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Abstract. A description of rational Newton maps in terms of the partial

fraction decomposition of rational functions is obtained. Dynamics on para-

bolic immediate basins for rational Newton maps of entire functions have been
studied. It is proved that every parabolic immediate basin contains invari-

ant accesses to the parabolic fixed point at infinity. Moreover, among these

accesses there exists a unique dynamically defined access where dynamics are
attracted towards the parabolic fixed point, whereas for other accesses, if there

is any, the dynamics are repelled.

1. Introduction

Let f be a complex polynomial or a transcendental entire function defined on
the complex plane C. A meromorphic function Nf (z) := z − f(z)/f ′(z) is called
the Newton map of f(z). In the literature, the Newton map of a polynomial p(z)
is also called the Newton method or the Newton-Raphson method applied to p(z).
The roots of a polynomial equation p(z) = 0 become the attracting fixed points of
its Newton map Np(z). Hence searching for the roots of a complex polynomial is
equivalent to searching for the attracting fixed points of the corresponding Newton
map. At a starting point z0 in the complex plane C, we iteratively apply the Newton
map Nf (z) to produce the sequence

z0, Nf (z0), N◦2f (z0), . . . , N◦nf (z0), . . . ,

called the orbit of z0. We write F ◦n for the nth iterate of a complex map F ,
for instance, F ◦2(z) := F (F (z)). If this orbit converges to a complex number ξ,
then ξ is a fixed point of Nf . Moreover, the same orbit converges to a root of
f(z) = 0. If the root is simple then the order of convergence is quadratic, thus
the approximations rapidly approach the root. In this paper, we are interested in
the case of rational Newton maps. We do not study here the numerical aspects
of Newton’s method (refer to the works [Sch, SS]) but rather consider the Newton

maps as dynamical systems on the Riemann sphere Ĉ. More precisely, this paper
consists of two results, a description of rational Newton maps Nf (z) for f(z) =

p(z)eq(z) with non-constant q(z) in Theorem A and the study of accesses to ∞ on

the open set of the complex plane where the above defined sequence converges in Ĉ
in Theorem B. This latter set is the union of basins of attraction of all attracting
fixed points and the parabolic fixed point of Nf . It is open and belongs to the
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stable set called the Fatou set of Nf , the complement of which is called the Julia
set, where the dynamics is chaotic (sensitive to initial conditions). The Fatou set

of a holomorphic function F is defined as the set of z ∈ Ĉ such that there exists
U , an open neighborhood of z, where the iterates {F ◦n|U , n ≥ 1} form a normal
family on U . The Fatou set of a rational function F coincides with the set of points
z ∈ Ĉ stable in the sense of Lyapunov for F .

Let us recall some basic definitions. For a fixed point F (z) = z the quantity
λ = F ′(z) is a local conformal invariant (under a conformal conjugacy) and is
called the multiplier of z. The fixed point z is attracting if |λ| < 1, in particular,
superattracting if λ = 0, repelling if |λ| > 1, indifferent if |λ| = 1, in this case let
λ = e2πiθ, then rationally indifferent (also called parabolic) if θ ∈ Q, irrationally
indifferent if θ 6∈ Q. The following is known for fixed points. Attracting fixed
points and irrationally indifferent fixed points, if the function is locally linearisable,
belong to the Fatou set. Repelling and parabolic fixed points belong to the Julia
set. Irrationally indifferent fixed points, if the function is not locally linearisable,
belong to the Julia set as well. The multiplier is also defined for periodic points
and the same classification and the corresponding properties are true for them as
well. The multiplicity of a fixed point z0 is defined as the multiplicity of z0 as
a root of the fixed point equation F (z) = z. If z = 0 is a parabolic fixed point
with the multiplier +1 then the Taylor series expansion of F near the origin is
F (z) = z + azm+1 + O(zm+2), where a 6= 0 is a complex number and m + 1 ≥ 2
is the multiplicity of the parabolic fixed point at the origin. The number m in this
case is called the parabolic multiplicity of a parabolic fixed point.

Every rational function of degree at least 2 has a fixed point that is either
repelling or parabolic with the multiplier +1. We call this type of fixed points
weakly repelling. If such a point is unique then the Julia set is connected by theorem
of Shishikura [Sh]. For Newton maps the point at ∞ is the only weekly repelling
fixed point, as a corollary, the Julia sets for all rational Newton maps is connected.

