
Open Access. © 2018 Valery Bakanov, published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Open Comput. Sci. 2018; 8:228–234

Research Article Open Access

Valery Bakanov*

Software complex for modeling and optimization
of program implementation on parallel calculation
systems
https://doi.org/10.1515/comp-2018-0019
Received June 29, 2018; accepted December 5, 2018

Abstract: The paper considers the problem of develop-
ing rational methods for the creation of a framework (a
plan, execution timetable) of parallel programs for real
parallel computing systems. To solve this problem, a soft-
ware environment (software stand) has been developed
that allows implementing di�erent strategies for building
a framework for parallel programs and assessing the qual-
ity of these strategies. The built-in script Lua programming
language is used to increase the �exibility ofmodeling and
optimization capabilities. Results of applying some of the
proposed strategies for constructing rational plans for par-
allel programming are outlined.

Keywords: graph algorithm presentations, analysis of in-
formation program structure, line-parallel form (LPF) of
information graph, rational parameters for execution of
parallel programs, strategy for constructing a rational plan
for the parallel program execution

1 Introduction
The task of developing e�ective parallel programs (i.e.
the fastest ones and those which make the most use of
the given computing system)remains to be solved completely
solved yet [1]. The problems are associated with a huge
variety of both computational algorithms and architecture
of parallel computing systems. In this regard, research in
the �eld of modeling and optimizing the execution of pro-
grams on parallel computing systems are relevant today.

Almost every application program contains several
standard algorithms (linear algebra, statistics, signal anal-
ysis, etc) united by "glue", which de�nes the overall struc-

*Corresponding Author: Valery Bakanov: National Research Uni-
versity "Higher School of Economics" (HSE), 101000, Myasnitskaya
Str. 20, Moscow, Russia; E-mail: vbakanov@hse.ru

ture of the program in question. In this case, the "glue"
described often represents a sequential algorithm which
cannot be parallelized e�ciently. The main execution
time of the program falls on separate blocks, representing
(in case of well-designed application architecture) well-
parallelized algorithms. It is these parts of the overall pro-
gram that must be subjected to the e�cient paralleliza-
tion.

In programming the parallel parts of a common pro-
gram, one of the known parallel programming technolo-
gies is usually applied. However before this it is necessary
to de�ne the rational plan ("framework") for performing
the parallel parts of the program. To determine such plans,
it is advisable to apply the computer simulationmethod for
executing the given algorithms on a certain �eld of parallel
calculators. The research requires �exibility in thedescrip-
tion and purposeful modi�cation of plans for parallel pro-
grams. One of the ways to achieve this is to use the script
programming language to implement the tasks of model-
ing and optimization.

2 Methods of research
To solve these problems, the specialized software toolkit
(actually a software platform) was created using the
C++ programming language; the client part represents
a 32-bit GUI-application for Windows and includes a
text editor and an interpreter of Lua script language as
components [2] (Figure 1). The developed program sys-
tem in the form of portable executable �les is avail-
able for free use (from the article author’s website at:
http://vbakanov.ru/spf@home/content/spf@home.rar).

Thepersonal contributionof the author consists in set-
ting the task, designing, algorithmizing, developing the
software interface and the user interface of the system,
programming, debugging and supporting the speci�ed
software system aswell as, developing strategies for build-
ing rational (aspiring to optimal) execution schedules.

Unauthenticated
Download Date | 2/15/19 10:52 AM

https://doi.org/10.1515/comp-2018-0019
http://vbakanov.ru/spf@home/content/spf@home.rar


Software complex for modeling and optimization of program implementation on parallel calculation systems | 229

Figure 1: User interface of the developed software system.

The initial data for the system under discussion in-
clude description of the program in the form of an Infor-
mation Graph Algorithm (IGA); meanwhile the decompo-
sition stage of the given algorithm is deemed completed.
Hereby the graph nodes (operators) can have any size (de-
pending upon the chosen level of parallelization). Output
information is given in text and (in part) graphical form
and the data of each experiment is carefully logged in a
�le with a unique name.

