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Abstract—The paper studies the problem of achieving consensus in multi-agent systems in the
case where the dependency digraph Γ has no spanning in-tree. We consider the regularization
protocol that amounts to the addition of a dummy agent (hub) uniformly connected to the
agents. The presence of such a hub guarantees the achievement of an asymptotic consensus.
For the “evaporation” of the dummy agent, the strength of its influences on the other agents
vanishes, which leads to the concept of latent consensus. We obtain a closed-form expression
for the consensus when the connections of the hub are symmetric; in this case, the impact of the
hub upon the consensus remains fixed. On the other hand, if the hub is essentially influenced
by the agents, whereas its influence on them tends to zero, then the consensus is expressed by
the scalar product of the vector of column means of the Laplacian eigenprojection of Γ and the
initial state vector of the system. Another protocol, which assumes the presence of vanishingly
weak uniform background links between the agents, leads to the same latent consensus.
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1. INTRODUCTION

In networked multi-agent systems (MAS) consensus is asymptotically reached for any initial
state if and only if 0 is a simple eigenvalue of the Laplacian matrix of the weighted dependency
digraph. An equivalent condition is the presence of a spanning in-tree in this digraph [1, 2]. Suppose
that these conditions are violated. Is it still possible to associate with the system a certain “most
natural” consensus achievable under a minimal or even infinitesimal transformation of the system?

In this paper, we propose two approaches to the determination of such a consensus, which can
be referred to as a latent consensus. At the first approach, the system is supplemented by a dummy
agent called a hub with a vanishingly weak uniform influence on the agents, which guarantees the
achievement of an asymptotic consensus. At the second approach, the system is supplemented by
uniform and vanishingly weak “background” links between the existing agents. It turns out that
both approaches lead to the same latent consensus. If the additional links are not vanishingly
weak, then in both cases, consensus is the average of the initial states (opinions) with weights
equal to the column means of the parametric matrix of spanning in-forests of the dependency
digraph. When the strength of the additional links tends to zero, the weights of the agents’ states
converge to the column means of the matrix of maximum in-forests. The closed-form expressions
for the latent consensus in both continuous and discrete networked multi-agent systems involve the
eigenprojection of the Laplacian matrix of the dependency digraph.

A basically different approach to solving the same problem is achieving consensus not due to
a small change in the structure of relations, but due to a minimal appropriate correction of the
initial state. This approach is realized by the method of orthogonal projection on the consensus
subspace [3, 4]. Its results are generally different from those of the methods of eigenprojection
presented in this paper.
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MODELS OF LATENT CONSENSUS 89

The concept of latent consensus requires a discussion. The consensus problem admits two
interpretations. In the first one, we synthesize a coordination protocol for a technical multi-agent
system, e.g., averaging the speeds of drones flying in a flock. In the second interpretation, we
model smooth or iterative convergence of opinions of the respondents (or experts) due to their
influences on each other. In the first interpretation, there are no unreported connections between
agents: just those included in the protocol matter. In contrast, the second interpretation allows for
the presence of background, latent “public opinion” affecting agents along with their interactions
specified explicitly. This “public opinion” can be simulated in two ways: (1) by rather weak uniform
pairwise connections between agents and (2) by introducing a special “invisible” agent uniformly
affecting all real agents and experiencing, in turn, their influence. Consensus achievable in these
models in the case where the explicit links do not guarantee its existence can be called a latent
consensuses, which justifies the use of this term.

Returning to the first interpretation, i.e., to a technical system, the introduction of a dummy
hub can be seen as the assumption of the existence of a “center” with weak uniform influences
on the agents. An alternative, i.e., adding weak background pairwise interactions, can hardy be
recommended as a tool to ensure consensus, as it would dramatically increase the computational
complexity for systems with large and relatively sparse matrices of influences. On the other hand,
in virtue of the results of this paper, the latter approach does not give anything new, since it leads
to the same consensus as the addition of a dummy hub.

