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Absrtact

We study a topological structure of a closed n-manifold Mn (n ≥ 3) which admits a
Morse-Smale diffeomorphism such that codimension one separatrices of saddles periodic
points have no heteroclinic intersections different from heteroclinic points. Also we consider
gradient like flow on Mn such that codimension one separatices of saddle singularities have
no intersection at all. We show that Mn is either an n-sphere Sn, or the connected sum of a
finite number of copies of Sn−1⊗S1 and a finite number of special manifolds Nn

i admitting
polar Morse-Smale systems. Moreover, if some Nn

i contains a single saddle, then Nn
i is

projective-like (in particular, n ∈ {4, 8, 16}, and Nn
i is a simply-connected and orientable

manifold). Given input dynamical data, one constructs a supporting manifold Mn. We give a
formula relating the number of sinks, sources and saddle periodic points to the connected sum
for Mn. As a consequence, we obtain conditions for the existence of heteroclinic intersections
for Morse-Smale diffeomorphisms and a periodic trajectory for Morse-Smale flows.

Introduction

Morse-Smale dynamical systems (flows and diffeomorphisms) was introduced by Steve Smale
[31] in 1960 using the explicit description of properties of a non-wandering set. At his work,
S. Smale grasped an intimate connection between dynamic properties of Morse-Smale systems
and topological properties of ambient manifolds. He discovered in a spirit of Morse’s inequalities
[24] the relations between numbers of periodic points and the Betty numbers β0(M

n), β1(M
n), . . .,

βn(M
n) of the ambient n-manifoldsMn, where βi(M

n) = rank Hi(M
n,Z). After paper [31], many

results was obtained for various classes of Morse-Smale systems concerning relations between
dynamics and the topological structure of ambient manifolds, see the book [12] with numerous
references. In the present paper we study the topological structure of closed manifolds supporting
a Morse-Smale diffeomorphism or a gradient like flow such that codimension one separatrices
of saddles periodic points of diffeomorphisms have no heteroclinic intersections different from
heteroclinic points and codimension one separatrices of saddle singularities of flows have no
intersection at all. The paper is generalization and specification of results which was obtained by
the authors in [10].

∗2000Mathematics Subject Classification. Primary 37D15; Secondary 58C30
†Key words and phrases: Morse-Smale systems, heteroclinic intersections
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We identify a continuous-time dynamical system with a flow, while a discrete-time dynamical
system is identified with a diffeomorphism. Many definitions for diffeomorphisms and flows are
similar. So, we shall give mainly the notation for diffeomorphisms giving the exact notation for
flows if necessary. Let f : Mn → Mn be a diffeomorphism of n-manifold Mn, and p a periodic
point of period k ∈ N. The stable manifold W s(p) is defined to be the set of points x ∈Mn such
that ̺(fkj(x); p) → 0 as j → ∞ where ̺ is a metric on Mn. The unstable manifold W u(p) is
the stable manifold of p for the diffeomorphism f−1. Stable and unstable manifolds are called
invariant manifolds. It is well known that if p is hyperbolic, then every invariant manifold is
an immersed submanifold homeomorphic to Euclidean space. Moreover, W s(p) and W u(p) are
intersected transversally at p, and dimW s(p) + dimW u(p) = n.

A dynamical system F is Morse-Smale if it is structurally stable and the non-wandering
set NW (F) of F consists of a finitely many periodic orbits1 if F is diffeomorphism and a
finitely many equilibrium states and closed trajectories if F is flow. From the modern point of
view, the Morse-Smale systems are exactly the structurally stable dynamical systems with zero
topological entropy. Morse-Smale flow is called gradient-like if its nonwandering set does not
contain closed trajectories. A periodic orbit p is called a sink (resp. source) one if dimW s(p) = n
and dimW u(p) = 0 (resp. dimW s(p) = 0 and dimW u(p) = n). A sink or source periodic orbit is
called a node periodic orbit. A periodic point σ is called a saddle one if 1 ≤ dimW u(σ) ≤ n− 1,
1 ≤ dimW s(σ) ≤ n − 1. A component of W u(σ) \ σ denoted by Sepu(σ) is called an unstable
separatrix of σ. If dimW u(σ) ≥ 2, then Sepu(σ) is unique. The similar notation holds for a
stable separatrix. A saddle periodic point σ is called codimension one if either dimW u(σ) = 1,
dimW s(σ) = n−1 or dimW u(σ) = n−1, dimW s(σ) = 1. Another words, one of the separatrices,
Seps(σ) in the first case and Sepu(σ) in the second one, is codimension one. Similar is defined
codimension one saddle equilibrium state for Morse-Smale flow.

For any different saddle periodic points (equilibrium states) p, q of Morse-Smale diffeomorphism
(of gradient like flow) intersection W u(p) ∩ W s(q) is either empty or transversal. If W u(p) ∩
W s(q) 6= ∅ the intersection W u(p) ∩ W s(q) is called heteroclinic. Due to the transversality
W u(p) ⋔ W s(q), a heteroclinic intersection is either union of coutable number of isolated points
(called heteroclinic points) or union of disjoint m-dimensional submanifolds with m ≥ 1 (called
heteroclinic submanifolds).

Definition 1 We say that a Morse-Smale diffeomorphism (gradient-like flow) f : Mn → Mn

(f t on Mn) is without heteroclinic submanifolds on codimension one separatrices if given any
codimension one saddle periodic point (saddle equilibrium state) p ∈ NW (f), (p ∈ NW (f t)) the
codimension one separatrix of p does not contain heteroclinic submanifolds2.

Recall that a Morse-Smale diffeomorphism or gradient-like flow F is called polar if the non-
wandering set NW (F) contains exactly one sink periodic orbit and one source periodic orbit.

