MSC 2010: 37D15

On construction of axiom A 3-diffeomorphism with one-dimensional surface attractor-repeller dynamics¹

M. Barinova, V. Grines, O. Pochinka

Higher School of Economics

E-mail:mkbarinova@yandex.ru, vgrines@yandex.ru, olga-pochinka@yandex.ru

Abstracts. We suggest a method of a construction of axiom A 3-dieomorphisms whose non-wandering set consists of exactly one-dimensional surface attractor and one-dimensional surface repeller. Unlike from examples constructed in [1] and [3], our diffeomorphisms are not structurally stable, however suggested method gives rather simple construction of new types of 3-manifolds, admitting "hyperbolic sink-hyperbolic source" dynamics.

Keywords: A-diffeomorphism, surface basic set

1. Introduction

Let M be a closed n-manifold and $f: M \to M$ be an axiom A diffeomorphism. By Smale's spectral theorem the non-wandering set of f consists of finite number f-invariant closed subsets, named basic sets. For a basic set Λ a pair (a,b), where $a = \dim W_{\Lambda}^{u}$, $b = \dim W_{\Lambda}^{s}$ is called type of the basic set.

A basic set A of the diffeomorphism f is called *attractor* if it has a *trapping region*, that is a compact neighborhood $U_A \subset M$ such that $f(U_A) \subset int U_A$ and $\bigcap_{j \in \mathbb{N}} f^j(U_A) = A$.

A basic set R is called a repeller if it is an attractor for f^{-1} .

A hyperbolic attractor of diffeomorphism f is called *surface* if there exists a compact surface Σ that $A \subset \Sigma$, $f(\Sigma) \subset \Sigma$. A surface repeller is defined as surface attractor for f^{-1} .

There is a natural question: does some manifold admit an A-diffeomorphism with exactly two basic sets of the same dimension and attractor-repeller dynamics? Such a diffeomorphism is automatically Ω -stable. The simplest example of such a system is a Morse-Smale diffeomorphism on n-sphere ($n \geq 1$) whose non-wandering set consists of exactly one sink and one source. These examples are structurally stable and exhaust all possible diffeomorphisms with zero-dimensional attractor and repeller.

For an attractor and repeller with the dimension 2k ($k \in \mathbb{N}$) also not so difficult to realize a diffeomorphism on n-manifold (n > 2k) as a direct product of Anosov diffeomorphism on 2k-torus with the type (k, k) by sink-source diffeomorphism on (n-2k)-sphere. Moreover, for 3-manifolds by V. Grines, Yu. Levchenko, V. Medvedev,

¹This work was supported by the Russian Science Foundation (project 14-41-00044).

O. Pochinka [4] proved that two-dimensional attractor-repeller 3-diffeomorphisms there are only on mapping torus and obtained complete topological classification of such rough systems.

Particular case is a surfaces diffeomorphism with one-dimensional attractor and repeller. Such dynamics is achieved, for example, by taking of the connected sum of two DA-models on 2-tori. However R. Robinson, R. Williams [5] proved that among such diffeomorphisms there are no structural stable one.

B. Jiang, Y. Ni and S. Wang [2] proved that a 3-manifold M admits an axiom A diffeomorphism f whose non-wandering set consists of solenoid attractors and repellers if and only if M is a lens space L(p,q) with $p \neq 0$. They also shown that such f are not structural stable. C. Wang and Y. Zhang [6] got infinitely many genus two 3-manifolds, each admits a diffeomorphism whose non-wandering set consists of two Williams solenoids, one attractor and one repeller. These manifolds contain half of Prism manifolds, Poincare's homology 3-sphere and many other Seifert manifolds, all integer Dehn surgeries on the figure eight knot, also many connected sums.

On the other hand, due to Ch. Bonatti, N. Guelman [1], Shi Yi [3], there are examples of rough 3-diffeomorphisms with one-dimensional attracor and repeller. But all examples have very complicated descriptions.