Stabilization by the addition of weak interactions can be treated as an embodiment of the idea
of low gain feedback [5]. This approach has been used as applied to consensus problems, e.g., for
system with general linear dynamics [6, 7] and with delay [1]. As distinct from these works, which
studied the means to achieve consensus, in the present case of the simplest dynamics, asymptotic
consensus is guaranteed by the presence of a spanning in-tree in the dependency digraph, while the
object of interest is the functional relationship of the consensus with the invariants of the digraph.
The latter is the subject of this paper.

The paper is organized as follows. In Sections 3 and 4, we obtain expressions for the consensus
in systems with a dummy agent (“hub”) that weakly influences the existing agents and, in turn, is
experiencing their impact. In Section 5, we study protocols with weak “background” links between
agents. Section 6 contains an example used to compare the methods of regularization based on the
addition of vanishingly weak links with the method of orthogonal projection. Finally, in Section 7
we obtain closed-form expressions for the consensus in weak links regularization protocols applied
to DeGroot’s iterative pooling process.

2. NOTATION AND AUXILIARY RESULTS

Consider the continuous protocol of consensus seeking in a multi-agent system [1, 8]

ẋi(t) = −
n∑

j=1

aij (xi(t)− xj(t)) , i = 1, . . . , n, (1)

where xi(t) is the characteristic to be adjusted of agent i.

With the dependency matrix A = (aij)n×n of protocol (1) we associate the weighted dependency
digraph Γ with vertex set {1, . . . , n} that for every element aij > 0 of A has an arc (i, j) with
weight wij = aij . Thus, arcs in Γ are drawn in the direction of dependency: from each dependent
vertex/agent i to every vertex/agent j affecting i; the weight wij of arc (i, j) reflects the strength
of this influence. The Laplacian matrix of the weighted digraph Γ is defined [9] by

L = diag(A1)−A, (2)
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90 AGAEV, CHEBOTAREV

where 1 = (1, . . . , 1︸ ︷︷ ︸
n

)T, diag(v) being the operator transforming a vector v to the diagonal matrix

with v on the diagonal. The class of Laplacian matrices of weighted digraphs coincides with the
class of square matrices with nonpositive off-diagonal entries and zero row sums. In what follows,
the term Laplacian matrix will refer to an element of this class.

It is easy to verify that matrix (2) appears in the matrix representation of the model (1):

ẋ(t) = −Lx(t), (3)

where x(t) = (x1(t), . . . , xn(t))
T.

Now recall the necessary notation of matrix theory. Suppose that A ∈ C
n×n is any square

matrix, R(A) and N (A) being the range and the null space of A, respectively. Let ν = indA be
the index of A, i.e., the smallest k ∈ {0, 1, . . .} such that rankAk+1 = rankAk (by definition, we
assume A0 ≡ I , where I is the identity matrix of order n).

The eigenprojection of matrix A, corresponding to the eigenvalue 0 (or simply the eigenpro-
jection of A) is a projection (i.e., an idempotent matrix) A� such that R(A�) = N (Aν) and
N (A�) = R(Aν). Such a matrix A� is always unique.

Proposition 1. If x(t) is a solution to the system of Eqs. (3), then

lim
t→∞x(t) = L�x(0).

Proposition 1 follows from the forest consensus theorem (Theorem 1 in [10]).

Lemma 1 [9]. The eigenprojection L� coincides with the normalized matrix J̄ = (J̄ks) of maxi-
mum in-forests of the dependency digraph Γ:

J̄ks =
fks
f

, k, s = 1, . . . , n,

where f is the total weight1 of all maximum in-forests of digraph Γ, fks being the total weight of
those of them that have k belonging to a tree with root (sink !) s.

In the subsequent proofs, we make use of the following lemma.

Lemma 2 [11]. L� = limτ→∞(I + τL)−1.

Now we introduce some additional notation2: 0 = (0, . . . , 0︸ ︷︷ ︸
n

)T, E = 1
n11

T, 1′ = [1T 1]T, I ′ and

E′ are two matrices of order n+ 1: the identity matrix and matrix with entries 1
n+1 , respectively;

L0 =

(
L 0

0T 0

)
, I0 =

(
I 0

0T 0

)
.

The proofs of the main results of this paper rely on the following lemma.