Denote deg(F, z) the local degree of a function F at a point z. Denote CF =

{z|deg(F, z) > 1} and PF =
⋃
n≥1 F

◦n(CF ) the set of critical points and the post-
critical set of F respectively. For holomorphic functions, the set of critical points is
exactly the set where the derivative vanishes. A function F is called post-critically
finite if PF is finite. A function F is called geometrically finite if the intersection
of PF with the Julia set is a finite set.

For geometrically finite rational Newton maps the Julia sets are locally con-
nected, it is a corollary of a result in [T], where it asserts that for geometrically
finite rational functions the Julia set is locally connected if it is connected.

The rational Newton maps can be described in terms of multiplies of fixed points
as in the following theorem in [RS].

Theorem 1.1. Let N : C→ Ĉ be a meromorphic function. It is the Newton map
of an entire function f : C → C if and only if for each fixed point ξ of N there is
an integer m = mξ ≥ 1 such that N ′(ξ) = (m − 1)/m. In this case there exists a

constant c ∈ C\{0} such that f = c · e
∫

1
ζ−N(ζ)

dζ . Entire functions f and g have the
same Newton map if and only if f = c · g for some constant c ∈ C\{0}.

The point at ∞ is a removable singularity for some Newton maps making them
rational functions on Ĉ [RS].
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Theorem 1.2. Let f : C → C be an entire function. Its Newton map Nf is a
rational function if and only if there are polynomials p and q such that f has the
form f = peq. Let m and n be the degrees of p and q, respectively. For n = 0 and
m ≥ 2, the point at ∞ is repelling with the multiplier m/(m − 1). For the pair
n = 0 and m = 1, Nf is constant. For n > 0, the point at ∞ is parabolic with the
multiplier +1 and the multiplicity n+ 1 ≥ 2.

2. Results

The following criterion, based on partial fraction decomposition of rational func-
tions, allows us easily check whether or not a given rational map is a Newton map.

Theorem A (Description of Newton maps). Let N : Ĉ→ Ĉ be a rational function
of deg(N) ≥ 2. Let ∞ be its weakly repelling fixed point. Assume 1

z−N(z) =∑k
i=1 ri(

1
z−zi ) + s(z) is given, the partial fraction decomposition for 1

z−N(z) over

the field of complex numbers C, where zi runs over all distinct fixed points of N in
C, where ri = ri(z), for 1 ≤ i ≤ k, and s = s(z) are polynomials. Then N is a
Newton map of an entire function if and only if there exist integers mi ≥ 1 such that

ri(z) ≡ mi · z+ ri(0). In this case, let p = p(z) :=
∏k
i=1(z− zi)mi (if N(z) does not

have any fixed point in C, we let p := 1) and q = q(z) :=
∫ z
0

(
s(w) +

∑k
i=1 ri(0)

)
dw

be polynomials, then N = Npeq and deg(N) = k + deg(q) = deg( 1
z−N(z) ) + 1.

Proof. Let N : Ĉ → Ĉ be a rational function of degree d ≥ 2, without loss of
generality assume that∞ is a weekly repelling fixed point (we can always conjugate
N by a suitable Möbius map sending its weekly repelling fixed point to ∞). As a
rational function, 1

z−N(z) has k ≥ 0 poles at points z1, . . . , zk in C, which are exactly

the fixed points of N in C. Let the partial fraction decomposition of 1
z−N(z) be the

following

(2.1)
1

z −N(z)
=

k∑
i=1

ri(
1

z − zi
) + s(z),

where ri = ri(z), for 1 ≤ i ≤ k, and s = s(z) are polynomials, (see for details
Chapter 1.4 in [A]). Without loss of generality, we can normalize the polynomials
ri(z) such that their constant terms vanish: ri(0) = 0, for every 1 ≤ i ≤ k, or we
can add their constant terms to the polynomial s(z).

Assume that ri(z) ≡ mi · z for integers mi ≥ 1. Then the partial fraction
decomposition (2.1) can be rewritten as

1

z −N(z)
=

k∑
i=1

mi

z − zi
+ s(z).

If we denote polynomials p = p(z) :=
∏k
i=1(z − zi)mi and q = q(z) :=

∫ z
0
s(w)dw,

from the latter we obtain N(z) = z − p(z)/(p′(z) + p(z) · q′(z)). It follows that N
is the Newton map of the entire function peq by the uniqueness of Newton maps
(Theorem 1).