Let Sn be the canonical n-sphere defined by the quality x21 + · · ·+ x2n+1 = 1 in Rn+1 endowed
with the coordinates (x1; . . . ; xn+1). By Sn we mean an n-sphere homeomorphic to Sn. The
open ball Bn+1 is defined by the inequality x21 + · · · + x2n+1 < 1. Denote by Sn−1 ⊗ S1 a total
manifold of locally trivial fiber bundle with the base a circle S1 and the fiber a sphere Sn−1. The
manifold Sn−1 ⊗ S1 can be obtained as follows. Take the prime product Sn−1 × [0; 1] with the
natural projection π : Sn−1 × [0; 1] → [0; 1]. Gluing the spheres Sn−1 × {0}, Sn−1 × {1} by a

1We consider fixed points being periodic orbits of the trivial period 1.
2If f : Mn → Mn is diffeomorphism we allow that codimension one separatrices can admit heteroclinic points.
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homeomorphism Sn−1×{0} → Sn−1×{1}, one gets the total space Sn−1⊗S1 with the projection
Sn−1⊗S1 → S1 induced by π. Since any two homeomorphisms Sn−1 → Sn−1 are isotopic provided
they either preserve orientation or reverse orientation Sn−1 sumutaniously, there are only two
type of the bundles Sn−1⊗S1: globally non-trivial (skew), and trivial (prime product) Sn−1×S1.

The following theorem describes the topological structure of a supporting manifold admitting
Morse-Smale diffeomorphism without hetroclinic submanifolds on codimesion one separatrices.
Let us emphasyse that in the paper [10] the similar result was obtained in suggestions of absence
of heteroclinic intersection on separatrices of any dimension.

Theorem 1 Let Mn be a closed n-manifold, n ≥ 3, supporting a Morse-Smale diffeomorphism
f without heteroclinic submanifolds on codimension one separatrices. Suppose that the non-
wandering set NW (f) consists of µ node periodic points, ν codimension one saddle periodic
points, and arbitrary number of saddle periodic points that are not codimension one. Then the
number

g =
1

2
(ν − µ+ 2) ≥ 0

is integer. In addition,
1) if g = 0 then Mn is either Sn or

Mn = Nn
1 ♯ · · · ♯N

n
l (1)

for some 1 ≤ l ≤ 1 + ν, where every Nn
i admits a polar Morse-Smale diffeomorphism without

codimension one saddle periodic orbit. Moreover, if Mn is orientable then β1(N
n
i ) = rank H1(M

n,Z) =
βn−1(N

n
i ) = rank Hn−1(M

n,Z) = 0 for i = 1, . . . , l;
2) if g > 0 then Mn is either

Mn =
(
Sn−1 ⊗ S1

)
♯ · · · ♯

(
Sn−1 ⊗ S1

)

︸ ︷︷ ︸

g

(2)

or
Mn =

(
Sn−1 ⊗ S1

)
♯ · · · ♯

(
Sn−1 ⊗ S1

)

︸ ︷︷ ︸

g

♯Nn
1 ♯ · · · ♯N

n
l (3)

for some 1 ≤ l ≤ k = 1
2
(µ+ ν) where every Nn

i admits a polar Morse-Smale diffeomorphism
without codimension one saddle periodic orbits. Moreover, if Mn is orientable then β1(N

n
i ) =

βn−1(N
n
i ) = 0 for i = 1, . . . , l.

Corollary 1 Let Mn be a closed n-manifold, n ≥ 3, supporting a gradient-like flow f t without
heteroclinic manifolds on codimension one separatrices. Suppose that the non-wandering set
NW (f t) of f t consists of µ node equilibrium states, ν codimension one saddle equilibrium states,
and arbitrary number of saddle equilibrium states that are not codimension one. Then the number

g =
1

2
(ν − µ+ 2) ≥ 0

is integer. In addition,
1) if g = 0 then Mn is either Sn or

Mn = Nn
1 ♯ · · · ♯N

n
l (4)
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for some 1 ≤ l ≤ 1 + ν, where every Nn
i admits a polar Morse-Smale flow without periodic

trajectories and codimension one saddle equilibrium states Moreover, β1(N
n
i ) = βn−1(N

n
i ) = 0

for i = 1, . . . , l provided Mn is orientable.
2) if g > 0 then Mn is either

Mn =
(
Sn−1 ⊗ S1

)
♯ · · · ♯

(
Sn−1 ⊗ S1

)

︸ ︷︷ ︸

g

(5)

or
Mn =

(
Sn−1 ⊗ S1

)
♯ · · · ♯

(
Sn−1 ⊗ S1

)

︸ ︷︷ ︸

g

♯Nn
1 ♯ · · · ♯N

n
l (6)

for some 1 ≤ l ≤ k = 1
2
(µ+ ν) where every Nn

i admits a polar Morse-Smale flow without
periodic trajectories and codimension one saddle equilibrium states Moreover, if Mn is orientable
then β1(N

n
i ) = βn−1(N

n
i ) = 0 for i = 1, . . . , l.

Proof of Corollary 1. If a Morse-Smale flow f t has no periodic trajectories, then the time one
shift along the trajectories f t is a Morse-Smale diffeomorphism. Thus the result follows from
Theorem 1. ✷

Remark 1 For n = 3, Theorem 1 is a generalization of the main result of [3].

To formulate the next result let us introduce the definition of projective-like manifold that is
emphasized by the following description of a projective plane. Let B2 be an open 2-ball with the
boundary S1 = ∂B2 a circle. The identification of opposite points (a1; a2), (−a1;−a2) of S1 gives
the factor-space S1/(a1; a2) ∼ (−a1;−a2) that is homeomorphic to S1. The natural projection

S1 → S1/ ((a1; a2) ∼ (−a1;−a2)) = S1

gives the locally trivial fiber bundle (∂B2 = S1, S1, S0) with the fiber a zero-dimensional circle
S0 that is the union of two points. The projective plane P2 is obtained from the closed 2-
ball clos B2 = B2 ∪ ∂B2 by the identification of every fiber of the locally trivial fiber bundle
(∂B2 = S1, S1, S0) with a point.