Lemma 3. If for matrices A and C, AC = A and C2 = C hold, δ > 0, and the real parts of the
eigenvalues of δI +A are positive, then

lim
t→∞ e−(A+δC)t = (I − C)

(
I + δ−1A

)−1
.

The proof of Lemma 3 and the other statements are given in the Appendix.

We will also use the following result.

1 The weight of a digraph (e.g., of an in-forest) is the product of the weights of all its arcs.
2 Square brackets will denote row vectors and row representations of block matrices whose entries (blocks) are
separated with spaces rather than commas.
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Lemma 4. If for Laplacian matrices A and C, AC = A and C2 = C hold, then
(A+ δC)� = (I − C)

(
I + δ−1A

)−1
for any δ > 0.

The proof of this lemma is based on Lemma 3 and Lemma 5.

Lemma 5. For any Laplacian matrix L, it holds that L� = limt→∞ e−Lt.

3. CONSENSUS PROTOCOLS WITH A SYMMETRIC HUB

Consider the following protocols of consensus seeking:

ẏ(t) = −(L0 +Hδ,v)y(t), (4)

where y(t) = (y1(t), . . . , yn+1(t))
T, Hδ,v = δHI +Hv, δ > 0,

HI =

(
I −1

0T 0

)
and Hv =

(
0n×n 0

−vT s

)
(5)

are Laplacian matrices of order n+ 1, v = (v1, . . . , vn)
T, and s =

∑n
i=1 vi.

Every protocol (4) is obtained from (3) by adding an (n + 1)st agent that influences the n agents
of the system with intensity δ and is subjected to their influences whose intensities are given by
the vector v. This supplementary agent (and the corresponding vertex of the dependency digraph)
will be called a hub.3 The motivation for the introduction of a hub is to assure the presence of a
spanning in-tree in the dependency digraph (which guarantees asymptotic consensus) due to hub’s
uniform weak influences on the agents.

The eigenprojection (L0 +Hδ,v)
� has a simple representation which provides an expression for

the consensus by means of Proposition 1.

Lemma 6. (L0 +Hδ,v)
� = 1′ 1

s+δ

[
vT
(
I + 1

δL
)−1

δ
]
.

Theorem 1. In the system (4) with a hub that uniformly influences the agents, the consensus is

limt→∞ y(t) = 1′ 1
s+δ

[
vT
(
I + 1

δL
)−1

δ
]
y(0).

Now consider a hub whose links are symmetric: vi = δ, i = 1, . . . , n. Then v = δ1 and s = δn.
Using Lemmas 6 and 2, we obtain:

(L0 +Hδ, δ1)
� = 1′

1

n+ 1

[
1T
(
I +

1

δ
L

)−1

1

]
, (6)

lim
δ→+0

(L0 +Hδ, δ1)
� = 1′

1

n+ 1

[
1TJ̄ 1

]
. (7)

Equations (6) and (7) and Proposition 1 imply Proposition 2.

Proposition 2. If y(t) satisfies (4) and v = δ1, then

lim
t→∞y(t) = 1′

1

n+ 1

⎛

⎝
n∑

j=1

sδj yj(0) + yn+1(0)

⎞

⎠ ,

lim
δ→+0

lim
t→∞y(t) = 1′

1

n+ 1

⎛

⎝
n∑

j=1

J̄·jyj(0) + yn+1(0)

⎞

⎠ ,

where sδj and J̄·j =
∑n

i=1 J̄ij are the jth column sums of matrices (I + 1
δL
)−1

and L� = J̄ =
(J̄ij)n×n, respectively.

3 In [9], before Definition 3, we gave references to a number of publications that use this concept either explicitly or
implicitly.
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By Proposition 2, the weight of the initial state yn+1(0) of a hub with symmetric links is (n+1)−1,
irrespective of δ.

Corollary 1. 1. If the system (3) has an asymptotic consensus expressed by the scalar product
of the vectors x(0) and (v1, . . . , vn)

T, then the asymptotic consensus in the system (4) with v = δ1
and δ → +0 is the scalar product of the vectors y(0) and (n+ 1)−1(nv1, . . . , nvn, 1)

T.

