satisfiability relation between generalized models and first-order formulas, which
we will denote by the symbol ( .
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First, given an interpretation ı of non-logical symbols, we expand any valuation v of variables
to the map vı defined on all terms as follows. Let app : X1 ˆ . . . ˆ Xn ˆ Y X1ˆ...ˆXn Ñ Y be the
application operation:

apppa1, . . . , an, fq “ fpa1, . . . , anq.

Extend it to the map Ąapp : ββX1 ˆ . . . ˆ ββXn ˆ ββpY X1ˆ...ˆXnq Ñ ββY right continuous w.r.t. the
principal ultrafilters, in the usual way:

ββX1 ˆ . . . ˆ ββXn ˆ ββpY X1ˆ...ˆXnq
Ąapp //❴❴❴ ββY

X1 ˆ . . . ˆ Xn ˆ Y X1ˆ...ˆXn

OO

app // Y

OO

Let vı coincide with v on variables, and if vı has been already defined on terms t1, . . . , tn, we let

vıpF pt1, . . . , tnqq “ Ąapppvıpt1q, . . . , vıptnq, ıpF qq.

Remark. We can consider, more generally, for any compact Hausdorff space Y the extension
Ąapp : ββX1 ˆ . . . ˆ ββXn ˆ ββpY X1ˆ...ˆXnq Ñ Y right continuous w.r.t. the principal ultrafilters:

ββX1 ˆ . . . ˆ ββXn ˆ ββpY X1ˆ...ˆXnq
Ąapp

**❯❯❯❯❯❯❯❯❯❯❯

X1 ˆ . . . ˆ Xn ˆ Y X1ˆ...ˆXn

OO

app // Y

though this is redundant for our immediate purposes.

Further, given a generalized model A “ pββX, ıpF q, . . . , ıpRq, . . .q, define the satisfiability in A

as follows. Let in Ď X1 ˆ . . . ˆ Xn ˆ PpX1 ˆ . . . ˆ Xnq be the membership predicate:

in pa1, . . . , an, Rq iff pa1, . . . , anq P R.

Extend it to the relation Ăin Ď ββX1 ˆ . . .ˆββXn ˆββ PpX1 ˆ . . .ˆXnq right clopen w.r.t. principal
ultrafilters. Let

A ( t1 “ t2 rvs iff vıpt1q “ vıpt2q.

If Rpt1, . . . , tnq is an atomic formula in which R is not the equality predicate, we let

A ( Rpt1, . . . , tnq rvs iff Ăin pvıpt1q, . . . , vıptnq, ıpP qq.

(Equivalently, we could define the satisfiability of atomic formulas by identifying predicates with
their characteristic functions and using the satisfiability of equalities of the resulting terms.)
Finally, if ϕpt1, . . . , tnq is obtained by negation, conjunction, or quantification from formulas for
which ( has been already defined, we define A ( ϕ rvs in the standard way.

When needed, we shall use variants of notation commonly used for ordinary models and
satisfiability, for the generalized ones. E.g. for a generalized model A with the universe ββX, a for-
mula ϕpx1, . . . , xnq, and elements u1, . . . , un of ββX, the notation A ( ϕ ru1, . . . , uns means that
ϕ is satisfied in A under a valuation taking the variables x1, . . . , xn to the ultrafilters u1, . . . , un,
respectively.

Generalized models actually generalize not all ordinary models but those that are ultrafilter
extensions of some models. It is worth also pointing out that whenever a generalized interpreta-
tion is principal, i.e. all non-logical symbols are interpreted by principal ultrafilters, we naturally
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identify it with the obvious ordinary interpretation with the same universe ββX; however, not
every ordinary interpretation with the universe ββX is of this form. Precise relationships between
generalized models, ordinary models, and ultrafilter extensions will be described in Theorems 28
and 29. Let us also note in advance that in the last section, we shall define a wider concept of
generalized models, which will cover (up to some natural identification) all ordinary models.

An ultrafilter valuation v is principal iff it takes any variable to a principal ultrafilter.

Lemma 16. Let A “ pββX, ıpF q, . . . , ıpRq, . . .q and B “ pββX, pF q, . . . , pRq, . . .q be two gen-
eralized models in the same signature and having the same universe ββX. If for all functional
symbols F , predicate symbols R, variables x1, . . . , xn, and principal valuations v,

Ąapppvpx1q, . . . , vpxnq, ıpF qq “ Ąapppvpx1q, . . . , vpxnq, pF qq,

Ăin pvpx1q, . . . , vpxnq, ıpRqq iff Ăin pvpx1q, . . . , vpxnq, pRqq,

then for all formulas ϕ, terms t1, . . . , tn, and valuations v,

A ( ϕpt1, . . . , tnq rvs iff B ( ϕpt1, . . . , tnq rvs.

Proof. By induction on construction of formulas using the right continuity of Ąapp and the right
clopenness of Ăin w.r.t. X.

Corollary 17. Given a generalized model A “ pββX, ıpF q, . . . , ıpRq, . . .q, define a generalized
model B “ pββX, pF q, . . . , pRq, . . .q in the same signature as follows: let B have the same uni-
verse ββX, let  coincide with ı on functional symbols, and for each predicate symbol R let pRq be
the principal ultrafilter given by the relation

 
pa1, . . . , anq P Xn : Ăin pa1, . . . , an, ıpRqq

(
.

Then for all valuations v, formulas ϕ, and terms t1, . . . , tn,

A ( ϕpt1, . . . , tnq rvs iff B ( ϕpt1, . . . , tnq rvs.

Proof. Lemma 16.

If X1, . . . ,Xn, Y are discrete spaces, let us say that an ultrafilter f over the set Y X1ˆ...ˆXn

of n-ary maps is pseudo-principal iff Ąapp takes any n-tuple consisting of principal ultrafilters
together with f to a principal ultrafilter:

a1 P X1, . . . , an P Xn implies Ąapppa1, . . . , an, fq P Y.

Clearly, if the space Y is finite, then all ultrafilters in ββpY X1ˆ...ˆXnq are pseudo-principal. (More
generally, if we would defined Ąapp with the range in any compact Hausdorff Y , as proposed in
the remark above, then all ultrafilters in ββpY X1ˆ...ˆXnq were pseudo-principal.)

Lemma 18. Let X1, . . . ,Xn, Y be discrete spaces. In ββpY X1ˆ...ˆXnq, every principal ultrafilter is
pseudo-principal, and if Y and at least one of the Xi are infinite, then there exist pseudo-principal
ultrafilters that are not principal as well as ultrafilters that are not pseudo-principal.

Proof. Pick any f P Y X1ˆ...ˆXn . Let F be the following family of subsets of the space Y X1ˆ...ˆXn :

F “
  

g P Y X1ˆ...ˆXn : gpaq “ fpaq
(
: a P X1 ˆ . . . ˆ Xn

(
Y
  

g P Y X1ˆ...ˆXn : g ‰ f
((

.
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The family F is centered (as at least one of the Xi is infinite), so pick any ultrafilter f over the
set Y X1ˆ...ˆXn such that F Ď f. Since

Ş
F empty, the ultrafilter f is non-principal. On the other

hand, for every a “ pa1, . . . , anq P X1 ˆ . . . ˆ Xn we have:

S P Ąapppa1, . . . , an, fq iff p@ a1x1q . . . p@ anxnqp@ ffq apppx1, . . . , xn, fq P S

iff p@ a1x1q . . . p@ anxnqp@ ffq fpx1, . . . , xnq P S

iff p@ ffq fpa1, . . . , anq P S

iff pDF P fqp@f P F q fpa1, . . . , anq P S.

(The first equivalence follows from the definition of extensions of maps via ultrafilter quanti-
fiers, the second holds by the definition of app, the third since a1, . . . , an are principal, and
the fourth decodes the definition of the @ f quantifier.) Letting S “ tfpa1, . . . , anqu, we have
Ąapppa1, . . . , an, fq “ fpa1, . . . , anq P Y, thus witnessing that f is pseudo-principal.

To construct a non-pseudo-principal ultrafilter, pick any a “ pa1, . . . , anq P X1 ˆ . . .ˆXn and
u P ββY zY (as Y is infinite), and expand the centered family

G “
  

f P Y X1ˆ...ˆXn : fpaq P S
(
: S P u

(

“
 
O

a, rS : S P u
(

to an ultrafilter g Ě G over Y X1ˆ...ˆXn . Calculations similar to those in the above give us

Ąapppa1, . . . , an, gq “ u,

thus witnessing that g is not pseudo-principal.

A generalized interpretation ı is pseudo-principal on functional symbols iff ıpF q is a pseudo-
principal ultrafilter for each functional symbol F (and then, for each term t).

Corollary 19. Given a generalized model A “ pββX, ıpF q, . . . , ıpRq, . . .q with ı pseudo-principal on
functional symbols, define a generalized model B “ pββX, pF q, . . . , pRq, . . .q in the same signature
as follows: let B have the same universe ββX, let  coincide with ı on predicate symbols, and for
each functional symbol F let pF q be the principal ultrafilter given by the operation f : Xn Ñ X

defined by letting
fpa1, . . . , anq “ Ąapppa1, . . . , an, ıpF qq.

Then for all valuations v, formulas ϕ, and terms t1, . . . , tn,

A ( ϕpt1, . . . , tnq rvs iff B ( ϕpt1, . . . , tnq rvs.

Proof. Lemma 16.

It follows that for every generalized model A whose interpretation is pseudo-principal on func-
tional symbols, by replacing its relations as in Corollary 17 and its operations as in Corollary 19,
one obtains an ordinary model B with the same universe such that for all formulas ϕ and elements
u1, . . . , un of the universe, A ( ϕ ru1, . . . , uns iff B ( ϕ ru1, . . . , uns.

We do not formulate this fact as a separate theorem since we shall be able to establish
stronger facts soon. In Theorem 23, we shall establish that for any generalized model A, not
necessarily with a pseudo-principal interpretation, one can construct a certain ordinary model
epAq satisfying the same formulas; and then, in Theorem 28, that whenever A has a pseudo-
principal interpretation, epAq is nothing but the r-extension of some model. In fact, in the latter
case, epAq coincides with B from the previous paragraph.
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Operations e and E. Let us now define two operations, e and E, which turn generalized models
into certain ordinary models that (as we shall see soon) generalize the ˚ - and r -extensions. Both
operations take ultrafilters over n-ary maps to n-ary maps over ultrafilters, and ultrafilters over n-
ary relations to n-ary relations over ultrafilters. Both operations are surjective and non-injective
(Lemma 27).

