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Abstract. A simple sociophysical model is proposed to describe the transition
between a chaotic and a coherent state of a microblogging social network. The
model is based on the equations of evolution of the order parameter, the con-
jugated field, and the control parameter. The self-consistent evolution of the
networks is presented by equations in which the correlation function between
the incoming information and the subsequent change of the number of micro-
posts plays the role of the order parameter; the conjugate field is equal to the
existing information; and the control parameter is given by the number of
strategically oriented users. Analysis of the adiabatic approximation shows that
the second-order phase transition, which means following a definite strategy by
the network users, occurs when their initial number exceeds a critical value
equal to the geometric mean of the total and critical number of users.

1 Introduction

Since the second half of the 20th century, a general trend in the development of science
has been the propagation of the ideas and methods of physics into natural and tradi-
tional humanities. The methods of physical modeling are often used in sciences such as
demography, sociology and linguistics.

In the mid 1990s, there was an interdisciplinary research field known as Econo-
physics, which sought to apply theories and methods originally developed by physicists
to solving problems of economics, usually those including uncertainty or stochastic
processes and nonlinear dynamics. The term “econophysics” was coined by H. Eugene
Stanley to classify a large number of papers written by physicists on the problems of
stock markets and other types of markets.

The interest of physicists in social sciences is not new. Daniel Bernoulli, to give but
one example, was the inventor of utility-based preferences. Sociophysics is the study of
social phenomena from the physics perspective, often using the human atom, social
atom, or human particle perspective (for sociophysics reviews see Refs. [1, 2]). The
main objective of this new field of natural sciences consists in the analysis of objec-
tively measurable and formalizable laws that define various social processes.

Social networks have the longest history of research in comparison with other
network types. It is noteworthy that it was in a study of social networks that D. Price
[3] empirically discovered the power law of distribution of nodes by the number of ties
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(which is one of the signs of network complexity) for the first time in 1965. In 1999, at
the University of Notre Dame, US physicists A.L. Barabasi and R. Albert established
[4, 5] that in a large number of networks, the distribution of nodes tends to obey a
power law, instead of the expected probabilistic Poisson distribution of nodes. Among
the most recent papers related to our research, [6, 7] should be mentioned. A com-
parison of the results obtained in the aforementioned literature to our research results
will be shown later as required in the corresponding sections of the present paper. Some
other relevant works in this area are those of Refs. [8—12].

Critical phenomena in complex networks (phase transitions being among them)
have been considered in many papers, (e.g., see the review [13] and references therein).
Research on the phase transitions in social networks [6-9, 14—18] is not an exception.
Nowadays the most interesting models of the phase transitions in social networks are
the ferromagnetic Ising model, the model of condensation transition, Potts model, the
XY model, the Kuramoto model, the reaction-diffusion model, and the co-evolution
model, among others. Lately an interest emerged for the application of self-organized
criticality theory to the analysis of critical phenomena in social networks (e.g., [6]).

In spite of the existence of a large number of various models of phase transitions
mentioned above, there has been no research of phase transitions in social networks
within a synergetic framework that would generalize the picture of phase transitions.

Self-organized phase transitions in microblogging social networks are part of our
research.

Therefore, this paper is organized as follows. A brief theoretical background is
provided in Sect. 2. The results of the three-parameter analysis of the kinetics of phase
transitions applied to social networks are presented in Sect. 3. In Sect. 4, our con-
clusions are summarized.

2 Brief Theoretical Background

First of all, let us briefly consider the main terms of the synergetic theory of phase
transitions [19-23], which are required for a complete understanding of the analysis
below.

Considering that the concept of self-organization is a generalization of the physical
concept of a phase transition, the empirical theory must be derived as an expansion of a
theory of thermodynamic transformations onto open systems. Within the limits of the
synergetic concept, a phase transition is realized as a result of coordinated behavior in
three degrees of freedom represented by the following parameters:

e Order parameter (7,), which represents the density of a conserved quantity in the
closed subsystem,

e Conjugate field (%), which is the gradient of the corresponding flow.

e Control parameter (S;), which is determined by the external influence and defines
the state of the system.
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The simplest (from the mathematical point of view) way to describe a self-
organizing system is the well-known Lorenz system, which features three differential
equations linking the rates of the parameter variation to their values:

771 = _?_; + yhy
he = =2 + g, S, (1)
Sy =55 — gonhy

Ts

where z, = z(1), z, = %

The main characteristic of Eq. (1) is the fact that all of those differential equations
include dissipative components. The values of these components are inversely pro-
portional to the corresponding relaxation times t,, 74, Tg, i.€., the time intervals over
which an excitation in an off-balance physical system decreases by a factor of e. The Le
Chatelier principle is of importance: because the reason of the self-organization is the
increase of the control parameter, then the order parameter and the conjugate field must
vary in such a way as to prevent the control parameter from growth. Formally, this fact
means the existence of a negative feedback loop between the values #, and h,. This
feedback loop makes the stationary value smaller in comparison with its value fixed by
the external stress.