The �rst step of analysis is to reveal the hidden paral-
lelizationof the givenalgorithmandas a result of its execu-
tionweobtain the so-calledLine-Parallel Form (LPF) of the
information graph of the algorithm [3]. Actually, the LPF
is obtained by a fast algorithm of computing complexity
O(N2), where N is the number of IGA vertices. This method
is included in a set of functional capabilities of this soft-
ware system. In fact, LPF already determines a certain (but
inmost cases far from the optimal ones albeit inmost cases
a suboptimal) plan for parallel execution of the given algo-
rithm. The operators on the same LPF tier are information-
independent and can be executed simultaneously – that
is, in parallel.

Let’s consider a simple example of processing one of
the simplest algorithms – solving the complete quadratic
equation in real numbers, where the level of paralleliza-
tion is the level of machine instructions and for this task,
the solution coincides with the order of arithmetic opera-
tions.

Figure 2 (on the left) shows the canonical LPF form
of this algorithm, which is characterized by 11 arithmetic
operations (operators), 6 data inputs (coe�cients of equa-
tions a, b, c and constants 2.0, 4.0 and −1.0) and 2 data
outputs (two real roots). The height of this LPF is equal to
6 (the minimum path value in the IGA), whereas the width
is 4.

Analysis of the LPF algorithm for solving the complete
quadratic equation shows signi�cant unevenness of the
distribution of operators over the tiers (which is indicative
of very ine�cient use of resources of the parallel comput-

Figure 2: Examples of a line-parallel form of algorithms: on the left
– with an opportunity of moving operators between tiers, on the
right – in the absence of such an opportunity (doubling procedure
for 16 numbers), whereas the �gures in the center represent LPF tier
numbers.

ing system). Nevertheless, it is possible to move operators
between tiers whilemaintaining the LPF height (which de-
termines the total parallel algorithmexecution time),with-
out violating algorithm information dependencies tomove
operators from tier to tierwhilemaintaining theLPFheight
(namely, it determines the total time of parallel algorithm
execution). The potential displacements range is shown in
Figure 2 (on the left by a dotted line). Additionally, Fig-
ure 2 (on the right) shows the LPF algorithm, which ba-
sically does not allow the redistribution of operators over
LPF tiers – in case of maintaining the height thereof.

By moving two of the operators on tier 1 to the lower
tiers, the LPF width is reduced to 2. At the same time, for
execution of the given algorithm (during the same time
period) only 2 parallel calculators are su�cient instead
of 4. These transformations illustrate the �rst variant of
optimization, where the target function is to balance the
LPF width. Balancing entails minimizing the LPF width
while maintaining its height, which is equivalent to mini-
mizing the computational resources (provided the execu-
tion time for single-tasking the parallel calculator does not
increase), this action can be called "balancing" the LPF
widths. The second optimization option involves trans-
forming the LPF form to execute the algorithmon the given
�eld (number, �rst of all) of parallel calculators (which
are computationally heterogeneous) while allowing an in-
crease in execution time, i.e. increasing the LPF height.

This problem is closely related to the problem of par-
titioning the graphs and according to the work outlined
in [4], in the general case belongs to the class of NP-
complete (for a large-sized IGA, the computational com-
plexity of obtaining an exact solution by way of full ex-
haustive search is prohibitively large). Approximate solu-
tions are achieved by the well-known methods (genetic

Unauthenticated
Download Date | 2/15/19 10:52 AM



230 | Valery Bakanov

algorithms, branch and border method, etc.) that can be
developed, debugged and tested by means of the built-in
script language in the developed software system.

However, this approach is suitable mainly at the stage
of researching executionof algorithmsand is unlikely to be
applied to Run-Time compilers, where compilation speed
is especially important. This is true for the conceptual ar-
chitecture of processors with a very long machine word
VLIW–Very Large InstructionWord in the EPIC – Explicitly
Parallel InstructionComputingmodel, knownsince 1983 [5]
and still active to this day [6]. Proceeding from this, one
of the applications of this system is development of fast
heuristic methods (scenarios) for determining the rational
transformations of the LPF form for the given formulation
of the optimization problem. By consistent improvement
(based on certain quality indicators) of the developed sce-
narios, their aspiration to optimal scenarios is realized.