Consider the well-known Hoph fiber bundle (S2n−1, Sn, Sn−1) where n ∈ {2, 4, 8} [8, 26]. The
total space is the (2n − 1)-sphere S2n−1 that projects to the base Sn under the projection p :
S2n−1 → Sn, and the fiber p−1(m) homeomorphic to Sn−1 for any m ∈ Sn. Take the open balls B4,
B6, B16 of the dimensions 4, 8, and 16 respectively. Let N2n, n ∈ {2, 4, 8}, be a set obtained from
the closed 2n-ball clos B2n = B2n ∪ ∂B2n after the identification of every fiber of the Hoph fiber
bundle (∂B2n = S2n−1, Sn, Sn−1) with a point. Since the fiber bundle (∂B2n = S2n−1, Sn, Sn−1)
is locally trivial, N2n is endowed by the structure of a closed (topological) manifold. Such N2n,
n ∈ {2, 4, 8} (and every manifold homeomorphic to N2n) is called a projective-like manifold.

Theorem 2 Let Mn be a closed n-manifold, n ≥ 3, supporting a Morse-Smale diffeomorphism
f without heteroclinic submanifolds on codimension one separatrices. Suppose that the non-
wandering set NW (f) consists of µ node periodic points, ν codimension one saddle periodic
points, and a single saddle fixed point that is not codimension one. Then

1) n ∈ {4, 8, 16};
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2) Mn is either

Mn =
(
Sn−1 ⊗ S1

)
♯ · · · ♯

(
Sn−1 ⊗ S1

)

︸ ︷︷ ︸

g

♯Nn provided g =
1

2
(ν − µ+ 2) > 0,

or
Mn = Nn provided ν = µ− 2

where

• Nn is the disjoint union of an open ball Bn and an n
2
-sphere S

n
2 , Nn = Bn∪S

n
2 , Bn∩S

n
2 = ∅

• for n ∈ {8, 16}, Nn is a projective-like manifold

• the homotopy groups π1(N
n) = · · · = πn

2
−1(N

n) = 0, and hence, Nn is simply connected
and orientable.

Corollary 2 Assume that the conditions of Theorem 1 hold. Suppose that there is Nn
i∗

in the
decompositions (1) or (3) such that Nn

i∗
contains exactly one saddle fixed point. Then

• n ∈ {4, 8, 16}

• Nn
i∗

is the disjoint union of an open ball Bn and an n
2
-sphere S

n
2 , Nn

i∗
= Bn∪S

n
2 , Bn∩S

n
2 = ∅

• for n ∈ {8, 16}, Nn
i∗

is a projective-like manifold

• the homotopy groups π1(N
n
i∗
) = · · · = πn

2
−1(N

n
i∗
) = 0, and hence, Nn

i∗
is simply connected

and orientable.

Theorem 3 Let Mn be a closed n-manifold, n ≥ 3, supporting a Morse-Smale flow f t without
heteroclinic submanifolds on codimension one separatrices. Suppose that the non-wandering set
NW (f t) consists of µ node equilibrium states, ν codimension one saddle equilibrium states, and
a single saddle equilibrium state that is not codimension one. Then

1) n ∈ {4, 8, 16};
2) Mn is either

Mn =
(
Sn−1 ⊗ S1

)
♯ · · · ♯

(
Sn−1 ⊗ S1

)

︸ ︷︷ ︸

g

♯Nn provided g =
1

2
(ν − µ+ 2) > 0,

or
Mn = Nn provided ν = µ− 2

where

• Nn is a projective-like manifold

• the homotopy groups π1(N
n) = · · · = πn

2
−1(N

n) = 0, and hence, Nn is simply connected
and orientable.
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The existence of manifoldNn containing exactly one saddle fixed point that is not codimension
one follows from [8], where one proved the existence of closed manifolds admitting Morse functions
with exactly three critical points, and [31] where one proved that any gradient flow can be
approximated by Morse-Smale gradient flow.

After Theorem 1, it is natural to consider the question of so-called realization. Note that the
conditions of Theorem 1 have no data on saddles that is not codimension one. Therefore, the
summands Nn

1 ♯ · · · ♯N
n
l absence in the following statement. Similar result holds for Morse-Smale

flows.

Theorem 4 Given any integers ν ≥ 0 and µ ≥ 2 satisfying the following conditions

ν ≥ µ− 2, g =
1

2
(ν − µ+ 2) ∈ Z,

there is a Morse-Smale diffeomorphism f : Mn → Mn without heteroclinic submanifolds on
codimension one separatrices such that the non-wandering set NW (f) consists of µ node periodic
points, ν codimension one saddle periodic points where Mn is either

Mn = Sn provided g = 0,

or
Mn =

(
Sn−1 ⊗ S1

)
♯ · · · ♯

(
Sn−1 ⊗ S1

)

︸ ︷︷ ︸

g

provided g ≥ 1.

Let us represent two applications. The application of Theorem 1 concerns the existence of
heteroclinic intersections of codimension one separatrices that form codimension two submanifolds.
In the particular case n = 3, the heteroclinic intersections of two-dimensional separatrices consist
of heteroclinic curves. Note that heteroclinic curves is often the mathematical model of so-called
separators considered in Solar Magnetohydrodynamics [11, 14, 29]. From the modern point
of view, reconnections of Solar magnetic field along separators are responsible for Solar flairs
[19, 20, 30].

