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LACUNAS AND LOCAL ALGEBRAICITY OF VOLUME

FUNCTIONS

V.A. VASSILIEV

To the memory of Egbert Brieskorn

Abstract. The volume cut off by a hyperplane from a bounded
body with smooth boundary in R2k never is an algebraic func-
tion on the space of hyperplanes: for k=1 it is the famous lemma
XXVIII from Newton’s Principia. Following an analogy of these
volume functions with the solutions of hyperbolic PDE’s, we study
the local version of the same problem: can such a volume func-
tion coincide with an algebraic one at least in some domains of
the space of hyperplanes, intersecting the body? We prove some
homological and geometric obstructions to this integrability prop-
erty. Based on these restrictions, we find a family of examples of
such “locally integrable” bodies in Euclidean spaces.

1. Introduction

According to an Archimedes’ theorem, the volume cut by a plane
from a ball in R3 depends algebraically on the coordinates of the plane.
The same is true also for all balls and ellipsoids in all odd-dimensional
Euclidean spaces, but no additional examples are known by now.
On contrary, Newton has proved that for no bounded convex domain

with smooth boundary in R2 the areas cut from it by the affine lines
depend algebraically on the coordinates of these lines, see [12], [7], [2],
[6]. V.I. Arnold [3] has conjectured that similar statements hold also
in higher dimensions. The even-dimensional part of this problem was
completed in [16]: there is no bounded domain (convex or not) with
smooth boundary in R

2k, for which the volume cut off by a hyperplane
is algebraic. The odd-dimensional part of the Arnold’s conjecture (stat-
ing that the ellipsoids in R2k+1 are unique bodies with this property)
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has only partial solutions: several geometric obstructions to the alge-
braicity of volumes are presented in [15], however it is not clear whether
they are sufficient for the proof of the general problem.

We study a local version of the same problem: given a bodyW ⊂ RN ,
can the corresponding volume function coincide with an algebraic one
at least in some open subset of the space of all affine subspaces in RN

intersecting W ? We prove some topological and geometric obstruc-
tions to this local integrability property, and find a series of new bodies
satisfying it.
There is a deep analogy between this problem and the lacuna problem

in the theory of hyperbolic PDE’s developed in [13], [11], [4], [5]; for a
list of parallel notions see page 138 in [15]. Many of our objects and
terminology are borrowed from the theory of lacunas.

1.1. Notation and definitions. Denote by P the space of all affine
hyperplanes in R

N . It almost coincides with RPN : the homogeneous
coordinates (a1 : · · · : aN : b) define the hyperplane with the equation

(1) a1x1 + · · ·+ aNxN + b = 0,

and (0 : · · · : 0 : 1) is the only point in RPN but not in P.
Let W ⊂ R

N be a smooth body, that is, a bounded (not necessarily
connected) domain with smooth boundary. It defines a two-valued
function VW on P: its values VW (X) on a hyperplane X are equal to
the volumes of intersections of the body W with two halfspaces in RN

separated by X .
The space P consists of open domains whose points are the hyper-

planes transversal to ∂W , and the walls between these domains formed
by the hyperplanes tangent to it: these walls form the projective dual

hypersurface of ∂W . Such an open domain in P is called a lacuna if
the restriction of the volume functions to this domain coincides with an
algebraic function on P, that is, there exists a non-trivial polynomial
F (a1, . . . , aN , b, V ) vanishing in any point (a1, . . . , aN , b, V ) such that
V equals either of the two volumes cut off from the body W by the
hyperplane with the equation (1) from our domain. The body W is
called algebraically integrable if all domains of P are lacunas.

There is a trivial example of a lacuna: it is the domain consisting
of hyperplanes not intersecting the body W , so that the corresponding
volume function is equal identically to a pair of constants in it, 0 and
the volume of entire W . Given a body, does it define nontrivial lacunas
in P (so that the corresponding volume functions are not constant)?
In the case of convex W ⊂ R2k and infinitely differentiable ∂W the

answer is negative (there is only one non-trivial domain in P, and it is



3

not a lacuna); for k = 1 it is the Newton’s lemma XXVIII. The main re-
sult of [16] says that for an arbitrary bounded body with C∞-boundary
in R

2k all regular domains in P cannot be lacunas simultaneously.