In this paper we suggest a method of a construction of an axiom A 3-diffeomorphisms whose non-wandering set consists of exactly one-dimensional surface attractor and one-dimensional surface repeller. All known examples were constructed in [1] and [3]. Constructed in this paper diffeomorphisms are not structurally stable, however suggested method gives rather simple construction of new 3-manifolds, admitting "hyperbolic sink-hyperbolic source" dynamics, different from the manifolds constructed in [1] and [3].

2. Construction

The diffeomorphism will be constructed step by step in this section as following:

- take an Anosov diffeomorphism of a 2-torus \mathbb{T}^2 ;
- make a Smale "surgery operation" to obtain the system with one fixed source and one-dimensional attractor on the torus;
- multiply \mathbb{T}^2 by \mathbb{R} with contraction to 0, hence one-dimensional surface attractor on $\mathbb{T}^2 \times \mathbb{R}$ will be obtained;
- construct a fundamental domain of the attractor;
- take an analogical sample with one-dimensional surface repeller;
- "glue" the fundamental domains of the diffeomorphisms in the basins of attractor and repeller in accordance with dynamics.

2.1. Anosov diffeomorphism of a 2-torus

Let $C \in GL(2,\mathbb{Z})$ be a hyperbolic matrix with the eigenvalues λ_1, λ_2 so that $\lambda = |\lambda_1| > 1$ and $|\lambda_2| = 1/\lambda$. As the matrix C has the determinant equals 1 then it generates the hyperbolic automorphism $\widehat{C} : \mathbb{T}^2 \to \mathbb{T}^2$ with the fixed point O. This automorphism is Anosov diffeomorphism, so there are two transversal foliations (stable and unstable) which are dense on the 2-torus, and a set of periodical points is also dense.

2.2. Smale "surgery operation"

Let $U(O) \subset \mathbb{T}^2$ be a some neighbourhood of the fixed point O of the diffeomorphism \widehat{C} and x,y be local coordinates such that the diffeomorphism \widehat{C} in these coordinates has a form

$$\widehat{C}(x,y) = (x/\lambda, \lambda y)$$
.

Then $Ox \subset W_O^s$ and $Oy \subset W_O^u$, also $\{y = const\}$ and $\{x = const\}$ are stable and unstable foliations. A diffeomorphism $\widehat{B} : \mathbb{T}^2 \to \mathbb{T}^2$ with properties described below will be constructed in this section:

- \widehat{B} will be identity on $\mathbb{T}^2 \setminus U(O)$;
- \widehat{B} will keep unstable manifolds of \widehat{C} everywhere;
- \widehat{B} will add additional expansion along stable manifolds of \widehat{C} inside some neighbourhood of O;
- the composition $\widehat{\Psi} = \widehat{B} \circ \widehat{C}$ is DA-diffeomorphism with a fixed source O and one-dimensional attractor A.

Let $\nu:[0,1]\to[0,1]$ be a diffeomorphism defined by the graph on Fig. 1. Then $\nu_t(x)=(1-t)x+t\nu(x),\ t\in[0,1]$ is an isotopy between the identity map $\nu_0(x)$ on [0,1] and $\nu_1(x)=\nu(x)$. Let $\sigma(x,a,b):\mathbb{R}\to\mathbb{R}$ be a sigmoid function of the form

$$\sigma(x, a, b) = \begin{cases} \frac{1}{1 + \exp\left(\frac{(a+b)/2 - x}{(x-a)^2(x-b)^2}\right)}, & a < x < b, \\ 0, & otherwise. \end{cases}$$

It monotonically sends [a, b] to [0, 1].