Corollary 3 Let f : Mn → Mn be a preserving orientation Morse-Smale diffeomorphism of
closed orientable n-manifold Mn, n ≥ 3. Suppose that the non-wandering set NW (f) consists
of µ node periodic points, ν codimension one saddle periodic points, and arbitrary number of
saddle periodic points that are not codimension one. If g = ν−µ+2

2
≥ 1 and the fundamental group

π1(M
n) doesn’t contain a subgroup isomorphic to the free product

Z ∗ · · · ∗ Z
︸ ︷︷ ︸

g

then there exists saddle periodic points p, q ∈ NW (f) such that W s(p) ∩ W u(q) 6= ∅ and the
Morse index of p equals 1, and the Morse index of q equals n− 1.

The application of Corollary 1 concern the existence of a periodic trajectory for Morse-Smale
flows.

Corollary 4 Let f t be a Morse-Smale flow without heteroclinic intersections on a closed orientable
manifold Mn of dimension n ≥ 3, and assume that the non-wandering set NW (f t) contains the

6



following list of states of equilibrium : µ nodes, ν codimension one saddles, and arbitrary number
of saddles that are not codimension one. If g = 1

2
(ν − µ+ 2) ≥ 1 and the fundamental group

π1(M
n) doesn’t contain a subgroup isomorphic to the free product

Z ∗ · · · ∗ Z
︸ ︷︷ ︸

g

then f t has a periodic trajectory.

The structure of the paper is the following. In Section 1, we formulate the main definitions
and give some previous results. In Section 2, we prove main results and its applications.

Acknowledgments. This work is supported by the Russian Science Foundation under grant
17-11-01041, except the proof of theorem 4. The latter proof was obtained within the HSE Basic
Research Program (project no. 95) in 2018.

1 Definitions and previous results

Here, we recall basic definitions and formulate some results which we need later on. For simplicity,
we are considering a discrete-time dynamical system being a diffeomorphism. For the reference,
we formulate the following statement proved in [16] (see also [13, 17]).

Proposition 1 Let f :Mn → Mn be a Morse-Smale diffeomorphism, and Sepτ (σ) a separatrix
of dimension 1 ≤ d ≤ n− 1 of a saddle fixed point σ. Suppose that Sepτ (σ) has no intersections
with other separatrices. Then Sepτ (σ) belongs to unstable (if τ = s) or stable (if τ = u) manifold
of some node fixed point (sink or source, respectively), say N , and the topological closure of
Sepτ (σ) is a topologically embedded d-sphere that equals W τ (σ) ∪ {N}.

For 1 ≤ m ≤ n, we presume Euclidean space Rm to be included naturally in Rn as the subset
whose final (n − m) coordinates each equals 0. Let e : Mm → Nn be an embedding of closed
m-manifold Mm in the interior of n-manifold Nn. One says that e(Mm) is locally flat at e(x),
x ∈ Mm, if there exists a neighborhood U(e(x)) = U and a homeomorphism h : U → Rn such
that h(U ∩ e(Mm)) = Rm ⊂ Rn. Otherwise, e(Mm) is wild at e(x) [7]. The similar notation for
a compact Mm, in particular Mm = [0; 1]).

Note that a separatrix Sepτ (σ) is a smooth manifold. Hence, Sepτ (σ) is locally flat at every
point [7]. However a-priori, clos Sepτ (σ) = W τ(σ) ∪ {N} could be wild at the unique point N .

One of the key statement for proving Theorem 1 is the following result proved in [3] for n = 3.

Proposition 2 Let e : Sn−1 → Mn be a topological embedding of the (n − 1)-sphere, n ≥ 3,
which is a smooth immersion everywhere, except at one point, and let Σn−1 = e(Sn−1). Then any
neighborhood of Σn−1 contains a closed neighborhood of Σn−1 diffeomorphic to Sn−1 × [0; 1].

Proof. It is enough to prove the statement for n ≥ 4. Let Σn−1 be a topologically embedded
(n− 1)-sphere that is smooth everywhere, except at one point, say N ∈ Σn−1. According [4] (see
also [5, 6]), a wildly embedded (n− 1)-sphere have to contain infinitely many points where the
locally flatness fails provided n ≥ 4. Therefore, Σn−1 is a locally flat embedded (n − 1)-sphere.
This completes the proof. ✷

The following statement proved in [13] gives the sufficient condition for a Morse-Smale diffeo-
morphism to be polar.

7



Proposition 3 Let f : Mn → Mn be a Morse-Smale diffeomorphism without codimension one
saddle periodic orbits. Then f is a polar diffeomorphism, i.e. f has a unique source periodic orbit
and unique sink periodic orbit. Moreover, Mn is orientable.

The following propositions was proved in [23] (Lemma 6 and Lemma 7). For the Reader
convenience, we give a sketch of the proof.

Proposition 4 Let Bn
1 , Bn

2 ⊂ Sn be disjoint n-ball such that their boundaries Sn−1
1 = ∂Bn

1 ,
Sn−1
2 = ∂Bn

2 are locally flat embedded (n − 1)-spheres. Then given any homeomorphism ψ :
Sn−1
1 → Sn−1

2 , the manifold Nn obtained from Sn \ (Bn
1 ∪ Bn

2 ) after the identification of Sn−1
1 ,

Sn−1
2 under ψ is homeomorphic to Sn−1 ⊗ S1.

Since Sn−1
1 , Sn−1

2 are locally flat embedded (n− 1)-spheres, Sn \ (Bn
1 ∪B

n
2 ) is a closed n-annulus

homeomorphic to Sn−1 × S1 [35]. Hence, Nn is homeomorphic to Sn−1 ⊗ S1. ✷

Proposition 5 Let Mn be a closed (topological) manifold and Sn−1 an (n−1)-sphere topologically
imbedded in Mn. Suppose that Sn−1 has an open neighborhood U homeomorphic to the prime
product Sn−1 × (−1, 1). If the manifold Mn \ U is connected, then there is the topological closed
manifold Mn

1 such that Mn is homeomorphic to the connected sum Mn =Mn
1 ♯(S

n−1 ⊗ S1).