Conversely, let N be the Newton map of an entire function f = peq, where p

and q are polynomials. Let p(z) :=
∏k
i=1(z − zi)mi , where zi runs over all distinct
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roots of p, then we obtain

1

z −Nf (z)
=
f ′

f
=
p′eq + pq′eq

peq
=
p′ + pq′

p
=
p′

p
+ q′ =

k∑
i=1

mi

z − zi
+ q′(z).

The uniqueness of partial fraction decompositions for rational functions yields the
required result.

It remains to show that the degree of the Newton map is equal the number of
distinct roots of p plus the degree of q. We have

Npeq (z) = z − p(z)

p′(z) + p(z) · q′(z)
=
z(p′(z) + p(z) · q′(z))− p(z)

p′(z) + p(z) · q′(z)
.

The degree may drop if the numerator and denominator of the latter has some
cancellation factor, i.e., the polynomial equations z(p′(z) + p(z)q′(z)) − p(z) = 0
and p′(z) + p(z)q′(z) = 0 have a common solution for some z = z0. Plugging
the second into the first, we get p(z0) = 0. Combining it with the second, we
derive p′(z0) = 0. These mean that z = z0 is a multiple root of p and then
deg(N) = k + deg(q), where k is the number of distinct roots of p. Similarly,

deg( 1
z−Nf (z) ) = deg(p

′+pq′

p ) = deg(N)− 1 = k + deg(q)− 1. �

The following notion is the main object when one studies Newton maps. Since
we are dealing with a general family of rational Newton maps, we allow ∞ to be a
parabolic fixed point.

Definition 2.1 (Basin of Attraction). Let ξ be an attracting or a parabolic fixed

point of F . Denote A(ξ) = int{z ∈ Ĉ : limn→∞ F ◦n(z) = ξ} the basin of ξ defined
as the interior of the set of starting points that converge to ξ under the iterates of
F . Denoted A◦(ξ) the immediate basin of ξ that is the forward invariant connected
component of the basin A(ξ).

Definition 2.2 (Invariant access to ∞). Let A◦ be the immediate basin of a fixed
point ξ ∈ C or the parabolic fixed point at ∞ of the Newton map Npeq . Fix
a point z0 ∈ A◦, and consider a curve Γ : [0,∞) → A◦ with Γ(0) = z0 and
limt→∞ Γ(t) = ∞. Its homotopy class (with endpoints fixed) within A◦ defines
an access to ∞ in A◦. An access is called invariant if together with its every
representative Γ the image Npeq (Γ) also belongs to the same access.

In the case of an attracting immediate basin A◦(ξ), the end point z0 of the
homotopy is at the attracting fixed point ξ.

Remark 2.3. For parabolic immediate basins the invariant accesses are also well
defined. Indeed, if we choose a point z0 6= ∞ as one of the end points of the
homotopy (the other end is at∞), then within the immediate basin, by considering
a composition of some curve joining z0 and Npeq (z0) and then following the image
curve Npeq (Γ), we always stay in the same homotopy class of the curve Γ thanks
to the simply connectivity of the immediate basins.

The invariant accesses are defined for immediate basins of attracting fixed points
for Newton maps of polynomials in [HSS]. Our definition of an invariant access for
these domains coincides with theirs and generalizes this notion to the parabolic
immediate basins. In Figure 1, the immediate basins for the quartic parabolic
Newton map with all accesses to ∞ are depicted.
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Figure 1. The Julia set of a quartic Newton map. Top and bot-
tom gray regions are the two distinct parabolic immediate basins of
∞. Left and right central regions are attracting immediate basins.
Critical points are drawn as black dots with the two heavy dots rep-
resenting the two superattracting fixed points. There are 2 critical
points in the left central immediate basin and in the gray basin on
the top with the corresponding 2 invariant accesses to ∞ in each.

The following main theorem gives the structure of immediate basins of rational
Newton maps. This result is obtained in the author’s PhD thesis in [Ma1] and
recently this result were generalized for meromorphic Newton maps in [BFJK] in
full generality. In our proof, following [HSS], we show that all invariant accesses
come in one-to-one correspondence for each fixed point of the corresponding proper
map of the unit disk. Moreover, for parabolic immediate basins there always exists
a distinguished access called the dynamical invariant access to ∞. To obtain this
access in the parabolic immediate basin, we can take any curve η, starting at
some z0 and ending at Npeq (z0), and considering the homotopy class of the curve
Γ :=

⋃
n≥0N

◦n
peq (η). This curve lands at ∞ and is forward invariant under Npeq .