To implement the above transformations of IGA forms,
the program interface of the system under consideration
includes three types of API calls (total up to 70, each of
them is the Lua "wrapper" of the corresponding C func-
tion), as follows:
• Information calls (serve to obtain information about

IGA and its LPF; based on these data, one of the IGA
processing strategies is subsequently selected to solve
the set task, implemented subsequently in Lua). Ex-
amples: get the total number of LPF tiers, the number
of operators on the given tier, the range of possible lo-
cation of this operator by LPF tiers.

• Promotional calls (serve to implement the speci�c
strategies for solving the problem of constructing a
parallel schedule of algorithm execution). Examples:
to build the canonical form of LPF, add an empty tier
under the data, and transfer the operator from tier to
tier.

• Auxiliary calls (output of calculated data in text and
graphical format for data exchange with the other ap-
plications, operations with �le system, etc.).

The degree of uneven distribution of operators over the
LPF tiers (one of the optimization parameters) will be de-
termined as:
• k is the coe�cient of uneven distribution of operators

over the tiers of the LPF graph k = max(Wi)
min(Wi) , should be

Wi is width of the i-th LPF tier;
• σ is the root-mean square deviation of the widths of

tiers, σ =
√

1
N
∑i=N

i=1
(
Wi − W̄

)2 , where W̄ is arithmetic
mean width of LPF tiers, N is the number of tiers;

• CV is the coe�cient of variation of the LPF tier widths,
CV = σ

W̄ .

The complexity of performing each scenario of transform-
ing the LPF form is proposed to be evaluated in the number
of transpositions of operators from LPF tier to tier (simi-
larly to determining the complexity of array sorting opera-
tions).

Parallel computation �elds can be heterogeneous al-
lowing computations between �elds with di�erent mem-
ory volume parameters, data types, or di�erent data struc-
tures, e.g. vector computations. A requirement to achieve
this heterogeneity along with the choice of selecting the
execution operator (from the set of appropriate parame-
ter calculatingmachines)would necessitate the use of tags
within themodel (extra parameters) for operators and cal-
culators. The principle of determining the opportunity to
execute the particular operator on the given calculator is
based on attributing the numeric parameter of the oper-
ator tag to the range of the same type of parameters of
the corresponding calculator tag (unlimited number of tag
names is allowed, all comparisons are related by conjunc-
tion). The opportunity is presumed for the group (in "from"
and "up to" range) setting the tags for numbers of opera-
tors and calculators and setting the relevant default val-
ues.

The tagging system is also implemented to describe
the metrics of IGA vertices and arcs (i.e. the operators
and their message exchange lines) and allowing their
values to be set. Operator metrics characterize the algo-
rithm’s runtime computational complexity, message ex-
change linemetrics (message length or transmission time)
or, formulti-core processors, the parameters for temporary
data storage (e.g. in-process registers). The option to group
(in "from" and "up to" range) assignment metrics for num-
bers of operators and data exchange lines and to set the
default values is also supported.

Accounting for these characteristics makes it possi-
ble to obtain maximum adequacy of the software model,
i.e. successfully executing the data processing on parallel
computer systems of various types.

Similar solutions to the system under discussion can
be METIS and ParMETIS (University of Minnesota, 1998-
2003), but these packages are mainly aimed at opera-
tions with graphs and do not "and do not enable the fea-
tures of the optimization problem of implementing spe-
ci�c algorithms on precon�gured parallel calculators. V-
Ray and PARUS (both developed by Moscow State Univer-
sity named after M. V. Lomonosov, Russia), the purpose of
which, however, di�ers signi�cantly from those presented
in thework and canbe attributed to related topicswith this
project.

For the case of heterogeneity of the �eld of parallel cal-
culating machines, the strategy is proposed (and imple-

Unauthenticated
Download Date | 2/15/19 10:52 AM



Software complex for modeling and optimization of program implementation on parallel calculation systems | 231

mented onLua) that allows the logical division of (split up)
LPF tiers into the individual sub-tiers. If there are no more
operators within the given tier than the number of calcula-
tors capable of executing operators of this exact type, then
they are executed in parallel. Otherwise these operators
are forced to be executed sequentially on sub-tiers within
the given tier (Figure 3).