Proof. Denote by Sn−1
1 , Sn−1

2 the components of the boundary ∂U . Clearly that Sn−1
1 , Sn−1

2 are
(n− 1)-spheres locally flat embedded in Mn. Since Mn \U is connected, there is a closed subset
Dn containing Sn−1

1 , Sn−1
2 such that Dn is homeomorphic to clos Bn \ (Bn

1 ∪ Bn
2 ) where Bn

1 ,
Bn

2 ⊂ Bn are disjoint n-balls. Here, Sn−1
i = ∂Bn

i , i = 1, 2. We see that the boundary ∂Dn

consists of three components Sn−1
0 , Sn−1

1 , Sn−1
2 each homeomorphic an (n− 1)-sphere. Attaching

a closed n-ball to Dn along the component Sn−1
0 , one gets the set homeomorphic Sn \ (Bn

1 ∪B
n
2 ).

The result now follows from Proposition 4. ✷
To prove Theorems 2, 3 we need the following description of projective-like manifold.

Proposition 6 A closed manifold Mn, n ≥ 3, is projective-like if and only if Mn is a disjoin
union of an open n-ball Bn and k-sphere Sk, 1 ≤ k ≤ n− 1, locally flat embedded in Mn.

Proof. Let Mn be a projective-like manifold. Thus, n ∈ {4, 8, 16}, and Mn is a manifold obtained
from the closed n-ball clos Bn = Bn ∪ ∂Bn after the identification of every fiber of the Hoph
fiber bundle (∂Bn = Sn−1, S

n
2 , S

n
2
−1) with a point. Denote by S the set obtained after this

identification. Since the Hoph fiber bundle is locally trivial, S is homeomorphic to the base S
n
2

that is an n
2
-sphere. Clearly that ∂Bn = Sn−1 is the locally flat embedded (n − 1)-sphere in

the closed n-ball clos Bn. Hence, S is also locally flat embedded in Mn. We see that Mn is the
disjoint union of the open n-ball Bn and n

2
-sphere S that is locally flat embedded in Mn.

Now, suppose that Mn is a disjoin union of an open n-ball Bn and k-sphere Σk, 1 ≤ k ≤ n−1,
locally flat embedded in Mn. Then Σk has an open tubular neighborhood T (Σk) such that its
boundary ∂T (Σk) is a submanifold of codimension one, and T (Σk) is the total space of a locally
trivial fiber bundle with the base Σk and a fiber Bn−k [18]. For convenience, we can assume that
each fiber Bn−k is an (n − k)-ball such that the boundary ∂Bn−k = Sn−k−1 belongs to ∂T (Σk),
and the center of Bn−k belongs to Σk.

First, we have to show that ∂T (Σk) is homeomorphic to Sn−1. Let us construct flows f t0 and f t1
on the sets Bn and clos T (Σk) = T (Σk)∪∂T (Σk) respectively, as follows. Take an arbitrary point
x0 ∈ Bn that does not belong to clos T (Σk). Since Bn is an open ball, there is a flow f t0 on Bn

8



such that f t−0 has a unique fixed point x0 that is a source, and all one-dimensional trajectories
leave any compact part of Bn in the positive direction (time increases). The flow f t1 is arranged
as follows: a) each disk B̃n−k that is a fiber of the locally trivial bundle

(
T (Σk),Σk, Bn−k

)
) is

invariant under f t1; b) the restriction of f t1 on B̃n−k has a sink at a point on Σk, corresponding
to the center of the disk Bn−k, and has the set of equilibria that fill out the entire boundary of
the disc B̃n−k; c) the one-dimensional trajectories on the set (T (Σk) \ Σk) ∩ B̃n−k move in the
positive direction to the sinks.

Let Σ̃n−1 be an (n− 1)-sphere locally flat imbedded in Mn such that Σ̃n−1 bounds n-ball bn0
with a point x0 inside, and Σ̃n−1 is transversal (in the topological sense) to the trajectories of the
flow f t0. From the properties of this flow, and the equality Mn = Σk ∪Bn, and from the fact that
∂T (Sk) is a compact subset of Bn, it follows that there is the number τ > 0 such that the set
Σ̃n−1
τ = f τ0 (Σ̃

n−1) belongs to T (Σk). Moreover, the set ∂T (Σk) belongs to f τ0 (b
n
0 ). Clearly, Σ̃n−1

τ

is an (n− 1)-sphere that locally flat embedded in Mn. We can assume that Σ̃n−1
τ belongs to the

wandering set of the flow f t1.
The intersection T (Σk)∩f τ0 (b

n
0 ) is an open set whose boundary contains ∂T (Σk). Since ∂T (Σk)

is a submanifold of codimension one, ∂T (Σk) has a semi-neighborhood U ⊂
(
T (Σk) ∪ ∂T (Σk)

)
∩

f τ0 (b
n
0 ) in the set clos

(
T (Σk) ∩ f τ0 (b

n
0 )
)

that is homeomorphic to (0; 1]× ∂T (Σk). Let us take an
open subset intU ⊂ U homeomorphic to (0; 1)× ∂T (Σk). Obviously,

πi(intU) = πi
(
(0; 1)× ∂T (Σk)

)
= πi

(
∂T (Σk)

)
, i = 0, . . . , n− 2. (7)

The set A0 = Bn \ clos f τ0 (b
n
0 ) is an open n-dimensional annulus homeomorphic to (0; 1) ×

Sn−1. Therefore, its homotopy groups πi(A0) are equal to zero for all i = 0, . . . , n − 2. Let us
consider a representative γ : Si → intU of the group πi(intU) where Si is an i-sphere. Since
γ(Si) ∩ ∂T (Σk) = ∅, there exists a number τ1 > 0 such that f τ1(γ(Si)) ⊂ A0. Therefore, (7)
implies that πi(∂T (Σ

k)) = 0 for all i = 0, . . . , n − 2. It follows from the validity of Poincare
conjecture for all dimensions n ≥ 3 (see [9, 25, 27, 28, 32]) that the set ∂T (Σk) is homeomorphic
to an (n− 1)-sphere.