The positive feedback loop between the order parameter and the control parameter
is extremely important, because it leads to the growth of the conjugate field. This
feedback loop can lead to the self-organization of the system, which in turn might cause
a phase transition.

In Eq. (1) y is a kinetic coefficient; the positive constants g, gs represent the
strength of feedback, and S is the parameter of external influence.

The advantage of the synergetic approach lies in the fact that it allows one to
employ the Le Chatelier principle without specifying a narrowly defined model.

The adiabatic approximation is normally used when studying the thermodynamics
of phase transitions. During the system’s evolution, the conjugated field and the control
parameter change so fast that they can follow the slow change of the order parameter.
At the same time, the evolution of the system is described by the Landau—Khalatnikov
equation. The synergetic potential plays the role of the free energy in this case.

In summary, it should be noted that the physical meaning of the order parameter is
the correlation function that defines a measure of the long-range order.

3 Three-Parameter Kinetics of the Phase Transitions

3.1 Self-organized Scheme

A microblogging social network is an open system, which means the existence of a
continuous influx of external information — for example, from other mass media —
which preserves the possibility of phase transitions from chaos (uncorrelated state) to
an ordered (coherent) state. The open nature of the network allows us to consider it in a
synergetic approach that generalizes the picture of phase transitions. In what follows,
we propose a simple theory that describes the transition between a chaotic and a
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coherent state of a microblogging social network. This theory is based on the equations
of evolution of the order parameter, the conjugated field, and the governing parameter.

Let us assume that Twitter is a dynamical system that consists of a large number of
users (ny > > 1), where n, <ny are strategically oriented (maintaining a definite
strategy), and the remaining ns — n, are randomly oriented (acting in a random way).

According to [24], among the strategically oriented users there can be business
users and spam users. Business users follow a marketing and business agenda on
Twitter. The profile description strongly depicts their motive, and a similar behavior
can be observed in their tweeting behavior. Spammers mostly post malicious micro-
posts at a high rate. Most of the time, automated computer programs (bots) run behind a
spam profile and randomly follow users, expecting some users to follow them in return.

Personal users and professional users can be considered to be randomly oriented
users. Personal users are casual home users who create their Twitter profile for
entertainment, learning, to obtain news, etc. These users neither strongly advocate any
type of business or product, nor are their profiles affiliated with any organization.
Generally, they have a personal profile and show a low to moderate activity in their
social interaction. Professional users are home users with professional intent on
Twitter. They share useful information about specific topics and engage in healthy
discussions related to their area of interest and expertise.

The most popular microblogging network, Twitter, can be considered to be an open
system, so it is reasonable to study the microblogging social network within the
framework of the synergetic approach that generalizes the concept of phase transitions.
The simplest possible theory is based on the evolution of the order parameter (c;),
conjugate field (i;), and control parameter (n,).

Let us define the variables of the self-organized scheme as applied to microblog-
ging social network.

Let us assume that the total number of microposts p, with a specific topic at time
t changes over an interval of time 7 by op; . .. The strategically oriented users/partners
make a decision to post microposts with content relevant to a certain topic depending
on the variation of the respective information di, at the preceding moment of time ¢ in
other mass media, as well as Twitter. As a result, the random variables dp,. ; and di,
turn out to be statistically dependent, and the correlation function

T
. .1 .
(Ops 42, 01) = #Lngo?/épﬂrt&ltdt
0

equals zero.

An essential change in Twitter, meaning that an agreement on the choice of a
definite strategy has been reached, occurs when (dp;.,0i;) takes finite values
asymptotically at infinite times of the information registration and the complete number
of microposts, i.e., at 7—09. In this case, the correlation function takes the following
form:
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T—00 T—00

T
1
= TEg(ép,+,,6i,> = lim lim T/éptﬂéi,dt. (2)
0

Thus, the difference between the strategically oriented and randomly oriented users
consists in the fact that ¢, # 0 for the former group, and ¢, = 0 for the latter group.