This notion of dynamical invariant access is used as a main ingredient to construct
a natural bijection between distinct spaces of postcritically finite and postcritically
minimal Newton maps using parabolic surgery in [Ma1, Ma2, Ma3]. Similar to
postcritically finite Newton maps of polynomials, the postcritically minimal Newton
maps are structurally important in the corresponding parameter plane.

For most cubic Newton maps of polynomials the Julia sets are locally connected
as it was observed by Roesch in [R]. Very recently, the local connectivity issue for
Newton maps of polynomials has been completely resolved by Drach and Schleicher
in [DS]. They proved that for Np, the Newton maps of polynomials, of all degrees,
the Julia set is locally connected at every point z, except possibly when z belongs
to, or is mapped to, the Julia set of some renormalizable polynomial-like restriction
of Np. For the cases of locally connected Julia sets the proof given below simplifies
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as we can apply parabolic surgery on Newton maps of polynomials and obtain
parabolic Newton maps and the accesses of the former transform to the accesses of
the latter (for the details refer to [Ma2]).

Theorem B (Invariant accesses to ∞). Let Npeq be a rational Newton map of
degree d ≥ 2 and A◦ be an immediate basin of an attracting or parabolic fixed
point of Npeq . Assume A◦ contains k ≥ 1 critical points of Npeq counting with
multiplicities, then Npeq |A◦ is a branched covering map of degree k + 1 ≥ 2, and
A◦ has exactly k invariant accesses to ∞. If A◦ is a parabolic immediate basin
then among its k invariant accesses to ∞ there always exists a dynamical invariant
access that is unique.

Proof. Let Npeq a rational Newton map and A◦ its immediate basin be given.
There are two cases; case of basins for attracting fixed points or case of basins for
the parabolic fixed point at ∞. The first case for Newton maps of polynomials
was treated in Proposition 6 in [HSS]. Since the arguments in the proof use only
the local dynamics of the function within the basin, their results are also valid for
attracting immediate basins of rational Newton maps Npeq with non-constant q.

It remains to prove the theorem for parabolic immediate basins of rational New-
ton maps Npeq with deg(q) > 0. Following [HSS], denote D = {z, |z| < 1} the
unit disk and its boundary S1 = {z, |z| = 1} the unit circle, and let A◦ be one of
the parabolic immediate basins of ∞. Consider the Riemann map ψ : A◦ → D
uniquely determined by ψ(c) = 0 and ψ′(c) > 0, where c is any point in A◦. Then
the composition f = ψ ◦ Npeq ◦ ψ−1 is a proper map of the unit disc D with the
degree, which is equal to the degree of the restriction Npeq |A◦ . The critical points
of Npeq in A◦ are mapped to the critical points of f in D preserving multiplicities.
Assume that Npeq has k ≥ 1 critical points in A◦ counting with multiplicities, there
is at least one critical point in every immediate basin. The connectivity of the Julia
set implies that A◦ is simply connected, then by the Riemann-Hurwitz formula the
degree of the restriction Npeq |A◦ is k + 1.

As a proper self map of D, f is a Blaschke product (the product of a finite
number of conformal automorphisms of D, see [M]), hence it has an extension to

Ĉ by reflection, denote the extension again by f . The degree of the restriction
Npeq |A◦ and of f coincide, which is k + 1. Then f has k + 2 fixed points, one of
which is a double parabolic (of multiplicity 3 or of parabolic multiplicity 2). Since
we have a parabolic dynamics in D, other distinct k − 1 simple fixed points are
repelling with real multipliers. All fixed points are located on the unit circle. The
unit disk D, the unit circle S1 and Ĉ \ D̄ are invariant by f . Since f can not have
critical point on S1, it is a covering map of S1 of degree k+1, and the orbit of every
z ∈ Ĉ\S1 converges to the unique parabolic fixed point on S1. Thus the Julia set is
the unit circle S1. Alternatively, observe that the Fatou set of the Blaschke product
is invariant under the suitable involution. If the Julia set is not connected then the
Fatou set of this Blaschke product has a unique component which includes a part
of the unit circle S1 and the complement of S1. But then on the Fatou points in
S1 the iterates must eventually converge to the parabolic fixed point on S1 then
necessarily they fall on the repelling petal and gets pushed back from the parabolic
fixed point, which leads to a contradiction to the convergence to the parabolic fixed
points.