2. If the initial state of the hub satisfies the equality yn+1(0) =
1
n

(∑n
i,j=1 J̄ijyj(0)

)
, then this

equality also expresses the asymptotic consensus in the protocol (4) with v = δ1 and δ → +0.

3. The coincidence of the asymptotic consensuses of systems (3) and (4) in item 1 takes place
if and only if yn+1(0) satisfies the equality in item 2.

The proof of Corollary 1 is obvious.

According to Proposition 1 and Lemma 1, the consensus in protocols (4) is the weighted average
of the initial states of the agents (including the hub), where the weight of the state of agent j is the
specific weight of spanning in-trees with sink j in the dependency digraph whose Laplacian matrix
is L0 +Hδ,v. By Theorem 1 and the matrix forest theorem [12] this weight can also be found by
averaging (with weights specified by v) the specific (1/δ)-weights4 of the forests, converging to j
from all the vertices of Γ.

Let the links of the hub be symmetric, i.e., v = δ1. According to Proposition 2, for any Γ and
δ → ∞, the consensus equals 1

n+1

∑n+1
j=1 yj(0), the arithmetic mean of the initial states of all agents,

including the hub. As δ → +0, to determine the weight of the initial state of agent j ≤ n, the
average specific weight J̄·j/n of the maximum forests converging to vertex j in Γ must be taken
with the coefficient n

n+1 , and the initial state of the hub with weight (n + 1)−1. Such a consensus
cannot be termed “latent,” as it essentially depends on the initial state of the hub added to the
system, which is an external parameter.

4. A HUB SUBORDINATE TO THE AGENTS

According to Proposition 2, a symmetric hub in protocols (4) outwardly affects the consensus
with an average strength: the weight of its initial state is (n+ 1)−1. The constancy of this weight,
even when the strength of hub’s links goes to zero, may seem strange. The reason is as follows. If a
symmetric hub very weakly depends on the agents, then the influence of its initial state is though
weak, but rather stable. So the resulting coefficient (n + 1)−1 of its influence can be treated as a
manifestation of the principle of “little strokes fell great oaks.”

Therefore, if our aim is to ensure consensus without arbitrary external influences, then the links
of the hub should be set in a different way. Consider the protocols (4), where

δ/s → +0 as δ → +0. (8)

Thereby, we consider the process, in which the influence δ of the hub on the agents becomes
vanishingly small not only in itself, but also compared to their influence s on the hub. This “makes
the hub forget” its initial state, so that its impact on the agents becomes a translation of their own
average influence (a kind of “public opinion”).

A counterpart of Eq. (7) for this case is the following statement.

Lemma 7. Under (8) and the existence of ṽ = limδ→+0
1
sv, it holds that limδ→+0(L0+Hδ,v)

� =
1′
[
ṽTJ̄ 0

]
.

Along with Lemma 7, Proposition 1 implies Theorem 2.

4 By “b-weight” of a weighted digraph we mean the product of its arc weights, each multiplied by b.
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Theorem 2. Under the conditions of Lemma 7, for protocols (4) we have:

1. limδ→+0 limt→∞ y(t) = 1′
[
ṽTJ̄ 0

]
y(0);

2. If v = s
n1, then limδ→+0 limt→∞ y(t) = 1′

[ 1
n1

TJ̄ 0
]
y(0) = 1′ 1

n

∑n
j=1 J̄·jyj(0), where

J̄·j =
∑n

i=1 J̄ij .

Consensus in item 2 of Theorem 2 can legitimately be termed latent : it takes place for a wide
class of protocols (4) with a hub subordinate (in accordance with (8)) to the agents and uniformly,
but infinitesimally affecting them. This consensus equals the weighted average of the initial states
of n agents with weights equal to the column means of J̄ = L�. Herewith, due to Lemma 1 the
weight of the initial state of agent j is the average (over i) specific weight of the maximum in-forests
in Γ, where j is a sink accessible from i. It is easily seen that this weight equals the probability
to access sink j from a randomly chosen vertex in the model of motion along maximum in-forests
chosen with probabilities proportional to their weights.