In this case (2) can be considered to be an order parameter that determines the
choice of strategy in the actions of users. Consequently, the conjugate field (i;) is
information, and the control parameter (n,) is the number of strategically oriented
users. This means that, with an increase in n, above the critical value, the network
transits from the uncorrelated state ¢; = 0 to the coherent state ¢, # 0, which is defined
by the choice of strategy of a small number of users n, < <ny.

In the uncorrelated state, the strategically oriented users act randomly and inde-
pendently of each other. In this case, the information immediately affects the number of
microposts on a certain topic; the time series of such microposts behaves as a random
time series. In this case, therefore, the microblogging social network is unpredictable.

A coherent social network is characterized by such fundamental trends as an
exponential growth of the number of microposts caused by coordinated action of a
relatively small number n, of partners/users and their followers, followers of their
followers, and so on (Fig. 1).

Number of microposts
g 8§ & 3

E
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Time (s)

Fig. 1. Twitter time series. The data were obtained by hydrating of the list of 3,183,202 tweet
IDs from a set of 12 lists of IDs distributed by Harvard University.

Within the framework of the synergetic approach, the evolution of a self-organized
system is determined by the self-consistent equations connecting the rates of change of
parameters ¢;, i',, 7, to their values ¢, i;, n;:

Tl = —Cr +acl;
Tiit = _il + a;cng (3)
Tafy = (R0 — ) — @nCyly
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In Eq. (3), ny is the initial number of strategically oriented users, a. is a Kinetic
coefficient, positive constants a;, a, are the feedback coefficients of the network. The
functions ¢, /7., i;/7;, (no — n,)/t, describe autonomous relaxation of the correlation
function (2), the information and the number of strategically oriented users of the
network to their stationary values ¢, = 0, i, = 0, n, = ny with the relaxation times .,
T;, T According to the Le Chatelier—Braun principle [25], if a system deviates from the
state of the stable equilibrium, then the forces arise that try to return the system back to
the equilibrium state.

3.2 Kinetics of the Phase Transition

A social network may exhibit a self-consistent behavior when the relaxation time of the
correlation function (2) is considerably larger than the corresponding relaxation times
for the information and the number of strategically oriented users: 7. > > t;,7,. This
means that the information i, ~ i(c;) and the number of strategically oriented users
n, = n(c;) follow the evolution of the correlation function ¢;. If t. > > 1;, 7, then the
principle of collateral subordination allows one to assume that Ty = 1,0, = 0 in
Eq. (3). In other words, if 7, > > 1;, 7, then the fluctuations of i, = i(c;) u n, = n(c;)
can be neglected, assuming that i’,, i, = 01in (3). Here we consider an adiabatic process
in which slow changes in the external conditions (the information and the number of
strategically oriented users) are accompanied by the faster change in the state of the
social network. As far as the operation of a microblogging social network is concerned,
the adiabatic approximation means that when the influx of external information, e.g.,
from other mass media, tends to zero, the correlation function (2) decays slowly, and
simultaneously the amount of information on a specific topic and the number of
strategically oriented users decrease quickly.

In this case we obtain equations that express the conjugate field and the control
parameter through the order parameter:

Aingc no (4)
h=— = —
Y -
where
2 =1/(AA,), A, = t.a,, 2= c,i,n. (5)

When ¢; < <c, the first of the Eqs. (4) has a linear form. With the growth of the
order parameter up to ¢, = ¢, the dependence i(c;) approaches saturation, and when
¢; > cp, it decreases. Thus, a constant c¢,,, which is defined by Eq. (5), has a meaning of
the maximum value of the control parameter.

The second of the Egs. (4) describes the decrease of the control parameter from the
maximum value n, = ng at ¢; = 0 down to the minimum of n, = ny/2 at ¢, = ¢;,. The
decreasing character of n(c;) is a demonstration of the Le Chatelier principle, which
predicts a negative feedback loop between ¢, and ;.
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Thus, the increase of the correlation function (2) within the interval limited by c,,
leads to an increase of the information i; and to a decrease of the number of strate-
gically oriented users n, below that of its initial value, ny.