Since ∂T (Σk) is homeomorphic to Sn−1, the locally trivial bundle (T (Σk),Σk, Bn−k) is (globally)
non-trivial. The projection π : T (Σk) → Σk of this bundle induces the projection π∗ : ∂T (Σ

k) →
Σk such that π−1

∗
(x) = ∂Bn−k = Sn−k−1 for any x ∈ Σk. Since the bundle (T (Σk),Σk, Bn−k) is

locally trivial, π∗ induces the locally trivial bundle (∂T (Σk),Σk, ∂Bn−k) = (Sn−1, Sk, Sn−k−1).
According [1] (see also [26]), there are only following such bundles

S3 → S2, fiber S1; S7 → S4, fiber S3; S15 → S8, fiber S7.

It is easy to see that these bundles correspond to the following pairs (n, k): (4, 2), (8, 4), (16, 8).
We see that Mn is a disjoin union of an open n-ball Bn and n

2
-sphere S

n
2 locally flat embedded

in Mn where n ∈ {4, 8, 16}. One can consider the spheres S
n
2 , n = 4, 8, 16 being bases of the Hoph

bundles (Sn−1, S
n
2 , S

n
2
−1). Since ∂Bn = Sn−1, Mn can obtained from the closed n-ball clos Bn =

Bn ∪ ∂Bn after the identification of every fiber of the Hoph bundle (∂Bn = Sn−1, S
n
2 , S

n
2
−1) with

a point. This completes the proof. ✷

2 Proofs of the main results

Lemma 1 Let f :Mn →Mn be a Morse-Smale diffeomorphism without heteroclinic submanifolds
on codimension one separatrices. Suppose σ is a codimension one saddle periodic point such that
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dimW s(σ) = 1, dimW u(σ) = n − 1. Then there exists a codimension one saddle periodic point
σ∗ such that Sepu(σ∗) has no heteroclinic intersections.

Proof. Without loss of generality, one can assume that all periodic points are fixed. Given any
p, q ∈ NW (f), we put p ≺ q provided W s(p) ∩W u(q) 6= ∅ and there no other r ∈ NW (f) such
that W s(p) ∩W u(r) 6= ∅, W s(r) ∩W u(q) 6= ∅. One knows that ≺ is a partial ordering and this
ordering is strict [31, 33].

Suppose that Sepu(σ) has heteroclinic intersections (otherwise, nothing to prove). The chain
σ ≺ σ1 ≺ · · · has a maximum point, say σ∗. Since f has no heteroclinic manifolds on codimension
one separatrices, every saddle in this chain has a codimension one unstable separatrix. Since σ∗
is a maximum point in the chain above, Sepu(σ∗) has no heteroclinic intersections. ✷

Proof of Theorem 1. Taking a sufficiently large iteration, if necessary, one can assume that
every periodic point of f is fixed. If ν = 0 then f is a polar Morse-Smale diffeomorphism by
Proposition 3, and nothing to prove. Suppose now that ν ≥ 1. Due to Lemma 1, there exists a
codimension one saddle σ whose codimension one separatrix has no heteroclinic intersections. For
definiteness, let us assume that dimW s(σ) = 1, dimW u(σ) = n− 1. According to Proposition 1,
the topological closure clos W u(σ) of W u(σ) is a topologically embedded (n−1)-sphere consisting
of W u(σ) and a sink ω. By Proposition 2, there is an open neighborhood U of clos W u(σ) such
that the topological closure clos U is diffeomorphic to Sn−1 × [0; 1]. Since clos U contains the
sink ω, fk(clos U) ⊂ U for a sufficiently large k. Passing to the iteration fk if necessary, we can
assume, without loss of generality, that k = 1.

Let us remove the neighborhood U from the manifold Mn. The manifold Mn \ U has two
boundary components Σn−1

1 , Σn−1
2 each homeomorphic to Sn−1. Gluing to each Σn−1

i an n-ball
Bn
i , i = 1, 2, we get a smooth closed manifold Mn

1 . Since f(clos U) ⊂ U , we can extend the
diffeomorphism f to the manifold Mn

1 such that inside each ball Bn
1 , Bn

2 the diffeomorphism we
obtained f1 : Mn

1 → Mn
1 has exactly one hyperbolic sink, while all points except the sinks are

wandering. Comparing the non-wandering sets of f1 and f , one can see that f1 has one saddle of
codimension one less and one node (the sink, in this case) more. We call the described procedure
a cutting along an unstable separatrix. The similar cutting operation is considered along a stable
separatrix (with adding sources).

After ν cuttings along codimension one separatrices of all saddles with the Morse indexes
n − 1 and 1, we obtain a Morse-Smale diffeomorphism fν : Mn

ν → Mn
ν of closed manifold Mn

ν

consisting of finitely many connected components. The non-wandering set of fν contains exactly
µ + ν nodes, and does not contain codimension one saddles. By Proposition 3, each connected
component of the manifold Mn

ν admits a polar diffeomorphism with exactly one source and
exactly one sink. Hence, the number of connected components of Mn

ν is equal to k = 1
2
(µ+ ν).