The map e on ultrafilters over maps will be the map Ăext defined and discussed in Section 2.
Now we extend Ăext to ultrafilters over relations by identifying n-ary relations with their n-ary
characteristic functions into the discrete space 2 “ t0, 1u:

ββPpX1 ˆ . . . ˆ Xnq
Ąext

((◗
◗◗◗◗◗◗◗

PpX1 ˆ . . . ˆ Xnq

OO

ext // tQ Ď ββX1 ˆ . . . ˆ ββXn : Q is right clopen w.r.t. X1, . . . ,Xn´1u

(Recall that by Theorem 8(i), a subset of ββX1 ˆ . . . ˆ ββXn is right clopen w.r.t. X1, . . . ,Xn´1

iff it is of form rR for some n-ary subset R of X1 ˆ . . . ˆ Xn.) Let the map e on ultrafilters over
relations also coincide with the map Ăext on them. So in result we have:

e“ββ
`
Y X1ˆ...ˆXn

˘
Ď ββY ββX1ˆ...ˆββXn ,

e“ββ PpX1 ˆ . . . ˆ Xnq Ď PpββX1 ˆ . . . ˆ ββXnq.

We observe that e and Ąapp (or Ăin ) are expressed via each other:

Lemma 20. Let X1, . . . ,Xn, Y be discrete spaces. For all f P ββpY X1ˆ...ˆXnq, r P ββ PpX1 ˆ . . . ˆ
Xnq, and u1 P ββX1, . . . , un P ββXn,

epfqpu1, . . . , unq “ Ąapppu1, . . . , un, fq,

eprqpu1, . . . , unq iff Ăin pu1, . . . , un, rq.

In other words,

epfq “
 

pu1, . . . , un, vq P ββX1 ˆ . . . ˆ ββXn ˆ ββY : Ąapppu1, . . . , un, fq “ v
(
,

eprq “
 

pu1, . . . , unq P ββX1 ˆ . . . ˆ ββXn : Ăin pu1, . . . , un, rq
(
.

Proof. To simplify the notation, let RC be the space RCX1,...,Xn´1
pββX1, . . . , ββXn, ββY q of n-ary

maps on ββX1ˆ. . .ˆββXn into ββY that are right continuous w.r.t. X1, . . . ,Xn´1, endowed with the
pX1, . . . ,Xnq-pointwise convergence topology. By Lemma 11, RC is compact Hausdorff. Recall
that for any f P ββpY X1ˆ...ˆXnq we have

epfq “ Ăextpfq “ g P RC such that tgu “
č

APf

clRC

 rf : f P A
(
,

and Ąapp f is the n-ary map on ββX1 ˆ . . . ˆ ββXn into ββY defining by letting Ąapp fpu1, . . . , unq “
Ąapppu1, . . . , un, fq for all u1 P ββX1, . . . , un P ββXn.

Note that both maps Ąapp f and epfq are in RC (the first follows from the fact that Ąapp is
right continuous w.r.t. X1, . . . ,Xn´1, the second holds since Ăext is a map into RC). Therefore,
by Lemma 10, in order to show that they coincide, it suffices to verify that they coincide on
principal ultrafilters.
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For this, pick any a1 P X1, . . . , an P Xn and S Ď Y . We have:

S P Ąapp fpa1, . . . , anq iff p@ a1x1q . . . p@ anxnqp@ ffq apppx1, . . . , xn, fq P S

iff p@ ffq apppa1, . . . , an, fq P S

iff p@ ffq fpa1, . . . , anq P S

iff
 
f P Y X1ˆ...ˆXn : fpa1, . . . , anq P S

(
P f.

(The first equivalence follows from the definition of extensions of maps via ultrafilter quantifiers,
the second holds since a1, . . . , an are principal, the third by the definition of app, and the fourth
by the definition of the @ f quantifier.) Therefore,

epfq P clRC

 rf P RC : f P Y X1ˆ...ˆXn and fpa1, . . . , anq P S
(
.

As stated in Lemma 11, the space RC is zero-dimensional; in particular, the open set O
a1,...,an, rS “

 
g P RC : gpa1, . . . , anq P rS

(
is closed (since its complement RC zO

a1,...,an, rS “ O
a1,...,an, ββY z rS is

open too). It follows that

clRC

 rf P RC : f P Y X1ˆ...ˆXn and fpa1, . . . , anq P S
(

Ď O
a1,...,an, rS .

Therefore, we obtain
epfq P O

a1,...,an, rS ,

or, in other words, epfqpa1, . . . , anq P rS. The latter is clearly equivalent to S P epfqpa1, . . . , anq.
Thus we get the inclusion Ąapppa1, . . . , an, fq Ď epfqpa1, . . . , anq. But since both Ąapppa1, . . . , an, fq
and epfqpa1, . . . , anq are ultrafilters, the inclusion actually gives the equality Ąapppa1, . . . , an, fq “
epfqpa1, . . . , anq.

This proves the lemma for ultrafilters over sets of maps. The remaining claim about ultrafilters
over sets of relations follows by replacing the relations with their characteristic functions.

Question. For which compact Hausdorff space Y , instead of ββY with a discrete Y , does Lemma 20
remain true (providing that Ąapp is defined as in the remark above)? Does this hold at least for all
zero-dimensional, or all extremally disconnected compact Hausdorff Y ? (Problem 3 in Section 5.)

Corollary 21. Let X1, . . . ,Xn, Y be discrete spaces. The set of pseudo-principal ultrafilters is
the preimage of the set t rf : f P Y X1ˆ...ˆXnu under the map e:

 
f P ββ

`
Y X1ˆ...ˆXn

˘
: f is pseudo-principal

(
“ e´1

 rf : f P Y X1ˆ...ˆXn
(
.

Recalling that e “ Ăext, that on the set Y X1ˆ...ˆXn (identified with principal ultrafilters) Ăext is
just ext, and that e“Y X1ˆ...ˆXn “ t rf : f P Y X1ˆ...ˆXnu, we can rewrite the set of pseudo-principal
ultrafilters also by

e´1 e“ Y X1ˆ...ˆXn “ Ăext ´1 ext“ Y X1ˆ...ˆXn .

Proof. Show first that if f is pseudo-principal, then epfq “ rf for some f P Y X1ˆ...ˆXn . By the
definition of e (“ Ăext), always epfq is a map belonging to the set RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q.
Since by Lemma 20 we have epfqpu1, . . . , unq “ Ąapppu1, . . . , un, fq, we see that the map e takes
principal ultrafilters to principal ultrafilters whenever f is pseudo-principal. But then it follows
from Lemma 10 that epfq coincides with rf if the map f is the restriction of epfq to principal
ultrafilters:

epfq “ rf for f “ epfqæpX1 ˆ . . . ˆ Xnq.
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It remains to show the converse implication, i.e. that for every rf there exists a pseudo-principal
ultrafilter f with epfq “ rf . For this, it clearly suffices to let f equal to the principal ultrafilter
given by f .

Question. What are topological properties of the set of pseudo-principal ultrafilters in the space
ββpY X1ˆ...ˆXnq? topological properties of its preimage under e, the set t rf : f P Y X1ˆ...ˆXnu, in
the space RCX1,...,Xn´1

pββX1, . . . , ββXn, ββY q with the pX1, . . . ,Xnq-pointwise convergence topology
(except for the fact that it is dense there, as stated in Lemma 12), or with the (usual) pointwise
convergence topology? in the space pββY qββX1ˆ...ˆββXn with the pointwise convergence topology?

Let us point out that objects naturally defined in terms of ultrafilter extensions often have
rather hardly definable topological properties, see [30, 31]. (Problem 4 in Section 5.)

Corollary 22. For all generalized models A “ pββX, ıpF q, . . . , ıpRq, . . .q and valuations v,

vıpF pt1, . . . , tnqq “ epıpF qqpvıpt1q, . . . , vıptnqq,

A ( Rpt1, . . . , tnq rvs iff epıpRqqpvıpt1q, . . . , vıptnqq.

Proof. Lemma 20 with X1 “ . . . “ Xn “ Y “ X.

For a generalized model B “ pββX, f, . . . , r, . . .q, let

epBq “ pββX, epfq, . . . , eprq, . . .q.

Note that epBq is an ordinary model.
The following theorem is the first of the three main results of this section, it states that in

point of view of the satisfaction of formulas, any generalized model A is not distinguished from
the ordinary model epAq.

Theorem 23. If A is a generalized model, then for all formulas ϕ and elements u1, . . . , un of the
universe of A,

A ( ϕ ru1, . . . , uns iff epAq ( ϕ ru1, . . . , uns.

Proof. Induction on ϕ starting from Corollary 22.

Now we define the map E, which has the same domain that the map e does and also satisfying

E“ββ
`
Y X1ˆ...ˆXn

˘
Ď ββY ββX1ˆ...ˆββXn ,

E“ββ PpX1 ˆ . . . ˆ Xnq Ď PpββX1 ˆ . . . ˆ ββXnq,

as follows: E and e coincide on ββpY X1ˆ...ˆXnq, and whenever r P ββ PpX1 ˆ . . . ˆ Xnq then we
define

Eprq “ Ăext“ Ăextprq “
 Ăextpqq : q P Ăextprq

(

where r is considered as an ultrafilter over unary relations on X1ˆ. . .ˆXn while q is considered as
an ultrafilter over unary maps on n (and Ăext is consequently considered in two distinct meanings).
Let us now explain the construction in details.

First, we consider PpX1 ˆ . . . ˆ Xnq as the set of unary relations on X1 ˆ . . . ˆ Xn. Then
the map ext takes any subset R of X1 ˆ . . . ˆ Xn to the clopen subset rR of ββpX1 ˆ . . . ˆ Xnq.
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Therefore, the extended map Ăext takes any ultrafilter r over PpX1 ˆ . . . ˆ Xnq to some clopen
subset Q “ Ăextprq of ββpX1 ˆ . . . ˆ Xnq:

ββPpX1 ˆ . . . ˆ Xnq
Ąext

((◗
◗◗◗◗◗◗◗

PpX1 ˆ . . . ˆ Xnq

OO

ext // tQ Ď ββpX1 ˆ . . . ˆ Xnq : Q is clopen u

Next, we identify the product X1 ˆ . . . ˆ Xn with the set of unary maps f from the set n intoŤ
iXi satisfying fpiq P Xi`1 (for all i ă n). Then the map ext takes any such f to the unary

continuous map rf from n into
Ť

i ββXi satisfying fpiq P ββXi`1, and we identify the set of such

maps rf backwards with the product ββX1 ˆ . . . ˆ ββXn. Therefore, the extended map Ăext takes
any ultrafilter q over X1 ˆ . . . ˆ Xn to some n-tuple pu1, . . . , unq “ Ăextpqq in ββX1 ˆ . . . ˆ ββXn:

ββpX1 ˆ . . . ˆ Xnq
Ąext

((◗
◗◗◗◗◗◗◗

X1 ˆ . . . ˆ Xn

OO

ext // ββX1 ˆ . . . ˆ ββXn

(An analogous construction was previously used in Theorem 15.) In result, the set Q “ Ăextprq Ď
ββpX1 ˆ . . .ˆXnq is mapped onto the set Ăext“Q “ Eprq Ď ββX1 ˆ . . .ˆββXn. Since Q is clopen and
the map Ăext is closed (as a continuous map between compact Hausdorff spaces), the resulting
Eprq is a closed subset of the space ββX1 ˆ . . . ˆ ββXn.