5. PROTOCOLS WITH WEAK BACKGROUND LINKS BETWEEN THE AGENTS

Now we turn to a different method of regularization. Consider the protocols of consensus seeking
in which the initial dependency digraph Γ is supplemented by the complete digraph of “background
links” with uniform arc weights:

ẋ(t) = −(L+ δK)x(t), (9)

where δ > 0 and K = I − E (K is the Laplacian matrix of the complete digraph with arc
weights 1/n).

First, in the same way as before, we study a more general type of regularization. Let v be a
distribution vector on the set of agents, i.e., vi ≥ 0 (i = 1, . . . , n) and

∑n
i=1 vi = 1. Set

ẋ(t) = −(L+ δD)x(t), (10)

where δ > 0, D = I − V , and V = 1vT. D is Laplacian; δvi is the influence of agent i on any other.

Lemma 8. In the above notation,

1. (L+ δD)� = 1vT
(
I + 1

δL
)−1

;

2. limδ→0(L+ δD)� = 1vTJ̄ .

Proposition 1 and Lemma 8 imply Theorem 3.

Theorem 3. If x(t) is a solution to the system of Eqs. (10), then

1. limt→∞ x(t)=1vT
(
I + 1

δL
)−1

x(0);

2. limδ→+0 limt→∞ x(t) = 1vTJ̄x(0).

Observe that with v = 1
n1 we have 1vT = E and D = K, and so Corollary 2 holds true.

Corollary 2. If x(t) is the solution to the system of Eqs. (9), then

1. limt→∞ x(t)=1 1
n

∑n
j=1 s

δ
jxj(0), where sδj are the column sums of (I + 1

δL
)−1

;

2. limδ→+0 limt→∞ x(t) = 1 1
n

∑n
j=1 J̄·jxj(0), where J̄·j =

∑n
i=1 J̄ij , j = 1, . . . , n.

Thus, in the protocols with additional uniform background links (9), consensus is determined

by averaging the column entries of (I + 1
δL
)−1

, which is the parametric matrix of in-forests [12]
of digraph Γ. Furthermore, if the arc weights of the added complete digraph tend to zero, then
consensus is determined by the column means of the matrix of maximum in-forests.

Comparing items 2 of Theorem 2 and Corollary 2 we come to the following conclusion: the latent
consensus of the protocol with uniform background links coincides with that of the protocol with
hub uniformly subordinate to the agents.
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6. PROTOCOLS OF EIGENPROJECTION AND ORTHOGONAL PROJECTION

The same purpose, i.e., to develop a concept of latent consensus for the case where classical
protocols give no consensus, can be achieved in another way. This can be done by means of the
method of orthogonal projection [3, 4]. As distinct from the protocols of a dummy hub (Section 4)
and background links (Section 5), where the dependency digraph Γ is supplemented by additional
links, in the method of orthogonal projection, the link structure is preserved, while the initial state
is subject to a minimum necessary correction. The resulting consensus has the form J̄Sx(0), where
S is the projection onto the consensus subspace of the system determined by L. This consensus
generally differs from those of protocol (9) and the other protocols (4) studied in this work.

It should be noted that if the dependency digraph contains an in-tree, then all versions of latent
consensus coincide with the ordinary consensus J̄x(0).

The problem of revealing the specific features of two different concepts of latent consensus
requires special consideration. In this section, we just provide an example that demonstrates a
difference between them.

Example. For the multi-agent system with Laplacian matrix

L =

⎛

⎜⎜⎜⎜⎝

1 −1 0 0

−3 3 0 0

0 0 1 −1

0 0 −4 4

⎞

⎟⎟⎟⎟⎠
,

we find:

J̄ =

⎛

⎜⎜⎜⎜⎝

0.75 0.25 0 0

0.75 0.25 0 0

0 0 0.8 0.2

0 0 0.8 0.2

⎞

⎟⎟⎟⎟⎠
; S ≈

⎛

⎜⎜⎜⎜⎝

0.5690 −0.1437 0.4598 0.1149

−0.1437 0.9521 0.1533 0.0383

0.4598 0.1533 0.5096 −0.1226

0.1149 0.0383 −0.1226 0.9693

⎞

⎟⎟⎟⎟⎠
;

Porthog. projection = J̄S ≈ 1×[0.3908 0.1303 0.3831 0.0958
]
;

Peigenprojection =EJ̄ = 1×[0.375 0.125 0.4 0.1
]
.