For every $t \in [0, 1]$ let us define a diffeomorphism $B_t : [0, 1]^2 \to [0, 1]^2$ which possess the symmetries with respect to both axis Ox, Oy and in the first quadrant given by the formula

$$B_t(x,y) = \begin{cases} (\nu_t(x), y), & 0 \leq y < \frac{1}{2\lambda^3}, \\ (\sigma(y, \frac{1}{2\lambda^3}, \frac{1}{2})x + (1 - \sigma(y, \frac{1}{2\lambda^3}, \frac{1}{2}))\nu_t(x), y), & \frac{1}{2\lambda^3} \leq y < \frac{1}{2}, \\ (x, y), & \frac{1}{2} \leq y \leq 1. \end{cases}$$

ISSN 0203-3755 Динамические системы, 2018, том 8(36), №4

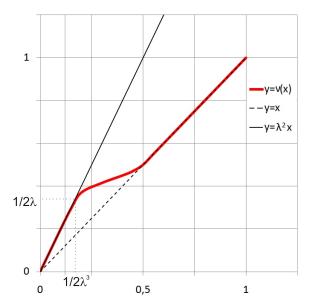


Рис. 1. Graph of function $\nu(x)$

By the construction B_t is an isotopy between the identity map $B_0(x,y)$ on $[0,1]^2$ and $B_1(x,y)=B(x,y)$. As B preserves y-coordinate, we will use the following designation: $B(x,y)=(\gamma(x,y),y)$. Let $D=\{(x,y)\in U(O): x^2+y^2\leqslant \frac{1}{(2\lambda^3)^2}\}$. By the construction B is identity out of $[0,1/2]^2$ and for points $(x,y)\in D$ we have $\gamma(x,y)=\lambda^2 x$.

Let \widehat{B}_t be a B_t inside $[0,1]^2$ and is identity out of it. By arguments like to [7] it is possible to prove that $\widehat{\Psi} = \widehat{B} \circ \widehat{C}$ is a DA-diffeomorphism, whose non-wandering set consists of a one-dimensional attractor and a source.

2.3. One-dimensional surface attractor of $\mathbb{T}^2 \times \mathbb{R}$

Consider a smooth function $\varphi: \mathbb{R} \to \mathbb{R}$ by the formula $\varphi(z) = \frac{z}{\lambda}$. Define a diffeomorphism of $\mathbb{T}^2 \times \mathbb{R}$ in coordinates $w \in \mathbb{T}^2, z \in \mathbb{R}$ by the formula

$$\Phi(w,z) = (\widehat{\Psi}(w), \varphi(z)).$$

The diffeomorphism Φ is an A-diffeomorphism whose non-wandering set contains one saddle point $\{O\} \times \{0\}$ and an one-dimensional attractor \mathcal{A} which is placed on a 2-torus $\mathbb{T}^2 \times \{0\}$.

2.4. Fundamental domain of the attractor

To find a fundamental domain of the basin of the attractor \mathcal{A} , first of all, notice that $\mathbb{T}^2 \times (-\frac{1}{2\lambda^2}, \frac{1}{2\lambda^2})$ is a trapping neighbourhood of an attractor $\mathbb{T}^2 \times \{0\}$. It is not a trapping neighbourhood for \mathcal{A} because there are a saddle point O and a segment of its stable separatrix $\{O\} \times (-\frac{1}{2\lambda^2}, \frac{1}{2\lambda^2})$ inside. A small neighbourhood of the separatrix will be chosen to remove them.

So $U_1^{\mathcal{A}} = (\mathbb{T}^2 \setminus \widehat{\Psi}^{-1}(D)) \times \left(-\frac{1}{2\lambda^2}, \frac{1}{2\lambda^2}\right)$ is a desired trapping neighbourhood for the attractor \mathcal{A} . Indeed, $\Phi(U_1^{\mathcal{A}}) = (\mathbb{T}^2 \setminus D) \times \left(-\frac{1}{2\lambda^3}, \frac{1}{2\lambda^3}\right) = U_2^{\mathcal{A}} \subset int \, U_1^{\mathcal{A}} \text{ and } \bigcap_{n=1}^{\infty} \Phi^n(U_1^{\mathcal{A}}) = \mathcal{A}$.