Lemma 24. Let r P ββ PpX1 ˆ . . . ˆ Xnq. Then

eprq “ rR and Eprq “ R˚

for R “ eprq X pX1 ˆ . . . ˆ Xnq “ Eprq X pX1 ˆ . . . ˆ Xnq “
Ş

SPr

Ť
S. Consequently,

eprq Ď Eprq.

We can write up this R more explicitly:

R “
 

pa1, . . . , anq P X1 ˆ . . . ˆ Xn : p@S P rq pDQ P Sq Qpa1, . . . , anq
(
.

Proof. For eprq “ rR, apply Lemma 20. For Eprq “ R˚, note that q P Ăextprq iff
Ş

SPr

Ť
S P q.

For a generalized model B “ pββX, f, . . . , r, . . .q, let

EpBq “ pββX,Epfq, . . . , Eprq, . . .q.

Then EpBq, like epBq, is an ordinary model.
The following easy observation is similar to Theorem 1, and moreover, it turns out to be that

theorem whenever the interpretation of B is pseudo-principal on functional symbols, as we shall
see after Theorem 28.

Theorem 25. For any generalized model B the identity map on its universe is a homomorphism
of epBq onto EpBq:

B

e

}}③③
③③
③③
③③

E

""❊
❊❊

❊❊
❊❊

❊

epBq
id // EpBq
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Proof. Immediate from Lemma 24 since rR Ď R˚ for all relations R.

Now we are going to establish two remaining main results of this section, Theorems 28 and 29.
The first of them characterizes generalized models such that their e- and E-images are ultraex-
tensions of ordinary models, while the second one characterizes ordinary models that are the e-
and E-images of generalized models. Before this we prove two more auxiliary lemmas, which
actually follow from the previously stated facts.

Lemma 26. Let A be a generalized model with a pseudo-principal interpretation of functional
symbols, and B the generalized model with a principal interpretation of functional symbols con-
structed from A as in Corollary 19. Then epAq “ epBq.

Proof. Let ı and  be the interpretations in A andB, respectively. If F is a functional symbol, then
the operations epıpF qq and eppF qq are right continuous w.r.t. principal ultrafilters. Therefore,
by Lemma 10, in order to show that they coincide, it suffices to verify that they coincide on
principal ultrafilters.

If the symbol F is n-ary, let a be any n-tuple of principal ultrafilters. We have:

Ąapppa, ıpF qq “ pF qpaq “ apppa, pF qq “ Ąapppa, pF qq

(the first equality holds by the definition of  from Corollary 19, the second as pF q is principal,
and the third as Ąapp extends app). By Lemma 20,

epıpF qqpaq “ Ąapppa, ıpF qq and eppF qqpaq “ Ąapppa, pF qq

(that holds for n-tuples of non-principal ultrafilters as well). This completes the proof.

Lemma 27. Both operations e and E are surjective and non-injective. More precisely,

(i) e (and E) on ββ
`
Y X1ˆ...ˆXn

˘
is a surjection onto RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q,

(ii) e on ββ PpX1 ˆ . . .ˆXnq is a surjection onto
 rR P PpββX1 ˆ . . .ˆββXnq : R Ď X1 ˆ . . .ˆXn

(

“
 
Q P PpββX1 ˆ . . . ˆ ββXnq : Q is right clopen w.r.t. X1, . . . ,Xn

(
,

(iii) E on ββ PpX1ˆ. . .ˆXnq is a surjection onto
 
R˚ P PpββX1ˆ. . .ˆββXnq : R Ď X1ˆ. . .ˆXn

(

“
 
Q P PpββX1 ˆ . . . ˆ ββXnq : Q is regular closed

(
,

and each of the three maps is not an injection whenever at least one of the Xi is infinite.

Proof. Item (i) is Lemma 13; items (ii) and (iii) are immediate from Lemma 24; the non-injectivity
is easy from the cardinality argument since both maps R ÞÑ rR and R ÞÑ R˚ are bijections. (Alter-
natively, (ii) can be obtained from (i) by replacing relations with their characteristic functions.)
The equalities in (ii) and (iii) were stated in Theorem 8(i),(ii).

By Lemma 24, relations of the model epBq are the r-extensions of some relations on X,
while relations of the model EpBq are the ˚ -extensions of the same relations. Whether the
whole models epBq and EpBq are the ultrafilter extensions of some models depends only on the
ultrafilter interpretation of functional symbols in B:

Theorem 28. Let B be a generalized model with the universe ββX. The following are equivalent:

(i) epBq “ ĂA for an ordinary model A with the universe X,

(ii) EpBq “ A˚ for an ordinary model A with the universe X,
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(iii) the interpretation in B is pseudo-principal on functional symbols.

Moreover, the model A in (i) and (ii) is the same.

B

e

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

E

  ❆
❆❆

❆❆
❆❆

❆

ĂA A˚

A

``❅❅❅❅❅❅❅❅

>>⑥⑥⑥⑥⑥⑥⑥⑥

Proof. The implications from each of (i) and (ii) to (iii) are obvious: if the interpretation  in
B is not pseudo-principal, then there are a functional symbol F and a sequence a of principal
ultrafilters over ββX such that the operation G “ eppF qq on ββX takes a to a non-principal
ultrafilter Gpaq over X. Therefore, G is not of form rf for any operation f on X. Since G is the
interpretation of F in both models epBq and EpBq, it follows that these models are not of form
ĂA and A˚ for any ordinary model A.

Let us show now that, conversely, (iii) implies each of (i) and (ii). By Lemma 26, it suffices to
handle the case when the pseudo-principal interpretation  in B is principal. So suppose this is
the case and define an ordinary interpretation ı of the same language by letting, for all functional
symbols F and predicate symbols R,

ıpF q “ G if the principal ultrafilter pF q over XXˆ...ˆX is given by G,

ıpRq “ Q if Q “ eppRqq X pX ˆ . . . ˆ Xq.

We have:
eppF qq “ EppF qq “ ĄıpF q

since pF q is principal and e (and E) on principal ultrafilters is ext, and

eppRqq “ ĄıpRq and EppRqq “ pıpRqq˚

by Lemma 24. Thus if A is the ordinary model given by ı, we obtain epBq “ ĂA and EpBq “ A˚,
as required.

Finally, we point out that the fact whether an ordinary model with the universe ββX is of
form epBq, and whether it is of form EpBq, for some generalized model B (clearly, with the same
universe ββX) depends only on its topological properties:

Theorem 29. Let A be an ordinary model with the universe ββX. Then:

(i) A “ epBq for a generalized model B iff in A all operations are right continuous w.r.t. X
and all relations are right clopen w.r.t. X,

(ii) A “ EpBq for a generalized model B iff in A all operations are right continuous w.r.t. X
and all relations are regular closed.

Proof. Lemma 27.
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Since by Theorem 28, e and E applied to generalized models with pseudo-principal inter-
pretations give the r- and ˚-extensions of ordinary models, Theorem 29 can be considered as
a generalization of Theorems 4 and 6.

First Extension Theorems. Here we discuss a possible generalization of the First Extension
Theorems (Theorems 3 and 2) to generalized models. To start, let us restate both them in a single
way as follows.

Theorem 30. Let A and B be two models in the same signature, and let h : X Ñ Y be a map
between their universes. The following are equivalent:

(i) h is a homomorphism of A into B,

(ii) rh is a homomorphism of ĂA into ĂB ,

(iii) rh is a homomorphism of A˚ into B˚:

A˚ rh //❴❴❴❴❴❴❴ B˚

ĂA rh //❴❴❴❴❴❴❴ ĂB

A
h //

__❄❄❄❄❄❄❄❄
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B
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FF✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍

Proof. Theorems 2 and 3.

This leads to a conclusion for our generalized models:

Lemma 31. Let U and V be two generalized models in the same signature, and let h : ββX Ñ ββY

be a map between their universes. The following are equivalent:

(i) h is a homomorphism of epUq into epVq,

(ii) h is a homomorphism of EpUq into EpVq.

Proof. If f is an ultrafilter over operations, we have epfq “ Epfq by definition of e and E, hence the
claim for homomorphisms w.r.t. operations holds trivially. If r is an ultrafilter over relations, we
have eprq “ rR and Eprq “ R˚ by Lemma 24, hence the claim for homomorphisms w.r.t. relations
holds by Theorem 30.

This observation leads to the following definition: If U and V are two generalized models in
the same signature, we say that a map h : ββX Ñ ββY between their universes is a homomorphism
(of generalized models) iff it is a homomorphism of epUq into epVq (or a homomorphism of
EpUq into EpVq, which is equivalent by Lemma 31). The concepts of epimorphisms, isomorphic
embeddings, submodels, elementary embeddings, elementary submodels, submodels, quotients,
etc., for generalized models are defined likewise.

The following can be considered as the First Extension Theorem for generalized models:

Theorem 32. Let U and V be two generalized models in the same signature with the universes
ββX and ββY , both having pseudo-principal interpretations on functional symbols, let A and B

denote the models such that ĂA “ epUq and ĂB “ epVq, and so A˚ “ EpUq and B˚ “ EpVq, and
let h : X Ñ Y . The following are equivalent:
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(i) h is a homomorphism of A into B,

(ii) rh is a homomorphism of U into V,

(iii) rh is a homomorphism of ĂA into ĂB ,

(iv) rh is a homomorphism of A˚ into B˚:

U

e

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎ E

  ❆
❆❆

❆❆
❆❆

❆
rh //❴❴❴❴❴❴❴ V

e

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍ E

!!❈
❈❈

❈❈
❈❈

❈

A˚ rh //❴❴❴❴❴❴❴ B˚

ĂA rh //❴❴❴❴❴❴❴ ĂB

A
h //

__❄❄❄❄❄❄❄❄

GG✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎
B

``❆❆❆❆❆❆❆❆
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Proof. The equivalence of items (i) and (ii) follows from Theorem 28, Lemma 31, and the defini-
tion of homomorphisms of generalized models. The equivalence of items (i), (iii), and (iv) repeats
Theorem 30.