2. Obstructions to the integrability

In this section we assume that the boundary ∂W of the body W ⊂
RN is a smooth component (or a collection of components) of the zero
set of an irreducible polynomial with real coefficients.
For any generic real hyperplane X , we define an (N − 2)-dimensi-

onal complex manifold, and some collection of elements of its (N − 2)-
dimensional homology group, one of which is given by the manifold
X ∪ ∂W , and the others are called vanishing cycles. Our main result
(Theorem 1 below) says that if the intersection index of the first cycle
with either of these vanishing cycles is not equal to 0, then the com-
ponent of P containing X is not a lacuna. Let us introduce all these
objects.
Let A be the zero set in CN of the polynomial distinguishing ∂W .

This set A can have singular points in the imaginary domain. Let us fix
a Whitney stratification of the algebraic subvariety A∪CPN−1

∞ ⊂ CPN ,
where CPN is the standard compactification of CN , and CPN−1

∞ is the
“infinitely distant” hyperplane in it. An affine hyperplane X ⊂ CN

is called generic if its closure in CPN is transversal to this chosen
stratification of A ∪ CPN−1

∞ . The set of generic hyperplanes contains
a Zariski open subset in the space PC of all complex hyperplanes in
CN . In particular, the real planes in RN , whose complexifications are
generic, are dense in P. Using the complexifications of real planes, we
will consider P as a subset of PC.
Denote by Reg the space of all generic hyperplanes in CN , and

denote by RegR the set of hyperplanes with real coefficients that are
transversal to ∂W ; in particular RegR ⊃ Reg ∩ P. All elements of the
difference RegR \ (Reg∩P) correspond to real planes whose complexifi-
cations are not transversal to the stratified variety A∪CPN−1

∞ at some
pairs of its complex conjugate imaginary points. The codimension of
this difference in P is at least 2, in particular it does not separate
different connected components of Reg ∩ P.
The volume function is analytic inside any component of RegR.

Given a complex hyperplane X in C
N , denote by C̆

N , X̆ and Ă the
sets CN , X and A from which all singular points of the hypersurface A
are removed.
Consider the chain of homomorphisms

(2) HN(C̆
N , X̆ ∪ Ă) → HN−1(X̆ ∪ Ă) → HN−2(X̆ ∩ Ă),
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where the first arrow is the usual boundary operator, and the second
one is the Mayer-Vietoris differential. (All homology groups here and
below are with integer coefficients only).
By the Thom isotopy lemma (see e.g. [10]), for all X ∈ Reg the

groups of any of three kinds indicated in (2) are isomorphic to each
other; moreover, any path in Reg identifies such groups for the end-
points of the path via the Gauss–Manin connection (that is, the homo-
logical realization of the covering homotopy property over this path).

LetX0 ∈ Reg∩P be a generic plane. The groupHN(C̆
N , X̆0∪Ă) con-

tains two important elements Λ±(X0): the parts of the body W ⊂ RN

cut off by the real part of the hyperplane X0 and taken with the canon-
ical (once fixed) orientation of RN . Let ∆±(X0) be the images of these

elements in the group HN−2(X̆0 ∩ Ă) under the composite homomor-
phism (2). They are represented by the manifold X0 ∩ ∂W taken with
some (opposite) orientations, in particular ∆−(X0) + ∆+(X0) = 0.
For anyX ∈ Reg the first and the last groups in (2) contain also some

distinguished sets of elements, called vanishing contours and vanishing

cycles respectively and defined in the following way.
Let u be a generic point of the hypersurface Ă, that is, a non-singular

point of A such that the second fundamental form of A at this point
is non-degenerate. Such points are dense in A since A is irreducible
and bounds a body in RN . The set of all hyperplanes tangent to A at
points close to u is then a smooth hypersurface in PC.
Let B be a small ball in CN centered at our generic point u ∈ Ă, and