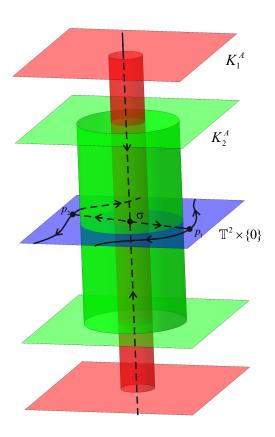


Рис. 2. Fundamental domain of an one-dimensional surface attractor

After that a fundamental domain of a basin of the attractor \mathcal{A} is $K^{\mathcal{A}} = cl\ (U_1^{\mathcal{A}} \setminus U_2^{\mathcal{A}})$ (see Fig. 2). Notice, that $\partial U_1^{\mathcal{A}}$ is a pretzel and $K^{\mathcal{A}}$ is homeomorphic to the direct product of a pretzel by a segment. We will use the following designation: $K_1^{\mathcal{A}} = \partial U_1^{\mathcal{A}}$, $K_2^{\mathcal{A}} = \partial U_2^{\mathcal{A}}$. So $\Phi(K_1^{\mathcal{A}}) = K_2^{\mathcal{A}}$.

2.5. One-dimensional surface repeller of $\mathbb{T}^2 \times \mathbb{R}$

Define a diffeomorphism $\theta:[0,1]^2\to [0,1]^2$ by the formula $\theta(x,y)=(-y,x)$. For every $t\in [0,1]$ let us define a diffeomorphism $Q_t:[0,1]^2\to [0,1]^2$ by the formula $Q_t=\theta^{-1}B_t^{-1}\theta$. By the construction Q_t is an isotopy between the identity map $Q_0(x,y)$ on $[0,1]^2$ and $Q_1(x,y)=Q(x,y)$. Let \widehat{Q}_t be a Q_t inside $[0,1]^2$ and is identity out of it. So \widehat{Q}_t keeps stable foliation of \widehat{C} and add additional contraction along unstable manifolds of \widehat{C} inside some neighbourhood of O. Thus $\widehat{\Psi}_-=\widehat{Q}\circ\widehat{C}$ is a DA-diffeomorphism, whose non-wandering set consists of a one-dimensional repeller and a sink.

Consider a copy of $\mathbb{T}^2 \times \mathbb{R}$ with the following diffeomorphisms of it

$$\Phi_{-}(w,z) = (\widehat{\Psi}_{-}(w), \varphi^{-1}(z)).$$

The diffeomorphism Φ_- is an A-diffeomorphism whose non-wandering set contains one saddle point $\{O\} \times \{0\}$ and an one-dimensional repeller \mathcal{R} which is placed on a 2-torus $\mathbb{T}^2 \times \{0\}$. Trapping neighbourhoods $U_1^{\mathcal{R}}$, $U_2^{\mathcal{R}}$ of \mathcal{R} and a fundamental domain $K^{\mathcal{R}}$ of a basin of the repeller \mathcal{R} are the same as for diffeomorphism Φ so $\Phi_-(U_2^{\mathcal{R}}) = U_1^{\mathcal{R}}$, $K_1^{\mathcal{R}} = \partial U_1^{\mathcal{R}}$, $K_2^{\mathcal{R}} = \partial U_2^{\mathcal{R}}$, and $\Phi_-(K_2^{\mathcal{R}}) = K_1^{\mathcal{R}}$.

2.6. Gluing of the fundamental domains

The goal of this section is to construct a diffeomorphism $H:K^{\mathcal{R}}\to K^{\mathcal{A}}$ with the properties:

- $H(K_2^{\mathcal{R}}) = H(K_1^{\mathcal{A}})$ and $H(K_1^{\mathcal{R}}) = H(K_2^{\mathcal{A}})$;
- $H = \Phi$ on $K_1^{\mathcal{R}}$ and $H = \Phi_-$ on $K_2^{\mathcal{R}}$.