For a generalized model U with the universe ββX, the set X of principal ultrafilters forms
a generalized submodel (and also ordinary submodels of epUq and EpUq) iff the interpretation
in U is pseudo-principal on functional symbols; this can be added as item (iv) to Theorem 28.
We shall call the submodel consisting of principal ultrafilters the principal submodel . Thus
Theorem 32 can be reformulated by replacing “both having pseudo-principal interpretations”
with “both having principal submodels”.

In fact, we can omit here the assumption about the pseudo-principality in the generalized
model V by applying the Second Extension Theorems (Theorems 5 and 7):

Theorem 33. Let U and V be two generalized models in the same signature with the universes
ββX and ββY , let the interpretation of U be pseudo-principal on functional symbols with A the
principal submodel (having the universe X), so ĂA “ epUq and A˚ “ EpUq, and let h : X Ñ Y .
The following are equivalent:

(i) h is a homomorphism of A into epVq,

(ii) h is a homomorphism of A into EpVq,

(iii) rh is a homomorphism of U into V,

(iv) rh is a homomorphism of ĂA into epVq,

(v) rh is a homomorphism of A˚ into EpVq:
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U
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rh //❴❴❴❴❴❴❴❴ V
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A˚ rh //❴❴❴❴❴❴❴ EpVq

ĂA rh //❴❴❴❴❴❴❴ epVq

A

h
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Proof. The equivalence of items (i) and (iii) follows from Theorem 5 and Theorem 29(i), while
the equivalence of items (ii) and (iii) follows from Theorem 7 and Theorem 29(ii). Finally, (ii) is
equivalent to (iv) by Theorem 5 and to (v) by Theorem 7.

Observe that, by Theorem 29, whenever the interpretation of V is not pseudo-principal on
functional symbols, then the models epVq and EpVq are not of form ĂA and A˚ for any ordinary
model A; nevertheless, these models still satisfy the conditions of Theorems 5 and 7 (playing the
role of the model C there). Therefore, Theorem 33 is indeed more general than Theorem 32; it
has a character intermediate between the First and the Second Extension Theorems. To have
a reasonable generalization of Second Extension Theorems in the full form, we need to have
a more general concept of generalized models; this is the subject of the next, last section of our
article.

Remark. Theorems 30–32 remain true for epimorphisms and isomorphic embeddings, and Theo-
rem 33 for epimorphisms. Also they can be stated for so-called homotopies and isotopies; these
concepts (generalizing homomorphisms and isomorphisms) for ordinary models, together with
both extension theorems, were introduced in [3] (and [4]). For generalized models they can be
defined in the same way as this was done for homomorphisms and embeddings. Finally, versions
for multi-sorted models (having rather many universes X1, . . . ,Xn than one universe X) can be
also easily stated.

4. Wider ultrafilter interpretations

Here we discuss a possible generalization of the Second Extension Theorems (Theorems 5 and 7)
to generalized models. For this, we should have a wider concept of generalized models which,
on the one hand, would replace compact Hausdorff right topological models in these theorems,
and on the other hand, would turn into our previous concept of generalized models whenever the
universe is of form ββY to include our versions of the First Extension Theorem for generalized
models (Theorems 32 and 33). Also we should have a concept of satisfiability in these models
which would turn into the satisfiability in our previous generalized model; recall that the latter
can be redefined in terms of the map e (Theorem 23). Actually, our new concepts of generalized
models and satisfiability will be wide enough to cover all ordinary models, not only ultrafilter
extensions.

Generalized models in the wide sense. The new definition of generalized models requires
only a minor modification of the former one. By an ultrafilter (or generalized) interpretation we
still mean a map which takes functional and relational symbols to ultrafilters over operations and
relations on a set X. But valuations of variables now will be in the set X itself, not in ββX. Thus

U “ pX, f, . . . , r, . . .q
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is a generalized model in the wide sense iff X is the universe of U, i.e. individual variables are
valuated by elements of X, and if F is an n-ary functional symbol then it is interpreted by some
f P ββpXXn

q, and if R is an n-ary predicate symbol then it is interpreted by some r P ββ PpXnq.
Generalized models described in Section 2 will be referred to as generalized models in the narrow
sense. In the sequel, we shall sometimes omit the words “in the wide sense” but never “in the
narrow sense”.

To revise the concept of satisfiability making it adequate for generalized models in this wider
sense, we use the notion of convergence of ultrafilters. Recall that a filter d over a topological
space X converges to a point x P X iff any neighborhood of x belongs to d. If a filter d converges
to a unique point x then x is called the limit of d, in which case we shall write lim d “ x. As
well-known, any filter over X converges to at most one point iff X is Hausdorff, and any ultrafilter
over X converges to at least one point iff X is compact (see e.g. [12]; for the concept of u-limit
with ultrafilters u see [5]). Note also that, even if X is compact Hausdorff, some filter over X

that is not an ultrafilter may converge to no single point (consider e.g. any discrete X with
1 ă |X| ă ω and the trivial filter consisting of X as its single element).

For a generalized model U “ pX, f, . . . , r, . . .q, fix some topologies on the sets XXn

and PpXnq
for all n ă ω such that the signature has n-ary operations, respectively, relations. Let us say that
U converges (w.r.t the family of topologies) to an ordinary model A “ pX,F, . . . , R, . . .q in the
same signature iff for the interpretation of each symbol in U converges to one in A. Moreover,
A is the limit of U iff the interpretation of A is the pointwise limit of one of U, in which case
we write A “ limU. Thus whenever the limits of all the ultrafilters f, . . . , r, . . . exist then the
generalized model U converges to its limit:

limU “ pX, lim f, . . . , lim r, . . .q,

which is an ordinary model in the same signature.
Let us say that a generalized model U endowed with topologies on its universe and the sets

of operations and of relations on it, has a well-defined satisfiability iff there exists the limit of U,
in which case we define it as the ordinary satisfiability in the limit:

U (lim ϕ rvs iff limU ( ϕ rvs

for all formulas ϕ and valuations v. We temporarily use the symbol (lim for the renewed concept
of satisfiability; after Theorem 35, which states that on generalized models in the narrow sense
this concept coincides with the former one, we shall continue to use the former symbol ( .

Let us firstly show that all ordinary models and the satisfiability in them can be regarded as
generalized models in the wide sense and the satisfiability defined via limits.

Theorem 34. Any ordinary model A with the usual satisfaction relation ( is (up to a natural
identification) a generalized model U with the satisfaction relation (lim, so we have

U (lim ϕ rvs iff A ( ϕ rvs

for all formulas ϕ and valuations v. Moreover, the same is true for ordinary models endowed
with arbitrary topologies.

Proof. Define U as follows: let the universe of U coincide with one of A, which we denote by X,
and let the interpretation in U be the principal interpretation giving with one in A, i.e. if an n-ary
functional symbol is interpreted in A by F P XXn

then it is interpreted in U by the principal
ultrafilter over XXn

given by F , and likewise for predicate symbols. We can suppose that all
topologies on XXn

and PpXnq are discrete. Since any principal ultrafilter given by a point x has
the limit x, we conclude that (lim in U coincides with ( in A. Moreover, the same fact is true
for every topologies on XXn

and PpXnq, which proves the last claim of the theorem.
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Now we are going to show that the wider concepts of generalized models and the satisfiability
in them cover the former, narrow concepts. (Let us also note that the new concept is not
exhausted by the two cases of ordinary models and generalized models in the narrow sense.)

Theorem 35. Any generalized model A with the satisfaction relation in the narrow sense is, up
to a natural identification, a generalized model U in the wide sense with the satisfaction relation
defined via limits in certain appropriate topologies, so we have

U (lim ϕ rvs iff A ( ϕ rvs

for all formulas ϕ and valuations v.

Proof. We start by describing how to represent a generalized model A in the narrow sense by
a certain generalized model U in the wide sense. Let ββX be the universe of A, and suppose
that the universe of U coincides with it. Now we must identify ultrafilters over the sets XXn

and PpXnq with certain ultrafilters over the sets pββXqpββXqn and PppββXqnq, respectively. Let us
provide a more general procedure, which will be referred to as the identification map and denoted
by i.

Identification map i. For any positive n ă ω, discrete spaces X1, . . . ,Xn, compact Hausdorff
space Y , and S Ď Y , we construct the map i taking ultrafilters over SX1ˆ...ˆXn to ultrafilters
over Y ββX1ˆ...ˆββXn :

i“ββ
`
SX1ˆ...ˆXn

˘
Ď ββ

`
Y ββX1ˆ...ˆββXn

˘
.

The construction is going in two steps.
First, recall that the map ext provides a canonical one-to-one correspondence between the set

SX1ˆ...ˆXn and its image

ext“SX1ˆ...ˆXn “
 rf : f P SX1ˆ...ˆXn

(
Ď RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q Ď Y ββX1ˆ...ˆββXn .

This induces the bijection ` of ββpSX1ˆ...ˆXnq onto ββ pext“SX1ˆ...ˆXnq taking each ultrafilter f

over SX1ˆ...ˆXn to an ultrafilter f` over ext“SX1ˆ...ˆXn by letting

f` “ text“A : A P f u.

Second, for any S Ď T we define the lifting map of ββS into ββT , by letting for all u P ββS,

uT “ tB Ď T : A P u and B Ě Au.

Define also the projection map of tv P ββT : S P vu into ββS, by letting for all such v,

vS “ tA X S : A P vu.

Clearly, the domain of the projection is the range of the lifting, and moreover, pvSqT “ v and
puT qS “ u, thus the lifting and the projection maps are two mutually inverse bijections. (Often
one identifies these ultrafilters, thus considering ββS as the closed subset of ββT consisting of those
ultrafilters over T that are concentrated on S, see e.g. [5], Section 3.3).

Now we define i as the composition of ` and lifting, thus for all f P SX1ˆ...ˆXn we let

ipfq “ pf`qY
ββX1ˆ...ˆββXn

.
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In result, for any ultrafilter f over SX1ˆ...ˆXn , its image ipfq is an ultrafilter over Y ββX1ˆ...ˆββXn

which is concentrated on ext“SX1ˆ...ˆXn “
 rf : f P SX1ˆ...ˆXn

(
.

Let us now expand the domain of the map i to ultrafilters over relations. We want to get
i taking ultrafilters over PpX1 ˆ . . . ˆ Xnq to ultrafilters over PpββX1 ˆ . . . ˆ ββXnq :

i“ββ PpX1 ˆ . . . ˆ Xnq Ď ββ PpββX1 ˆ . . . ˆ ββXnq.