Figure 3: Execution of parallel program on a heterogeneous �eld of
calculators according to splitting scheme applicable to tiers for six
parallel computers (nodes) of type I, type II and type III, by 3, 1 and
2 pieces respectively for the N-th LPF tier.

In this case, the total time T for solving problems is
determined by the sum over all tiers, i.e. by the maximum
time values related to execution of operators on sub-tiers
of the given tier, as follows:

T =
∑
j

(
max
kj

∑
i
tik

)
,

where j-th is the number of tiers, i is the number of sub-
tiers within the given tier, kj are the types of calculators in
j-th tier, whereas tik is the execution time of type i operator
installed on type k calculator.

The task of minimizing a total solution time becomes
more complicated in case of possibility when it is possi-
ble to perform each operator on several calculators due to
the ambiguity of tik in the above expression; the additional
balancing by sub-tiers is required here. This allows the in-
verse problem to be solved as well, i.e. optimizing the pa-
rameters of heterogeneous computational �eld for speci�c
algorithm.

Therefore, the overall processing diagram for process-
ing representations of information graphs of algorithms
(IGA) in the program system under consideration can be
presented in Figure 4.

When applying this system as a component of a par-
allelizing compiler, the algorithm graph already exists, as
long as an operating compiler performs the program anal-
ysis for information dependencies and actually builds the
graph. To obtain the correct IGAs, the operator has been
using the DATA-FLOW calculator [7] program simulator,
which allows the program to be debugged and is exported
to the �le format of the list of adjacent vertices (i.e. input to

Figure 4: Enlarged diagram of IGA processing stages aimed at de�-
nition of parameters of their rational performance on the given �eld
of parallel calculators.

the software system). A speci�c feature of this simulator is
the ability to model the asynchronous mode of operators
execution. For each of them the time of execution is set (in
conventional units).

3 Results
The e�ciency of data processing is illustrated by data in
Table 1: strategy with the metaphorical name "Bulldozer"
by analogy with the function of a bulldozer, i.e. moving
soil from elevations to �ll surface depressions.

Considered information graphs (homogeneous paral-
lel calculators �eld):
• slau_5a and slau_10 – represent the procedures for

solving SLAE of orders 5,10 respectively by the direct
Gauss method,

• doubling_32 – themethod of doubling for 32 numbers,
• mnk_10 andmnk_20 – the procedures for linear least-

squares �t for 10 and 20 points,
• korr_10 and korr_20 – the procedures for determining

coe�cient of pair correlation for 10 and 20 points,
• m_matr_5 and m_matr_10 – the procedures for multi-

plying square matrices of orders 5 and 10 by the clas-
sical method.

The uneven distribution of the number of operators over
LPF tiers was estimated by unevenness of distribution of
operators over the tiers and the variation coe�cient of
widths of CV tiers .

It can be seen from the data in Table 1 that the LPF’s
"balancing" potential at a constant height is limited, so
strategies with increasing LPF height are of more practi-
cal interest (see Table 2 which compares the two strate-
gies with metaphorical names "Dichotomy" and "Width-

Unauthenticated
Download Date | 2/15/19 10:52 AM



232 | Valery Bakanov

Table 1: E�ectiveness of applying the "Bulldozer" strategy of balancing the LPF width under a constant height thereof (numerator – for the
original LPF, denominator – for the LPF converted).

IGA name
(arcs/vertices)

Number of
LPF tiers

Average LPF
width

Unevenness k
(of LPF width) CV

Number of
vertices

(operators)
displacements

slau_5a (230/115) 25 4.60 20/20 1.2/1.1 15
slau_10a (1610/805) 63 12.8 90/90 1.72/1.62 86
doubling_32 (62/31) 5 6.2 16/16 0.984/0.984 0
mnk_10 (132/66) 16 4.13 22/14 1.2/0.766 9
mnk_20 (252/126) 26 4.85 42/24 1.58/0.867 19
korr_10 (152/88) 15 5.87 32/24 1.26/0.915 12
korr_20 (292/168) 25 6.72 62/35 1.73/0.921 44
m_matr_5 (450/225) 5 45.0 5/3,40 0.994/0.514 42

m_matr_10 (3800/1300) 10 190 10/6 1.5/0.763 407

By-Width "). Besides the algorithms described above,
the algorithms generated by the IGA graph generating
programe313_o206_t32, e451_o271_t30, e2367_o1397_t137)
have also been analyzed.