The two systems of weights obtained for this example do not differ considerably, however, they
differently order the weights of the first and the third agents. The second order may look more
rational, since agent 3 influences agent 4 stronger than agent 1 influences 2. On the other hand, a
number of examples demonstrate that the method of orthogonal projection gives more “rewards”
to more homogeneous components.

7. REGULARIZATION FOR DISCRETE CONSENSUS PROTOCOLS

Discrete protocols of consensus seeking can be obtained by replacing differentials with finite
differences in the continuous protocols.

7.1. Protocols with the Addition of a Hub

Consider DeGroot’s iterative pooling process [13]:

xk+1 = Pxk, k = 0, 1, . . . , (11)

where xk ∈ R
n and P is a row-stochastic matrix. If P is not regular5 (i.e., P has at least two

eigenvalues of modulus 1), then asymptotic consensus is not generally achieved.

5 A stochastic matrix is regular iff it is SIA (Stochastic, Indecomposable, Aperiodic).
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As regularized extensions of P, consider the matrices

Qδ,v =

(
(1− δ)P δ1

vT 0

)
,

where 0 < δ ≤ 1 and v is a distribution vector. Qδ,v is regular, since vi > 0 implies that the
ith column of Q2

δ,v is positive.

Consider the protocols

yk+1 = Qδ,v y
k, k = 0, 1, . . . , (12)

where yk ∈ R
n+1. These are the counterparts of the continuous protocols (4). Let γ = δ−1 − 1.

Lemma 9. In the above notation,

1. (I ′ −Qδ,v)
� = 1′ 1

1+δ

[
vT
(
I + γ(I − P )

)−1
δ
]
;

2. limδ→+0(I
′ −Qδ,v)

� = 1′
[
vT(I − P )� 0

]
.

Since L = I − P is Laplacian, Lemma 1 and the matrix forest theorem are applicable to L. The
following Theorem 4 relies on Lemma 9.

Theorem 4. If {yk} satisfies (12), then denoting J̄ = (I − P )� we have:

1. limk→∞ yk = 1′ 1
1+δ

[
vT
(
I + γ(I − P )

)−1
δ
]
y0;

2. limδ→+0 limk→∞ yk = 1′
[
vTJ̄ 0

]
y0;

3. If v = 1
n1, then limδ→+0 limk→∞ yk = 1′ 1

n

∑n
j=1 J̄·jy0

j , where J̄·j =
∑n

i=1 J̄ij .

In item 3 of Theorem 4, we obtain the already familiar to the reader latent consensus: if a hub
is subordinate to the agents and infinitesimally influences them, then consensus is determined by
averaging the initial agents’ states with the weights equal to the column means of J̄ = (I − P )�.

7.2. Adding Background Links: Regularization of PageRank Type

Now for DeGroot’s process (11), where P is not regular, consider the protocols

xk+1 = ((1− δ)P + δV )xk, k = 0, 1, . . . , (13)

where δ ∈ ]0, 1], V = 1vT, and v is a distribution. Such a regularization is used6 in the PageRank
method [14, 15] (see also [16, 17]). The asymptotic behavior of the protocols (13) is determined by
Theorem 5.

Theorem 5. If a sequence {xk} satisfies (13), then with J̄ = (I − P )� it holds that :

1. limk→∞ xk = 1vT
(
I + γ(I − P )

)−1
x0, where γ = δ−1 − 1;

2. limδ→+0 limk→∞ xk = 1vTJ̄x0;

3. If v = 1
n1, then limδ→+0 limk→∞ xk = EJ̄x0 = 1 1

n

∑n
j=1 J̄·jx0

j , where J̄·j =
∑n

i=1 J̄ij .

Item 1 of Theorem 5 is equivalent to Eq. (7.0.1) in [15].

The main conclusion is as follows: item 3 provides the same latent consensus as the models
considered above do.

Finally, one can notice that item 3 along with Theorem 2′ in [11] (interpreting the matrix
J̄ = (I − P )�) characterizes the limit of iterative regularization for an arbitrary stochastic matrix
in [16].