For this, we may identify n-ary relations with their characteristic functions, i.e. n-ary maps into
2 “ t0, 1u, where 2 is endowed with the discrete topology, and use the definition of i for ultrafilters
over maps (with Y “ S “ 2). Equivalently, we might imitate the above construction: for each
r P ββ PpX1ˆ. . .ˆXnq, we might turn it firstly to r` P ββpext“PpX1ˆ. . .ˆXnqq where extpRq “ rR,
so by Theorem 8,

ext“PpX1 ˆ . . . ˆ Xnq “
 rR : R Ď X1 ˆ . . . ˆ Xn

(

“
 
Q Ď ββX1 ˆ . . . ˆ ββXn : Q is right clopen w.r.t. X1, . . . ,Xn

(
,

by letting
r` “ text“A : A P r u,

and secondly, by lifting the obtaining ultrafilter to an ultrafilter over PpββX1 ˆ . . . ˆ ββXnq, thus
letting

iprq “ pr`qPpββX1ˆ...ˆββXnq.

In result, for any ultrafilter r over PpX1 ˆ . . .ˆXnq, its image iprq is an ultrafilter over PpββX1 ˆ
. . .ˆββXnq which is concentrated on tQ Ď ββX1 ˆ . . .ˆββXn : Q is right clopen w.r.t. X1, . . . ,Xnu.

Remark. In fact, the map ` is Ăext for ext considered as a bijection between two discrete spaces,
and thus a homeomorphism between the spaces of ultrafilters over them.

For maps these discrete spaces are SX1ˆ...ˆXn and ext“SX1ˆ...ˆXn , so Ăext is a homeomorphism
between ββpSX1ˆ...ˆXnq and ββpext“SX1ˆ...ˆXnq, and f` “ Ăextpfq:

ββ
`
SX1ˆ...ˆXn

˘ `

//❴❴❴ ββ
`
ext“SX1ˆ...ˆXn

˘

SX1ˆ...ˆXn

OO

ext // ext“SX1ˆ...ˆXn

OO

and analogously, for relations the discrete spaces are PpX1 ˆ . . .ˆXnq and ext“PpX1 ˆ . . .ˆXnq,
so Ăext is a homeomorphism between ββ PpX1 ˆ . . . ˆ Xnq and ββpext“PpX1 ˆ . . . ˆ Xnqq, and
r` “ Ăextprq:

ββ PpX1 ˆ . . . ˆ Xnq
`

//❴❴❴ ββpext“PpX1 ˆ . . . ˆ Xnqq

PpX1 ˆ . . . ˆ Xnq

OO

ext // ext“PpX1 ˆ . . . ˆ Xnq

OO

(cf. Remark before Lemma 13 explaining a similar situation with currying). Nevertheless, we use
the symbol ` to avoid confusing with Ăext for the map ext into a compact Hausdorff space Y ,
which will be also used in our arguments below.

Lemma 36. The map i is a bijection between:

(i) the set of all ultrafilters over SX1ˆ...ˆXn and the set of the ultrafilters over Y ββX1ˆ...ˆββXn

that are concentrated on ext“SX1ˆ...ˆXn,
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(ii) the set of all ultrafilters over PpX1 ˆ . . . ˆXnq and the set of the ultrafilters over PpββX1 ˆ
. . . ˆ ββXnq that are concentrated on ext“PpX1 ˆ . . . ˆ Xnq.

Proof. For brevity, we let:

A “ ββ
`
SX1ˆ...ˆXn

˘
, B “ ββ

`
ext“SX1ˆ...ˆXn

˘
, C “

 
g P ββ

`
Y ββX1ˆ...ˆββXn

˘
: ext“SX1ˆ...ˆXn P g

(
.

As we have already pointed out, the map ` is a bijection of A onto B, and the lifting map is
a bijection of B onto C. Therefore, i, as the composition of the two maps, is a bijection of
A onto C, which proves item (i). Item (ii) is either proved similarly or obtained from (i) by
replacing relations with their characteristic functions. (We may also note that these maps are
homeomorphic embeddings.)

Let us now turn back to the discussed situation with generalized models in the former, narrow
sense. In this case: all the discrete spacesX1, . . . ,Xn are equal toX, while the compact Hausdorff
space Y is ββX and its subset S is X or 2 in the cases of operations and relations of the model,
respectively. (Recall that we identify elements of X with the principal ultrafilters given by them,
so any n-ary operation on X is identified with a map of Xn into ββX.) Now, for the generalized
model A “ pββX, f, . . . , r, . . .q in the narrow sense, we let

ipAq “ pββX, ipfq, . . . , iprq, . . .q,

and define U, the generalized model in the wide sense corresponding to A, as follows:

U “ ipAq.

It remains to verify that the new satisfiability, defined via limits, coincides with the old one.
By Theorem 23, which states that for all formulas ϕ and valuations v, we have A ( ϕ rvs iff
epAq ( ϕ rvs, the latter can be redefined via the map e. Therefore, it suffices to check that for
all formulas ϕ and valuations v, we have

limU ( ϕ rvs iff epAq ( ϕ rvs.

But actually, a stronger fact is true:
limU “ epAq,

thus leading to the following result.

Theorem 37. If A is a generalized model in the narrow sense, then lim ipAq “ epAq:

ipAq

lim

��

A

e

!!❈
❈❈

❈❈
❈❈

❈

i
==④④④④④④④④

epAq

Proof. We must verify the equalities lim ipfq “ epfq and lim iprq “ eprq for all f P ββpXXˆ...ˆXq
and r P ββ PpX ˆ . . . ˆ Xq. This will be stated in the next, more general lemma.

Recall once more that the map e on ultrafilters over n-ary maps is Ăext, the continuous exten-
sion of the map ext, where the latter, in turn, takes n-ary maps f : X1 ˆ . . .ˆXn Ñ Y of discrete
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spaces X1, . . . ,Xn into a compact Hausdorff space Y , to their extensions rf “ extpfq that are
right continuous w.r.t. X1, . . . ,Xn´1, and that these extensions form a compact Hausdorff space
w.r.t. the pX1, . . . ,Xnq-pointwise convergence topology:

ββ
`
Y X1ˆ...ˆXn

˘

Ąext

''◆
◆

◆
◆

◆
◆

◆

Y X1ˆ...ˆXn

OO

ext // RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q

The next lemma states that the map e is the composition of the identification map i and taking
of limit.

Lemma 38. Let X1, . . . ,Xn be discrete spaces, Y a compact Hausdorff space, and let the spaces
RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q and tQ Ď ββX1ˆ. . .ˆββXn : Q is right clopen w.r.t. X1, . . . ,Xn´1u
be endowed with the pX1, . . . ,Xnq-pointwise convergence topologies. Then we have

lim ipfq “ epfq and lim iprq “ eprq

for every ultrafilters f P ββpY X1ˆ...ˆXnq and r P ββ PpX1 ˆ . . . ˆ Xnq.

Proof. For brevity, let RC denote the space RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q. By Lemma 11, the

space RC is compact Hausdorff. Hence, ipfq, which is an ultrafilter over the set Y ββX1ˆ...ˆββXn

concentrated on its subset RC and thus can be identified with its projection to RC, converges
to a unique point of RC, i.e. has a limit in RC. We need to show that the limit is exactly the
map epfq.

Denote epfq by F . Then, since e “ Ăext and ext “ r , we get:

tF u “
č

APf

clRC ext“A “
č

APf

clRC

 rf : f P A
(
.

Therefore, for every A P f and any neighborhood O of the point F in the space, there exists f P A

such that rf P O; here we use that the set ext“Y X1ˆ...ˆXn “ t rf : f P Y X1ˆ...ˆXnu is dense in RC

by Lemma 12.
Let us verify that, moreover, for any neighborhood O of F P RC the set tf P Y X1ˆ...ˆXn :

rf P Ou is in f. Assume the converse: there exists a neighborhood O of F such that the set
tf P Y X1ˆ...ˆXn : rf P Ou is not in f. Then, as f is an ultrafilter, the complement

A “
 
f P Y X1ˆ...ˆXn : rf R O

(

is in f. However, this contradicts to the above stated fact.
The case of ultrafilters over relations reduces to the case of ultrafilters over maps with Y “ 2.

The lemma is proved.

This proves Theorem 37.

Now the proof of Theorem 35 is complete.

Theorem 35 permits us to eliminate our temporary symbol (lim and use the former symbol (

also to denote the satisfaction in generalized models in the wide sense. Moreover, by Theo-
rem 34 we might use the only ordinary symbol ( to denote the satisfaction in both ordinary and
generalized models; we however prefer to retain the symbol ( for a convenience of reading.

Finally, we refine the first part of Theorem 35 (concerning rather models than the satisfaction
relation) by characterizing the generalized models in the wide sense that correspond to those in
the narrow sense:



33

Theorem 39. Let U be a generalized model in the wide sense. Then:

(i) U “ ipAq for some generalized model A in the narrow sense iff the universe of U is ββX for
some X and the interpretation takes all functional symbols to ultrafilters concentrated on
ext“XXn

, and all relational symbols to ultrafilters concentrated on tQ Ď pββXqn : Q is right
clopen w.r.t. Xu;

(ii) limU “ ĂA for some ordinary model A iff the universe of U is ββX for some X and the
interpretation takes all functional symbols to ultrafilters in tipfq : f P ββpXXn

q is pseudo-
principal u, and all relational symbols to ultrafilters concentrated on tQ Ď pββXqn : Q is right
clopen w.r.t. Xu.

Proof. Item (i) is immediate from Lemma 36; we recall only that the images of ultrafilters over
PpXnq under i are exactly ultrafilters over PppββXqnq that are concentrated on ext“PpXnq:

i“ββ PpXnq “
 
s P ββ PppββXqnq : ext“PpXnq P s

(

“
 
s P ββ PppββXqnq : t rR : R Ď Xnu P s

(

“
 
s P ββ PppββXqnq : tQ Ď pββXqn : Q is right clopen w.r.t. Xu P s

(
.

Item (ii) follows from item (i) and Theorem 28.

Map I. Here we consider a variant of the map i, which we denote by I. This map relates to the
operation E in the same way as the map i to the operation e does (which explains our choosing
of the symbol I).

The map I has the same domain and range that the map i does:

I“ββ
`
SX1ˆ...ˆXn

˘
Ď ββ

`
Y ββX1ˆ...ˆββXn

˘
,

I“ββ PpX1 ˆ . . . ˆ Xnq Ď ββ PpββX1 ˆ . . . ˆ ββXnq.

and is defined as follows: on ultrafilters over SX1ˆ...ˆXn it coincides with i, and on ultrafilters
over PpX1ˆ . . .ˆXnq it is defined likewise i except for taking ˆ instead of `, where rˆ uses rather
cl than ext, i.e. turning R Ď X1 ˆ . . . ˆ Xn not to rR but to R˚ (recall that, by Theorem 8, cl is
a bijection between all subsets of X1 ˆ . . . ˆ Xn and regular closed subsets of ββX1 ˆ . . . ˆ ββXn).