To "unload" the excessively wide tiers, the "Di-
chotomy" strategy assumes the transfer of half of oper-
ators to the newly created tier under the current one; in
the meantime, the "Width-By-Width" strategy realizes the
gradual transfer of operators to the newly created LPF
tiers. It can be seen from Table 2 that inmost cases "Width-
By-Width" leads to better results than "Dichotomy" (for ex-
ample, the height of converted LPF is signi�cantly smaller
thus corresponding to a reduction in the execution time
of parallel program – in addition, for fewer operator dis-
placements).

4 Discussion of research results
As can be seen from the data in the tables above, the pre-
viously described strategies (by the way, not excessively
sophisticated) reduce the unevenness of LPF widths un-
der the given constraints, but with di�erent e�ciency for
various IGA’s. The data show the polynomial growth of la-
bor intensity of these algorithms (in terms of moving op-
erators from tier to tier) in comparison with the degree of
"jamming" the LPF width.

When applying the "Bulldozer" strategy, k and CV
have been reduced by 1.5 to 2 times (larger values corre-
sponding to increased data processing), whereas applying
the "Dichotomy" and "Width-By-Width" strategies has re-
duced the same indicators’ values by up to 10 times (even
further in some cases, depending on the preset condi-
tion and speci�c algorithms). These parameters should be

considered the starting points for further improving these
strategies. Generally, increased complexity (and accord-
ingly, variability) results in an increased e�ectiveness of
the IGA strategy."

The outlined experimental data allows us to draw con-
clusions about the quality of functioning of the developed
LPF conversion strategies – for example, when applying
the "Dichotomy" strategy to the doubling algorithm (dou-
bling_32 in Table 2). Accordingly, this strategy operates
more "roughly", where the target parameter experiences
notably higher "jumps" at considerably faster speeds. This
results in the development of a more e�ective "Width-By-
Width" strategy.

Further improvements may be achieved through the
improvement of individual strategies and their reasonable
joint application. The task of the priority e�ectiveness pre-
diction level for these strategies (prior to applying the
proper LPF transformations) is particularly interesting and
practically important (application of arti�cial intelligence
methods to recognize the situation and choose themost ef-
�cient LPF conversion method according to the optimiza-
tion task).

In general we have succeeded in achieving the preset
goal – development of "rapid" rational strategies for draw-
ing up a plan for implementation individual fragments of
parallel programs where the use of the described software
system proved e�ective. Quantitative parameters of cur-
rent approximations are obtained in the course of �ne-
tuning strategies for optimizing the execution of parallel
programs andways to further develop such strategies have
also been revealed.

Analysis of the parallel program execution in multi-
task mode requires additional research. Meanwhile in the
zero approximation, the optimization (in the aforemen-
tioned sense) of each separate program is the basis for op-

Unauthenticated
Download Date | 2/15/19 10:52 AM



Software complex for modeling and optimization of program implementation on parallel calculation systems | 233

Table 2: Comparison of e�ectiveness of two LPF conversion strategies in compliance with width full stopW0: (numerator – "Dichotomy"
strategy, denominator – "Width-By-Width" strategy).