X(u) ⊂ C
N be the tangent hyperplane of A at u. For any hyperplane

X ′(u) sufficiently close to X(u) but lying in Reg, consider the sequence
(3)
HN(B,X

′(u)∪A) → HN−1((X
′(u)∪A)∩B) → HN−2(X

′(u)∩A∩B),

whose maps are defined as in (2). All three groups in this sequence
are then isomorphic to Z, and both maps in it are the isomorphisms.
Denote by Λ(u) and ∆(u) some generators of the first and the last
groups in (3) obtained one from another by this composite homomor-
phism. Denote by the same letters Λ(u) and ∆(u) the images of these

elements in the groups HN(C̆
N , X̆ ′(u)∪Ă) and HN−2(X̆

′(u)∩Ă) under
the identical embedding.
An arbitrary path in Reg connecting the points X ′(u) and X0 iden-

tifies the groups of any of three types (2) for these hyperplanes, in
particular moves the elements Λ(u) and ∆(u) into some two elements

of the groups HN(C̆
N , X̆0 ∪ Ă) and HN−2(X̆0 ∩ Ă) respectively. All

elements of the latter two groups which can be obtained in this way
from any choice of a generic point u, a path connecting X and X ′(u)



5

in Reg, and a generator of the group HN(B,X
′(u)∪A), are called the

vanishing contours and vanishing cycles respectively.

Theorem 1. If the domain of RegR ⊂ P containing X0 is a lacuna

then the intersection indices 〈∆+(X0),∆〉 ≡ −〈∆−(X0),∆〉 of (n− 2)-

dimensional cycles in the complex (n−2)-dimensional manifold X̆0∩ Ă
are equal to 0 for all vanishing cycles ∆ ∈ HN−2(X̆0 ∩ Ă).

Proof. The integrals of the holomorphic volume form

(4) dx1 ∧ · · · ∧ xN
along the relative cycles define a linear function on the groupHN(C

N , X∪
A), and also on the group HN (C̆

N , X̆ ∪ Ă) for any X ∈ P.
Every element Λ of the group

(5) HN (C̆
N , X̆0 ∪ Ă)

defines a function germ Int(Λ) in a neighborhood of our point X0

in Reg: its value at any point X ≈ X0 is equal to the integral of the
form (4) along the relative cycle Λ(X) ∈ HN(C̆

N , X̆ ∪ Ă), obtained
from Λ by the Gauss-Manin connection over the paths connecting X0

and X in our neighborhood. By the construction, this function is
complex analytic. If Λ is one of cycles Λ+ or Λ−, then the restriction
of this function to RegR coincides with the volume function, which also
is analytic; therefore the analytic continuations of both functions to
entire Reg coincide. If this analytic continuation is infinite-valued then
the domain of RegR containing X0 is not a lacuna.
So we get a linear map Int from the group (5) to the space of all

analytic function germs at the point X0 ∈ P. Denote by H the im-
age of the group (5) under this map (or, equivalently, the group (5)
itself factored through the subgroup consisting of all elements defining
zero germs). By the construction, H is an integer lattice. The group
π1(Reg, X0) acts on the group (5) by monodromy operators, and on
H by analytic continuations; these actions commute with our epimor-
phism Int : HN(C̆

N , X̆0 ∪ Ă) → H.
Now suppose that 〈∆+(X0),∆〉 6= 0 for some cycle ∆ vanishing along

a path connecting the points X0 and X ′(u). Consider the loop in
π1(Reg, X0) going along this path from X0 to X ′(u), rotating around
the set of planes tangent to A at points close to u, and coming back
to X0 along the same path. By the Picard–Lefschetz formula (and
the functoriality of the maps (2)) this loop adds to the cycle Λ+(X0)
the class of the contour Λ vanishing along our path and taken with a
non-zero coefficient c (equal to ±〈∆+(X0),∆〉).
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If N is odd then we will pass this loop again and again. In this
case the intersection index of (N − 2)-dimensional cycles in X̆ ∩ Ă

is skew-symmetric, therefore any new travel along this loop adds to
our integration chain a new copy of the cycle c · Λ. The function
germ defined by any vanishing cycle is not equal to zero, hence we get
immediately an infinite number of leaves of the analytic continuation.