Thus for each r P ββ PpX1 ˆ . . .ˆXnq, we might turn it firstly to rˆ P ββpcl“PpX1 ˆ . . .ˆXnqq
where clpRq “ R˚, so by Theorem 8,

rˆ P ββ
 
R˚ : R Ď X1 ˆ . . . ˆ Xn

(

“ ββ
 
Q Ď ββX1 ˆ . . . ˆ ββXn : Q is regular closed

(
,

by letting
rˆ “ tcl“A : A P r u,

and secondly, by lifting the obtaining ultrafilter to an ultrafilter over PpββX1 ˆ . . . ˆ ββXnq, thus
letting

Iprq “ prˆqPpββX1ˆ...ˆββXnq.

In result, for any ultrafilter r over PpX1 ˆ . . .ˆXnq, its image Iprq is an ultrafilter over PpββX1 ˆ
. . . ˆ ββXnq which is concentrated on tQ Ď ββX1 ˆ . . . ˆ ββXn : Q is regular closed u. (To make an
analogy between ` and ˆ more complete, we can also let that ˆ is defined on ultrafilters over
SX1ˆ...ˆXn and coincides there with ` ; but in fact we do not need this.)
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Remark. Again, the map ˆ is Ăcl for cl considered as a bijection between two discrete spaces
PpX1ˆ . . .ˆXnq and cl“PpX1ˆ . . .ˆXnq, so Ăcl is a homeomorphism between ββ PpX1ˆ . . .ˆXnq

and ββpcl“PpX1 ˆ . . . ˆ Xnqq, and rˆ “ Ăcl prq:

ββ PpX1 ˆ . . . ˆ Xnq
ˆ

//❴❴❴ ββpcl“PpX1 ˆ . . . ˆ Xnqq

PpX1 ˆ . . . ˆ Xnq

OO

cl // cl“PpX1 ˆ . . . ˆ Xnq

OO

Nevertheless, we use the symbol ˆ to keep the analogy with ` .

Two next lemmas and the subsequent theorem are counterparts of Lemmas 36 and 38 and
Theorem 37, respectively.

Lemma 40. The map I is a bijection between:

(i) the set of all ultrafilters over SX1ˆ...ˆXn and the set of the ultrafilters over Y ββX1ˆ...ˆββXn

that are concentrated on ext“SX1ˆ...ˆXn,

(ii) the set of all ultrafilters over PpX1 ˆ . . . ˆXnq and the set of the ultrafilters over PpββX1 ˆ
. . . ˆ ββXnq that are concentrated on cl ββX1ˆ...ˆββXn

“ PpX1 ˆ . . . ˆ Xnq.

Proof. Item (i) just repeats Lemma 36(i) since I coincides with i on ultrafilters over maps. For
item (ii), let

A “ ββ PpX1 ˆ . . . ˆ Xnq, B “ ββpcl ββX1ˆ...ˆββXn
“ PpX1 ˆ . . . ˆ Xnqq,

C “
 
s P ββ PpββX1 ˆ . . . ˆ ββXnq : clββX1ˆ...ˆββXn

“ PpX1 ˆ . . . ˆ Xnq P s
(
.

(Here the closure clββX1ˆ...ˆββXn
refers to the product topology where the spaces ββXi are endowed

with their standard topologies, and the set clββX1ˆ...ˆββXn
“ PpX1 ˆ . . .ˆXnq in the definition of B

is considered as a discrete space.) As the map ˆ is a bijection of A onto B and the lifting map
is a bijection of B onto C, the map I, which the composition of the two maps, is a bijection of
A onto C, thus proving (ii).

In what follows we consider the space ββX1 ˆ . . . ˆ ββXn endowed with the usual product
topology of the spaces ββXi and the set of regular closed sets in this space endowed with a compact
Hausdorff topology. This topology is induced from the compact Hausdorff space PpX1ˆ. . .ˆXnq,
which we identify with the space 2X1ˆ...ˆXn (where 2 is discrete and the space carries the usual
product topology) by the natural bijection taking R Ď X1 ˆ . . . ˆ Xn to R˚ Ď ββX1 ˆ . . . ˆ ββXn.

Recall also that by Lemma 11 (and its proof), the pX1, . . . ,Xnq-pointwise convergence topol-
ogy on RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q can be induced from the product topology on Y X1ˆ...ˆXn

by the bijection ext, which takes each f P Y X1ˆ...ˆXn to rf P Y ββX1ˆ...ˆββXn . In particular, if
Y “ 2 then ext on relations (identified with their characteristic functions), which takes each
R Ď X1 ˆ . . . ˆ Xn to rR Ď ββX1 ˆ . . . ˆ ββXn, induces the above considered compact Hausdorff
topology on PpββX1 ˆ . . . ˆ ββXnq. Therefore, we have three homeomorphic spaces: the space of
subsets R of X1 ˆ . . .ˆXn and its images under the homeomorphisms ext and cl taking R, rR,R˚

into each others:
RClop oo // RegCl

ext

cc❋❋❋❋❋❋❋❋❋ cl

;;①①①①①①①①①
PpX1 ˆ . . . ˆ Xnq
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where

RClop “ ext“PpX1 ˆ . . . ˆ Xnq

“
 rR : R P PpX1 ˆ . . . ˆ Xnq

(

“
 
Q Ď ββX1 ˆ . . . ˆ ββXn : Q is right clopen w.r.t. X1, . . . ,Xn´1

(
,

RegCl “ cl“PpX1 ˆ . . . ˆ Xnq

“
 
R˚ : R P PpX1 ˆ . . . ˆ Xnq

(

“
 
Q Ď ββX1 ˆ . . . ˆ ββXn : Q is regular closed

(
.

Question. Redefine the topology on the set RegCl as a restricted version of Vietoris topology
(in an analogy with the restricted version of pointwise convergence topology turning out RC
into a compact Hausdorff space homeomorphic to the product space Y X1ˆ...ˆXn). Note that we
cannot use the usual (unrestricted) Vietoris topology since in it, RegCl is not a closed subset of
the space tQ Ď ββX1 ˆ . . . ˆ ββXn : Q is closedu. (Problem 7 in Section 5.)

Lemma 41. Let f be the homeomorphism between RClop “ t rR : R P PpX1 ˆ . . . ˆ Xnqu and
RegCl “ tR˚ : R P PpX1 ˆ . . . ˆ Xnqu taking rR to R˚. Then we have

f ˝ e “ E and rf ˝ i “ I :

ββ RClop
rf //❴❴❴❴❴❴ ββ RegCl

RClop
f //

OO

RegCl

OO

e

dd❍❍❍❍❍❍❍❍❍ E

::✈✈✈✈✈✈✈✈✈

i

ZZ✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹✹

I

EE✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡
ββ PpX1 ˆ . . . ˆ Xnq

Proof. The equality f ˝ e “ E follows from Theorem 24 and, in turn, implies the equality
rf ˝ i “ I.

Lemma 42. Let X1, . . . ,Xn be discrete spaces, Y a compact Hausdorff space, and let the spaces
RC “ RCX1,...,Xn´1

pββX1, . . . , ββXn, Y q and RegCl “ tQ Ď ββX1 ˆ . . . ˆ ββXn : Q is regular closed u
be endowed with the topology induced from Y X1ˆ...ˆXn and PpX1 ˆ . . . ˆ Xnq, respectively. Then
we have

lim Ipfq “ Epfq and lim Iprq “ Eprq

for every ultrafilters f P ββpY X1ˆ...ˆXnq and r P ββ PpX1 ˆ . . . ˆ Xnq.

Proof. The first equality repeats the first equality in Lemma 38 as the topology on RC induced
from Y X1ˆ...ˆXn coincides with the pX1, . . . ,Xnq-pointwise convergence topology by Theorem 11.

For the second equality, recall first a general fact: if u, v are ultrafilters over sets A,B,
respectively, both sets carries some topologies, and a map g : A Ñ B is continuous, then
gplim uq “ lim rgpvq whenever both limits exist. It easily follows that if g is a homeomorphism,
then lim u “ g´1plim rgpvqq and lim v “ gplim rg´1puqq. In our situation, we have:

lim Iprq “ fplim rf´1pIprqqq “ fplim iprq “ fpeqprq “ Eprq

where the first equality holds by this general fact, the second follows from Lemma 41, the third
holds by Lemma 38, and the last again by Lemma 41.
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For all generalized models A “ pββX, f, . . . , r, . . .q in the narrow sense, we let

IpAq “ pββX, Ipfq, . . . , Iprq, . . .q.

Theorem 43. If A is a generalized model in the narrow sense, then lim IpAq “ EpAq:

IpAq

lim

��

A

E

!!❉
❉❉

❉❉
❉❉

❉

I
==③③③③③③③③

EpAq

Proof. Immediate from Lemma 42.

We summarize the interplay between generalized models A in the narrow sense, their limits,
and the operations i, I, e,E in the following diagram:

ipAq
rf //❴❴❴❴❴❴❴

lim

��

IpAq

lim

��
epAq

f // EpAq

A

e

aa❈❈❈❈❈❈❈❈ E

==③③③③③③③③

i

XX✶✶✶✶✶✶✶✶✶✶✶✶✶✶✶

I

FF☞☞☞☞☞☞☞☞☞☞☞☞☞☞☞

Despite the fact that Theorem 43 is an E-analog of Theorem 37 used to get Theorem 35, the
latter theorem has no such analog. This is due to an asymmetry between the operations e and E

w.r.t. the satisfiability in generalized models in the narrow sense, as it has been defined: there
is no E-analog of Theorem 23, which was also used in proving Theorem 35. Nonetheless, we are
still able to get a counterpart of Theorem 39, which does not involve satisfiability:

Theorem 44. Let U be a generalized model in the wide sense. Then:

(i) U “ IpAq for some generalized model A in the narrow sense iff the universe of U is ββX

for some X and the interpretation takes all functional symbols to ultrafilters concentrated
on ext“XXn

, and all relational symbols to ultrafilters concentrated on tQ Ď pββXqn : Q is
regular closed u;

(ii) limU “ A˚ for some ordinary model A iff the universe of U is ββX for some X and the
interpretation takes all functional symbols to ultrafilters in tIpfq : f P ββpXXn

q is pseudo-
principal u, and all relational symbols to ultrafilters concentrated on tQ Ď pββXqn : Q is
regular closed u.