For every $t \in [0,1]$ let $\widehat{\xi}_t = \widehat{B}_t \circ \widehat{Q}_t^{-1} : \mathbb{T}^2 \to \mathbb{T}^2$. Notice that $\widehat{\xi}_1 = \widehat{\Psi} \circ \widehat{\Psi}_-^{-1}$. Then $\widehat{\xi}_t \circ \widehat{\Psi}_-$ is an isotopy between $\widehat{\Psi}_-$ and $\widehat{\Psi}_-$ By the construction $\widehat{\xi}_t \circ \widehat{\Psi}_-$ has a form $\widehat{\xi}_t \circ \widehat{\Psi}_-(x,y) = (k(t)x,k(t)y)$ for $(x,y) \in \widehat{\Psi}(D)$, where

$$k(t) = \left(\lambda - \frac{1}{\lambda}\right)t + \frac{1}{\lambda}.$$

Finally let $r, q: [0,1] \to \left[\frac{1}{2\lambda^3}, \frac{1}{2\lambda^2}\right]$ be functions given by the formulas

$$r(t) = \frac{\lambda - 1}{2\lambda^3}t + \frac{1}{2\lambda^3}, \ \ q(t) = k(t) \cdot r(t).$$

Consider the fundamental domain $K^{\mathcal{R}}$ of the basin of the repeller \mathcal{R} (all reasoning for the attractor \mathcal{A} are analogical). Let $D_{r(t)} = \{(x,y) \in U(O) : x^2 + y^2 \leq r^2(t)\}$. Then $K^{\mathcal{R}}$ can be represented foliated by leaves

$$\{G_{r(t)} = G \times r(t), t \in [0, 1]\}$$

such that $G_{r(0)} = K_2^{\mathcal{R}}$, $G_{r(1)} = K_1^{\mathcal{R}}$ and $G_{r(t)}$ coincides with the tori $\mathbb{T}^2 \times \{\pm r(t)\}$ out of $D_{r(t)} \times \mathbb{R}$ and coincides with the cylinder $\partial D_{r(t)} \times [-r(t), r(t)]$ otherwise (see Fig. 3). Define a map $H_t : G_{r(t)} \to G_{q(t)}, t \in [0, 1]$ as follows

$$H_t(w,z) = \left(\widehat{\xi}_t(\widehat{\Psi}_-(w)), \frac{q(t)}{r(t)}z\right).$$

Thus the diffeomorphism $H: K^{\mathcal{R}} \to K^{\mathcal{A}}$, composed by $H_t, t \in [0, 1]$, glues the dynamics of Φ_- and Φ along the fundamental domains. After a smoothing the corners

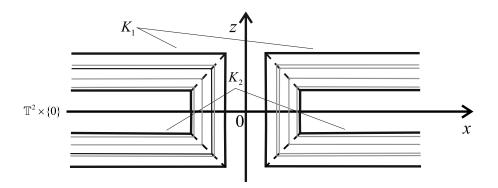


Рис. 3. Foliation of the fundamental domain

we get a new 3-manifold M with the desired A-diffeomorphism whose non-wandering set consists of one-dimensional surface repeller and one-dimensional surface attractor.

References

- 1. Bonatti Ch., Guelman N. (2010). Axiom A diffeomorphisms derived from Anosov flows, (J. Mod. Dyn.) 4, No.1, 1–63.
- 2. B. Jiang, Y. Ni, S. Wang, 3-manifolds that admit knotted solenoids as attractors, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4371–4382.
- 3. Shi Yi (2014). Partially hyperbolic diffeomorphisms on Heisenberg nilmanifolds and holonomy maps, (C. R. Math. Acad. Sci. Paris) 352, No.9, 743–747.
- 4. Grines V., Levchenko Y., Medvedev V., Pochinka O. (2015). The topological classification of structural stable 3-diffeomorphisms with two-dimensional basic sets, (Nonlinearity) 28, No.11, 4081–4102.
- 5. Robinson R.C., Williams R.F. (1973). Finite Stability is not generic (Dynamical Systems ((Proc. Sympos., Univ. Bahia, Salvador, 1971)) BTo" Academic Press, New York), 451–462.
- 6. Ch. Wang, Y. Zhang. Alternating Heegaard diagrams and Williams solenoid attractors in 3-manifolds. Topol. Methods Nonlinear Anal. Volume 47, Number 2 (2016), 769–798.
- 7. R. Williams. The DA-maps of Smale and structural stability, Global Anal., Proc. Symp. Pure. Math., AMS 14(1970), 329-334.

Получена 15.10.2018