Lemma 1. Let N be even, then the orbit of the germ defined by any

vanishing contour Λ under our π1(Reg, X0)-action in H is infinite.

Proof of this lemma is based on considerations of §3 in [16]. The main
tool there is a reflection group associated with any body likeW . It acts
on a lattice F generated by finitely many elements corresponding to the
vanishing contours, and the orbits of all these generators are not greater
than the orbit of an arbitrary germ Int(Λ) defined by our vanishing
contour under the action of the entire group π1(Reg, X0). (The action
by reflections in F is defined by the loops in Reg, all whose points
are the planes parallel to X0). Therefore if our π1(Reg, X0)-orbit in H

of a germ defined by a vanishing contour is finite, then this reflection
group also should be finite. However, it was proved in [16] that this
reflection group always is infinite. �

Therefore the orbit of our germ Int(c · Λ) also is infinite. However,
this orbit is a subset of the set of differences between the elements of
the orbit ot the class Int(Λ+(X)) ∈ H. The latter orbit is thus also
infinite, that is, the analytic continuation of the volume function has
infinitely many leaves at the point X0, and cannot be algebraic. �

Theorem 2. If N is even then two neighboring domains of the set

RegR of generic hyperplanes in P (that is, two domains separated by

only one piece of the variety projective dual to ∂W ) cannot be lacunas

simultaneously.

Proof. Let X1, X2 be two points of Reg∩P separated by such a piece
consisting of hyperplanes tangent to the surface ∂W close to some its
generic point u; suppose that the planes X1 and X2 are parallel and
very close to the plane X(u) tangent to A at this point. Then we have

three important elements of the group HN(C̆
N , X̆1 ∪ Ă). The first one

is our real contour Λ+(X1) defined by the points of W cut off by the
plane X1. The second cycle, M(Λ+(X2)), is obtained from the similar

element Λ+(X2) of the group HN(C̆
N , X̆2 ∪ Ă) by the Gauss–Manin

continuation over a small arc connecting the points X2 and X1 in the
space Reg of generic complex hyperplanes. The third element is the
vanishing cycle Λ(u) generating the group HN(B,X1 ∪ A) where B is
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a small ball centered at the point u, see (3). By Lemma 3.3 of §III.3
in [15], these three cycles are related by the equality

(6) Λ+(X1)−M(Λ+(X2)) = ±Λ(u),

where the sign ± depends on the choice of the orientation of the last
cycle. By Lemma 1, the orbit of the class Int(Λ(u)) ∈ H of the vanishing
contour Λ(u) under the monodromy action in H is infinite in the case
of even N , therefore the orbits of the classes of elements Λ+(X1) and
Λ+(X2) cannot be finite simultaneously. �

Remark 1. It follows by induction from the identity (6) that either of
the relative homology classes Λ+(X0) and Λ−(X0) is equal to the sum
of several vanishing contours corresponding to the tangency points of
∂W with the hyperplanes parallel to X0 and lying to the corresponding
side from it.