Proof. Item (i) is immediate from Lemma 40; recall that the images of ultrafilters over PpXnq
under I are exactly ultrafilters over PppββXqnq that are concentrated on clββX1ˆ...ˆββXn

“ PpXnq:

i“ββ PpXnq “
 
s P ββ PppββXqnq : clββX1ˆ...ˆββXn

“ PpXnq P s
(

“
 
s P ββ PppββXqnq : tR˚ : R Ď Xnu P s

(

“
 
s P ββ PppββXqnq : tQ Ď pββXqn : Q is regular closed u P s

(
.

Item (ii) follows from item (i) and Theorem 28.
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Second Extension Theorems. Now we define homomorphisms of generalized models in the
wide sense as homomorphisms of their limits: if U andV are two such models in the same signature
with the universes X and Y , respectively, we say that a map h : X Ñ Y is a homomorphism (of
generalized models in the wide sense) iff it is a homomorphism of limU into limV. Theorem 35
guaranties that for generalized models in the narrow sense, the new definition of homomorphism
gives the same, up to the identification map i, that the former definition of homomorphisms from
Section 3. Similar concepts (epimorphisms, isomorphic embeddings, elementary embeddings,
submodels, elementary submodels, quotients, etc. of generalized models in the wide sense) are
defined likewise and also coincide with the corresponding concepts for generalized models in the
narrow sense.

The proofs of the Second Extension Theorems (Theorems 5 and 7) are based on Theorems
4 and 6, which describe the topological properties of the r- and ˚-extensions, respectively, and
a result called the “abstract extension theorem” in [4]. This result is rather about restrictions of
continuous maps than about continuous extensions of maps, but it also states that such a map is
a homomorphism of the whole models whenever it is a homomorphism of certain their submodels;
we restate it in the next theorem:

Theorem 45. Let A and B be two models in the same signature whose universes X and Y ,
respectively, both carry topologies, the topology on Y is Hausdorff, and let D Ď X be a dense
subset of X which forms a submodel D of A. Let, moreover, h : X Ñ Y be a continuous map,
and suppose that

(a) all operations in A are right continuous w.r.t. D, and in B right continuous w.r.t. h“D,

(b) one of two following items holds:

(α) all relations in A are right open w.r.t. D, and in B right closed w.r.t. h“D,

(β) all relations in A are regular closed, and in B closed, in the product topologies on Xn

and Y n (where n is the arity of a given relation), respectively, and h is a closed map.

Then the following are equivalent:

(i) hæD is a homomorphism of D into B,

(ii) h is a homomorphism of A

A
h //❴❴❴❴❴❴ B

D
hæD //

OO

E

OO

where E denotes the submodel of B with the universe h“D.

Proof. That (ii) implies (i) is trivial since D is a submodel of A. For the converse implication in
the case (α), see [3] or [4], Theorem 4.1. The case (β) is obtained from the case (α) as follows.

If R is an n-ary relation on X belonging to the model A, consider R as a unary relation
on Xn and note that under (i), the restriction hæD is also a homomorphism between the model
pDn, pintXnRq X Dnq and the model pY n, Sq, where intXnR is the interior of R in the product
topology on Xn, so the set pintXnRqXDn “ intDnpRXDnq is an open unary relation on Dn, and
S is the relation on Y interpreting the same predicate symbol that R doing and also considered
as a unary relation on Y n. By (α) we conclude that h is a homomorphism between pXn, intXnRq
and pY n, Sq. But as in the case (β) the map h is closed, we have: h“ clXn intXnR Ď clY nS, thus
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h is a homomorphism between pXn, clXn intXnRq and pY n, clY nSq. Finally, as under (β), R is
regular closed in Xn and S is closed in Y n, we have clXn intXnR “ R and clY nS “ S, thus
showing that h is a homomorphism between pXn, Rq and pY n, Sq, and hence, between pX,Rq
and pY, Sq where the relations R and S are considered as n-ary. This gives (ii), completing the
proof of the theorem.

Remark. The argument for proving (β) from (α) allows to obtain stronger statements. Instead
of the assumption of (β), it suffices to suppose that the interior of R is dense in the closure of R,
i.e. the closure of R is regular closed: clXn intXnR “ clXnR. This includes the cases of open as
well as of regular closed R. Also instead of the assumption (α), it suffices to suppose that R “has
right dense interior w.r.t. D”, i.e. that for each i, 1 ď i ď n, and every a1, . . . , ai´1 P D and
xi`1, . . . , xn P X, the set tx P X : pa1, . . . , ai´1, x, xi`1, . . . , xnq P Ru has the interior dense in the
closure of this set. As easy to see, in both cases the same proof works as well.

The same is applied to the following theorem.

The next result is an immediate analog of Theorem 45 for generalized models.

Theorem 46. Let U and V be two generalized models in the same signature whose universes
X and Y , respectively, both carry topologies, the topology on Y is Hausdorff, and let D Ď X be
a dense subset of X which forms a generalized submodel D of U. Let, moreover, h : X Ñ Y be
a continuous map, and suppose that for any n ă ω,

(a) n-ary functional symbols are interpreted: in U by ultrafilters having limits in RCDpXn,Xq,
and in V by ultrafilters having limits in RCh“DpY n, Y q,

(b) one of two following items holds:

(α) n-ary predicate symbols are interpreted: in U by ultrafilters having limits in tR Ď Xn :
R is right open w.r.t. Du, and in V by ultrafilters having limits in tS Ď Y n : S is right
closed w.r.t. h“Du,

(β) n-ary predicate symbols are interpreted: in U by ultrafilters having limits in tR Ď Xn :
R is regular closed u, and in V by ultrafilters having limits in tS Ď Y n : S is closed u,
in the product topologies on Xn and Y n, respectively, and h is a closed map.

Then the following are equivalent:

(i) hæD is a homomorphism of D into V,

(ii) h is a homomorphism of U into V:

U
h //❴❴❴❴❴❴❴❴❴

lim

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

V

lim

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

D
hæD //

OO

lim

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

E

OO

lim

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

limU
h //❴❴❴❴❴❴❴ limV

limD
hæD //

OO

limE

OO

where E denotes the generalized submodel of V with the universe h“D.
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Proof. By definition, homomorphisms of generalized models D, U, and V are precisely homo-
morphisms of the ordinary models limD, limU, and limV. Now apply Theorem 45 to the latter
three models.

Note that Theorem 46 includes Theorem 45 as a partial case by identifying operations and
relations with principal ultrafilters given by them as in Theorem 34.

Before formulating an extension theorem for generalized models in the wide sense, let us state
one more auxiliary result:

Lemma 47. Let U and V be two generalized models in the same signature whose universes ββX

and Y , respectively, both carry topologies where the topology on ββX is standard, let U coincide,
up to the identification map i, with a generalized model B in the narrow sense (also having the
universe ββX), and let g : ββX Ñ Y . Then the following are equivalent:

(i) g is a homomorphism of U into V,

(ii) g is a homomorphism of epBq into V.

If moreover, the interpretation in V takes n-ary predicate symbols to ultrafilters having limits in
tS Ď Y n : S is closed u where Y n carries the product topology, and the map g is closed, then the
following item:

(iii) g is a homomorphism of EpBq into V,

also is equivalent to each of items (i) and (ii):

U

lim

��
g

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇

B

i

==③③③③③③③③③

e
!!❈

❈❈
❈❈

❈❈
❈❈ E

// EpBq

g

��✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

epBq

g

**❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱

V

Proof. Before proving the equivalences, recall that by Theorem 34, the ordinary models epBq
and EpBq are identified with generalized models in the wide sense having the principal interpre-
tations, and the limits of the principal ultrafilters over the sets of operations and relations are
the operations and relations that generate them. The formulations of (i) and (ii) imply such an
identification.

The equivalence of items (i) and (ii) requires no special assumptions about B, V, and g; it is
immediate from the following: our definition of homomorphisms of generalized models via their
limits, the assumption U “ ipBq, and the equality epBq “ lim ipBq stated in Theorem 37.

To prove that item (iii) under the additional assumption is also equivalent to (i) and (ii), we
repeat the part of the proof of Theorem 45 that deduces the case (β) from the case (α), taking
into account Theorem 29 stating that all relations in EpBq are regular closed in the product
topology on pββXqn.

The proof is complete.

Now we are ready to formulate a version of the Second Extension Theorem for generalized
models.
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Theorem 48. Let U “ pββX, f, . . . , r, . . .q and V “ pY, g, . . . , s, . . .q be two generalized models in
the same signature, let ββX carry its standard topology and Y a compact Hausdorff topology, let
h : X Ñ Y , and suppose that

(a) U coincides, up to the identification map i, with a generalized model B in the narrow sense,
and the interpretation in B is pseudo-principal on functional symbols with A the principal
submodel (having the universe X),

(b) the interpretation in V takes all n-ary functional symbols to ultrafilters having limits in
RCh“XpY n, Y q, and all n-ary predicate symbols to ultrafilters having limits in tS Ď Y n : S is
right closed w.r.t. h“Xu, for any n ă ω.

Then the following are equivalent:

(i) h is a homomorphism of A into V,

(ii) rh is a homomorphism of U into V,

(iii) rh is a homomorphism of ĂA into V.

If moreover, the interpretation in V takes n-ary predicate symbols to ultrafilters having limits in
tS Ď Y n : S is closed u where Y n carries the product topology, then the following item:

(iv) rh is a homomorphism of A˚ into V,

also is equivalent to each of items (i)–(iii):

U

lim

��
rh

  ❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

B

i

>>⑥⑥⑥⑥⑥⑥⑥⑥

e ��❅
❅❅

❅❅
❅❅

❅ E
// A˚

rh

��✵
✵
✵
✵
✵
✵
✵
✵

ĂA
rh

**❯❯❯❯❯❯❯❯❯❯❯❯

A
h //

__❄❄❄❄❄❄❄❄

GG✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎
V

Proof. The assumptions about U, V, and rh of this theorem repeat the assumptions about U, V,
and g of Lemma 47 with an extra requirement stating that the interpretation in B is pseudo-
principal on functional symbols. So as the principal submodel of B is A, we have epBq “ ĂA and
EpBq “ A˚ by Theorem 28. Thus by Lemma 47, items (ii) and (iii) are equivalent, and under
the additional assumption about V, item (iv) is also equivalent to each of them.