6 The iterations of the PageRank method have the form of
(
πk+1

)T
=
(
πk
)T

((1 − δ)P + δV ), k = 0, 1, . . . , where

π0 is a distribution. The result is the distribution π∞ = limk→∞ πk (with generally unequal components) not

depending on π0.
(
π∞)T coincides with any row of limk→∞((1− δ)P + δV )k.
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8. CONCLUSION

In this paper, we studied two types of regularization models for the problem of coordination
in multi-agent systems. In the models of the first type, the system is supplemented by a dummy
agent, “hub” (a personalized common “background”), which uniformly, but very weakly influences
the agents and, in turn, depends on them. In the models of the second type, we assume the presence
of very weak background links between the initial agents. The paper presents the asymptotic
properties of these models. It is demonstrated that in their framework, the concept of latent
consensus makes sense. It is the limit consensus as the intensity of the supplemented weak links goes
to zero. The latent consensus for the models of both types (wherein both discrete and continuous)
turns out to be the same. This consensus can be found by averaging the initial states of the agents
with the weights equal to the column means of the eigenprojection of the Laplacian matrix L
of the dependency digraph (for continuous models) or matrix I − P , where P is the stochastic
dependency matrix (for discrete models). An interpretation of these weights is given by Lemma 1
stating the coincidence of the eigenprojection of the Laplacian matrix of a dependency digraph and
the normalized matrix of its maximum in-forests.
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APPENDIX

Proof of Lemma 3. We need one more lemma.

Lemma A.1. Suppose that A and C satisfy the conditions of Lemma 3. Then for any δ ∈ R it
holds that (A+ δC)m = (A+ δC)(A + δI)m−1, m = 1, 2, . . . .

Proof of Lemma A.1. For m = 1 we obtain a trivial identity. For m = 2 we have

(A+ δC)2 = A2 + δA + δCA+ δ2C = A(A+ δI) + δC(A+ δI) = (A+ δC)(A + δI), (A.1)

i.e., the desired statement holds true. Let it be true for m = k > 1. Now we prove it for m = k + 1.
Due to the induction hypothesis and (A.1), we obtain

(A+ δC)k+1 = (A+ δC)(A+ δC)(A+ δI)k−1 = (A+ δC)(A + δI)k.

Lemma A.1 is proved.

Now we use the series representation of the matrix exponent:

e−(A+δC)t =
∞∑

k=0

(−t)k(A+ δC)k

k!

= I − t(A+ δC)

1!
+

t2(A+ δC)2

2!
− t3(A+ δC)3

3!
+ . . . .

By Lemma A.1 we have

e−(A+δC)t = I − (A+ δC)

(
tI

1!
− t2(A+ δI)

2!
+

t3(A+ δI)2

3!
+ . . .

)
. (A.2)
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Since by the conditions of Lemma 3 A+ δI is invertible, (A.2) can be rewritten in the form

e−(A+δC)t = I + (A+ δC)(A+ δI)−1

(
−I + I − t(A+ δI)

1!
+

t2(A+ δI)2

2!
− . . .

)

= I + (A+ δC)(A+ δI)−1
(
e−(A+δI)t − I

)
.

(A.3)

Since the real parts of the eigenvalues of A+ δI are positive, limt→∞ e−(A+δI)t = 0 holds. From
(A.3) we obtain

lim
t→∞ e− (A+δC)t = I−(A+δC)(A+δI)−1 = I−(A+δI+δC−δI)(A+δI)−1

= I−I+δ(I−C)(A+δI)−1 = (I−C)
(
I+δ−1A

)−1
.

Lemma 3 is proved.

Proof of Lemma 4. Since A is Laplacian, its spectrum lies in the right half-plane bounded
by the vertical axis [18, Proposition 9], therefore, the real parts of the eigenvalues of δI + A are
positive. Thereby the condition of Lemma 3 are fulfilled, thus, so does its conclusion. Comparing it
with that of Lemma 5 (whose proof is given below) and having in mind that A+ δC is a Laplacian
matrix, we obtain the desired statement. Lemma 4 is proved.