3. Local geometry of the boundaries of lacunas and

Davydova condition

Let X1 and u be the same as in the previous proof. Let ∆+(X1)

and ∆(u) be two elements of the group HN−2(X̆1 ∩ Ă) obtained by the
homomorphism (2) from the elements Λ+(X1) and Λ(u) used in this

proof. If their intersection index in X̆1 ∩ Ă is not equal to zero, then
by Theorem 1 the domain of RegR containing X1 is not a lacuna. This
property 〈∆+(X1),∆(u)〉 6= 0 can be checked directly in the terms of
the local geometry of ∂W at the point u: more precisely, in the terms
of its second fundamental form, cf. [8], [5].
Let us choose affine coordinates y1, . . . , yN in RN with the origin at

the point u in such a way that y1 = 0 on the tangent hyperplane X(u),
and y1 > 0 on the examined hyperplane X1 in our neighborhood B of
the point u. The hypersurface ∂W is then defined by an equation of
the form y1 = χ(y2, . . . , yN) in a vicinity of the point u. The function
χ is smooth and has a critical point at the origin: dχ(0) = 0. This
critical point is Morse since u is generic.

Proposition 1 (see e.g. [11] or Theorem 3.1 in page 183 of [15]).
〈∆+(X1),∆(u)〉 = 0 if and only if the positive inertia index of the

quadratic part of the Taylor expansion of the function χ at the critical

point is even.

The trivial example occurs when this inertia index is equal to 0: in
this case the cycle ∆+(X1) (consisting of all real points of X1 ∩ A)
is empty close to u and certainly cannot intersect the vanishing cycle
∆(u) concentrated in the neighborhood of u.
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Remark 2. This geometric condition is completely analogous to the
Davydova condition in the theory of hyperbolic PDE’s, see [8], although
the integration cycles and forms in this theory are different. In both
theories, the homology classes of the varieties like X ∩ A play the
crucial role. However, in our case these cycles are related with the
N -dimensional integration contours by the maps (2), while in the hy-
perbolic science the integration contours lie in some groups similar to
our HN(C

N \ (X ∪ A)), which in the case of generic X are related to
the group HN−2(X ∩ A) by the double Leray tube operation.

Now let U be a connected component of the space RegR ⊂ P, and
Y ∈ ∂U a hyperplane tangent to ∂W .

Definition 1 (cf. [5]). The domain U is a local lacuna at the point
Y if the volume function VW coincides with a pair of regular analytic
single-valued functions in the intersection of the domain U with some
neighborhood of the point Y in P.

Proposition 2 (cf. [5]). 1. Let Y ∈ P be a hyperplane having a generic

tangency with ∂W at some point u. A domain of RegR is a local lacuna

close to this point Y if and only if the condition 〈∆+(X1),∆(u)〉 = 0
from Proposition 1 is satisfied for some (and then for any) neighboring
point X1 of this domain.

2. If a domain is not a local lacuna at some generic point of its

boundary, then it also is not a lacuna.

The proof of statement 1 essentially repeats that of a similar state-
ment in [5]: it follows from the removable singularity theorem. The
proof of statement 2 uses additionally Theorem 1. �

So, in the case of even N exactly one of neighboring domains of RegR
at a generic point Y ∈ ∂W is a local lacuna, and the other is not.
In the case of odd N , either both neighboring domains are local la-

cunas or both are not. In particular, if N is odd and the hypersurface
∂W contains the points at which the inertia indices of its second fun-
damental quadratic form are odd, then the body W definitely is not
algebraically integrable.
The study of geometric restrictions preventing a domain to be a local

lacuna at more complicated points of its boundary also is parallel to
that for hyperbolic PDE’s, see [9], [14], [15].

4. Examples of lacunas

Let m = N − 3, so that RN is decomposed into the sum R3
x ⊕ Rm

y .
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Our easiest example is the tubular ε-neighborhood in RN of the unit
2-sphere in R3

x, that is, the body defined by the inequality

(7)

(

√

x21 + x22 + x23 − 1

)2

+ (y21 + · · ·+ y2m) ≤ ε2 ,

where 0 < ε < 1. (This equation of its boundary is not polynomial,
but is obviously equivalent to a polynomial one of degree 4).
There is a much more general class of examples. Instead of y21+ · · ·+

y2m, consider an arbitrary smooth function ψ : Rm
y → R+, invariant

under the central symmetries in R
m
y , whose unique critical point is a

minimum point at the origin, ψ(0) = 0, and the entire set ψ−1([0, ε2])
is contained in some compact neighborhood of the origin in R

m
y . Define

the body W in R3
x ⊕ Rm

y by the condition

(8)

(

√

x21 + x22 + x23 − 1

)2

+ ψ(y1, . . . , ym) ≤ ε2.