Let us now prove that (i) and (ii) are equivalent. It suffices to show that the models U

and V satisfy the conditions of Theorem 46(α). For V, this is true by the assumption (b). As
for U, by the assumption (a) we have U “ ipBq with B a generalized model in the narrow sense.
Furthermore, ipBq is a generalized model in the wide sense, and by Lemma 36, the interpretation
of ipBq takes functional symbols to ultrafilters concentrated on RCXppββXqn, ββXq, and relational
symbols to ultrafilters concentrated on tQ Ď pββXqn : Q is right clopen w.r.t. Xu. Therefore, the
ultrafilters have limits in these sets endowed with the X-pointwise convergence topologies as the
latter are compact Hausdorff by Lemma 11. Thus U also satisfies the conditions of Theorem 46(α),
with the principal submodel A here as the submodel D from that theorem (again by identifying
ordinary models with generalized models having the principal interpretations). This shows the
equivalence of (i) and (ii), thus completing the proof.



41

Finally, by changing i with I, we obtain the counterparts of Lemma 47 and Theorem 48:

Lemma 49. Let U and V be two generalized models in the same signature whose universes ββX

and Y , respectively, both carry topologies where the topology on ββX is standard, let g : ββX Ñ Y ,
and suppose that

(a) U “ IpBq for some generalized model B in the narrow sense (also having the universe ββX),

(b) the interpretation in V takes all n-ary functional symbols to ultrafilters having limits in
RCg“XpY n, Y q, and all n-ary predicate symbols to ultrafilters having limits in tS Ď Sn : R is
closed u where Y n carries the product topology.

Then the following are equivalent:

(i) g is a homomorphism of U into V,

(ii) g is a homomorphism of epBq into V,

(iii) g is a homomorphism of EpBq into V:
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Proof. Again, by using Theorem 34, we identify the ordinary models epBq and EpBq in (ii)
and (iii) with the corresponding generalized models in the wide sense having the principal inter-
pretations (and thus having epBq and EpBq as their limits). The equivalence of items (i) and (iii)
is immediate from the following: our definition of homomorphisms of generalized models via their
limits, the assumption U “ IpBq, and the equality epBq “ lim IpBq stated in Theorem 43. But
then item (ii) is also equivalent to each of items (i) and (iii) since the identity map on ββX is
a homomorphism of epBq onto EpBq by Theorem 25. The proof is complete.

Theorem 50. Let U “ pββX, f, . . . , r, . . .q and V “ pY, g, . . . , s, . . .q be two generalized models in
the same signature, let ββX carry its standard topology and Y a compact Hausdorff topology, let
h : X Ñ Y , and suppose that

(a) U “ IpBq for some generalized model B in the narrow sense, and the interpretation in B

is pseudo-principal on functional symbols with A the principal submodel (having the uni-
verse X),

(b) the interpretation in V takes all n-ary functional symbols to ultrafilters having limits in
RCh“XpY n, Y q, and all n-ary predicate symbols to ultrafilters having limits in tS Ď Y n : S is
closed u where Y n carries the product topology.

Then the following are equivalent:
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(i) h is a homomorphism of A into V,

(ii) rh is a homomorphism of U into V,

(iii) rh is a homomorphism of ĂA into V,

(iv) rh is a homomorphism of A˚ into V:
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V

Proof. The assumptions about U, V, and rh of this theorem repeat the assumptions about U, V,
and g of Lemma 49 with an extra requirement stating that the interpretation in B is pseudo-
principal on functional symbols. So as the principal submodel of B is A, we have epBq “ ĂA and
EpBq “ A˚ by Theorem 28. Thus by Lemma 49, items (ii), (iii), and (iv) all are equivalent.

Let us now prove that (i) and (ii) are equivalent. It suffices to show that the models U and V

satisfy the conditions of Theorem 46(β). ForV, this is true by the assumption (b). As for U, by the
assumption (a) we have U “ IpBq with B a generalized model in the narrow sense. Furthermore,
IpBq is a generalized model in the wide sense, and by Lemma 40, the interpretation of IpBq takes
functional symbols to ultrafilters concentrated on RCXppββXqn, ββXq, and relational symbols to
ultrafilters concentrated on tQ Ď pββXqn : Q is regular closed u. Therefore, the ultrafilters have
limits in these sets endowed with the corresponding compact Hausdorff topologies described
above. Thus U also satisfies the conditions of Theorem 46(β), with the principal submodel A here
as the submodel D from that theorem (again by identifying ordinary models with generalized
models having the principal interpretations). This shows the equivalence of (i) and (ii), thus
completing the proof.

Remark. Theorems 45–50 admits some variants and generalizations. E.g. they remain true for
epimorphisms (since for any compact Hausdorff Y , if h : X Ñ Y is such that h“X is dense in Y ,
then rh : ββX Ñ Y is surjective), as well as for homotopies and isotopies (in sense of [3], [4]),
which can be defined for generalized models in the wide sense in the same way as this was done
for homomorphisms and embeddings. Also versions for multi-sorted models (having rather many
universes X1, . . . ,Xn than one universe X) can be easily stated.

5. Problems

This section contains the list of questions and tasks, including all ones previously posed here.
A part of them is of rather technical character (1, 3, 4, and 7) while others are more program.

1. Does Lemma 12 remain true for the space RCX1,...,Xn´1
pββX1, . . . , ββXn, Y q (or moreover, the

space Y ββX1ˆ...ˆββXn) endowed with the full pointwise convergence topology? i.e. given discrete
spaces X1, . . . ,Xn, a compact Hausdorff space Y , and a dense subset of Y , is the set

ext“SX1ˆ...ˆXn “
 rf : f P SX1ˆ...ˆXn

(
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dense in this space? It can be seen that the answer is affirmative for unary maps, i.e. the set
t rf : f P SXu is dense in CpββX, Y q. What happens for binary maps?

2. Given discrete X1, . . . ,Xn and compact Hausdorff Y , let ext be a map of Y X1ˆ...ˆXn endowed
with the discrete topology into Y ββX1ˆ...ˆββXn endowed with the usual product topology (or equiv-
alently, the usual pointwise convergence topology). As the range is a compact Hausdorff space,
the map ext continuously extends to Ăext:

ββ
`
Y X1ˆ...ˆXn

˘

Ąext

''❖
❖

❖
❖

❖
❖❖

Y X1ˆ...ˆXn

OO

ext // Y ββX1ˆ...ˆββXn

Can this alternative version of self-applying of the map ext lead to some interesting possibilities,
including variants of the theory of generalized models?

Note that now Ăext“ββpY X1ˆ...ˆXnq does not coincide with ext“Y X1ˆ...ˆXn (unlike our previous
situation); however, the latter set is still dense in the former:

ext“ Y X1ˆ...ˆXn Ă Ăext“ ββ
`
Y X1ˆ...ˆXn

˘
“ clY ββX1ˆ...ˆββXn

`
ext“ Y X1ˆ...ˆXn

˘
.

Also, is this version of Ăext surjective? This would be the case if the previous question in its
stronger form, i.e. for the space Y ββX1ˆ...ˆββXn , had the affirmative answer.

3. For which compact Hausdorff spaces Y , instead of ββY with a discrete Y , does Lemma 20
remain true, i.e. for any discrete X1, . . . ,Xn and the map Ąapp defined as in the remark in the
beginning of Section 3:

ββX1 ˆ . . . ˆ ββXn ˆ ββpY X1ˆ...ˆXnq
Ąapp

**❯❯❯❯❯❯❯❯❯❯❯

X1 ˆ . . . ˆ Xn ˆ Y X1ˆ...ˆXn

OO

app // Y

the statements

epfqpu1, . . . , unq “ Ąapppu1, . . . , un, fq,

eprqpu1, . . . , unq iff Ăin pu1, . . . , un, rq

hold for all f P ββpY X1ˆ...ˆXnq, r P ββ PpX1 ˆ . . . ˆ Xnq, and u1 P ββX1, . . . , un P ββXn? Does
this hold at least for all compact Hausdorff spaces Y that are zero-dimensional, or extremally
disconnected?

4. What are topological properties of the subset of the space ββpY X1ˆ...ˆXnq consisting of pseudo-
principal ultrafilters? Of the preimage of this set under e, i.e. the set t rf : f P Y X1ˆ...ˆXnu, in
the space RCX1,...,Xn´1

pββX1, . . . , ββXn, ββY q with the pX1, . . . ,Xnq-pointwise convergence topology
(except for the fact that it is dense there, as stated in Lemma 12), or with the (usual) pointwise
convergence topology? in the space pββY qββX1ˆ...ˆββXn with the pointwise convergence topology?

Often objects naturally defined in terms of ultrafilter extensions have rather hardly definable
topological properties, as shown in [30, 31].

In two next questions we wonder about variants of the definition of the satisfiability in gen-
eralized models in the narrow sense.
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5. Define an alternative satisfaction relation ( by using rather in˚ than Ăin ; i.e. if Rpt1, . . . , tnq is
an atomic formula in which R is not the equality predicate, let

A ( Rpt1, . . . , tnq rvs iff in˚pvıpt1q, . . . , vıptnq, ıpP qq.

Does this give a E-counterpart of the semantic of generalized models in the narrow sense? More
precisely, is the following E-counterpart of Theorem 23 true: If A is a generalized model, then
for all formulas ϕ and elements u1, . . . , un of the universe of A,

A ( ϕ ru1, . . . , uns iff EpAq ( ϕ ru1, . . . , uns

(with ( in this new sense)?

6. Another way to vary the definition ( is by letting

A ( Rpt1, . . . , tnq rvs iff
`
@ ıpRqQ

˘ rQpvıpt1q, . . . , vıptnqq.

This version looks less smooth. Does this, nevertheless, give something interesting?

7. To define the map I, we considered the set RegCl of regular closed subsets of the space
ββX1 ˆ . . . ˆ ββXn with a topology turning it into a space homeomorphic to the usual product
space 2X1ˆ...ˆXn with the discrete space 2. Redefine this topology on RegCl as a restricted
version of Vietoris topology (in an analogy with the restricted version of pointwise convergence
topology turning out RC into a compact Hausdorff space homeomorphic to the product space
Y X1ˆ...ˆXn). Note that in the usual Vietoris topology, the space tQ Ď ββX1 ˆ . . . ˆ ββXn : Q is
closedu is compact Hausdorff but RegCl is not a closed subspace of it.

8. Investigate filter extensions of first-order models (as was started in [1] and [6]) and the
corresponding concepts of filter interpretations and generalized models.

9. Investigate other possible types of ultrafilter extensions, besides the r- and ˚-ones, isolate
special features of the two canonical extensions among others (as was proposed at the end of [6]).

10. Investigate ultrafilter extensions of the syntax (ultrafilter extensions of languages, contin-
uous extensions of evaluation and interpretation maps, ultrafilter extensions of the satisfaction
relation).

11. Do the concepts of ultrafilter interpretations and generalized models lead to any interesting
(e.g. Ramsey-theoretic) applications?

Acknowledgement. We are indebted to Professor Robert I. Goldblatt who provided some useful
historical information concerning the ˚-extension of relations.
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