Substitution of the first of the Eq. (4) into the first of the Eq. (3) yields the Landau—
Khalatnikov equation

. OE
T = — 7, (6)

with the synergetic potential

c,2 { ng [ ¢ -2 c 2
E=-1L 1——(—) In 1—|—(—> : (7)
2 N \Cm Cm
Equation (6) describes the evolution of a social network with the critical value of
strategically oriented users n, = 1/(A.A;).
When the initial number of strategically oriented users is low, then the synergetic
potential has a minimum at ¢, = 0, which corresponds to the uncorrelated state of the
social network where the connection between the incoming information and the net-

work’s behavior is absent. When n increases to a value n,, above the critical value,
there is a minimum (see Fig. 2) at

1o
— e 201, 8
Co = my [ (8)

The state of the social network, which is defined by the minimum value of the
correlation function, corresponds to the condition of coherence, under which the social
network evolves in accordance with the strategy chosen by a relatively small number of
users 1, < <ny. Within the synergetic theory, such a state corresponds to the ordered
phase, where the information has a stationary value iy, = ¢o/A.. At the same time, the
stationary number of strategically oriented users decreases to the critical value n,, <ny.

E
ny <N,

n, > n,

R N
o

Fig. 2. Dependence of the synergetic potential on the number of strategically oriented users for
the second-order phase transition at different critical values of the number of strategically
oriented users
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When the social network drastically transits to the domain characterized by the
value ng/n,, > 1, then over the time scale of

f:fc.<,’1‘_i_ 1>_1 ()

it approaches the stationary value of the number of strategically oriented users as
follows:

¢ =co(l—e'7). (10)

3.3 Stochastic Behavior of the Phase Transitions

The behavior of users of a social network can be considered to be a random walk with
standard deviation ¢ = /s, where s is the number of steps [26]. In this case, only
\/Nz < <ny random moves out of the total number of ny random moves will be
coherent (in the case of a one-dimensional random walk). Based on this analogy, it can
be argued that the initial number of users n acting in a consistent (coherent) way is of
the order of \/ny. Thus, a social network can remain in a coherent state if the following
condition is met:

o < \/Miz . (11)

In a general case, the behavior of users of a social network can be considered as an
anomalous diffusion [27]. In the case of the anomalous diffusion, the system’s evo-
lution can be reduced to a Levy flight superdiffusion or subdiffusion. For such a system,
the right-hand site of Eq. (11) has a more complicated form (nzn,,)” defined by the
dynamic parameter o (o <2 for superdiffusion and o > 2 for subdiffusion). As a result,
the condition (11) can be generally written down as

n0<(nznm)“. (12)

Therefore, the social network follows a definite strategy if the initial number of
strategically oriented users exceeds a critical value equal to the geometric mean of the
total and critical number of users.

Thus, a stochastic consideration shows that taking into account the information
about the previous state of the social network is essential for determining its current
state. If the initial number of strategically oriented users ng < (nxzn,,)* choose a definite
strategy of changing the topic, then the social network goes into a coherent state
corresponding to the minimum of the synergetic potential (7), where the correlation
function (2) has the stationary value (8). In this case, the remainder of users (the
number of which ny — ny <ny is much greater than the initial number ny < <ny of
strategically oriented users) starts to act following the chosen strategy. In other words,
coherent actions of a small part of users ny/ny < <1 can spontaneously impose their
decision onto the major part of users njy.



244 A. Dmitriev et al.

4 Conclusions

As aresult of the present study, it can be noted that microblogging social networks, and
Twitter in particular, are complex networks. Social networks are characterized by a
non-trivial behavior, i.e., they are able to exhibit phase transitions.

Within the framework of a Lorenz scheme, the kinetics of first-order phase tran-
sitions in a microblogging social network was analyzed.

The results are as follows:

e An increase of the correlation function (an increase in a measure of order in the
network) in the range limited by the maximum number of strategically oriented
users leads to an increase in the information and a decrease in the number of
strategically oriented users to below their initial number.

e When the initial number of strategically oriented users is small, the social network
remains in a disordered state in which there is no connection between the incoming
information and the network’s behavior. As the initial number of strategically
oriented users increases above a critical value, there appears a minimum of their
number that corresponds to an ordered state of the network. In the ordered state, the
network evolves in accordance with the strategy chosen by a relatively small
number of users.

e The social network follows a definite strategy when the initial number of strate-
gically oriented users exceeds a critical value, which is given by the geometric mean
of the total and critical values of the number of users. In the meantime, accounting
for the information about the previous state of a social network may change its
current state considerably.
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