Therefore, the number µ+ ν is even.
The cutting procedure above allows to rebuild the original manifold Mn from the obtained

connected components. If one gets a connected manifold after the cutting along a codimension
one separatrix, the intermediate manifold is homeomorphic to the connected sum of some closed
manifold and Sn−1⊗S1, according to Proposition 5. If after the cutting along a codimension one
separatrix one gets a manifold consisting of two connected components, then the intermediate
manifold is homeomorphic to the connected sum of two closed manifolds.

Denote by Nn
1 , . . .,Nn

k the connected components of the manifoldMn
ν . The number of cuttings
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that does not increase the number of the connected components is equal to the integer number

g = ν −
1

2
(µ+ ν) + 1 =

1

2
(ν − µ+ 2) ≥ 0.

Each such cutting corresponds to the summand Sn−1 ⊗ S1 in the resulting connected sum.
Therefore, the connected sum of k manifolds Nn

1 , . . ., Nn
k and g copies of Sn−1 ⊗ S1 gives Mn.

For g = 0, there are two possibilities: a) all manifolds Nn
1 , . . ., Nn

k are homeomorphic to the
sphere Sn and hence, Mn is homeomorphic to Sn; b) among Nn

1 , . . ., Nn
k , there exist exactly

1 ≤ l ≤ k manifolds that are not homeomorphic to Sn.
If g 6= 0, one can prove in a similar way that either Mn is homeomorphic to the connected sum

(Sn−1 ⊗ S1) ♯ · · · ♯ (Sn−1 ⊗ S1) of g copies Sn−1⊗S1, or Mn can be represented as the connected
sum (Sn−1 ⊗ S1) ♯ · · · ♯ (Sn−1 ⊗ S1) ♯Nn

1 ♯ · · · ♯N
n
l for some 1 ≤ l ≤ k, where each manifold Nn

i

(i = 1, . . . , l) admits a polar diffeomorphism without codimension one saddle periodic orbits.
We remind Morse inequalities [31]. Let Mj be the number of periodic points p ∈ Per (f)

those stable Morse index equals j = dimW s(p), and βi = rank Hi(M
n,Z) the Betti numbers.

Then
M0 ≥ β0, M1 −M0 ≥ β1 − β0, M2 −M1 +M0 ≥ β2 − β1 + β0, · · · (8)

n∑

i=0

(−1)iMi =

n∑

i=0

(−1)iβi. (9)

Since Nn
i admits a polar Morse-Smale diffeomorphism without codimension one saddle periodic

orbits, M1 = 0. It follows from (8) that β0 ≤ M0 ≤ β0 − β1. Hence, β1(N
n
i ) = 0. By duality,

βn−1(N
n
i ) = 0. This completes the proof. ✷

Proof of Theorem 2. Since the non-wandering set NW (f) contains a single saddle fixed point,
say σ, that is not codimension one, l = 1 in the decompositions (1), (3) and the summand Nn

1

admits a polar diffeomorphism f1 : N
n
1 → Nn

1 the non-wandering set of whose consists of a sink
ω1, a source α1, and the saddle fixed point σ. Moreover, Nn

1 6= Sn because of Nn
1 contains two

spheres W u(σ) ∪ {ω1} and W s(σ) ∪ {α1} transversally intersected at a unique point σ. Hence,
the decomposition (2) does not hold. In addition, due to Proposition 3, Nn

1 is orientable. It
follows from [3] that if a Morse-Smale diffeomorphism of a closed 3-manifold has no heteroclinic
intersections, then the number of periodic points can not be three and five. As a consequence,
dimMn dimNn

1 = n 6= 3. Later on, n ≥ 4.
It follows from Proposition 1 that Σk = W u(σ) ∪ {ω1} is a topologically embedded k-sphere

where 2 ≤ k = dimW u(σ) ≤ n− 2. It is well known [12, 33] that a manifold is the disjoint union
of unstable manifolds of non-wandering orbits. Hence, the manifold

Nn
1

def
= Nn =W u(σ) ∪W u(ω1) ∪W

u(α1) = W u(σ) ∪ {ω1} ∪W
u(α1) = Σk ∪W u(α1)

is the disjoint union of the open n-ball Bn = W u(α1) and k-sphere Σk topologically embedded
in Nn.

The remaining assertions follows from [22] (see also [21]). For the Reader convenience, we
give sketches of rest proofs. Since 2 ≤ k = dimW u(σ) ≤ n − 2, M0 = Mn = Mk = 1. For f−1,
one holds M0 = Mn = Mn−k = 1 and for j 6= 0, n, k, n − k, one holds Mj = 0. Since the left
parts of (9) for f and f−1 are equal, (−1)k = (−1)n−k. Hence, n = 2m is even, where m ≥ 2. Let
us show that k = m. Suppose the contradiction. Assume for definiteness that k > m. It follows
from (8) that β1 = . . . = βn−k−1 = 0 because of M1 = . . . = Mn−k−1 = 0. The Poincare duality
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implies that β1 = . . . = βk−1 = 0. Hence, βi = 0 for all i = 1, . . ., n − 1. Then (9) becomes
1 + (−1)k + (−1)n = 1 + (−1)n. This is impossible. Hence, k = n

2
.