Proof of Lemma 5. All the solutions of the equation ẋ(t) = −Lx(t) satisfy the identity [19,
Eq. (43) of Chapter 5] x(t) = e−Ltx(0), from which in the case of existence of the limit at t → ∞,
it follows that limt→∞ x(t) = limt→∞ e−Ltx(0). Comparing the last expression with Proposition 1
and taking into account the arbitrariness of x(0), one has L� = limt→∞ e−Lt. Lemma 5 is proved.

Proof of Lemma 6. Set A := L0 +Hv, C := HI . It can be easily checked that AC = A and
C2 = C. By Lemma 4, (L0 +Hδ,v)

� = (I ′ −HI)(I
′ + 1

δL0 +
1
δHv)

−1. Since I ′ + 1
δL0 + 1

δHv =(
I ′ + 1

δL0
)(
I ′ + 1

δHv
)
, we have

(L0 +Hδ,v)
� = (I ′ −HI)

(
I ′ +

1

δ
Hv

)−1 (
I ′ +

1

δ
L0

)−1

=
[
0(n+1)×n 1′

]
⎛

⎜⎝
I 0

1

s+ δ
vT δ

s+ δ

⎞

⎟⎠

⎛

⎜⎝

(
I +

1

δ
L

)−1

0

0T 1

⎞

⎟⎠

= 1′
1

s+ δ

[
vT
(
I +

1

δ
L

)−1

δ

]
.

Lemma 6 is proved.

Proof of Lemma 7. From Lemmas 6 and 2 one derives:

lim
δ→+0

(L0 +Hδ,v)
� = lim

δ→+0
1′

1

s+ δ

[
vT
(
I +

1

δ
L

)−1

δ

]

= lim
δ→+0

1′
1

1 + δ/s

[
1

s
vTJ̄

δ

s

]
= 1′

[
ṽTJ̄ 0

]
.

Lemma 7 is proved.

Proof of Lemma 8. 1. For A = L and C = D, the conditions of Lemma 4 are fulfilled, therefore,
(L+ δD)� = (I −D)

(
I + 1

δL
)−1

= 1vT
(
I + 1

δL
)−1

.

2. Using Lemma 2 we obtain limδ→0(L+ δD)� = limδ→0 1v
T
(
I + 1

δL
)−1

= 1vTJ̄ . Lemma 8 is
proved.
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Proof of Lemma 9. Set

P0 =

(
P 0

0T 0

)
, P1 =

(
0n×n δ1

0T 0

)
, P2 =

(
0n×n 0

vT 0

)
, and Î = I ′ − I0.

Then Qδ,v = (1− δ)P0 + δP1 + P2. Using (5), (4), and the notation L0 := (1− δ)(I0 − P0)
(L0 is a Laplacian matrix!), we obtain

I ′ −Qδ,v = (1− δ)(I0 − P0) + δ(I0 − P1) + (Î − P2)

= (1− δ)(I0 − P0) + δHI +Hv = L0 + δHI +Hv = L0 +Hδ,v.

Now the desired statement is derived from Lemma 6 (with substitution L = (1− δ)(I − P )) and
Lemma 2. Lemma 9 is proved.

Proof of Theorem 4. Since Qδ,v is a regular stochastic matrix, the limit of its powers coincides
[20, 21] with the eigenprojection of I ′ −Qδ,v. Thus, limk→∞ yk = limk→∞Qk

δ,vy
0 = (I ′ −Qδ,v)

�y0,
and the theorem follows from Lemma 9. Theorem 4 is proved.

Proof of Theorem 5. 1. Since the stochastic matrix (1− δ)P + δV is regular, the limit of its
powers coincides [20, 21] with the eigenprojection of I−(1−δ)P −δV = (1−δ)(I−P )+δ(I−V ) =
L+ δD, where L := (1− δ)(I − P ) is a Laplacian matrix and D = I − V (see (10)). Therefore, by

Lemma 8 the required limit of the powers equals E
(
I + 1

δL
)−1

, which implies item 1 of Theorem 5.

2. The desired statement (along with item 3) also follows from Lemma 8 in view of the fact
that the eigenprojection is preserved under the multiplication of a matrix by a nonzero scalar.
Theorem 5 is proved.
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