By Remark 1, in A◦ it suffices to consider a part of homotopies fixing the point
at ∞ locally at ∞. The Riemann map ψ : A◦ → D transports homotopies to the
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unit disk D. The linearizing coordinates of k − 1 repelling fixed points of f define
k − 1 invariant accesses among k invariant accesses, and the other invariant access
comes from a Fatou coordinate of the parabolic fixed point on S1. The invariant
access associated to the parabolic fixed point defines the dynamical access.

Assume that the boundary of A◦ is locally connected, which is true if the Newton
map is geometrically finite. Carathéodory theorem assures that ψ−1 the inverse
map to ψ : A◦ → D extends to the closed unit disk D as a continuous map. Denote
the extension again by ψ−1. By continuity, we obtain ψ−1 ◦ f = Npeq ◦ ψ−1 on D.
Counted with multiplicities, k+ 2 fixed points of f correspond to k+ 2 fixed points
of Npeq on ∂A◦. A fixed point of Npeq that is on the boundary of an immediate
basin is the only parabolic fixed point at∞, so the domain A◦ has invariant accesses
to ∞ through k distinct directions (k − 1 directions for the k − 1 simple and one
direction for the triple fixed point of f).

If A◦ is not locally connected, so that the inverse to the Riemann map does not
extend continuously to the closed unit disk, the statement still holds true. Consider
a Koenigs coordinate of a repelling fixed point ξj that conjugates f locally near the
point ξj to the linear map z 7→ f ′(ξj)z, we take a segment of a straight-line through
the origin, which is invariant. We take an invariant curve in the petal associated to
the parabolic fixed point of f . Let γ be the preimage of this curve that lands at ξj
in the dynamical plane of f . Then we have γ ⊂ f(γ). Now we pull the curve γ by
the Riemann map ψ to A◦. The accumulation set of ψ−1(γ) in ∂A◦ is connected
(see Section 17 in [M]) and since γ is invariant we conclude that the accumulation
set is pointwise fixed by Npeq . But ∞ is the only fixed point on the Julia set. This
gives us k invariant accesses to∞ in A◦. We need to show that they are all distinct
and the only ones.

It is clear that simple curves within D converging to a given fixed point of
f are homotopic so that every fixed point of f defines a unique access in A◦.
Different fixed points of f lead to non-homotopic curves in A◦ and thus to different
accesses. Indeed, let li, lj ⊂ D be the radial lines converging to ξi 6= ξj respectively,
parametrized by the radius. Assume by contrary that ψ−1(li) and ψ−1(lj) are
homotopic curves in A◦ by a homotopy fixing end points; ψ−1(li(1)) = ψ−1(lj(1)) =
∞, then one of the components bounded by a simple closed curve ψ−1(li)∪ψ−1(lj)
must be contained in A◦. Call this component V ; then ψ(V ) must be one of the
sectors bounded by li and lj ; call it S. Both V and S are Jordan domains, so ψ−1

extends as a homeomorphism from S̄ onto V̄ by Carathéodory theorem; but then
the extension sends the set S1 ∩ S nowhere.

Conversely, we show that every invariant access to ∞ in A◦ comes from a fixed
point of the corresponding f . Let Γ : [0, 1] → A◦ ∪∞ be a curve representing an
access. Then ψ(Γ) lands at a point υ ∈ S1 by Corollary 17.10 in [M], define it as
the associated point of Γ. Then for every n ≥ 1, N◦npeq (Γ) represents an access and

thus has its associated point υn ∈ S1. Since the Newton map Npeq has a parabolic
fixed point at ∞, it is locally a homeomorphism there and every fixed point of f
gives rise to an access, all υn must be contained in the same connected component
of S1 with the fixed points removed; this component is an interval, say I, on which
{υn} must be a monotone sequence converging under f to a fixed point υ of f in
Ī, i.e. to one of the endpoints. If υ is a one of the repelling fixed points of f then
it is impossible. For the remaining possibility, assume υ is a parabolic fixed point
of f then the sequence {υn} ⊂ S1 converges to the parabolic fixed point, which is
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also not possible since S1 is the Julia set of f and every orbit that converges to a
parabolic fixed point must follow the attracting direction which is perpendicular to
S1.

Finally, observe that the unique invariant access corresponding to the parabolic
fixed point of f gives rise to the dynamical invariant access and it always exists and
unique. �
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