It remains to prove that the spheres Σk = W u(σ) ∪ {ω1} = Sk, Sn−k = W s(σ) ∪ {α1} are
locally flat provided n ≥ 6. It follows from [6] (see [5, 34]) that k-manifold has no isolated wild
points provided n ≥ 5, k 6= n−2. As a consequence, Sk, Sn−k are locally flat embedded k-spheres.
The Theorem is proved. ✷

Proof of Theorem 3. Since the Morse-Smale flow f t has no periodic trajectories, the time one
shift along the trajectories is a Morse-Smale diffeomorphism, say f . We keep the notation of the
proof of Theorem 2. It was proved in [22] (see also [21]) that if f is generated by a Morse-Smale
flow, then the spheres Σk = W u(σ) ∪ {ω1} = Sk, Sn−k = W s(σ) ∪ {α1} are locally flat provided
n ≥ 4. Now, the result follows from Theorem 2. ✷

Proof of Theorem 4. Previously, we introduce some notation. Let Mn
1 , Mn

2 be n-manifolds
supporting vector fields v1, v2 respectively. Suppose that v1, v2 are consistent on the boundaries
∂Mn

1 , ∂Mn
2 . For example, v1 is outside and perpendicular to ∂Mn

1 while v2 is inside and perpendicular
to ∂Mn

2 . Assume that there is a diffeomorphism ϕ : ∂Mn
1 → ∂Mn

2 . On the manifoldMn
1 ∪ϕ(∂Mn

1
)=∂Mn

2

Mn
2 , the vector fields v1, v2 form the vector field denoted by v1♯v2. Below, all fixed points are

hyperbolic. Saying that a vector field induces a diffeomorphism, we mean that the diffeomorphism
is the shift-one-time along the trajectories of the flow induced by the vector field.

Let Vsink be the vector field on the closed n-disk Dn with a sink at the center such that Vsink
is inside and perpendicular to ∂Dn = Sn−1. Denote −Vsink by Vsource. Obviously, Vsource has a
source at the center and Vsource is outside and perpendicular to ∂Dn = Sn−1. Then the vector
field Vsink♯Vsource = VNS on the n-sphere Sn = Dn ∪id(Sn−1)=Sn−1 Dn induces the Morse-Smale
diffeomorphism fSN : Sn → Sn of the North-Sough type.

First, one considers g = 0. The diffeomorphism fSN is desired for the particular case ν = 0,
µ = 2. For ν ≥ 1, one considers the vector field Vν,sink on Dn with ν codimension one saddles,
one sink, and ν sources such that Vν,sink is inside and perpendicular to ∂Dn = Sn−1. Each saddle
has two stable one-dimensional separatrices and an (n− 1)-dimensional unstable separatrix that
together with the sink surrounds one source. In addition, one can assume that codimension one
separatrices have no heteroclinic intersections. The vector field Vsource♯Vν,sink induces the desired
Morse-Smale diffeomorphism Sn → Sn with ν codimension one saddles and ν + 2 = µ nodes.

Denote by Va the vector field on Dn−1 ×S1 that is inside and perpendicular to the boundary
∂(Dn−1 × S1) = Sn−2 × S1 such that Va has a ≥ 1 sinks and a codimension one saddles. In
addition, each saddle has an (n − 1)-dimensional stable separatrix and two one-dimensional
unstable separatrices going to sinks, and the stable separatrix intersects Sn−2×S1 at Sn−2×{x}
for some x ∈ S1. Take a copy Dn−1 × S1 supporting the vector field −Vb. Clearly, −Vb is outside
and perpendicular to the boundary ∂(Dn−1 × S1) = Sn−2 × S1 and Vb has b ≥ 1 sources and
b codimension one saddles. Denote by Rβ : S1 → S1 the rigid rotation x → x + β mod 1 which
induces the diffeomorphism ψβ : Sn−2×S1 → Sn−2×S1 as follows ψβ(z, x) = (z, Rβ(x)). On the
closed manifold

(Dn−1 × S1)
⋃

ψβ(∂(Dn−1
×S1))

(Dn−1 × S1) = Sn−1 × S1,

the vector fields Va, −Vb form the vector field Wa+b with a+ b codimension one saddles and a+ b
nodes. One can choose β such thatWa+b becomes a Morse-Smale vector field without intersections
on codimension one separatrices. ThisWa+b induces the Morse-Smale diffeomorphism fa,b without
intersections on codimension one separatrices. Actually, fa,b is gradient-like.
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Now, one considers g ≥ 1. In this case, ν = 2g+ (µ− 2) ≥ 2 because of the inequality µ ≥ 2.
Note that since g ∈ Z, the number ν − µ ≥ 0 is even. Denote by [x] the integral part of x ∈ R.
By construction, the Morse-Smale diffeomorphism

f[ ν2 ],[
ν+1

2 ] : S
n−1 × S1 → Sn−1 × S1

has
[
ν
2

]
+
[
ν+1
2

]
= ν codimension one saddles and ν nodes consisting of

[
ν
2

]
sinks and

[
ν+1
2

]
sources.

If ν = µ, f[ ν2 ],[
ν+1

2 ] is the desired Morse-Smale diffeomorphism Sn → Sn with ν codimension

one saddles and ν = µ nodes. Now, suppose ν − µ ≥ 2. Let us delete from Sn−1 × S1 the
sufficiently small neighborhoods of 1

2
(ν−µ) sources and 1

2
(ν−µ) sinks where each neighborhood is

homeomorphic to an open n-ball Bn. Let us identify the boundary of every deleted neighborhood
of source with the boundary of deleted neighborhood of a sink such that the diffeomorphism
f[ ν2 ],[

ν+1

2 ] induces the Morse-Smale diffeomorphism f on the obtained closed manifold Mn. It

follows from Proposition 4 that Mn is the connected sum of 1 + ν−µ

2
= g copies of Sn−1 × S1.

Calculations show that the non-wandering set NW (f) consists of ν codimension one saddles and
ν − 2 · ν−µ

2
= µ nodes. This completes the proof. ✷

Proof of corollaries 3, 4. Outline of the proof of the corollaries is the same: if we assume the
contrary, then there exist the decompositions of the ambient manifold Mn, according to Theorem
1. It follows from Van Kampen Theorem (see, exm., [26]), that π1(M

n) contains the subgroup
Z ∗ · · · ∗ Z. This contradiction proves the required assertions. ✷
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