IGA name
(arcs/vertices/tiers) Initial LPF LPF converted

W0=10 W0=8 W0=6 W0=4 W0=2 W0=1
DisplacementLPF

height CV

slau_10a (1610/805/63) - 926
504

1038
534

1135
575

1340
632

1601
701

1920
742

63 141
119

167
137

197
167

283
231

486
419

805
805

1.72 0.472
0.565

0.399
0.49

0.361
0.41

0.294
0.3

0.287
0.14

0
0

m_matr_10 (3800/1300/10) - 5232
1800

5232
1820

5828
1840

6152
1869

6964
1880

7776
1890

10 272
190

272
242

436
320

544
475

1088
950

1900
1900

1.50 0.127
0

0.127
0.0967

0.229
0.0587

0.143
0

0.249
0

0
0

korr_20 (292/168/25) - 91
52

91
54

121
56

160
78

212
120

283
143

25 32
31

32
32

40
35

59
59

97
95

168
168

1.73 0.359
0.481

0.359
0.362

0.259
0.294

0.29
0.495

0.257
0.24

0
0

mnk_20 (252/126/26) - 51
32

61
34

61
36

79
38

127
78

183
100

26 31
30

33
31

33
32

44
36

70
65

126
126

1.58 0.504
0.611

0.349
0.508

0.349
0.387

0.336
0.302

0.224
0.125

0
0

doubling_32 (62/31/5) - 8
6

8
8

20
12

20
16

34
22

49
26

5 6
6

6
6

9
8

9
9

16
16

31
31

0.984 0.629
0.675

0.629
0.629

0.328
0.524

0.328
0.328

0.129
0.129

0
0

e313_o206_t32 (313/206/32 - 52
28

60
46

103
68

138
104

210
148

293
174

32 40
40

42
42

56
51

70
68

123
112

206
206

0.738 0.475
0.626

0.454
0.532

0.388
0.522

0.3
0.42

0.281
0.2

0
0

e451_o271_t30 (451/271/30) - 85
47

98
77

177
177

209
162

315
212

430
241

30 43
43

46
46

70
61

83
79

156
144

271
271

0.522 0.32
0.514

0.312
0.412

0.256
0.421

0.214
0.271

0.254
0.172

0
0

e2367_o1397_t137 (2367/1397/137) - 496
306

613
471

969
668

1183
883

1733
1126

2339
1260

137 209
209

237
237

338
293

425
402

791
733

1397
1397

0.483 0.288
0.474

0.294
0.39

0.235
0.356

0.218
0.291

0.24
0.153

0
0

e17039_o9858_t199 (17039/9858/199) - 14579
7926

16129
8297

17418
8677

20252
9064

23524
9456

27512
9654

199 1387
1074

1730
1323

2108
1724

3291
2541

5865
4981

9853
9853

0.558 0.231
0.23

0.194
0.214

0.201
0.173

0.219
0.135

0.278
0.074

0
0

Unauthenticated
Download Date | 2/15/19 10:52 AM



234 | Valery Bakanov

timal functioning of the entire parallel computing system
in multi-tasking mode.

The results of this research are applicable to the anal-
ysis of algorithms (with regard to demonstrating the e�-
ciency of parallel program execution) in development of
the parallelizing compilers and in educating specialists in
the �eld of parallel programming.

References
[1] Voevodin V. V., Voevodin Vl. V., Parallel’nye vychislenija (Parallel

computing), St. Petersburg, BHV-Petersburg, 2002 (in Russian)
[2] Ierusalimschy R., Programming in Lua, 3rd Edition, PUC-Rio,

Brasil, Rio de Janeiro, 2013

[3] AlgoWiki, Open Encyclopedia of Parallel Algorithmic Features,
Available at: 18.10.2016, http://algowiki-project.org/en/Open_
Encyclopedia_of_Parallel_Algorithmic_Features (reference date:
01.06.2018)

[4] Gary M., Johnson D., Vychislitel’nye mashiny i trudnoreshaemye
zadachi (Computers and intractable problems), Moscow, Mir,
1982 (in Russian)

[5] Fisher J. A., Very long instruction word architectures and the ELI-
512, In: Proceedings of the 10th annual International Symposium
on Computer Architecture, New York, NY, USA: Association for
Computing Machinery (ACM), 1983, 140–150

[6] McNairy C., Soltis D., Itanium2processormicroarchitecture, IEEE
Micro Magazine, 2003, 23(2), 44–55

[7] BakanovV.M., Dynamics control computing in the processor data
flow architecture for di�erent types of algorithms, Programm-
naya Ingeneria (Software Engineering), 2015, 9, 20–24 (in Rus-
sian)

Unauthenticated
Download Date | 2/15/19 10:52 AM

http://algowiki-project.org/en/Open_Encyclopedia_of_ Parallel_Algorithmic_Features
http://algowiki-project.org/en/Open_Encyclopedia_of_ Parallel_Algorithmic_Features

	1 Introduction 
	2 Methods of research
	3 Results
	4 Discussion of research results