Denote by C the volume of this body (8), and by Ω the (N − 1)-
dimensional Euclidean volume of its section by an arbitrary hyperplane
in Rm+3 containing the plane Rm

y .

Theorem 3. If a hyperplane X ⊂ R3+m defined by some equation

α1x1 + α2x2 + α3x3 +
m
∑

j=1

βjyj = γ

is sufficiently close to one containing the subspace Rm
y (that is, X is

nearly orthogonal to R3
x and contains a point of R3

x sufficiently close to

the origin), then the volumes of two parts cut by X from the body (8)
are equal to

(9)
C

2
± Ω

γ
√

α2
1 + α2

2 + α2
3

.

In particular, the domain in P containing X is a lacuna.

Remark 3. The right-hand fraction in (9) is the distance from the
plane X ∩ R3

x to the origin. The values (9) do not depend on the
coefficients βj in the equation of X .

Lemma 2. In the conditions of Theorem 3, the (m + 2)-dimensional

volume of the intersection X ∩W is equal to Ω
cosα(X)

where α(X) is the

angle between R3
x and the normal vector of X.

Proof of lemma. For any y ∈ Rm
y , the preimage of y under the

canonical projection W → Rm
y is empty if ψ(y) > ε2; if ψ(y) < ε2
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then it is a spherical layer in R3
x between the spheres of radii R =

1 +
√

ε2 − ψ(y) and r = 1−
√

ε2 − ψ(y). Let X̃ be the hyperplane in
R3+m containing the subspace Rm

y and such that the 2-planes X ∩ R3
x

and X̃ ∩ R3
x are parallel to one another. The orthogonal projection of

X∩W to X̃ consists of points (x, y) such that ψ(y) ≤ ε2, and x belongs
to a section of the above-described spherical layer (depending on y) by
a 2-plane (depending also on X). If X is indeed sufficiently close to a
vertical hyperplane containing Rm

y , then for any y with ψ(y) < ε2 this
plane section of the layer is an annulus. The area of this annulus does
not depend on the choice of this cutting 2-plane: if the distance of this
plane from the origin in R

3
x is equal to h < r, then this area is equal

to π
(√

R2 − h2
2 −

√
r2 − h2

2
)

= π(R2− r2) = 4π
√

ε2 − ψ(y). So, the

(m+ 2)-dimensional volume of the projection of X ∩W to X̃ is equal
to

4π

∫

ψ(y)≤ε2

√

ε2 − ψ(y)dy,

which does not depend on X and hence is equal to the constant Ω.
Further, the orthogonal projection of planes multiplies the volumes by
the cosine of the angle between the normals of these planes. �

Proof of Theorem 3. Let X0 be the plane parallel to X and passing
through the origin in R3+m. Both values of the volume function at the
point X0 are obviously equal to one another and hence to C

2
. For any

λ ∈ [0, dist(X0, X)] denote by X(λ) the plane obtained from X0 by
the parallel shift towards X by the distance λ. The derivatives of the
volume functions VW (X(λ)) over the parameter λ are then equal to ±
the volume from Lemma 2. So, when we come to X , these volumes
grow/decrease by

Ω

cosα(X)
× dist(X0, X).

Consider the right triangle in R3+m whose vertices are the origin and
its projections to the planes X and X ∩ R

3
x. Its angle at the origin is

equal to α(X), the leg at this vertex is equal to dist(X0, X), and the
hypotenuse is exactly the fraction in (9). �

Remark 4. We see that a locally algebraically integrable body in RN

(that is, a body having non-trivial lacunas) does not need to be alge-
braic itself: in fact, only finite smoothness is demanded on the function
ψ(y1, . . . , ym) participating in the construction of our examples.
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